print*,'FORCING CASE forcing_case2' ! print*, & ! & '#### ITAP,day,day1,(day-day1)*86400,(day-day1)*86400/pdt_cas=', & ! & daytime,day1,(daytime-day1)*86400., & ! & (daytime-day1)*86400/pdt_cas ! time interpolation: CALL interp_case_time_std(daytime,day1,annee_ref & ! & ,year_ini_cas,day_ju_ini_cas,nt_cas,pdt_cas,nlev_cas & & ,nt_cas,nlev_cas & & ,ts_cas,ps_cas,plev_cas,t_cas,th_cas,thv_cas,thl_cas,qv_cas,ql_cas,qi_cas & & ,u_cas,v_cas,ug_cas,vg_cas & & ,temp_nudg_cas,qv_nudg_cas,u_nudg_cas,v_nudg_cas & & ,vitw_cas,omega_cas,du_cas,hu_cas,vu_cas & & ,dv_cas,hv_cas,vv_cas,dt_cas,ht_cas,vt_cas,dtrad_cas & & ,dq_cas,hq_cas,vq_cas,dth_cas,hth_cas,vth_cas,lat_cas,sens_cas,ustar_cas & & ,uw_cas,vw_cas,q1_cas,q2_cas,tke_cas & ! & ,ts_prof_cas,ps_prof_cas,plev_prof_cas,t_prof_cas,theta_prof_cas,thv_prof_cas & & ,thl_prof_cas,qv_prof_cas,ql_prof_cas,qi_prof_cas & & ,u_prof_cas,v_prof_cas,ug_prof_cas,vg_prof_cas & & ,temp_nudg_prof_cas,qv_nudg_prof_cas,u_nudg_prof_cas,v_nudg_prof_cas & & ,vitw_prof_cas,omega_prof_cas & & ,du_prof_cas,hu_prof_cas,vu_prof_cas & & ,dv_prof_cas,hv_prof_cas,vv_prof_cas,dt_prof_cas,ht_prof_cas,vt_prof_cas & & ,dtrad_prof_cas,dq_prof_cas,hq_prof_cas,vq_prof_cas & & ,dth_prof_cas,hth_prof_cas,vth_prof_cas,lat_prof_cas & & ,sens_prof_cas,ustar_prof_cas,uw_prof_cas,vw_prof_cas,q1_prof_cas,q2_prof_cas,tke_prof_cas) ! EV tg instead of ts_cur tg = ts_prof_cas ! psurf=plev_prof_cas(1) psurf=ps_prof_cas ! vertical interpolation: CALL interp2_case_vertical_std(play,nlev_cas,plev_prof_cas & & ,t_prof_cas,theta_prof_cas,thv_prof_cas,thl_prof_cas & & ,qv_prof_cas,ql_prof_cas,qi_prof_cas,u_prof_cas,v_prof_cas & & ,ug_prof_cas,vg_prof_cas & & ,temp_nudg_prof_cas,qv_nudg_prof_cas,u_nudg_prof_cas,v_nudg_prof_cas & & ,vitw_prof_cas,omega_prof_cas & & ,du_prof_cas,hu_prof_cas,vu_prof_cas,dv_prof_cas,hv_prof_cas,vv_prof_cas & & ,dt_prof_cas,ht_prof_cas,vt_prof_cas,dtrad_prof_cas,dq_prof_cas,hq_prof_cas,vq_prof_cas & & ,dth_prof_cas,hth_prof_cas,vth_prof_cas & ! & ,t_mod_cas,theta_mod_cas,thv_mod_cas,thl_mod_cas,qv_mod_cas,ql_mod_cas,qi_mod_cas & & ,u_mod_cas,v_mod_cas,ug_mod_cas,vg_mod_cas & & ,temp_nudg_mod_cas,qv_nudg_mod_cas,u_nudg_mod_cas,v_nudg_mod_cas & & ,w_mod_cas,omega_mod_cas & & ,du_mod_cas,hu_mod_cas,vu_mod_cas,dv_mod_cas,hv_mod_cas,vv_mod_cas & & ,dt_mod_cas,ht_mod_cas,vt_mod_cas,dtrad_mod_cas,dq_mod_cas,hq_mod_cas,vq_mod_cas & & ,dth_mod_cas,hth_mod_cas,vth_mod_cas,mxcalc) DO l=1,llm teta(l)=temp(l)*(100000./play(l))**(rd/rcpd) ENDDO !calcul de l'advection verticale a partir du omega !Calcul des gradients verticaux !initialisation d_t_z(:)=0. d_th_z(:)=0. d_q_z(:)=0. d_u_z(:)=0. d_v_z(:)=0. d_t_dyn_z(:)=0. d_th_dyn_z(:)=0. d_q_dyn_z(:)=0. d_u_dyn_z(:)=0. d_v_dyn_z(:)=0. if (1==0) then DO l=2,llm-1 d_t_z(l)=(temp(l+1)-temp(l-1))/(play(l+1)-play(l-1)) d_th_z(l)=(teta(l+1)-teta(l-1))/(play(l+1)-play(l-1)) d_q_z(l)=(q(l+1,1)-q(l-1,1))/(play(l+1)-play(l-1)) d_u_z(l)=(u(l+1)-u(l-1))/(play(l+1)-play(l-1)) d_v_z(l)=(v(l+1)-v(l-1))/(play(l+1)-play(l-1)) ENDDO