[3491] | 1 | ! %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
---|
| 2 | ! Copyright (c) 2015, Regents of the University of Colorado |
---|
| 3 | ! All rights reserved. |
---|
| 4 | ! |
---|
| 5 | ! Redistribution and use in source and binary forms, with or without modification, are |
---|
| 6 | ! permitted provided that the following conditions are met: |
---|
| 7 | ! |
---|
| 8 | ! 1. Redistributions of source code must retain the above copyright notice, this list of |
---|
| 9 | ! conditions and the following disclaimer. |
---|
| 10 | ! |
---|
| 11 | ! 2. Redistributions in binary form must reproduce the above copyright notice, this list |
---|
| 12 | ! of conditions and the following disclaimer in the documentation and/or other |
---|
| 13 | ! materials provided with the distribution. |
---|
| 14 | ! |
---|
| 15 | ! 3. Neither the name of the copyright holder nor the names of its contributors may be |
---|
| 16 | ! used to endorse or promote products derived from this software without specific prior |
---|
| 17 | ! written permission. |
---|
| 18 | ! |
---|
| 19 | ! THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY |
---|
| 20 | ! EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF |
---|
| 21 | ! MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL |
---|
| 22 | ! THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
---|
| 23 | ! SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT |
---|
| 24 | ! OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS |
---|
| 25 | ! INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT |
---|
| 26 | ! LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
---|
| 27 | ! OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
---|
| 28 | ! |
---|
| 29 | ! History: |
---|
| 30 | ! July 2006: John Haynes - Initial version |
---|
| 31 | ! May 2015: Dustin Swales - Modified for COSPv2.0 |
---|
| 32 | ! |
---|
| 33 | ! %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
---|
| 34 | module math_lib |
---|
| 35 | USE COSP_KINDS, ONLY: wp |
---|
| 36 | use mod_cosp_error, ONLY: errorMessage |
---|
| 37 | implicit none |
---|
| 38 | |
---|
| 39 | contains |
---|
| 40 | ! ########################################################################## |
---|
| 41 | ! function PATH_INTEGRAL |
---|
| 42 | ! ########################################################################## |
---|
| 43 | function path_integral(f,s,i1,i2) |
---|
| 44 | use m_mrgrnk |
---|
| 45 | use array_lib |
---|
| 46 | implicit none |
---|
| 47 | ! ######################################################################## |
---|
| 48 | ! Purpose: |
---|
| 49 | ! evalues the integral (f ds) between f(index=i1) and f(index=i2) |
---|
| 50 | ! using the AVINT procedure |
---|
| 51 | ! |
---|
| 52 | ! Inputs: |
---|
| 53 | ! [f] functional values |
---|
| 54 | ! [s] abscissa values |
---|
| 55 | ! [i1] index of lower limit |
---|
| 56 | ! [i2] index of upper limit |
---|
| 57 | ! |
---|
| 58 | ! Returns: |
---|
| 59 | ! result of path integral |
---|
| 60 | ! |
---|
| 61 | ! Notes: |
---|
| 62 | ! [s] may be in forward or reverse numerical order |
---|
| 63 | ! |
---|
| 64 | ! Requires: |
---|
| 65 | ! mrgrnk package |
---|
