1 | ! %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
---|
2 | ! Copyright (c) 2015, Regents of the University of Colorado |
---|
3 | ! All rights reserved. |
---|
4 | ! |
---|
5 | ! Redistribution and use in source and binary forms, with or without modification, are |
---|
6 | ! permitted provided that the following conditions are met: |
---|
7 | ! |
---|
8 | ! 1. Redistributions of source code must retain the above copyright notice, this list of |
---|
9 | ! conditions and the following disclaimer. |
---|
10 | ! |
---|
11 | ! 2. Redistributions in binary form must reproduce the above copyright notice, this list |
---|
12 | ! of conditions and the following disclaimer in the documentation and/or other |
---|
13 | ! materials provided with the distribution. |
---|
14 | ! |
---|
15 | ! 3. Neither the name of the copyright holder nor the names of its contributors may be |
---|
16 | ! used to endorse or promote products derived from this software without specific prior |
---|
17 | ! written permission. |
---|
18 | ! |
---|
19 | ! THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY |
---|
20 | ! EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF |
---|
21 | ! MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL |
---|
22 | ! THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
---|
23 | ! SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT |
---|
24 | ! OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS |
---|
25 | ! INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT |
---|
26 | ! LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
---|
27 | ! OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
---|
28 | ! |
---|
29 | ! History: |
---|
30 | ! July 2006: John Haynes - Initial version |
---|
31 | ! May 2015: Dustin Swales - Modified for COSPv2.0 |
---|
32 | ! |
---|
33 | ! %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
---|
34 | module math_lib |
---|
35 | USE COSP_KINDS, ONLY: wp |
---|
36 | use mod_cosp_error, ONLY: errorMessage |
---|
37 | implicit none |
---|
38 | |
---|
39 | contains |
---|
40 | ! ########################################################################## |
---|
41 | ! function PATH_INTEGRAL |
---|
42 | ! ########################################################################## |
---|
43 | function path_integral(f,s,i1,i2) |
---|
44 | use m_mrgrnk |
---|
45 | use array_lib |
---|
46 | implicit none |
---|
47 | ! ######################################################################## |
---|
48 | ! Purpose: |
---|
49 | ! evalues the integral (f ds) between f(index=i1) and f(index=i2) |
---|
50 | ! using the AVINT procedure |
---|
51 | ! |
---|
52 | ! Inputs: |
---|
53 | ! [f] functional values |
---|
54 | ! [s] abscissa values |
---|
55 | ! [i1] index of lower limit |
---|
56 | ! [i2] index of upper limit |
---|
57 | ! |
---|
58 | ! Returns: |
---|
59 | ! result of path integral |
---|
60 | ! |
---|
61 | ! Notes: |
---|
62 | ! [s] may be in forward or reverse numerical order |
---|
63 | ! |
---|
64 | ! Requires: |
---|
