[2007] | 1 | ! |
---|
| 2 | ! $Id $ |
---|
| 3 | ! |
---|
| 4 | SUBROUTINE cvltr_noscav(it,pdtime,da, phi, mp,wght_cvfd,paprs,pplay,x,upd,dnd,dx) |
---|
[5289] | 5 | USE yoecumf_mod_h |
---|
| 6 | USE dimphy |
---|
[2320] | 7 | USE infotrac_phy, ONLY : nbtr |
---|
[5285] | 8 | USE yomcst_mod_h |
---|
[5274] | 9 | IMPLICIT NONE |
---|
[2007] | 10 | !===================================================================== |
---|
| 11 | ! Objet : convection des traceurs / KE |
---|
| 12 | ! Auteurs: M-A Filiberti and J-Y Grandpeix |
---|
| 13 | !===================================================================== |
---|
[5274] | 14 | |
---|
[2007] | 15 | |
---|
| 16 | ! Entree |
---|
| 17 | REAL,INTENT(IN) :: pdtime |
---|
| 18 | INTEGER, INTENT(IN) :: it |
---|
| 19 | REAL,DIMENSION(klon,klev),INTENT(IN) :: da |
---|
| 20 | REAL,DIMENSION(klon,klev,klev),INTENT(IN) :: phi |
---|
| 21 | REAL,DIMENSION(klon,klev),INTENT(IN) :: mp |
---|
| 22 | REAL,DIMENSION(klon,klev),INTENT(IN) :: wght_cvfd ! weights of the layers feeding convection |
---|
| 23 | REAL,DIMENSION(klon,klev+1),INTENT(IN) :: paprs ! pression aux 1/2 couches (bas en haut) |
---|
| 24 | REAL,DIMENSION(klon,klev),INTENT(IN) :: pplay ! pression pour le milieu de chaque couche |
---|
| 25 | REAL,DIMENSION(klon,klev,nbtr),INTENT(IN) :: x ! q de traceur (bas en haut) |
---|
| 26 | REAL,DIMENSION(klon,klev),INTENT(IN) :: upd ! saturated updraft mass flux |
---|
| 27 | REAL,DIMENSION(klon,klev),INTENT(IN) :: dnd ! saturated downdraft mass flux |
---|
| 28 | |
---|
| 29 | ! Sortie |
---|
[4770] | 30 | REAL,DIMENSION(klon,klev,nbtr),INTENT(inOUT) :: dx ! tendance de traceur (bas en haut) |
---|
[2007] | 31 | |
---|
| 32 | ! Variables locales |
---|
| 33 | ! REAL,DIMENSION(klon,klev) :: zed |
---|
| 34 | REAL,DIMENSION(klon,klev,klev) :: zmd |
---|
| 35 | REAL,DIMENSION(klon,klev,klev) :: za |
---|
| 36 | REAL,DIMENSION(klon,klev) :: zmfd,zmfa |
---|
| 37 | REAL,DIMENSION(klon,klev) :: zmfp,zmfu |
---|
| 38 | REAL,DIMENSION(klon,nbtr) :: qfeed ! tracer concentration feeding convection |
---|
| 39 | REAL,DIMENSION(klon,klev) :: deltap |
---|
| 40 | INTEGER :: i,k,j |
---|
| 41 | REAL :: pdtimeRG |
---|
[3267] | 42 | REAL :: smallest_mp |
---|
[2007] | 43 | real conserv |
---|
| 44 | real smfd |
---|
| 45 | real smfu |
---|
| 46 | real smfa |
---|
| 47 | real smfp |
---|
| 48 | ! ========================================= |
---|
| 49 | ! calcul des tendances liees au downdraft |
---|
| 50 | ! ========================================= |
