1 | |
---|
2 | |
---|
3 | SUBROUTINE cv3p2_closure(nloc, ncum, nd, icb, inb, pbase, plcl, p, ph, tv, & |
---|
4 | tvp, buoy, supmax, ok_inhib, ale, alp, omega,sig, w0, ptop2, cape, cin, m, & |
---|
5 | iflag, coef, plim1, plim2, asupmax, supmax0, asupmaxmin, cbmflast, plfc, & |
---|
6 | wbeff) |
---|
7 | |
---|
8 | |
---|
9 | ! ************************************************************** |
---|
10 | ! * |
---|
11 | ! CV3P2_CLOSURE * |
---|
12 | ! Ale & Alp Closure of Convect3 * |
---|
13 | ! * |
---|
14 | ! written by : Kerry Emanuel * |
---|
15 | ! vectorization: S. Bony * |
---|
16 | ! modified by : Jean-Yves Grandpeix, 18/06/2003, 19.32.10 * |
---|
17 | ! Julie Frohwirth, 14/10/2005 17.44.22 * |
---|
18 | ! ************************************************************** |
---|
19 | |
---|
20 | USE conema3_mod_h |
---|
21 | USE cvthermo_mod_h, ONLY: cpd, cpv, cl, ci, rrv, rrd, lv0, lf0, g, rowl, t0, clmcpv, clmcpd, cpdmcp, cpvmcpd, cpvmcl & |
---|
22 | , clmci, eps, epsi, epsim1, ginv, hrd, grav |
---|
23 | USE cvflag_mod_h, ONLY: icvflag_Tpa, cvflag_grav, cvflag_ice, ok_optim_yield, ok_entrain, ok_homo_tend, & |
---|
24 | ok_convstop, ok_intermittent, cvflag_prec_eject, qsat_depends_on_qt, adiab_ascent_mass_flux_depends_on_ejectliq, keepbug_ice_frac |
---|
25 | USE print_control_mod, ONLY: prt_level, lunout |
---|
26 | USE yomcst_mod_h, ONLY: RPI, RCLUM, RHPLA, RKBOL, RNAVO & |
---|
27 | , RDAY, REA, REPSM, RSIYEA, RSIDAY, ROMEGA & |
---|
28 | , R_ecc, R_peri, R_incl & |
---|
29 | , RA, RG, R1SA & |
---|
30 | , RSIGMA & |
---|
31 | , R, RMD, RMV, RD, RV, RCPD & |
---|
32 | , RMO3, RMCO2, RMC, RMCH4, RMN2O, RMCFC11, RMCFC12 & |
---|
33 | , RCPV, RCVD, RCVV, RKAPPA, RETV, eps_w & |
---|
34 | , RCW, RCS & |
---|
35 | , RLVTT, RLSTT, RLMLT, RTT, RATM & |
---|
36 | , RESTT, RALPW, RBETW, RGAMW, RALPS, RBETS, RGAMS & |
---|
37 | , RALPD, RBETD, RGAMD |
---|
38 | IMPLICIT NONE |
---|
39 | |
---|
40 | include "cv3param.h" |
---|
41 | include "YOMCST2.h" |
---|
42 | |
---|
43 | |
---|
44 | ! input: |
---|
45 | INTEGER, INTENT (IN) :: ncum, nd, nloc |
---|
46 | INTEGER, DIMENSION (nloc), INTENT (IN) :: icb, inb |
---|
47 | REAL, DIMENSION (nloc), INTENT (IN) :: pbase, plcl |
---|
48 | REAL, DIMENSION (nloc, nd), INTENT (IN) :: p |
---|
49 | REAL, DIMENSION (nloc, nd+1), INTENT (IN) :: ph |
---|
50 | REAL, DIMENSION (nloc, nd), INTENT (IN) :: tv, tvp, buoy |
---|
51 | REAL, DIMENSION (nloc, nd), INTENT (IN) :: supmax |
---|
52 | LOGICAL, INTENT (IN) :: ok_inhib ! enable convection inhibition by dryness |
---|
53 | REAL, DIMENSION (nloc), INTENT (IN) :: ale, alp |
---|
54 | REAL, DIMENSION (nloc, nd), INTENT (IN) :: omega |
---|
55 | |
---|
56 | ! input/output: |
---|
57 | INTEGER, DIMENSION (nloc), INTENT (INOUT) :: iflag |
---|
58 | REAL, DIMENSION (nloc, nd), INTENT (INOUT) :: sig, w0 |
---|
59 | REAL, DIMENSION (nloc), INTENT (INOUT) :: ptop2 |
---|
60 | |
---|
61 | ! output: |
---|
62 | REAL, DIMENSION (nloc), INTENT (OUT) :: cape, cin |
---|
63 | REAL, DIMENSION (nloc, nd), INTENT (OUT) :: m |
---|
64 | REAL, DIMENSION (nloc), INTENT (OUT) :: plim1, plim2 |
---|
65 | REAL, DIMENSION (nloc, nd), INTENT (OUT) :: asupmax |
---|
66 | REAL, DIMENSION (nloc), INTENT (OUT) :: supmax0 |
---|
67 | REAL, DIMENSION (nloc), INTENT (OUT) :: asupmaxmin |
---|
68 | REAL, DIMENSION (nloc), INTENT (OUT) :: cbmflast, plfc |
---|
69 | REAL, DIMENSION (nloc), INTENT (OUT) :: wbeff |
---|
70 | |
---|
71 | ! local variables: |
---|
72 | INTEGER :: il, i, j, k, icbmax |
---|
73 | INTEGER, DIMENSION (nloc) :: i0, klfc |
---|
74 | REAL :: deltap, fac, w, amu |
---|
75 | REAL, DIMENSION (nloc, nd) :: rhodp ! Factor such that m=rhodp*sig*w |
---|
76 | REAL :: dz |
---|
77 | REAL :: pbmxup |
---|
78 | REAL, DIMENSION (nloc, nd) :: dtmin, sigold |
---|
79 | REAL, DIMENSION (nloc, nd) :: coefmix |
---|
80 | REAL, DIMENSION (nloc) :: dtminmax |
---|
81 | REAL, DIMENSION (nloc) :: pzero, ptop2old |
---|
82 | REAL, DIMENSION (nloc) :: cina, cinb |
---|
83 | INTEGER, DIMENSION (nloc) :: ibeg |
---|
84 | INTEGER, DIMENSION (nloc) :: nsupmax |
---|
85 | REAL :: supcrit |
---|
86 | REAL, DIMENSION (nloc, nd) :: temp |
---|
87 | REAL, DIMENSION (nloc) :: p1, pmin |
---|
88 | REAL, DIMENSION (nloc) :: asupmax0 |