65 | ! mrgrnk package |
---|
66 | ! |
---|
67 | ! Created: |
---|
68 | ! 02/02/06 John Haynes (haynes@atmos.colostate.edu) |
---|
69 | ! ######################################################################## |
---|
70 | |
---|
71 | ! INPUTS |
---|
72 | real(wp),intent(in), dimension(:) :: & |
---|
73 | f, & ! Functional values |
---|
74 | s ! Abscissa values |
---|
75 | integer, intent(in) :: & |
---|
76 | i1, & ! Index of lower limit |
---|
77 | i2 ! Index of upper limit |
---|
78 | |
---|
79 | ! OUTPUTS |
---|
80 | real(wp) :: path_integral |
---|
81 | |
---|
82 | ! Internal variables |
---|
83 | real(wp) :: sumo, deltah, val |
---|
84 | integer :: nelm, j |
---|
85 | integer, dimension(i2-i1+1) :: idx |
---|
86 | real(wp), dimension(i2-i1+1) :: f_rev, s_rev |
---|
87 | |
---|
88 | nelm = i2-i1+1 |
---|
89 | if (nelm > 3) then |
---|
90 | call mrgrnk(s(i1:i2),idx) |
---|
91 | s_rev = s(idx) |
---|
92 | f_rev = f(idx) |
---|
93 | call avint(f_rev(i1:i2),s_rev(i1:i2),(i2-i1+1), & |
---|
94 | s_rev(i1),s_rev(i2), val) |
---|
95 | path_integral = val |
---|
96 | else |
---|
97 | sumo = 0._wp |
---|
98 | do j=i1,i2 |
---|
99 | deltah = abs(s(i1+1)-s(i1)) |
---|
100 | sumo = sumo + f(j)*deltah |
---|
101 | enddo |
---|
102 | path_integral = sumo |
---|
103 | endif |
---|
104 | |
---|
105 | return |
---|
106 | end function path_integral |
---|
107 | |
---|
108 | ! ########################################################################## |
---|
109 | ! subroutine AVINT |
---|
110 | ! ########################################################################## |
---|
111 | subroutine avint ( ftab, xtab, ntab, a_in, b_in, result ) |
---|
112 | implicit none |
---|
113 | ! ######################################################################## |
---|
114 | ! Purpose: |
---|
115 | ! estimate the integral of unevenly spaced data |
---|
116 | ! |
---|
117 | ! Inputs: |
---|
118 | ! [ftab] functional values |
---|
119 | ! [xtab] abscissa values |
---|
120 | ! [ntab] number of elements of [ftab] and [xtab] |
---|
121 | ! [a] lower limit of integration |
---|
122 | ! [b] upper limit of integration |
---|
123 | ! |
---|
124 | ! Outputs: |
---|
125 | ! [result] approximate value of integral |
---|
126 | ! |
---|
127 | ! Reference: |
---|
128 | ! From SLATEC libraries, in public domain |
---|
129 | ! |
---|
130 | !*********************************************************************** |
---|
131 | ! |
---|
132 | ! AVINT estimates the integral of unevenly spaced data. |
---|
133 | ! |
---|
134 | ! Discussion: |
---|
135 | ! |
---|
136 | ! The method uses overlapping parabolas and smoothing. |
---|
137 | ! |
---|
138 | ! Modified: |
---|
139 | ! |
---|
140 | ! 30 October 2000 |
---|
141 | ! 4 January 2008, A. Bodas-Salcedo. Error control for XTAB taken out of |
---|
142 | ! loop to allow vectorization. |
---|
143 | ! |
---|
144 | ! Reference: |
---|
145 | ! |
---|
146 | ! Philip Davis and Philip Rabinowitz, |
---|
147 | ! Methods of Numerical Integration, |
---|
148 | ! Blaisdell Publishing, 1967. |
---|
