1 | ! |
---|
2 | ! $Id $ |
---|
3 | ! |
---|
4 | SUBROUTINE cvltr_noscav(it,pdtime,da, phi, mp,wght_cvfd,paprs,pplay,x,upd,dnd,dx) |
---|
5 | USE yoecumf_mod_h |
---|
6 | USE dimphy |
---|
7 | USE infotrac_phy, ONLY : nbtr |
---|
8 | USE yomcst_mod_h |
---|
9 | IMPLICIT NONE |
---|
10 | !===================================================================== |
---|
11 | ! Objet : convection des traceurs / KE |
---|
12 | ! Auteurs: M-A Filiberti and J-Y Grandpeix |
---|
13 | !===================================================================== |
---|
14 | |
---|
15 | |
---|
16 | ! Entree |
---|
17 | REAL,INTENT(IN) :: pdtime |
---|
18 | INTEGER, INTENT(IN) :: it |
---|
19 | REAL,DIMENSION(klon,klev),INTENT(IN) :: da |
---|
20 | REAL,DIMENSION(klon,klev,klev),INTENT(IN) :: phi |
---|
21 | REAL,DIMENSION(klon,klev),INTENT(IN) :: mp |
---|
22 | REAL,DIMENSION(klon,klev),INTENT(IN) :: wght_cvfd ! weights of the layers feeding convection |
---|
23 | REAL,DIMENSION(klon,klev+1),INTENT(IN) :: paprs ! pression aux 1/2 couches (bas en haut) |
---|
24 | REAL,DIMENSION(klon,klev),INTENT(IN) :: pplay ! pression pour le milieu de chaque couche |
---|
25 | REAL,DIMENSION(klon,klev,nbtr),INTENT(IN) :: x ! q de traceur (bas en haut) |
---|
26 | REAL,DIMENSION(klon,klev),INTENT(IN) :: upd ! saturated updraft mass flux |
---|
27 | REAL,DIMENSION(klon,klev),INTENT(IN) :: dnd ! saturated downdraft mass flux |
---|
28 | |
---|
29 | ! Sortie |
---|
30 | REAL,DIMENSION(klon,klev,nbtr),INTENT(inOUT) :: dx ! tendance de traceur (bas en haut) |
---|
31 | |
---|
32 | ! Variables locales |
---|
33 | ! REAL,DIMENSION(klon,klev) :: zed |
---|
34 | REAL,DIMENSION(klon,klev,klev) :: zmd |
---|
35 | REAL,DIMENSION(klon,klev,klev) :: za |
---|
36 | REAL,DIMENSION(klon,klev) :: zmfd,zmfa |
---|
37 | REAL,DIMENSION(klon,klev) :: zmfp,zmfu |
---|
38 | REAL,DIMENSION(klon,nbtr) :: qfeed ! tracer concentration feeding convection |
---|
39 | REAL,DIMENSION(klon,klev) :: deltap |
---|
40 | INTEGER :: i,k,j |
---|
41 | REAL :: pdtimeRG |
---|
42 | REAL :: smallest_mp |
---|
43 | real conserv |
---|
44 | real smfd |
---|
45 | real smfu |
---|
46 | real smfa |
---|
47 | real smfp |
---|
48 | ! ========================================= |
---|
49 | ! calcul des tendances liees au downdraft |
---|
50 | ! ========================================= |
---|
51 | ! |
---|
52 | smallest_mp = tiny(mp(1,1)) |
---|
53 | !cdir collapse |
---|
54 | qfeed(:,it) = 0. |
---|
55 | DO j=1,klev |
---|
56 | DO i=1,klon |
---|
57 | ! zed(i,j)=0. |
---|
58 | zmfd(i,j)=0. |
---|
59 | zmfa(i,j)=0. |
---|
60 | zmfu(i,j)=0. |
---|
61 | zmfp(i,j)=0. |
---|
62 | END DO |
---|
63 | END DO |
---|
64 | !cdir collapse |
---|
65 | DO k=1,klev |
---|
66 | DO j=1,klev |
---|
67 | DO i=1,klon |
---|
68 | zmd(i,j,k)=0. |
---|
69 | za (i,j,k)=0. |
---|
70 | END DO |
---|
71 | END DO |
---|
72 | END DO |
---|
73 | ! entrainement |
---|
74 | ! DO k=1,klev-1 |
---|
75 | ! DO i=1,klon |
---|
76 | ! zed(i,k)=max(0.,mp(i,k)-mp(i,k+1)) |
---|
77 | ! END DO |
---|
78 | ! END DO |
---|
79 | |
---|
80 | ! calcul de la matrice d echange |
---|
81 | ! matrice de distribution de la masse entrainee en k |
---|
82 | |
---|
83 | DO k=1,klev-1 |
---|
84 | DO i=1,klon |
---|
85 | zmd(i,k,k)=max(0.,mp(i,k)-mp(i,k+1)) |
---|
86 | END DO |
---|
87 | END DO |
---|
88 | DO k=2,klev |
---|
89 | DO j=k-1,1,-1 |
---|
90 | DO i=1,klon |
---|
91 | !! if(mp(i,j+1).ne.0) then |
---|
92 | !! zmd(i,j,k)=zmd(i,j+1,k)*min(1.,mp(i,j)/mp(i,j+1)) |