---|
89 | LOGICAL, DIMENSION (nloc) :: ok |
---|
90 | REAL, DIMENSION (nloc, nd) :: siglim, wlim, mlim |
---|
91 | REAL, DIMENSION (nloc) :: wb2 |
---|
92 | REAL, DIMENSION (nloc) :: cbmf0 ! initial cloud base mass flux |
---|
93 | REAL, DIMENSION (nloc) :: cbmflim ! cbmf given by Cape closure |
---|
94 | REAL, DIMENSION (nloc) :: cbmfalp ! cbmf given by Alp closure |
---|
95 | REAL, DIMENSION (nloc) :: cbmfalpb ! bounded cbmf given by Alp closure |
---|
96 | REAL, DIMENSION (nloc) :: cbmfmax ! upper bound on cbmf |
---|
97 | REAL, DIMENSION (nloc) :: coef |
---|
98 | REAL, DIMENSION (nloc) :: xp, xq, xr, discr, b3, b4 |
---|
99 | REAL, DIMENSION (nloc) :: theta, bb |
---|
100 | REAL :: term1, term2, term3 |
---|
101 | REAL, DIMENSION (nloc) :: alp2 ! Alp with offset |
---|
102 | |
---|
103 | !CR: variables for new erosion of adiabiatic ascent |
---|
104 | REAL, DIMENSION (nloc, nd) :: mad, me, betalim, beta_coef |
---|
105 | REAL, DIMENSION (nloc, nd) :: med, md |
---|
106 | !jyg< |
---|
107 | ! coef_peel is now in the common cv3_param |
---|
108 | !! REAL :: coef_peel |
---|
109 | !! PARAMETER (coef_peel=0.25) |
---|
110 | !>jyg |
---|
111 | |
---|
112 | REAL :: sigmax |
---|
113 | PARAMETER (sigmax=0.1) |
---|
114 | !! PARAMETER (sigmax=10.) |
---|
115 | |
---|
116 | CHARACTER (LEN=20) :: modname = 'cv3p2_closure' |
---|
117 | CHARACTER (LEN=80) :: abort_message |
---|
118 | |
---|
119 | INTEGER,SAVE :: igout=1 |
---|
120 | !$OMP THREADPRIVATE(igout) |
---|
121 | |
---|
122 | IF (prt_level>=20) print *,' -> cv3p2_closure, Ale ',ale(igout) |
---|
123 | |
---|
124 | |
---|
125 | ! ------------------------------------------------------- |
---|
126 | ! -- Initialization |
---|
127 | ! ------------------------------------------------------- |
---|
128 | |
---|
129 | |
---|
130 | DO il = 1, ncum |
---|
131 | alp2(il) = max(alp(il), 1.E-5) |
---|
132 | ! IM |
---|
133 | alp2(il) = max(alp(il), 1.E-12) |
---|
134 | END DO |
---|
135 | |
---|
136 | pbmxup = 50. ! PBMXUP+PBCRIT = cloud depth above which mixed updraughts |
---|
137 | ! exist (if any) |
---|
138 | |
---|
139 | IF (prt_level>=20) PRINT *, 'cv3p2_closure nloc ncum nd icb inb nl', nloc, & |
---|
140 | ncum, nd, icb(nloc), inb(nloc), nl |
---|
141 | DO k = 1, nl |
---|
142 | DO il = 1, ncum |
---|
143 | rhodp(il,k) = 0.007*p(il, k)*(ph(il,k)-ph(il,k+1))/tv(il, k) |
---|
144 | END DO |
---|
145 | END DO |
---|
146 | |
---|
147 | !CR+jyg: initializations (up to nd) for erosion of adiabatic ascent and of m and wlim |
---|
148 | DO k = 1,nd |
---|
149 | DO il = 1, ncum |
---|
150 | mad(il,k)=0. |
---|
151 | me(il,k)=0. |
---|
152 | betalim(il,k)=1. |
---|
153 | wlim(il,k)=0. |
---|
154 | m(il, k) = 0.0 |
---|
155 | ENDDO |
---|
156 | ENDDO |
---|
157 | |
---|
158 | ! ------------------------------------------------------- |
---|
159 | ! -- Reset sig(i) and w0(i) for i>inb and i<icb |
---|
160 | ! ------------------------------------------------------- |
---|
161 | |
---|
162 | ! update sig and w0 above LNB: |
---|
163 | |
---|
164 | DO k = 1, nl - 1 |
---|
165 | DO il = 1, ncum |
---|
166 | IF ((inb(il)<(nl-1)) .AND. (k>=(inb(il)+1))) THEN |
---|
167 | sig(il, k) = beta*sig(il, k) + 2.*alpha*buoy(il, inb(il))*abs(buoy(il,inb(il))) |
---|
168 | sig(il, k) = amax1(sig(il,k), 0.0) |
---|
169 | w0(il, k) = beta*w0(il, k) |
---|
170 | END IF |
---|
171 | END DO |
---|
172 | END DO |
---|
173 | |
---|
174 | ! if(prt.level.GE.20) print*,'cv3p2_closure apres 100' |
---|
175 | ! compute icbmax: |
---|
176 | |
---|
177 | icbmax = 2 |
---|
178 | DO il = 1, ncum |
---|
179 | icbmax = max(icbmax, icb(il)) |
---|
180 | END DO |
---|
181 | ! if(prt.level.GE.20) print*,'cv3p2_closure apres 200' |
---|
182 | |
---|
183 | ! update sig and w0 below cloud base: |
---|
184 | |
---|
185 | DO k = 1, icbmax |
---|
186 | DO il = 1, ncum |
---|
187 | IF (k<=icb(il)) THEN |
---|
188 | sig(il, k) = beta*sig(il, k) - 2.*alpha*buoy(il, icb(il))*buoy(il,icb(il)) |
---|
189 | sig(il, k) = amax1(sig(il,k), 0.0) |
---|
190 | w0(il, k) = beta*w0(il, k) |
---|
191 | END IF |
---|
192 | END DO |
---|
193 | END DO |
---|
194 | IF (prt_level>=20) PRINT *, 'cv3p2_closure apres 300' |
---|
195 | |
---|
196 | ! ------------------------------------------------------------- |
