[3491] | 1 | ! %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
---|
| 2 | ! Copyright (c) 2009, Centre National de la Recherche Scientifique |
---|
| 3 | ! All rights reserved. |
---|
| 4 | ! |
---|
| 5 | ! Redistribution and use in source and binary forms, with or without modification, are |
---|
| 6 | ! permitted provided that the following conditions are met: |
---|
| 7 | ! |
---|
| 8 | ! 1. Redistributions of source code must retain the above copyright notice, this list of |
---|
| 9 | ! conditions and the following disclaimer. |
---|
| 10 | ! |
---|
| 11 | ! 2. Redistributions in binary form must reproduce the above copyright notice, this list |
---|
| 12 | ! of conditions and the following disclaimer in the documentation and/or other |
---|
| 13 | ! materials provided with the distribution. |
---|
| 14 | ! |
---|
| 15 | ! 3. Neither the name of the copyright holder nor the names of its contributors may be |
---|
| 16 | ! used to endorse or promote products derived from this software without specific prior |
---|
| 17 | ! written permission. |
---|
| 18 | ! |
---|
| 19 | ! THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY |
---|
| 20 | ! EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF |
---|
| 21 | ! MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL |
---|
| 22 | ! THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
---|
| 23 | ! SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT |
---|
| 24 | ! OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS |
---|
| 25 | ! INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT |
---|
| 26 | ! LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
---|
| 27 | ! OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
---|
| 28 | ! |
---|
| 29 | ! History |
---|
| 30 | ! May 2007: ActSim code of M. Chiriaco and H. Chepfer rewritten by S. Bony |
---|
| 31 | ! |
---|
| 32 | ! May 2008, H. Chepfer: |
---|
| 33 | ! - Units of pressure inputs: Pa |
---|
| 34 | ! - Non Spherical particles : LS Ice NS coefficients, CONV Ice NS coefficients |
---|
| 35 | ! - New input: ice_type (0=ice-spheres ; 1=ice-non-spherical) |
---|
| 36 | ! |
---|
| 37 | ! June 2008, A. Bodas-Salcedo: |
---|
| 38 | ! - Ported to Fortran 90 and optimisation changes |
---|
| 39 | ! |
---|
| 40 | ! August 2008, J-L Dufresne: |
---|
| 41 | ! - Optimisation changes (sum instructions suppressed) |
---|
| 42 | ! |
---|
| 43 | ! October 2008, S. Bony, H. Chepfer and J-L. Dufresne : |
---|
| 44 | ! - Interface with COSP v2.0: |
---|
| 45 | ! cloud fraction removed from inputs |
---|
| 46 | ! in-cloud condensed water now in input (instead of grid-averaged value) |
---|
| 47 | ! depolarisation diagnostic removed |
---|
| 48 | ! parasol (polder) reflectances (for 5 different solar zenith angles) added |
---|
| 49 | ! |
---|
| 50 | ! December 2008, S. Bony, H. Chepfer and J-L. Dufresne : |
---|
| 51 | ! - Modification of the integration of the lidar equation. |
---|
| 52 | ! - change the cloud detection threshold |
---|
| 53 | ! |
---|
| 54 | ! April 2008, A. Bodas-Salcedo: |
---|
| 55 | ! - Bug fix in computation of pmol and pnorm of upper layer |
---|
| 56 | ! |
---|
| 57 | ! April 2008, J-L. Dufresne |
---|
| 58 | ! - Bug fix in computation of pmol and pnorm, thanks to Masaki Satoh: a factor 2 |
---|
| 59 | ! was missing. This affects the ATB values but not the cloud fraction. |
---|
| 60 | ! |
---|
| 61 | ! January 2013, G. Cesana and H. Chepfer: |
---|
| 62 | ! - Add the perpendicular component of the backscattered signal (pnorm_perp_tot) in the arguments |
---|
| 63 | ! - Add the temperature for each levels (temp) in the arguments |
---|
| 64 | ! - Add the computation of the perpendicular component of the backscattered lidar signal |
---|
| 65 | ! Reference: Cesana G. and H. Chepfer (2013): Evaluation of the cloud water phase |
---|
| 66 | ! in a climate model using CALIPSO-GOCCP, J. Geophys. Res., doi: 10.1002/jgrd.50376 |
---|
| 67 | ! |
---|
| 68 | ! May 2015 - D. Swales - Modified for COSPv2.0 |
---|
| 69 | ! |
---|
| 70 | ! Mar 2018 - R. Guzman - Added OPAQ subroutines |
---|
| 71 | ! References OPAQ: |
---|
| 72 | ! |
---|
| 73 | ! Guzman et al. (2017): Direct atmosphere opacity observations from CALIPSO provide |
---|
| 74 | ! new constraints on cloud-radiation interactions. JGR-Atmospheres, DOI: 10.1002/2016JD025946 |
---|
| 75 | ! Vaillant de Guelis et al. (2017a): The link between outgoing longwave radiation and |
---|
| 76 | ! the altitude at which a spaceborne lidar beam is fully attenuated. AMT, 10, 4659-4685, |
---|
| 77 | ! https://doi.org/10.5194/amt-10-4659-2017 |