| 66 | ! |
---|
| 67 | ! Created: |
---|
| 68 | ! 02/02/06 John Haynes (haynes@atmos.colostate.edu) |
---|
| 69 | ! ######################################################################## |
---|
| 70 | |
---|
| 71 | ! INPUTS |
---|
| 72 | real(wp),intent(in), dimension(:) :: & |
---|
| 73 | f, & ! Functional values |
---|
| 74 | s ! Abscissa values |
---|
| 75 | integer, intent(in) :: & |
---|
| 76 | i1, & ! Index of lower limit |
---|
| 77 | i2 ! Index of upper limit |
---|
| 78 | |
---|
| 79 | ! OUTPUTS |
---|
| 80 | real(wp) :: path_integral |
---|
| 81 | |
---|
| 82 | ! Internal variables |
---|
| 83 | real(wp) :: sumo, deltah, val |
---|
| 84 | integer :: nelm, j |
---|
| 85 | integer, dimension(i2-i1+1) :: idx |
---|
| 86 | real(wp), dimension(i2-i1+1) :: f_rev, s_rev |
---|
| 87 | |
---|
| 88 | nelm = i2-i1+1 |
---|
| 89 | if (nelm > 3) then |
---|
| 90 | call mrgrnk(s(i1:i2),idx) |
---|
| 91 | s_rev = s(idx) |
---|
| 92 | f_rev = f(idx) |
---|
| 93 | call avint(f_rev(i1:i2),s_rev(i1:i2),(i2-i1+1), & |
---|
| 94 | s_rev(i1),s_rev(i2), val) |
---|
| 95 | path_integral = val |
---|
| 96 | else |
---|
| 97 | sumo = 0._wp |
---|
| 98 | do j=i1,i2 |
---|
| 99 | deltah = abs(s(i1+1)-s(i1)) |
---|
| 100 | sumo = sumo + f(j)*deltah |
---|
| 101 | enddo |
---|
| 102 | path_integral = sumo |
---|
| 103 | endif |
---|
| 104 | |
---|
| 105 | return |
---|
| 106 | end function path_integral |
---|
| 107 | |
---|
| 108 | ! ########################################################################## |
---|
| 109 | ! subroutine AVINT |
---|
| 110 | ! ########################################################################## |
---|
| 111 | subroutine avint ( ftab, xtab, ntab, a_in, b_in, result ) |
---|
| 112 | implicit none |
---|
| 113 | ! ######################################################################## |
---|
| 114 | ! Purpose: |
---|
| 115 | ! estimate the integral of unevenly spaced data |
---|
| 116 | ! |
---|
| 117 | ! Inputs: |
---|
| 118 | ! [ftab] functional values |
---|
| 119 | ! [xtab] abscissa values |
---|
| 120 | ! [ntab] number of elements of [ftab] and [xtab] |
---|
| 121 | ! [a] lower limit of integration |
---|
| 122 | ! [b] upper limit of integration |
---|
| 123 | ! |
---|
| 124 | ! Outputs: |
---|
| 125 | ! [result] approximate value of integral |
---|
| 126 | ! |
---|
| 127 | ! Reference: |
---|
| 128 | ! From SLATEC libraries, in public domain |
---|
| 129 | ! |
---|
| 130 | !*********************************************************************** |
---|
| 131 | ! |
---|
| 132 | ! AVINT estimates the integral of unevenly spaced data. |
---|
| 133 | ! |
---|
| 134 | ! Discussion: |
---|
| 135 | ! |
---|
| 136 | ! The method uses overlapping parabolas and smoothing. |
---|
| 137 | ! |
---|
| 138 | ! Modified: |
---|
| 139 | ! |
---|
| 140 | ! 30 October 2000 |
---|
| 141 | ! 4 January 2008, A. Bodas-Salcedo. Error control for XTAB taken out of |
---|
| 142 | ! loop to allow vectorization. |
---|
| 143 | ! |
---|
| 144 | ! Reference: |
---|
| 145 | ! |
---|
| 146 | ! Philip Davis and Philip Rabinowitz, |
---|
| 147 | ! Methods of Numerical Integration, |
---|
| 148 | ! Blaisdell Publishing, 1967. |
---|
| 149 | ! |
---|