---|
197 | ! -- Reset fractional areas of updrafts and w0 at initial time |
---|
198 | ! -- and after 10 time steps of no convection |
---|
199 | ! ------------------------------------------------------------- |
---|
200 | |
---|
201 | !jyg< |
---|
202 | IF (ok_convstop) THEN |
---|
203 | DO k = 1, nl - 1 |
---|
204 | DO il = 1, ncum |
---|
205 | IF (sig(il,nd)<1.5 .OR. sig(il,nd)>noconv_stop) THEN |
---|
206 | sig(il, k) = 0.0 |
---|
207 | w0(il, k) = 0.0 |
---|
208 | END IF |
---|
209 | END DO |
---|
210 | END DO |
---|
211 | ELSE |
---|
212 | DO k = 1, nl - 1 |
---|
213 | DO il = 1, ncum |
---|
214 | IF (sig(il,nd)<1.5 .OR. sig(il,nd)>12.0) THEN |
---|
215 | sig(il, k) = 0.0 |
---|
216 | w0(il, k) = 0.0 |
---|
217 | END IF |
---|
218 | END DO |
---|
219 | END DO |
---|
220 | ENDIF ! (ok_convstop) |
---|
221 | !>jyg |
---|
222 | IF (prt_level>=20) PRINT *, 'cv3p2_closure apres 400' |
---|
223 | |
---|
224 | ! ------------------------------------------------------- |
---|
225 | ! -- Compute initial cloud base mass flux (Cbmf0) |
---|
226 | ! ------------------------------------------------------- |
---|
227 | DO il = 1, ncum |
---|
228 | cbmf0(il) = 0.0 |
---|
229 | END DO |
---|
230 | |
---|
231 | DO k = 1, nl |
---|
232 | DO il = 1, ncum |
---|
233 | IF (k>=icb(il) .AND. k<=inb(il) & |
---|
234 | .AND. icb(il)+1<=inb(il)) THEN |
---|
235 | cbmf0(il) = cbmf0(il) + sig(il, k)*w0(il,k)*rhodp(il,k) |
---|
236 | END IF |
---|
237 | END DO |
---|
238 | END DO |
---|
239 | |
---|
240 | ! ------------------------------------------------------------- |
---|
241 | ! jyg1 |
---|
242 | ! -- Calculate adiabatic ascent top pressure (ptop) |
---|
243 | ! ------------------------------------------------------------- |
---|
244 | |
---|
245 | |
---|
246 | ! c 1. Start at first level where precipitations form |
---|
247 | DO il = 1, ncum |
---|
248 | pzero(il) = plcl(il) - pbcrit |
---|
249 | END DO |
---|
250 | |
---|
251 | ! c 2. Add offset |
---|
252 | DO il = 1, ncum |
---|
253 | pzero(il) = pzero(il) - pbmxup |
---|
254 | END DO |
---|
255 | DO il = 1, ncum |
---|
256 | ptop2old(il) = ptop2(il) |
---|
257 | END DO |
---|
258 | |
---|
259 | DO il = 1, ncum |
---|
260 | ! CR:c est quoi ce 300?? |
---|
261 | p1(il) = pzero(il) - 300. |
---|
262 | END DO |
---|
263 | |
---|
264 | ! compute asupmax=abs(supmax) up to lnm+1 |
---|
265 | |
---|
266 | DO il = 1, ncum |
---|
267 | ok(il) = .TRUE. |
---|
268 | nsupmax(il) = inb(il) |
---|
269 | END DO |
---|
270 | |
---|
271 | DO i = 1, nl |
---|
272 | DO il = 1, ncum |
---|
273 | IF (i>icb(il) .AND. i<=inb(il)) THEN |
---|
274 | IF (p(il,i)<=pzero(il) .AND. supmax(il,i)<0 .AND. ok(il)) THEN |
---|
275 | nsupmax(il) = i |
---|
276 | ok(il) = .FALSE. |
---|
277 | END IF ! end IF (P(i) ... ) |
---|
278 | END IF ! end IF (icb+1 le i le inb) |
---|
279 | END DO |
---|
280 | END DO |
---|
281 | |
---|
282 | IF (prt_level>=20) PRINT *, 'cv3p2_closure apres 2.' |
---|
283 | DO i = 1, nl |
---|
284 | DO il = 1, ncum |
---|
285 | asupmax(il, i) = abs(supmax(il,i)) |
---|
286 | END DO |
---|
287 | END DO |
---|
288 | |
---|
289 | |
---|
290 | DO il = 1, ncum |
---|
291 | asupmaxmin(il) = 10. |
---|
292 | pmin(il) = 100. |
---|
293 | ! IM ?? |
---|
294 | asupmax0(il) = 0. |
---|
295 | END DO |
---|
296 | |
---|
297 | ! c 3. Compute in which level is Pzero |
---|
298 | |
---|
299 | ! IM bug i0 = 18 |
---|
300 | DO il = 1, ncum |
---|
301 | i0(il) = nl |
---|
302 | END DO |
---|
303 | |
---|
304 | DO i = 1, nl |
---|
305 | DO il = 1, ncum |
---|
306 | IF (i>icb(il) .AND. i<=inb(il)) THEN |
---|
307 | IF (p(il,i)<=pzero(il) .AND. p(il,i)>=p1(il)) THEN |
---|
308 | IF (pzero(il)>p(il,i) .AND. pzero(il)<p(il,i-1)) THEN |
---|
309 | i0(il) = i |
---|
310 | END IF |
---|
311 | END IF |
---|
312 | END IF |
---|
313 | END DO |
---|
314 | END DO |
---|
315 | IF (prt_level>=20) PRINT *, 'cv3p2_closure apres 3.' |
---|
316 | |
---|
317 | ! c 4. Compute asupmax at Pzero |
---|
318 | |
---|
319 | DO i = 1, nl |
---|
320 | DO il = 1, ncum |
---|
321 | IF (i>icb(il) .AND. i<=inb(il)) THEN |
---|
322 | IF (p(il,i)<=pzero(il) .AND. p(il,i)>=p1(il)) THEN |
---|
323 | asupmax0(il) = ((pzero(il)-p(il,i0(il)-1))*asupmax(il,i0(il))- & |
---|