else DO l=2,llm-1 IF (omega(l)>0.) THEN d_t_z(l)=(temp(l+1)-temp(l))/(play(l+1)-play(l)) d_th_z(l)=(teta(l+1)-teta(l))/(play(l+1)-play(l)) d_q_z(l)=(q(l+1,1)-q(l,1))/(play(l+1)-play(l)) d_u_z(l)=(u(l+1)-u(l))/(play(l+1)-play(l)) d_v_z(l)=(v(l+1)-v(l))/(play(l+1)-play(l)) ELSE d_t_z(l)=(temp(l-1)-temp(l))/(play(l-1)-play(l)) d_th_z(l)=(teta(l-1)-teta(l))/(play(l-1)-play(l)) d_q_z(l)=(q(l-1,1)-q(l,1))/(play(l-1)-play(l)) d_u_z(l)=(u(l-1)-u(l))/(play(l-1)-play(l)) d_v_z(l)=(v(l-1)-v(l))/(play(l-1)-play(l)) ENDIF ENDDO endif d_t_z(1)=d_t_z(2) d_t_z(1)=d_t_z(2) d_th_z(1)=d_th_z(2) d_q_z(1)=d_q_z(2) d_u_z(1)=d_u_z(2) d_v_z(1)=d_v_z(2) d_t_z(llm)=d_t_z(llm-1) d_th_z(llm)=d_th_z(llm-1) d_q_z(llm)=d_q_z(llm-1) d_u_z(llm)=d_u_z(llm-1) d_v_z(llm)=d_v_z(llm-1) ! TRAVAIL : PRENDRE DES NOTATIONS COHERENTES POUR W do l = 1, llm ! Modif w_mod_cas -> omega_mod_cas (MM+MPL 20170309) omega(l) = -w_mod_cas(l)*play(l)*rg/(rd*temp(l)) enddo !Calcul de l advection verticale ! Modif w_mod_cas -> omega_mod_cas (MM+MPL 20170310) d_t_dyn_z(:)=omega(:)*d_t_z(:) d_th_dyn_z(:)=omega(:)*d_th_z(:) d_q_dyn_z(:)=omega(:)*d_q_z(:) d_u_dyn_z(:)=omega(:)*d_u_z(:) d_v_dyn_z(:)=omega(:)*d_v_z(:) !geostrophic wind if (forc_geo.eq.1) then do l=1,llm ug(l) = ug_mod_cas(l) vg(l) = vg_mod_cas(l) enddo endif do l = 1, llm !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! ! Modif w_mod_cas -> omega_mod_cas (MM+MPL 20170309) !!! omega2(l)= omega(l)/rg*airefi ! flxmass_w calcule comme ds physiq omega(l) = omega_mod_cas(l) omega2(l)= omega_mod_cas(l)/rg*airefi ! flxmass_w calcule comme ds physiq ! On effectue la somme du forcage total et de la decomposition ! horizontal/vertical en supposant que soit l'un soit l'autre ! sont remplis mais jamais les deux d_t_adv(l) = dt_mod_cas(l)+ht_mod_cas(l)+vt_mod_cas(l) d_q_adv(l,1) = dq_mod_cas(l)+hq_mod_cas(l)+vq_mod_cas(l) d_q_adv(l,2) = 0.0 d_u_adv(l) = du_mod_cas(l)+hu_mod_cas(l)+vu_mod_cas(l) d_v_adv(l) = dv_mod_cas(l)+hv_mod_cas(l)+vv_mod_cas(l) !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! !! CONSERVE EN ATTENDANT QUE LE CAS EN QUESTION FONCTIONNE EN STD !! !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! !if (forc_w==1) then ! d_q_adv(l,1)=d_q_adv(l,1)-d_q_dyn_z(l) ! d_t_adv(l)=d_t_adv(l)-d_t_dyn_z(l) ! d_v_adv(l)=d_v_adv(l)-d_v_dyn_z(l) ! d_u_adv(l)=d_u_adv(l)-d_u_dyn_z(l) ! endif !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! if (trad.eq.1) then tend_rayo=1 dt_cooling(l) = dtrad_mod_cas(l) ! print *,'dt_cooling=',dt_cooling(l) else dt_cooling(l) = 0.0 endif enddo ! Faut-il multiplier par -1 ? (MPL 20160713) IF(ok_flux_surf) THEN fsens=-1.*sens_prof_cas flat=-1.*lat_prof_cas print *,'1D_interp: sens,flat',fsens,flat ENDIF ! IF (ok_prescr_ust) THEN ust=ustar_prof_cas print *,'ust=',ust ENDIF