| 150 | ! P E Hennion, |
---|
| 151 | ! Algorithm 77, |
---|
| 152 | ! Interpolation, Differentiation and Integration, |
---|
| 153 | ! Communications of the Association for Computing Machinery, |
---|
| 154 | ! Volume 5, page 96, 1962. |
---|
| 155 | ! |
---|
| 156 | ! Parameters: |
---|
| 157 | ! |
---|
| 158 | ! Input, real ( kind = 8 ) FTAB(NTAB), the function values, |
---|
| 159 | ! FTAB(I) = F(XTAB(I)). |
---|
| 160 | ! |
---|
| 161 | ! Input, real ( kind = 8 ) XTAB(NTAB), the abscissas at which the |
---|
| 162 | ! function values are given. The XTAB's must be distinct |
---|
| 163 | ! and in ascending order. |
---|
| 164 | ! |
---|
| 165 | ! Input, integer NTAB, the number of entries in FTAB and |
---|
| 166 | ! XTAB. NTAB must be at least 3. |
---|
| 167 | ! |
---|
| 168 | ! Input, real ( kind = 8 ) A, the lower limit of integration. A should |
---|
| 169 | ! be, but need not be, near one endpoint of the interval |
---|
| 170 | ! (X(1), X(NTAB)). |
---|
| 171 | ! |
---|
| 172 | ! Input, real ( kind = 8 ) B, the upper limit of integration. B should |
---|
| 173 | ! be, but need not be, near one endpoint of the interval |
---|
| 174 | ! (X(1), X(NTAB)). |
---|
| 175 | ! |
---|
| 176 | ! Output, real ( kind = 8 ) RESULT, the approximate value of the integral. |
---|
| 177 | ! ########################################################################## |
---|
| 178 | |
---|
| 179 | ! INPUTS |
---|
| 180 | integer,intent(in) :: & |
---|
| 181 | ntab ! Number of elements of [ftab] and [xtab] |
---|
| 182 | real(wp),intent(in) :: & |
---|
| 183 | a_in, & ! Lower limit of integration |
---|
| 184 | b_in ! Upper limit of integration |
---|
| 185 | real(wp),intent(in),dimension(ntab) :: & |
---|
| 186 | ftab, & ! Functional values |
---|
| 187 | xtab ! Abscissa value |
---|
| 188 | |
---|
| 189 | ! OUTPUTS |
---|
| 190 | real(wp),intent(out) :: result ! Approximate value of integral |
---|
| 191 | |
---|
| 192 | ! Internal varaibles |
---|
| 193 | real(wp) :: a, atemp, b, btemp,ca,cb,cc,ctemp,sum1,syl,term1,term2,term3,x1,x2,x3 |
---|
| 194 | integer :: i,ihi,ilo,ind |
---|
| 195 | logical :: lerror |
---|
| 196 | |
---|
| 197 | lerror = .false. |
---|
| 198 | a = a_in |
---|
| 199 | b = b_in |
---|
| 200 | |
---|
| 201 | if ( ntab < 3 ) then |
---|
| 202 | call errorMessage('FATAL ERROR(optics/math_lib.f90:AVINT): Ntab is less than 3.') |
---|
| 203 | return |
---|
| 204 | end if |
---|
| 205 | |
---|
| 206 | do i = 2, ntab |
---|
| 207 | if ( xtab(i) <= xtab(i-1) ) then |
---|
| 208 | lerror = .true. |
---|
| 209 | exit |
---|
| 210 | end if |
---|
| 211 | end do |
---|
| 212 | |
---|
| 213 | if (lerror) then |
---|
| 214 | call errorMessage('FATAL ERROR(optics/math_lib.f90:AVINT): Xtab(i) is not greater than Xtab(i-1).') |
---|
| 215 | return |
---|
| 216 | end if |
---|
| 217 | |
---|
| 218 | !ds result = 0.0D+00 |
---|
| 219 | result = 0._wp |
---|
| 220 | |
---|
| 221 | if ( a == b ) then |
---|
| 222 | call errorMessage('WARNING(optics/math_lib.f90:AVINT): A=B => integral=0') |
---|
| 223 | return |
---|
| 224 | end if |
---|
| 225 | |
---|
| 226 | ! If B < A, temporarily switch A and B, and store sign. |
---|
| 227 | if ( b < a ) then |
---|