---|
[3267] | 51 | ! |
---|
| 52 | smallest_mp = tiny(mp(1,1)) |
---|
[2007] | 53 | !cdir collapse |
---|
| 54 | qfeed(:,it) = 0. |
---|
| 55 | DO j=1,klev |
---|
| 56 | DO i=1,klon |
---|
| 57 | ! zed(i,j)=0. |
---|
| 58 | zmfd(i,j)=0. |
---|
| 59 | zmfa(i,j)=0. |
---|
| 60 | zmfu(i,j)=0. |
---|
| 61 | zmfp(i,j)=0. |
---|
| 62 | END DO |
---|
| 63 | END DO |
---|
| 64 | !cdir collapse |
---|
| 65 | DO k=1,klev |
---|
| 66 | DO j=1,klev |
---|
| 67 | DO i=1,klon |
---|
| 68 | zmd(i,j,k)=0. |
---|
| 69 | za (i,j,k)=0. |
---|
| 70 | END DO |
---|
| 71 | END DO |
---|
| 72 | END DO |
---|
| 73 | ! entrainement |
---|
| 74 | ! DO k=1,klev-1 |
---|
| 75 | ! DO i=1,klon |
---|
| 76 | ! zed(i,k)=max(0.,mp(i,k)-mp(i,k+1)) |
---|
| 77 | ! END DO |
---|
| 78 | ! END DO |
---|
| 79 | |
---|
| 80 | ! calcul de la matrice d echange |
---|
| 81 | ! matrice de distribution de la masse entrainee en k |
---|
| 82 | |
---|
| 83 | DO k=1,klev-1 |
---|
| 84 | DO i=1,klon |
---|
| 85 | zmd(i,k,k)=max(0.,mp(i,k)-mp(i,k+1)) |
---|
| 86 | END DO |
---|
| 87 | END DO |
---|
| 88 | DO k=2,klev |
---|
| 89 | DO j=k-1,1,-1 |
---|
| 90 | DO i=1,klon |
---|
[3253] | 91 | !! if(mp(i,j+1).ne.0) then |
---|
| 92 | !! zmd(i,j,k)=zmd(i,j+1,k)*min(1.,mp(i,j)/mp(i,j+1)) |
---|
| 93 | !! ENDif |
---|
[3267] | 94 | zmd(i,j,k)=zmd(i,j+1,k)*mp(i,j)/max(mp(i,j),mp(i,j+1),smallest_mp) |
---|
[2007] | 95 | END DO |
---|
| 96 | END DO |
---|
| 97 | END DO |
---|
| 98 | DO k=1,klev |
---|
| 99 | DO j=1,klev-1 |
---|
| 100 | DO i=1,klon |
---|
| 101 | za(i,j,k)=max(0.,zmd(i,j+1,k)-zmd(i,j,k)) |
---|
| 102 | END DO |
---|
| 103 | END DO |
---|
| 104 | END DO |
---|
| 105 | ! |
---|
| 106 | ! rajout du terme lie a l ascendance induite |
---|
| 107 | ! |
---|
| 108 | DO j=2,klev |
---|
| 109 | DO i=1,klon |
---|
| 110 | za(i,j,j-1)=za(i,j,j-1)+mp(i,j) |
---|
| 111 | END DO |
---|
| 112 | END DO |
---|
| 113 | ! |
---|
| 114 | ! tendances |
---|
| 115 | ! |
---|
| 116 | DO k=1,klev |
---|
| 117 | DO j=1,klev |
---|
| 118 | DO i=1,klon |
---|
| 119 | zmfd(i,j)=zmfd(i,j)+za(i,j,k)*(x(i,k,it)-x(i,j,it)) |
---|
| 120 | END DO |
---|
| 121 | END DO |
---|
| 122 | END DO |
---|
| 123 | ! |
---|
| 124 | ! ========================================= |
---|
| 125 | ! calcul des tendances liees aux flux satures |
---|
| 126 | ! ========================================= |
---|
| 127 | !RL |
---|
| 128 | ! Feeding concentrations |
---|
| 129 | DO j=1,klev |
---|
| 130 | DO i=1,klon |
---|