324 | (pzero(il)-p(il,i0(il)))*asupmax(il,i0(il)-1))/(p(il,i0(il))-p(il,i0(il)-1)) |
---|
325 | END IF |
---|
326 | END IF |
---|
327 | END DO |
---|
328 | END DO |
---|
329 | |
---|
330 | |
---|
331 | DO i = 1, nl |
---|
332 | DO il = 1, ncum |
---|
333 | IF (p(il,i)==pzero(il)) THEN |
---|
334 | asupmax(i, il) = asupmax0(il) |
---|
335 | END IF |
---|
336 | END DO |
---|
337 | END DO |
---|
338 | IF (prt_level>=20) PRINT *, 'cv3p2_closure apres 4.' |
---|
339 | |
---|
340 | ! c 5. Compute asupmaxmin, minimum of asupmax |
---|
341 | |
---|
342 | DO i = 1, nl |
---|
343 | DO il = 1, ncum |
---|
344 | IF (i>icb(il) .AND. i<=inb(il)) THEN |
---|
345 | IF (p(il,i)<=pzero(il) .AND. p(il,i)>=p1(il)) THEN |
---|
346 | IF (asupmax(il,i)<asupmaxmin(il)) THEN |
---|
347 | asupmaxmin(il) = asupmax(il, i) |
---|
348 | pmin(il) = p(il, i) |
---|
349 | END IF |
---|
350 | END IF |
---|
351 | END IF |
---|
352 | END DO |
---|
353 | END DO |
---|
354 | |
---|
355 | DO il = 1, ncum |
---|
356 | ! IM |
---|
357 | IF (prt_level>=20) THEN |
---|
358 | PRINT *, 'cv3p2_closure il asupmax0 asupmaxmin', il, asupmax0(il), & |
---|
359 | asupmaxmin(il), pzero(il), pmin(il) |
---|
360 | END IF |
---|
361 | IF (asupmax0(il)<asupmaxmin(il)) THEN |
---|
362 | asupmaxmin(il) = asupmax0(il) |
---|
363 | pmin(il) = pzero(il) |
---|
364 | END IF |
---|
365 | END DO |
---|
366 | IF (prt_level>=20) PRINT *, 'cv3p2_closure apres 5.' |
---|
367 | |
---|
368 | |
---|
369 | ! Compute Supmax at Pzero |
---|
370 | |
---|
371 | DO i = 1, nl |
---|
372 | DO il = 1, ncum |
---|
373 | IF (i>icb(il) .AND. i<=inb(il)) THEN |
---|
374 | IF (p(il,i)<=pzero(il)) THEN |
---|
375 | supmax0(il) = ((p(il,i)-pzero(il))*asupmax(il,i-1)- & |
---|
376 | (p(il,i-1)-pzero(il))*asupmax(il,i))/(p(il,i)-p(il,i-1)) |
---|
377 | GO TO 425 |
---|
378 | END IF ! end IF (P(i) ... ) |
---|
379 | END IF ! end IF (icb+1 le i le inb) |
---|
380 | END DO |
---|
381 | END DO |
---|
382 | |
---|
383 | 425 CONTINUE |
---|
384 | IF (prt_level>=20) PRINT *, 'cv3p2_closure apres 425.' |
---|
385 | |
---|
386 | ! c 6. Calculate ptop2 |
---|
387 | |
---|
388 | DO il = 1, ncum |
---|
389 | IF (asupmaxmin(il)<supcrit1) THEN |
---|
390 | ptop2(il) = pmin(il) |
---|
391 | END IF |
---|
392 | |
---|
393 | IF (asupmaxmin(il)>supcrit1 .AND. asupmaxmin(il)<supcrit2) THEN |
---|
394 | ptop2(il) = ptop2old(il) |
---|
395 | END IF |
---|
396 | |
---|
397 | IF (asupmaxmin(il)>supcrit2) THEN |
---|
398 | ptop2(il) = ph(il, inb(il)) |
---|
399 | END IF |
---|
400 | END DO |
---|
401 | |
---|
402 | IF (prt_level>=20) PRINT *, 'cv3p2_closure apres 6.' |
---|
403 | |
---|
404 | ! c 7. Compute multiplying factor for adiabatic updraught mass flux |
---|
405 | |
---|
406 | |
---|
407 | IF (ok_inhib) THEN |
---|
408 | |
---|
409 | DO i = 1, nl |
---|
410 | DO il = 1, ncum |
---|
411 | IF (i<=nl) THEN |
---|
412 | coefmix(il, i) = (min(ptop2(il),ph(il,i))-ph(il,i))/(ph(il,i+1)-ph(il,i)) |
---|
413 | coefmix(il, i) = min(coefmix(il,i), 1.) |
---|
414 | END IF |
---|
415 | END DO |
---|
416 | END DO |
---|
417 | |
---|
418 | |
---|
419 | ELSE ! when inhibition is not taken into account, coefmix=1 |
---|
420 | |
---|
421 | |
---|
422 | |
---|
423 | DO i = 1, nl |
---|
424 | DO il = 1, ncum |
---|
425 | IF (i<=nl) THEN |
---|
426 | coefmix(il, i) = 1. |
---|
427 | END IF |
---|
428 | END DO |
---|
429 | END DO |
---|
430 | |
---|
431 | END IF ! ok_inhib |
---|
432 | IF (prt_level>=20) PRINT *, 'cv3p2_closure apres 7.' |
---|
433 | ! ------------------------------------------------------------------- |
---|
434 | ! ------------------------------------------------------------------- |
---|
435 | |
---|
436 | |
---|
437 | ! jyg2 |
---|
438 | |
---|
439 | ! ========================================================================== |
---|
440 | |
---|
441 | |
---|
442 | ! ------------------------------------------------------------- |
---|
443 | ! -- Calculate convective inhibition (CIN) |
---|
444 | ! ------------------------------------------------------------- |
---|
445 | |
---|
446 | ! do i=1,nloc |
---|
447 | ! print*,'avant cine p',pbase(i),plcl(i) |
---|
448 | ! enddo |
---|
449 | ! do j=1,nd |
---|
450 | ! do i=1,nloc |
---|
451 | ! print*,'avant cine t',tv(i),tvp(i) |
---|
452 | ! enddo |
---|