| 228 | syl = b |
---|
| 229 | b = a |
---|
| 230 | a = syl |
---|
| 231 | ind = -1 |
---|
| 232 | else |
---|
| 233 | syl = a |
---|
| 234 | ind = 1 |
---|
| 235 | end if |
---|
| 236 | |
---|
| 237 | ! Bracket A and B between XTAB(ILO) and XTAB(IHI). |
---|
| 238 | ilo = 1 |
---|
| 239 | ihi = ntab |
---|
| 240 | |
---|
| 241 | do i = 1, ntab |
---|
| 242 | if ( a <= xtab(i) ) then |
---|
| 243 | exit |
---|
| 244 | end if |
---|
| 245 | ilo = ilo + 1 |
---|
| 246 | end do |
---|
| 247 | |
---|
| 248 | ilo = max ( 2, ilo ) |
---|
| 249 | ilo = min ( ilo, ntab - 1 ) |
---|
| 250 | |
---|
| 251 | do i = 1, ntab |
---|
| 252 | if ( xtab(i) <= b ) then |
---|
| 253 | exit |
---|
| 254 | end if |
---|
| 255 | ihi = ihi - 1 |
---|
| 256 | end do |
---|
| 257 | |
---|
| 258 | ihi = min ( ihi, ntab - 1 ) |
---|
| 259 | ihi = max ( ilo, ihi - 1 ) |
---|
| 260 | |
---|
| 261 | ! Carry out approximate integration from XTAB(ILO) to XTAB(IHI). |
---|
| 262 | sum1 = 0._wp |
---|
| 263 | !ds sum1 = 0.0D+00 |
---|
| 264 | |
---|
| 265 | do i = ilo, ihi |
---|
| 266 | |
---|
| 267 | x1 = xtab(i-1) |
---|
| 268 | x2 = xtab(i) |
---|
| 269 | x3 = xtab(i+1) |
---|
| 270 | |
---|
| 271 | term1 = ftab(i-1) / ( ( x1 - x2 ) * ( x1 - x3 ) ) |
---|
| 272 | term2 = ftab(i) / ( ( x2 - x1 ) * ( x2 - x3 ) ) |
---|
| 273 | term3 = ftab(i+1) / ( ( x3 - x1 ) * ( x3 - x2 ) ) |
---|
| 274 | |
---|
| 275 | atemp = term1 + term2 + term3 |
---|
| 276 | |
---|
| 277 | btemp = - ( x2 + x3 ) * term1 & |
---|
| 278 | - ( x1 + x3 ) * term2 & |
---|
| 279 | - ( x1 + x2 ) * term3 |
---|
| 280 | |
---|
| 281 | ctemp = x2 * x3 * term1 + x1 * x3 * term2 + x1 * x2 * term3 |
---|
| 282 | |
---|
| 283 | if ( i <= ilo ) then |
---|
| 284 | ca = atemp |
---|
| 285 | cb = btemp |
---|
| 286 | cc = ctemp |
---|
| 287 | else |
---|
| 288 | ca = 0.5_wp * ( atemp + ca ) |
---|
| 289 | cb = 0.5_wp * ( btemp + cb ) |
---|
| 290 | cc = 0.5_wp * ( ctemp + cc ) |
---|
| 291 | !ds ca = 0.5D+00 * ( atemp + ca ) |
---|
| 292 | !ds cb = 0.5D+00 * ( btemp + cb ) |
---|
| 293 | !ds cc = 0.5D+00 * ( ctemp + cc ) |
---|
| 294 | end if |
---|
| 295 | |
---|
| 296 | sum1 = sum1 + ca * ( x2**3 - syl**3 ) / 3._wp & |
---|
| 297 | + cb * 0.5_wp * ( x2**2 - syl**2 ) + cc * ( x2 - syl ) |
---|
| 298 | !ds sum1 = sum1 + ca * ( x2**3 - syl**3 ) / 3.0D+00 & |
---|
| 299 | !ds + cb * 0.5D+00 * ( x2**2 - syl**2 ) + cc * ( x2 - syl ) |
---|
| 300 | |
---|
| 301 | ca = atemp |
---|
| 302 | cb = btemp |
---|
| 303 | cc = ctemp |
---|
| 304 | |
---|
| 305 | syl = x2 |
---|
| 306 | |
---|
| 307 | end do |
---|
| 308 | |
---|
| 309 | result = sum1 + ca * ( b**3 - syl**3 ) / 3._wp & |
---|
| 310 | + cb * 0.5_wp * ( b**2 - syl**2 ) + cc * ( b - syl ) |
---|
| 311 | !ds result = sum1 + ca * ( b**3 - syl**3 ) / 3.0D+00 & |
---|
| 312 | !ds + cb * 0.5D+00 * ( b**2 - syl**2 ) + cc * ( b - syl ) |
---|
| 313 | |
---|
| 314 | ! Restore original values of A and B, reverse sign of integral |
---|
| 315 | ! because of earlier switch. |
---|
| 316 | if ( ind /= 1 ) then |
---|
| 317 | ind = 1 |
---|
| 318 | syl = b |
---|
| 319 | b = a |
---|
| 320 | a = syl |
---|
| 321 | result = -result |
---|
| 322 | end if |
---|
| 323 | |
---|
| 324 | return |