| 131 | qfeed(i,it)=qfeed(i,it)+wght_cvfd(i,j)*x(i,j,it) |
---|
| 132 | END DO |
---|
| 133 | END DO |
---|
| 134 | !RL |
---|
| 135 | ! |
---|
| 136 | DO j=1,klev |
---|
| 137 | DO i=1,klon |
---|
| 138 | !RL |
---|
| 139 | !! zmfa(i,j,it)=da(i,j)*(x(i,1,it)-x(i,j,it)) ! da |
---|
| 140 | zmfa(i,j)=da(i,j)*(qfeed(i,it)-x(i,j,it)) ! da |
---|
| 141 | !RL |
---|
| 142 | END DO |
---|
| 143 | END DO |
---|
| 144 | ! |
---|
| 145 | !! print *,'it, qfeed(1,it), x(1,1,it) ', it, qfeed(1,it), x(1,1,it) !jyg |
---|
| 146 | !! print *,'wght_cvfd ', (j, wght_cvfd(1,j), j=1,5) !jyg |
---|
| 147 | ! |
---|
| 148 | DO k=1,klev |
---|
| 149 | DO j=1,klev |
---|
| 150 | DO i=1,klon |
---|
| 151 | zmfp(i,j)=zmfp(i,j)+phi(i,j,k)*(x(i,k,it)-x(i,j,it)) |
---|
| 152 | END DO |
---|
| 153 | END DO |
---|
| 154 | END DO |
---|
| 155 | DO j=1,klev-1 |
---|
| 156 | DO i=1,klon |
---|
| 157 | zmfu(i,j)=max(0.,upd(i,j+1)+dnd(i,j+1))*(x(i,j+1,it)-x(i,j,it)) |
---|
| 158 | END DO |
---|
| 159 | END DO |
---|
| 160 | DO j=2,klev |
---|
| 161 | DO i=1,klon |
---|
| 162 | zmfu(i,j)=zmfu(i,j)+min(0.,upd(i,j)+dnd(i,j))*(x(i,j,it)-x(i,j-1,it)) |
---|
| 163 | END DO |
---|
| 164 | END DO |
---|
| 165 | |
---|
| 166 | ! ========================================= |
---|
| 167 | ! calcul final des tendances |
---|
| 168 | ! ========================================= |
---|
| 169 | DO k=1, klev |
---|
| 170 | DO i=1, klon |
---|
| 171 | deltap(i,k)=paprs(i,k)-paprs(i,k+1) |
---|
| 172 | ENDDO |
---|
| 173 | ENDDO |
---|
| 174 | pdtimeRG=pdtime*RG |
---|
| 175 | !cdir collapse |
---|
| 176 | DO k=1, klev |
---|
| 177 | DO i=1, klon |
---|
| 178 | dx(i,k,it)=(zmfd(i,k)+zmfu(i,k) & |
---|
| 179 | +zmfa(i,k)+zmfp(i,k))*pdtimeRG/deltap(i,k) |
---|
| 180 | ENDDO |
---|
| 181 | ENDDO |
---|
| 182 | |
---|
| 183 | !! test de conservation du traceur |
---|
| 184 | conserv=0. |
---|
| 185 | smfd = 0. |
---|
| 186 | smfu = 0. |
---|
| 187 | smfa = 0. |
---|
| 188 | smfp = 0. |
---|
| 189 | DO k=1, klev |
---|
| 190 | DO i=1, klon |
---|
| 191 | conserv=conserv+dx(i,k,it)* & |
---|
| 192 | deltap(i,k)/RG |
---|
| 193 | smfd = smfd + zmfd(i,k)*pdtime |
---|
| 194 | smfu = smfu + zmfu(i,k)*pdtime |
---|
| 195 | smfa = smfa + zmfa(i,k)*pdtime |
---|
| 196 | smfp = smfp + zmfp(i,k)*pdtime |
---|
| 197 | ENDDO |
---|
| 198 | ENDDO |
---|
| 199 | !! print *,'it',it,'cvltr_noscav conserv, smfd, smfu, smfa, smfp ',conserv, & |
---|
| 200 | !! smfd, smfu, smfa, smfp |
---|
| 201 | |
---|
| 202 | END SUBROUTINE cvltr_noscav |
---|