453 | ! enddo |
---|
454 | CALL cv3_cine(nloc, ncum, nd, icb, inb, pbase, plcl, p, ph, tv, tvp, cina, & |
---|
455 | cinb, plfc) |
---|
456 | |
---|
457 | DO il = 1, ncum |
---|
458 | cin(il) = cina(il) + cinb(il) |
---|
459 | END DO |
---|
460 | IF (prt_level>=20) PRINT *, 'cv3p2_closure after cv3_cine: cina, cinb, cin ', & |
---|
461 | cina(igout), cinb(igout), cin(igout) |
---|
462 | ! ------------------------------------------------------------- |
---|
463 | ! --Update buoyancies to account for Ale |
---|
464 | ! ------------------------------------------------------------- |
---|
465 | |
---|
466 | CALL cv3_buoy(nloc, ncum, nd, icb, inb, pbase, plcl, p, ph, ale, cin, tv, & |
---|
467 | tvp, buoy) |
---|
468 | IF (prt_level>=20) PRINT *, 'cv3p2_closure after cv3_buoy' |
---|
469 | |
---|
470 | ! ------------------------------------------------------------- |
---|
471 | ! -- Calculate convective available potential energy (cape), |
---|
472 | ! -- vertical velocity (w), fractional area covered by |
---|
473 | ! -- undilute updraft (sig), and updraft mass flux (m) |
---|
474 | ! ------------------------------------------------------------- |
---|
475 | |
---|
476 | DO il = 1, ncum |
---|
477 | cape(il) = 0.0 |
---|
478 | dtminmax(il) = -100. |
---|
479 | END DO |
---|
480 | |
---|
481 | ! compute dtmin (minimum buoyancy between ICB and given level k): |
---|
482 | |
---|
483 | DO k = 1, nl |
---|
484 | DO il = 1, ncum |
---|
485 | dtmin(il, k) = 100.0 |
---|
486 | END DO |
---|
487 | END DO |
---|
488 | |
---|
489 | DO k = 1, nl |
---|
490 | DO j = minorig, nl |
---|
491 | DO il = 1, ncum |
---|
492 | IF ((k>=(icb(il)+1)) .AND. (k<=inb(il)) .AND. (j>=icb(il)) & |
---|
493 | .AND. (j<=(k-1))) THEN |
---|
494 | dtmin(il, k) = amin1(dtmin(il,k), buoy(il,j)) |
---|
495 | END IF |
---|
496 | END DO |
---|
497 | END DO |
---|
498 | END DO |
---|
499 | !jyg< |
---|
500 | ! Store maximum of dtmin |
---|
501 | ! C est pas terrible d avoir ce test sur Ale+Cin encore une fois ici. |
---|
502 | ! A REVOIR ! |
---|
503 | DO k = 1, nl |
---|
504 | DO il = 1, ncum |
---|
505 | IF (k>=(icb(il)+1) .AND. k<=inb(il) .AND. ale(il)+cin(il)>0.) THEN |
---|
506 | dtminmax(il) = max(dtmin(il,k), dtminmax(il)) |
---|
507 | ENDIF |
---|
508 | END DO |
---|
509 | END DO |
---|
510 | ! |
---|
511 | ! prevent convection when ale+cin <= 0 |
---|
512 | DO k = 1, nl |
---|
513 | DO il = 1, ncum |
---|
514 | IF (k>=(icb(il)+1) .AND. k<=inb(il)) THEN |
---|
515 | dtmin(il,k) = min(dtmin(il,k), dtminmax(il)) |
---|
516 | ENDIF |
---|
517 | END DO |
---|
518 | END DO |
---|
519 | !>jyg |
---|
520 | ! |
---|
521 | IF (prt_level >= 20) THEN |
---|
522 | print *,'cv3p2_closure: dtmin ', (k, dtmin(igout,k), k=1,nl) |
---|
523 | print *,'cv3p2_closure: dtminmax ', dtminmax(igout) |
---|
524 | ENDIF |
---|
525 | ! |
---|
526 | ! the interval on which cape is computed starts at pbase : |
---|
527 | |
---|
528 | DO k = 1, nl |
---|
529 | DO il = 1, ncum |
---|
530 | |
---|
531 | IF ((k>=(icb(il)+1)) .AND. (k<=inb(il))) THEN |
---|
532 | |
---|
533 | IF (iflag_mix_adiab.eq.1) THEN |
---|
534 | !CR:computation of cape from LCL: keep flag or to modify in all cases? |
---|
535 | deltap = min(plcl(il), ph(il,k-1)) - min(plcl(il), ph(il,k)) |
---|
536 | ELSE |
---|
537 | deltap = min(pbase(il), ph(il,k-1)) - min(pbase(il), ph(il,k)) |
---|
538 | ENDIF |
---|
539 | cape(il) = cape(il) + rrd*buoy(il, k-1)*deltap/p(il, k-1) |
---|
540 | cape(il) = amax1(0.0, cape(il)) |
---|
541 | sigold(il, k) = sig(il, k) |
---|
542 | |
---|
543 | |
---|
544 | ! jyg Coefficient coefmix limits convection to levels where a |
---|
545 | ! sufficient |
---|
546 | ! fraction of mixed draughts are ascending. |
---|
547 | siglim(il, k) = coefmix(il, k)*alpha1*dtmin(il, k)*abs(dtmin(il,k)) |
---|
548 | siglim(il, k) = amax1(siglim(il,k), 0.0) |
---|
549 | siglim(il, k) = amin1(siglim(il,k), 0.01) |
---|
550 | ! c fac=AMIN1(((dtcrit-dtmin(il,k))/dtcrit),1.0) |
---|
551 | fac = 1. |
---|
552 | wlim(il, k) = fac*sqrt(cape(il)) |
---|
553 | amu = siglim(il, k)*wlim(il, k) |
---|
554 | !! rhodp(il,k) = 0.007*p(il, k)*(ph(il,k)-ph(il,k+1))/tv(il, k) !cor jyg : computed earlier |
---|
555 | mlim(il, k) = amu*rhodp(il,k) |
---|
556 | ! print*, 'siglim ', k,siglim(1,k) |