149 | ! |
---|
150 | ! P E Hennion, |
---|
151 | ! Algorithm 77, |
---|
152 | ! Interpolation, Differentiation and Integration, |
---|
153 | ! Communications of the Association for Computing Machinery, |
---|
154 | ! Volume 5, page 96, 1962. |
---|
155 | ! |
---|
156 | ! Parameters: |
---|
157 | ! |
---|
158 | ! Input, real ( kind = 8 ) FTAB(NTAB), the function values, |
---|
159 | ! FTAB(I) = F(XTAB(I)). |
---|
160 | ! |
---|
161 | ! Input, real ( kind = 8 ) XTAB(NTAB), the abscissas at which the |
---|
162 | ! function values are given. The XTAB's must be distinct |
---|
163 | ! and in ascending order. |
---|
164 | ! |
---|
165 | ! Input, integer NTAB, the number of entries in FTAB and |
---|
166 | ! XTAB. NTAB must be at least 3. |
---|
167 | ! |
---|
168 | ! Input, real ( kind = 8 ) A, the lower limit of integration. A should |
---|
169 | ! be, but need not be, near one endpoint of the interval |
---|
170 | ! (X(1), X(NTAB)). |
---|
171 | ! |
---|
172 | ! Input, real ( kind = 8 ) B, the upper limit of integration. B should |
---|
173 | ! be, but need not be, near one endpoint of the interval |
---|
174 | ! (X(1), X(NTAB)). |
---|
175 | ! |
---|
176 | ! Output, real ( kind = 8 ) RESULT, the approximate value of the integral. |
---|
177 | ! ########################################################################## |
---|
178 | |
---|
179 | ! INPUTS |
---|
180 | integer,intent(in) :: & |
---|
181 | ntab ! Number of elements of [ftab] and [xtab] |
---|
182 | real(wp),intent(in) :: & |
---|
183 | a_in, & ! Lower limit of integration |
---|
184 | b_in ! Upper limit of integration |
---|
185 | real(wp),intent(in),dimension(ntab) :: & |
---|
186 | ftab, & ! Functional values |
---|
187 | xtab ! Abscissa value |
---|
188 | |
---|
189 | ! OUTPUTS |
---|
190 | real(wp),intent(out) :: result ! Approximate value of integral |
---|
191 | |
---|
192 | ! Internal varaibles |
---|
193 | real(wp) :: a, atemp, b, btemp,ca,cb,cc,ctemp,sum1,syl,term1,term2,term3,x1,x2,x3 |
---|
194 | integer :: i,ihi,ilo,ind |
---|
195 | logical :: lerror |
---|
196 | |
---|
197 | lerror = .false. |
---|
198 | a = a_in |
---|
199 | b = b_in |
---|
200 | |
---|
201 | if ( ntab < 3 ) then |
---|
202 | call errorMessage('FATAL ERROR(optics/math_lib.f90:AVINT): Ntab is less than 3.') |
---|
203 | return |
---|
204 | end if |
---|
205 | |
---|
206 | do i = 2, ntab |
---|
207 | if ( xtab(i) <= xtab(i-1) ) then |
---|
208 | lerror = .true. |
---|
209 | exit |
---|
210 | end if |
---|
211 | end do |
---|
212 | |
---|
213 | if (lerror) then |
---|
214 | call errorMessage('FATAL ERROR(optics/math_lib.f90:AVINT): Xtab(i) is not greater than Xtab(i-1).') |
---|
215 | return |
---|
216 | end if |
---|
217 | |
---|
218 | !ds result = 0.0D+00 |
---|
219 | result = 0._wp |
---|
220 | |
---|
221 | if ( a == b ) then |
---|
222 | call errorMessage('WARNING(optics/math_lib.f90:AVINT): A=B => integral=0') |
---|
223 | return |
---|
224 | end if |
---|
225 | |
---|
226 | ! If B < A, temporarily switch A and B, and store sign. |
---|