---|
| 325 | end subroutine avint |
---|
| 326 | ! ###################################################################################### |
---|
| 327 | ! SUBROUTINE gamma |
---|
| 328 | ! Purpose: |
---|
| 329 | ! Returns the gamma function |
---|
| 330 | ! |
---|
| 331 | ! Input: |
---|
| 332 | ! [x] value to compute gamma function of |
---|
| 333 | ! |
---|
| 334 | ! Returns: |
---|
| 335 | ! gamma(x) |
---|
| 336 | ! |
---|
| 337 | ! Coded: |
---|
| 338 | ! 02/02/06 John Haynes (haynes@atmos.colostate.edu) |
---|
| 339 | ! (original code of unknown origin) |
---|
| 340 | ! ###################################################################################### |
---|
| 341 | function gamma(x) |
---|
| 342 | ! Inputs |
---|
| 343 | real(wp), intent(in) :: x |
---|
| 344 | |
---|
| 345 | ! Outputs |
---|
| 346 | real(wp) :: gamma |
---|
| 347 | |
---|
| 348 | ! Local variables |
---|
| 349 | real(wp) :: pi,ga,z,r,gr |
---|
| 350 | integer :: k,m1,m |
---|
| 351 | |
---|
| 352 | ! Parameters |
---|
| 353 | real(wp),dimension(26),parameter :: & |
---|
| 354 | g = (/1.0,0.5772156649015329, -0.6558780715202538, -0.420026350340952e-1, & |
---|
| 355 | 0.1665386113822915,-0.421977345555443e-1,-0.96219715278770e-2, & |
---|
| 356 | 0.72189432466630e-2,-0.11651675918591e-2, -0.2152416741149e-3, & |
---|
| 357 | 0.1280502823882e-3, -0.201348547807e-4, -0.12504934821e-5, 0.11330272320e-5, & |
---|
| 358 | -0.2056338417e-6, 0.61160950e-8,0.50020075e-8, -0.11812746e-8, 0.1043427e-9, & |
---|
| 359 | 0.77823e-11, -0.36968e-11, 0.51e-12, -0.206e-13, -0.54e-14, 0.14e-14, 0.1e-15/) |
---|
| 360 | !ds real(wp),dimension(26),parameter :: & |
---|
| 361 | !ds g = (/1.0d0,0.5772156649015329d0, -0.6558780715202538d0, -0.420026350340952d-1, & |
---|
| 362 | !ds 0.1665386113822915d0,-0.421977345555443d-1,-0.96219715278770d-2, & |
---|
| 363 | !ds 0.72189432466630d-2,-0.11651675918591d-2, -0.2152416741149d-3, & |
---|
| 364 | !ds 0.1280502823882d-3, -0.201348547807d-4, -0.12504934821d-5, 0.11330272320d-5, & |
---|
| 365 | !ds -0.2056338417d-6, 0.61160950d-8,0.50020075d-8, -0.11812746d-8, 0.1043427d-9, & |
---|
| 366 | !ds 0.77823d-11, -0.36968d-11, 0.51d-12, -0.206d-13, -0.54d-14, 0.14d-14, 0.1d-15/) |
---|
| 367 | |
---|
| 368 | pi = acos(-1._wp) |
---|
| 369 | if (x ==int(x)) then |
---|
| 370 | if (x > 0.0) then |
---|
| 371 | ga=1._wp |
---|
| 372 | m1=x-1 |
---|
| 373 | do k=2,m1 |
---|
| 374 | ga=ga*k |
---|
| 375 | enddo |
---|
| 376 | else |
---|
| 377 | ga=1._wp+300 |
---|
| 378 | endif |
---|
| 379 | else |
---|
| 380 | if (abs(x) > 1.0) then |
---|
| 381 | z=abs(x) |
---|
| 382 | m=int(z) |
---|
| 383 | r=1._wp |
---|
| 384 | do k=1,m |
---|
| 385 | r=r*(z-k) |
---|
| 386 | enddo |
---|
| 387 | z=z-m |
---|
| 388 | else |
---|
| 389 | z=x |
---|
| 390 | endif |
---|
| 391 | gr=g(26) |
---|
| 392 | do k=25,1,-1 |
---|
| 393 | gr=gr*z+g(k) |
---|
| 394 | enddo |
---|
| 395 | ga=1._wp/(gr*z) |
---|
| 396 | if (abs(x) > 1.0) then |
---|
| 397 | ga=ga*r |
---|
| 398 | if (x < 0.0) ga=-pi/(x*ga*sin(pi*x)) |
---|
| 399 | endif |
---|
| 400 | endif |
---|
| 401 | gamma = ga |
---|
| 402 | return |
---|
| 403 | end function gamma |
---|
| 404 | end module math_lib |
---|