---|
557 | END IF |
---|
558 | |
---|
559 | END DO |
---|
560 | END DO |
---|
561 | IF (prt_level>=20) PRINT *, 'cv3p2_closure apres 600' |
---|
562 | |
---|
563 | DO il = 1, ncum |
---|
564 | ! IM beg |
---|
565 | IF (prt_level>=20) THEN |
---|
566 | PRINT *, 'cv3p2_closure il icb mlim ph ph+1 ph+2', il, icb(il), & |
---|
567 | mlim(il, icb(il)+1), ph(il, icb(il)), ph(il, icb(il)+1), & |
---|
568 | ph(il, icb(il)+2) |
---|
569 | END IF |
---|
570 | |
---|
571 | IF (icb(il)+1<=inb(il)) THEN |
---|
572 | ! IM end |
---|
573 | mlim(il, icb(il)) = 0.5*mlim(il,icb(il)+1)*(ph(il,icb(il))-ph(il,icb(il)+1))/ & |
---|
574 | (ph(il,icb(il)+1)-ph(il,icb(il)+2)) |
---|
575 | ! IM beg |
---|
576 | END IF !(icb(il.le.inb(il))) then |
---|
577 | ! IM end |
---|
578 | END DO |
---|
579 | IF (prt_level>=20) PRINT *, 'cv3p2_closure apres 700' |
---|
580 | |
---|
581 | ! |
---|
582 | ! ------------------------------------------------------------------------ |
---|
583 | ! c Compute Cloud base mass flux given by Cape closure (cbmflim = cbmf of |
---|
584 | ! c elementary systems), cbmf given by Alp closure (cbmfalp), cbmf given by Alp |
---|
585 | ! c closure with an upper bound imposed (cbmfalpb) and cbmf resulting from |
---|
586 | ! c time integration (cbmflast). |
---|
587 | ! ------------------------------------------------------------------------ |
---|
588 | |
---|
589 | DO il = 1, ncum |
---|
590 | cbmflim(il) = 0. |
---|
591 | cbmfalp(il) = 0. |
---|
592 | cbmfalpb(il) = 0. |
---|
593 | cbmflast(il) = 0. |
---|
594 | END DO |
---|
595 | |
---|
596 | ! c 1. Compute cloud base mass flux of elementary system (Cbmflim) |
---|
597 | |
---|
598 | DO k = 1, nl |
---|
599 | DO il = 1, ncum |
---|
600 | ! old IF (k .ge. icb(il) .and. k .le. inb(il)) THEN |
---|
601 | ! IM IF (k .ge. icb(il)+1 .and. k .le. inb(il)) THEN |
---|
602 | IF (k>=icb(il) .AND. k<=inb(il) & !cor jyg |
---|
603 | .AND. icb(il)+1<=inb(il)) THEN !cor jyg |
---|
604 | cbmflim(il) = cbmflim(il) + mlim(il, k) |
---|
605 | END IF |
---|
606 | END DO |
---|
607 | END DO |
---|
608 | IF (prt_level>=20) PRINT *, 'cv3p2_closure after cbmflim: cbmflim ', cbmflim(igout) |
---|
609 | |
---|
610 | ! 1.5 Compute cloud base mass flux given by Alp closure (Cbmfalp), maximum |
---|
611 | ! allowed mass flux (Cbmfmax) and bounded mass flux (Cbmfalpb) |
---|
612 | ! Cbmfalpb is set to zero if Cbmflim (the mass flux of elementary cloud) |
---|
613 | ! is exceedingly small. |
---|
614 | |
---|
615 | DO il = 1, ncum |
---|
616 | wb2(il) = sqrt(2.*max(ale(il)+cin(il),0.)) |
---|
617 | END DO |
---|
618 | |
---|
619 | DO il = 1, ncum |
---|
620 | IF (plfc(il)<100.) THEN |
---|
621 | ! This is an irealistic value for plfc => no calculation of wbeff |
---|
622 | wbeff(il) = 100.1 |
---|
623 | ELSE |
---|
624 | ! Calculate wbeff |
---|
625 | IF (NINT(flag_wb)==0) THEN |
---|
626 | wbeff(il) = wbmax |
---|
627 | ELSE IF (NINT(flag_wb)==1) THEN |
---|
628 | wbeff(il) = wbmax/(1.+500./(ph(il,1)-plfc(il))) |
---|
629 | ELSE IF (NINT(flag_wb)==2) THEN |
---|
630 | wbeff(il) = wbmax*(0.01*(ph(il,1)-plfc(il)))**2 |
---|
631 | END IF |
---|
632 | END IF |
---|
633 | END DO |
---|
634 | |
---|
635 | !CR:Compute k at plfc |
---|
636 | DO il=1,ncum |
---|
637 | klfc(il)=nl |
---|
638 | ENDDO |
---|
639 | DO k=1,nl |
---|
640 | DO il=1,ncum |
---|
641 | if ((plfc(il).lt.ph(il,k)).and.(plfc(il).ge.ph(il,k+1))) then |
---|
642 | klfc(il)=k |
---|
643 | endif |
---|
644 | ENDDO |
---|
645 | ENDDO |
---|
646 | !RC |
---|
647 | |
---|
648 | DO il = 1, ncum |
---|
649 | ! jyg Modification du coef de wb*wb pour conformite avec papier Wake |
---|
650 | ! c cbmfalp(il) = alp2(il)/(0.5*wb*wb-Cin(il)) |
---|
651 | cbmfalp(il) = alp2(il)/(2.*wbeff(il)*wbeff(il)-cin(il)) |
---|
652 | !CR: Add large-scale component to the mass-flux |
---|
653 | !encore connu sous le nom "Experience du tube de dentifrice" |
---|
654 | if ((coef_clos_ls.gt.0.).and.(plfc(il).gt.0.)) then |
---|
655 | cbmfalp(il) = cbmfalp(il) - coef_clos_ls*min(0.,1./RG*omega(il,klfc(il))) |
---|
656 | endif |
---|
657 | !RC |
---|
658 | IF (cbmfalp(il)==0 .AND. alp2(il)/=0.) THEN |
---|
659 | WRITE (lunout, *) 'cv3p2_closure cbmfalp=0 and alp NE 0 il alp2 alp cin ' , & |
---|