227 | if ( b < a ) then |
---|
228 | syl = b |
---|
229 | b = a |
---|
230 | a = syl |
---|
231 | ind = -1 |
---|
232 | else |
---|
233 | syl = a |
---|
234 | ind = 1 |
---|
235 | end if |
---|
236 | |
---|
237 | ! Bracket A and B between XTAB(ILO) and XTAB(IHI). |
---|
238 | ilo = 1 |
---|
239 | ihi = ntab |
---|
240 | |
---|
241 | do i = 1, ntab |
---|
242 | if ( a <= xtab(i) ) then |
---|
243 | exit |
---|
244 | end if |
---|
245 | ilo = ilo + 1 |
---|
246 | end do |
---|
247 | |
---|
248 | ilo = max ( 2, ilo ) |
---|
249 | ilo = min ( ilo, ntab - 1 ) |
---|
250 | |
---|
251 | do i = 1, ntab |
---|
252 | if ( xtab(i) <= b ) then |
---|
253 | exit |
---|
254 | end if |
---|
255 | ihi = ihi - 1 |
---|
256 | end do |
---|
257 | |
---|
258 | ihi = min ( ihi, ntab - 1 ) |
---|
259 | ihi = max ( ilo, ihi - 1 ) |
---|
260 | |
---|
261 | ! Carry out approximate integration from XTAB(ILO) to XTAB(IHI). |
---|
262 | sum1 = 0._wp |
---|
263 | !ds sum1 = 0.0D+00 |
---|
264 | |
---|
265 | do i = ilo, ihi |
---|
266 | |
---|
267 | x1 = xtab(i-1) |
---|
268 | x2 = xtab(i) |
---|
269 | x3 = xtab(i+1) |
---|
270 | |
---|
271 | term1 = ftab(i-1) / ( ( x1 - x2 ) * ( x1 - x3 ) ) |
---|
272 | term2 = ftab(i) / ( ( x2 - x1 ) * ( x2 - x3 ) ) |
---|
273 | term3 = ftab(i+1) / ( ( x3 - x1 ) * ( x3 - x2 ) ) |
---|
274 | |
---|
275 | atemp = term1 + term2 + term3 |
---|
276 | |
---|
277 | btemp = - ( x2 + x3 ) * term1 & |
---|
278 | - ( x1 + x3 ) * term2 & |
---|
279 | - ( x1 + x2 ) * term3 |
---|
280 | |
---|
281 | ctemp = x2 * x3 * term1 + x1 * x3 * term2 + x1 * x2 * term3 |
---|
282 | |
---|
283 | if ( i <= ilo ) then |
---|
284 | ca = atemp |
---|
285 | cb = btemp |
---|
286 | cc = ctemp |
---|
287 | else |
---|
288 | ca = 0.5_wp * ( atemp + ca ) |
---|
289 | cb = 0.5_wp * ( btemp + cb ) |
---|
290 | cc = 0.5_wp * ( ctemp + cc ) |
---|
291 | !ds ca = 0.5D+00 * ( atemp + ca ) |
---|
292 | !ds cb = 0.5D+00 * ( btemp + cb ) |
---|
293 | !ds cc = 0.5D+00 * ( ctemp + cc ) |
---|
294 | end if |
---|
295 | |
---|
296 | sum1 = sum1 + ca * ( x2**3 - syl**3 ) / 3._wp & |
---|
297 | + cb * 0.5_wp * ( x2**2 - syl**2 ) + cc * ( x2 - syl ) |
---|
298 | !ds sum1 = sum1 + ca * ( x2**3 - syl**3 ) / 3.0D+00 & |
---|
299 | !ds + cb * 0.5D+00 * ( x2**2 - syl**2 ) + cc * ( x2 - syl ) |
---|
300 | |
---|
301 | ca = atemp |
---|
302 | cb = btemp |
---|
303 | cc = ctemp |
---|
304 | |
---|
305 | syl = x2 |
---|
306 | |
---|
307 | end do |
---|
308 | |
---|
309 | result = sum1 + ca * ( b**3 - syl**3 ) / 3._wp & |
---|
310 | + cb * 0.5_wp * ( b**2 - syl**2 ) + cc * ( b - syl ) |
---|
311 | !ds result = sum1 + ca * ( b**3 - syl**3 ) / 3.0D+00 & |
---|
312 | !ds + cb * 0.5D+00 * ( b**2 - syl**2 ) + cc * ( b - syl ) |
---|
313 | |
---|
314 | ! Restore original values of A and B, reverse sign of integral |
---|
315 | ! because of earlier switch. |
---|
316 | if ( ind /= 1 ) then |
---|
317 | ind = 1 |
---|
318 | syl = b |
---|
319 | b = a |
---|
320 | a = syl |
---|
321 | result = -result |
---|
322 | end if |
---|
323 | |
---|
324 | return |
---|