---|
93 | !! ENDif |
---|
94 | zmd(i,j,k)=zmd(i,j+1,k)*mp(i,j)/max(mp(i,j),mp(i,j+1),smallest_mp) |
---|
95 | END DO |
---|
96 | END DO |
---|
97 | END DO |
---|
98 | DO k=1,klev |
---|
99 | DO j=1,klev-1 |
---|
100 | DO i=1,klon |
---|
101 | za(i,j,k)=max(0.,zmd(i,j+1,k)-zmd(i,j,k)) |
---|
102 | END DO |
---|
103 | END DO |
---|
104 | END DO |
---|
105 | ! |
---|
106 | ! rajout du terme lie a l ascendance induite |
---|
107 | ! |
---|
108 | DO j=2,klev |
---|
109 | DO i=1,klon |
---|
110 | za(i,j,j-1)=za(i,j,j-1)+mp(i,j) |
---|
111 | END DO |
---|
112 | END DO |
---|
113 | ! |
---|
114 | ! tendances |
---|
115 | ! |
---|
116 | DO k=1,klev |
---|
117 | DO j=1,klev |
---|
118 | DO i=1,klon |
---|
119 | zmfd(i,j)=zmfd(i,j)+za(i,j,k)*(x(i,k,it)-x(i,j,it)) |
---|
120 | END DO |
---|
121 | END DO |
---|
122 | END DO |
---|
123 | ! |
---|
124 | ! ========================================= |
---|
125 | ! calcul des tendances liees aux flux satures |
---|
126 | ! ========================================= |
---|
127 | !RL |
---|
128 | ! Feeding concentrations |
---|
129 | DO j=1,klev |
---|
130 | DO i=1,klon |
---|
131 | qfeed(i,it)=qfeed(i,it)+wght_cvfd(i,j)*x(i,j,it) |
---|
132 | END DO |
---|
133 | END DO |
---|
134 | !RL |
---|
135 | ! |
---|
136 | DO j=1,klev |
---|
137 | DO i=1,klon |
---|
138 | !RL |
---|
139 | !! zmfa(i,j,it)=da(i,j)*(x(i,1,it)-x(i,j,it)) ! da |
---|
140 | zmfa(i,j)=da(i,j)*(qfeed(i,it)-x(i,j,it)) ! da |
---|
141 | !RL |
---|
142 | END DO |
---|
143 | END DO |
---|
144 | ! |
---|
145 | !! print *,'it, qfeed(1,it), x(1,1,it) ', it, qfeed(1,it), x(1,1,it) !jyg |
---|
146 | !! print *,'wght_cvfd ', (j, wght_cvfd(1,j), j=1,5) !jyg |
---|
147 | ! |
---|
148 | DO k=1,klev |
---|
149 | DO j=1,klev |
---|
150 | DO i=1,klon |
---|
151 | zmfp(i,j)=zmfp(i,j)+phi(i,j,k)*(x(i,k,it)-x(i,j,it)) |
---|
152 | END DO |
---|
153 | END DO |
---|
154 | END DO |
---|
155 | DO j=1,klev-1 |
---|
156 | DO i=1,klon |
---|
157 | zmfu(i,j)=max(0.,upd(i,j+1)+dnd(i,j+1))*(x(i,j+1,it)-x(i,j,it)) |
---|
158 | END DO |
---|
159 | END DO |
---|
160 | DO j=2,klev |
---|
161 | DO i=1,klon |
---|
162 | zmfu(i,j)=zmfu(i,j)+min(0.,upd(i,j)+dnd(i,j))*(x(i,j,it)-x(i,j-1,it)) |
---|
163 | END DO |
---|
164 | END DO |
---|
165 | |
---|
166 | ! ========================================= |
---|
167 | ! calcul final des tendances |
---|
168 | ! ========================================= |
---|
169 | DO k=1, klev |
---|
170 | DO i=1, klon |
---|
171 | deltap(i,k)=paprs(i,k)-paprs(i,k+1) |
---|
172 | ENDDO |
---|
173 | ENDDO |
---|
174 | pdtimeRG=pdtime*RG |
---|
175 | !cdir collapse |
---|
176 | DO k=1, klev |
---|
177 | DO i=1, klon |
---|
178 | dx(i,k,it)=(zmfd(i,k)+zmfu(i,k) & |
---|
179 | +zmfa(i,k)+zmfp(i,k))*pdtimeRG/deltap(i,k) |
---|
180 | ENDDO |
---|
181 | ENDDO |
---|
182 | |
---|
183 | !! test de conservation du traceur |
---|
184 | conserv=0. |
---|
185 | smfd = 0. |
---|
186 | smfu = 0. |
---|
187 | smfa = 0. |
---|
188 | smfp = 0. |
---|
189 | DO k=1, klev |
---|
190 | DO i=1, klon |
---|
191 | conserv=conserv+dx(i,k,it)* & |
---|
192 | deltap(i,k)/RG |
---|
193 | smfd = smfd + zmfd(i,k)*pdtime |
---|
194 | smfu = smfu + zmfu(i,k)*pdtime |
---|
195 | smfa = smfa + zmfa(i,k)*pdtime |
---|
196 | smfp = smfp + zmfp(i,k)*pdtime |
---|
197 | ENDDO |
---|
198 | ENDDO |
---|
199 | !! print *,'it',it,'cvltr_noscav conserv, smfd, smfu, smfa, smfp ',conserv, & |
---|
200 | !! smfd, smfu, smfa, smfp |
---|
201 | |
---|
202 | END SUBROUTINE cvltr_noscav |
---|