660 | il, alp2(il), alp(il), cin(il) |
---|
661 | abort_message = '' |
---|
662 | CALL abort_physic(modname, abort_message, 1) |
---|
663 | END IF |
---|
664 | cbmfmax(il) = sigmax*wb2(il)*100.*p(il, icb(il))/(rrd*tv(il,icb(il))) |
---|
665 | END DO |
---|
666 | |
---|
667 | !jyg< |
---|
668 | IF (OK_intermittent) THEN |
---|
669 | DO il = 1, ncum |
---|
670 | IF (cbmflim(il)>1.E-6) THEN |
---|
671 | cbmfalpb(il) = min(cbmfalp(il), (cbmfmax(il)-beta*cbmf0(il))/(1.-beta)) |
---|
672 | ! print*,'cbmfalpb',cbmfalpb(il),cbmfmax(il) |
---|
673 | END IF |
---|
674 | END DO |
---|
675 | ELSE |
---|
676 | !>jyg |
---|
677 | DO il = 1, ncum |
---|
678 | IF (cbmflim(il)>1.E-6) THEN |
---|
679 | ! ATTENTION TEST CR |
---|
680 | ! if (cbmfmax(il).lt.1.e-12) then |
---|
681 | cbmfalpb(il) = min(cbmfalp(il), cbmfmax(il)) |
---|
682 | ! else |
---|
683 | ! cbmfalpb(il) = cbmfalp(il) |
---|
684 | ! endif |
---|
685 | ! print*,'cbmfalpb',cbmfalp(il),cbmfmax(il) |
---|
686 | END IF |
---|
687 | END DO |
---|
688 | ENDIF !(OK_intermittent) |
---|
689 | IF (prt_level>=20) PRINT *, 'cv3p2_closure apres cbmfalpb: cbmfalpb ',cbmfalpb(igout) |
---|
690 | |
---|
691 | ! c 2. Compute coefficient and apply correction |
---|
692 | |
---|
693 | DO il = 1, ncum |
---|
694 | coef(il) = (cbmfalpb(il)+1.E-10)/(cbmflim(il)+1.E-10) |
---|
695 | END DO |
---|
696 | IF (prt_level>=20) PRINT *, 'cv3p2_closure apres coef_plantePLUS' |
---|
697 | |
---|
698 | DO k = 1, nl |
---|
699 | DO il = 1, ncum |
---|
700 | IF (k>=icb(il)+1 .AND. k<=inb(il)) THEN |
---|
701 | amu = beta*sig(il, k)*w0(il, k) + (1.-beta)*coef(il)*siglim(il, k)*wlim(il, k) |
---|
702 | w0(il, k) = wlim(il, k) |
---|
703 | w0(il, k) = max(w0(il,k), 1.E-10) |
---|
704 | sig(il, k) = amu/w0(il, k) |
---|
705 | sig(il, k) = min(sig(il,k), 1.) |
---|
706 | ! c amu = 0.5*(SIG(il,k)+sigold(il,k))*W0(il,k) |
---|
707 | !jyg m(il, k) = amu*0.007*p(il, k)*(ph(il,k)-ph(il,k+1))/tv(il, k) |
---|
708 | m(il, k) = amu*rhodp(il,k) |
---|
709 | END IF |
---|
710 | END DO |
---|
711 | END DO |
---|
712 | ! jyg2 |
---|
713 | DO il = 1, ncum |
---|
714 | w0(il, icb(il)) = 0.5*w0(il, icb(il)+1) |
---|
715 | m(il, icb(il)) = 0.5*m(il, icb(il)+1)*(ph(il,icb(il))-ph(il,icb(il)+1))/ & |
---|
716 | (ph(il,icb(il)+1)-ph(il,icb(il)+2)) |
---|
717 | sig(il, icb(il)) = sig(il, icb(il)+1) |
---|
718 | sig(il, icb(il)-1) = sig(il, icb(il)) |
---|
719 | END DO |
---|
720 | IF (prt_level>=20) PRINT *, 'cv3p2_closure apres w0_sig_M: w0, sig ', & |
---|
721 | (k,w0(igout,k),sig(igout,k), k=icb(igout),inb(igout)) |
---|
722 | |
---|
723 | !CR: new erosion of adiabatic ascent: modification of m |
---|
724 | !computation of the sum of ascending fluxes |
---|
725 | IF (iflag_mix_adiab.eq.1) THEN |
---|
726 | |
---|
727 | !Verification sum(me)=sum(m) |
---|
728 | DO k = 1,nd |
---|
729 | DO il = 1, ncum |
---|
730 | md(il,k)=0. |
---|
731 | med(il,k)=0. |
---|
732 | ENDDO |
---|
733 | ENDDO |
---|
734 | |
---|
735 | DO k = nl,1,-1 |
---|
736 | DO il = 1, ncum |
---|
737 | md(il,k)=md(il,k+1)+m(il,k+1) |
---|
738 | ENDDO |
---|
739 | ENDDO |
---|
740 | |
---|
741 | DO k = nl,1,-1 |
---|
742 | DO il = 1, ncum |
---|
743 | IF ((k>=(icb(il))) .AND. (k<=inb(il))) THEN |
---|
744 | mad(il,k)=mad(il,k+1)+m(il,k+1) |
---|
745 | ENDIF |
---|
746 | ! print*,"mad",il,k,mad(il,k) |
---|
747 | ENDDO |
---|
748 | ENDDO |
---|
749 | |
---|
750 | !CR: erosion of each adiabatic ascent during its ascent |
---|
751 | |
---|
752 | !Computation of erosion coefficient beta_coef |
---|
753 | DO k = 1, nl |
---|
754 | DO il = 1, ncum |
---|
755 | IF ((k>=(icb(il)+1)) .AND. (k<=inb(il)) .AND. (mlim(il,k).gt.0.)) THEN |
---|
756 | ! print*,"beta_coef",il,k,icb(il),inb(il),buoy(il,k),tv(il,k),wlim(il,k),wlim(il,k+1) |
---|
757 | beta_coef(il,k)=RG*coef_peel*buoy(il,k)/tv(il,k)/((wlim(il,k)+wlim(il,k+1))/2.)**2 |
---|
758 | ELSE |
---|
759 | beta_coef(il,k)=0. |
---|
760 | ENDIF |
---|
761 | ENDDO |
---|
762 | ENDDO |
---|
763 | |
---|
764 | ! print*,"apres beta_coef" |
---|
765 | |
---|
766 | DO k = 1, nl |
---|
767 | DO il = 1, ncum |
---|
768 | |
---|
769 | IF ((k>=(icb(il)+1)) .AND. (k<=inb(il))) THEN |
---|
770 | |
---|
771 | ! print*,"dz",il,k,tv(il, k-1) |
---|
772 | dz = (ph(il,k-1)-ph(il,k))/(p(il, k-1)/(rrd*tv(il, k-1))*RG) |