325 | end subroutine avint |
---|
326 | ! ###################################################################################### |
---|
327 | ! SUBROUTINE gamma |
---|
328 | ! Purpose: |
---|
329 | ! Returns the gamma function |
---|
330 | ! |
---|
331 | ! Input: |
---|
332 | ! [x] value to compute gamma function of |
---|
333 | ! |
---|
334 | ! Returns: |
---|
335 | ! gamma(x) |
---|
336 | ! |
---|
337 | ! Coded: |
---|
338 | ! 02/02/06 John Haynes (haynes@atmos.colostate.edu) |
---|
339 | ! (original code of unknown origin) |
---|
340 | ! ###################################################################################### |
---|
341 | function gamma(x) |
---|
342 | ! Inputs |
---|
343 | real(wp), intent(in) :: x |
---|
344 | |
---|
345 | ! Outputs |
---|
346 | real(wp) :: gamma |
---|
347 | |
---|
348 | ! Local variables |
---|
349 | real(wp) :: pi,ga,z,r,gr |
---|
350 | integer :: k,m1,m |
---|
351 | |
---|
352 | ! Parameters |
---|
353 | real(wp),dimension(26),parameter :: & |
---|
354 | g = (/1.0,0.5772156649015329, -0.6558780715202538, -0.420026350340952e-1, & |
---|
355 | 0.1665386113822915,-0.421977345555443e-1,-0.96219715278770e-2, & |
---|
356 | 0.72189432466630e-2,-0.11651675918591e-2, -0.2152416741149e-3, & |
---|
357 | 0.1280502823882e-3, -0.201348547807e-4, -0.12504934821e-5, 0.11330272320e-5, & |
---|
358 | -0.2056338417e-6, 0.61160950e-8,0.50020075e-8, -0.11812746e-8, 0.1043427e-9, & |
---|
359 | 0.77823e-11, -0.36968e-11, 0.51e-12, -0.206e-13, -0.54e-14, 0.14e-14, 0.1e-15/) |
---|
360 | !ds real(wp),dimension(26),parameter :: & |
---|
361 | !ds g = (/1.0d0,0.5772156649015329d0, -0.6558780715202538d0, -0.420026350340952d-1, & |
---|
362 | !ds 0.1665386113822915d0,-0.421977345555443d-1,-0.96219715278770d-2, & |
---|
363 | !ds 0.72189432466630d-2,-0.11651675918591d-2, -0.2152416741149d-3, & |
---|
364 | !ds 0.1280502823882d-3, -0.201348547807d-4, -0.12504934821d-5, 0.11330272320d-5, & |
---|
365 | !ds -0.2056338417d-6, 0.61160950d-8,0.50020075d-8, -0.11812746d-8, 0.1043427d-9, & |
---|
366 | !ds 0.77823d-11, -0.36968d-11, 0.51d-12, -0.206d-13, -0.54d-14, 0.14d-14, 0.1d-15/) |
---|
367 | |
---|
368 | pi = acos(-1._wp) |
---|
369 | if (x ==int(x)) then |
---|
370 | if (x > 0.0) then |
---|
371 | ga=1._wp |
---|
372 | m1=x-1 |
---|
373 | do k=2,m1 |
---|
374 | ga=ga*k |
---|
375 | enddo |
---|
376 | else |
---|
377 | ga=1._wp+300 |
---|
378 | endif |
---|
379 | else |
---|
380 | if (abs(x) > 1.0) then |
---|
381 | z=abs(x) |
---|
382 | m=int(z) |
---|
383 | r=1._wp |
---|
384 | do k=1,m |
---|
385 | r=r*(z-k) |
---|
386 | enddo |
---|
387 | z=z-m |
---|
388 | else |
---|
389 | z=x |
---|
390 | endif |
---|
391 | gr=g(26) |
---|
392 | do k=25,1,-1 |
---|
393 | gr=gr*z+g(k) |
---|
394 | enddo |
---|
395 | ga=1._wp/(gr*z) |
---|
396 | if (abs(x) > 1.0) then |
---|
397 | ga=ga*r |
---|
398 | if (x < 0.0) ga=-pi/(x*ga*sin(pi*x)) |
---|
399 | endif |
---|
400 | endif |
---|
401 | gamma = ga |
---|
402 | return |
---|
403 | end function gamma |
---|
404 | end module math_lib |
---|