---|
773 | betalim(il,k)=betalim(il,k-1)*exp(-1.*beta_coef(il,k-1)*dz) |
---|
774 | ! betalim(il,k)=betalim(il,k-1)*exp(-RG*coef_peel*buoy(il,k-1)/tv(il,k-1)/5.**2*dz) |
---|
775 | ! print*,"me",il,k,mlim(il,k),buoy(il,k),wlim(il,k),mad(il,k) |
---|
776 | dz = (ph(il,k)-ph(il,k+1))/(p(il, k)/(rrd*tv(il, k))*RG) |
---|
777 | ! me(il,k)=betalim(il,k)*(m(il,k)+RG*coef_peel*buoy(il,k)/tv(il,k)/((wlim(il,k)+wlim(il,k+1))/2.)**2*dz*mad(il,k)) |
---|
778 | me(il,k)=betalim(il,k)*(m(il,k)+beta_coef(il,k)*dz*mad(il,k)) |
---|
779 | ! print*,"B/w2",il,k,RG*coef_peel*buoy(il,k)/tv(il,k)/((wlim(il,k)+wlim(il,k+1))/2.)**2*dz |
---|
780 | |
---|
781 | END IF |
---|
782 | |
---|
783 | !Modification of m |
---|
784 | m(il,k)=me(il,k) |
---|
785 | END DO |
---|
786 | END DO |
---|
787 | |
---|
788 | ! DO il = 1, ncum |
---|
789 | ! dz = (ph(il,icb(il))-ph(il,icb(il)+1))/(p(il, icb(il))/(rrd*tv(il, icb(il)))*RG) |
---|
790 | ! m(il,icb(il))=m(il,icb(il))+RG*coef_peel*buoy(il,icb(il))/tv(il,icb(il)) & |
---|
791 | ! /((wlim(il,icb(il))+wlim(il,icb(il)+1))/2.)**2*dz*mad(il,icb(il)) |
---|
792 | ! print*,"wlim(icb)",icb(il),wlim(il,icb(il)),m(il,icb(il)) |
---|
793 | ! ENDDO |
---|
794 | |
---|
795 | !Verification sum(me)=sum(m) |
---|
796 | DO k = nl,1,-1 |
---|
797 | DO il = 1, ncum |
---|
798 | med(il,k)=med(il,k+1)+m(il,k+1) |
---|
799 | ! print*,"somme(me),somme(m)",il,k,icb(il),med(il,k),md(il,k),me(il,k),m(il,k),wlim(il,k) |
---|
800 | ENDDO |
---|
801 | ENDDO |
---|
802 | |
---|
803 | |
---|
804 | ENDIF !(iflag_mix_adiab) |
---|
805 | !RC |
---|
806 | |
---|
807 | ! c 3. Compute final cloud base mass flux; |
---|
808 | ! c set iflag to 3 if cloud base mass flux is exceedingly small and is |
---|
809 | ! c decreasing (i.e. if the final mass flux (cbmflast) is greater than |
---|
810 | ! c the target mass flux (cbmfalpb)). |
---|
811 | ! c If(ok_convstop): set iflag to 4 if no positive buoyancy has been met |
---|
812 | |
---|
813 | !jyg DO il = 1, ncum |
---|
814 | !jyg cbmflast(il) = 0. |
---|
815 | !jyg END DO |
---|
816 | |
---|
817 | DO k = 1, nl |
---|
818 | DO il = 1, ncum |
---|
819 | IF (k>=icb(il) .AND. k<=inb(il)) THEN |
---|
820 | !IMpropo?? IF ((k.ge.(icb(il)+1)).and.(k.le.inb(il))) THEN |
---|
821 | cbmflast(il) = cbmflast(il) + m(il, k) |
---|
822 | END IF |
---|
823 | END DO |
---|
824 | END DO |
---|
825 | IF (prt_level>=20) PRINT *, 'cv3p2_closure apres cbmflast: cbmflast ',cbmflast(igout) |
---|
826 | |
---|
827 | DO il = 1, ncum |
---|
828 | IF (cbmflast(il)<1.E-6 .AND. cbmflast(il)>=cbmfalpb(il)) THEN |
---|
829 | iflag(il) = 3 |
---|
830 | END IF |
---|
831 | END DO |
---|
832 | |
---|
833 | !jyg< |
---|
834 | IF (ok_convstop) THEN |
---|
835 | DO il = 1, ncum |
---|
836 | IF (dtminmax(il) .LE. 0.) THEN |
---|
837 | iflag(il) = 4 |
---|
838 | END IF |
---|
839 | END DO |
---|
840 | ELSE |
---|
841 | !>jyg |
---|
842 | DO k = 1, nl |
---|
843 | DO il = 1, ncum |
---|
844 | IF (iflag(il)>=3) THEN |
---|
845 | m(il, k) = 0. |
---|
846 | sig(il, k) = 0. |
---|
847 | w0(il, k) = 0. |
---|
848 | END IF |
---|
849 | END DO |
---|
850 | END DO |
---|
851 | ENDIF ! (ok_convstop) |
---|
852 | ! |
---|
853 | IF (prt_level >= 10) THEN |
---|
854 | print *,'cv3p2_closure: iflag ',iflag(igout) |
---|
855 | ENDIF |
---|
856 | ! |
---|
857 | |
---|
858 | ! c 4. Introduce a correcting factor for coef, in order to obtain an |
---|
859 | ! effective |
---|
860 | ! c sigdz larger in the present case (using cv3p2_closure) than in the |
---|
861 | ! old |
---|
862 | ! c closure (using cv3_closure). |
---|
863 | IF (1==0) THEN |
---|
864 | DO il = 1, ncum |
---|
865 | ! c coef(il) = 2.*coef(il) |
---|
866 | coef(il) = 5.*coef(il) |
---|
867 | END DO |
---|
868 | ! version CVS du ..2008 |
---|
869 | ELSE |
---|
870 | IF (iflag_cvl_sigd==0) THEN |
---|
871 | ! test pour verifier qu on fait la meme chose qu avant: sid constant |
---|
872 | coef(1:ncum) = 1. |
---|
873 | ELSE |
---|
874 | coef(1:ncum) = min(2.*coef(1:ncum), 5.) |
---|
875 | coef(1:ncum) = max(2.*coef(1:ncum), 0.2) |
---|
876 | END IF |
---|
877 | END IF |
---|
878 | |
---|
879 | IF (prt_level>=20) PRINT *, 'cv3p2_closure FIN' |
---|
880 | RETURN |
---|
881 | END SUBROUTINE cv3p2_closure |
---|
882 | |
---|
883 | |
---|