---|
| 78 | ! |
---|
| 79 | ! %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
---|
| 80 | module mod_lidar_simulator |
---|
| 81 | USE COSP_KINDS, ONLY: wp |
---|
| 82 | USE MOD_COSP_CONFIG, ONLY: SR_BINS,S_CLD,S_ATT,S_CLD_ATT,R_UNDEF,calipso_histBsct, & |
---|
| 83 | use_vgrid,vgrid_zl,vgrid_zu,vgrid_z,atlid_histBsct, & |
---|
| 84 | grLidar532_histBsct,S_CLD_ATLID,S_ATT_ATLID,S_CLD_ATT_ATLID |
---|
| 85 | USE MOD_COSP_STATS, ONLY: COSP_CHANGE_VERTICAL_GRID,hist1d |
---|
| 86 | implicit none |
---|
| 87 | |
---|
| 88 | ! Polynomial coefficients (Alpha, Beta, Gamma) which allow to compute the |
---|
| 89 | ! ATBperpendicular as a function of the ATB for ice or liquid cloud particles |
---|
| 90 | ! derived from CALIPSO-GOCCP observations at 120m vertical grid |
---|
| 91 | ! (Cesana and Chepfer, JGR, 2013). |
---|
| 92 | ! |
---|
| 93 | ! Relationship between ATBice and ATBperp,ice for ice particles: |
---|
| 94 | ! ATBperp,ice = Alpha*ATBice |
---|
| 95 | ! Relationship between ATBice and ATBperp,ice for liquid particles: |
---|
| 96 | ! ATBperp,ice = Beta*ATBice^2 + Gamma*ATBice |
---|
| 97 | real(wp) :: & |
---|
| 98 | alpha,beta,gamma |
---|
| 99 | |
---|
| 100 | contains |
---|
| 101 | ! ###################################################################################### |
---|
| 102 | ! SUBROUTINE lidar_subcolumn |
---|
| 103 | ! Inputs with a vertical dimensions (nlev) should ordered in along the vertical |
---|
| 104 | ! dimension from TOA-2-SFC, for example: varIN(nlev) is varIN @ SFC. |
---|
| 105 | ! ###################################################################################### |
---|
| 106 | subroutine lidar_subcolumn(npoints, ncolumns, nlev, lground, beta_mol, tau_mol, & |
---|
| 107 | betatot, tautot, pmol, pnorm, betatot_ice, tautot_ice, betatot_liq, tautot_liq, & |
---|
| 108 | pnorm_perp_tot) |
---|
| 109 | |
---|
| 110 | ! INPUTS |
---|
| 111 | INTEGER,intent(in) :: & |
---|
| 112 | npoints, & ! Number of gridpoints |
---|
| 113 | ncolumns, & ! Number of subcolumns |
---|
| 114 | nlev ! Number of levels |
---|
| 115 | logical,intent(in) :: & |
---|
| 116 | lground ! True for ground-based lidar simulator |
---|
| 117 | REAL(WP),intent(in),dimension(npoints,nlev) :: & |
---|
| 118 | beta_mol, & ! Molecular backscatter coefficient |
---|
| 119 | tau_mol ! Molecular optical depth |
---|
| 120 | REAL(WP),intent(in),dimension(npoints,ncolumns,nlev) :: & |
---|
| 121 | betatot, & ! |
---|
| 122 | tautot ! Optical thickess integrated from top |
---|
| 123 | ! Optional Inputs |
---|
| 124 | REAL(WP),intent(in),dimension(npoints,ncolumns,nlev),optional :: & |
---|
| 125 | betatot_ice, & ! Backscatter coefficient for ice particles |
---|
| 126 | betatot_liq, & ! Backscatter coefficient for liquid particles |
---|
| 127 | tautot_ice, & ! Total optical thickness of ice |
---|
| 128 | tautot_liq ! Total optical thickness of liq |
---|
| 129 | |
---|
| 130 | ! OUTPUTS |
---|
| 131 | REAL(WP),intent(out),dimension(npoints,nlev) :: & |
---|
| 132 | pmol ! Molecular attenuated backscatter lidar signal power(m^-1.sr^-1) |
---|
| 133 | REAL(WP),intent(out),dimension(npoints,ncolumns,nlev) :: & |
---|
| 134 | pnorm ! Molecular backscatter signal power (m^-1.sr^-1) |
---|
| 135 | ! Optional outputs |
---|
| 136 | REAL(WP),intent(out),dimension(npoints,ncolumns,nlev),optional :: & |
---|
| 137 | pnorm_perp_tot ! Perpendicular lidar backscattered signal power |
---|
| 138 | |
---|
| 139 | ! LOCAL VARIABLES |
---|
| 140 | INTEGER :: k,icol,zi,zf,zinc |
---|
| 141 | logical :: lphaseoptics |
---|
| 142 | REAL(WP),dimension(npoints) :: & |
---|
| 143 | tautot_lay ! |
---|
| 144 | REAL(WP),dimension(npoints,ncolumns,nlev) :: & |
---|
| 145 | pnorm_liq, & ! Lidar backscattered signal power for liquid |
---|
| 146 | pnorm_ice, & ! Lidar backscattered signal power for ice |
---|
| 147 | pnorm_perp_ice, & ! Perpendicular lidar backscattered signal power for ice |
---|
| 148 | pnorm_perp_liq, & ! Perpendicular lidar backscattered signal power for liq |
---|
| 149 | beta_perp_ice, & ! Perpendicular backscatter coefficient for ice |
---|
| 150 | beta_perp_liq ! Perpendicular backscatter coefficient for liquid |
---|
| 151 | |
---|
| 152 | ! Phase optics? |
---|
| 153 | lphaseoptics=.false. |
---|
| 154 | if (present(betatot_ice) .and. present(betatot_liq) .and. present(tautot_liq) .and. & |
---|
| 155 | present(tautot_ice)) lphaseoptics=.true. |
---|
| 156 | |
---|
| 157 | ! Is this lidar spaceborne (default) or ground-based? |
---|
| 158 | if (lground) then |
---|
| 159 | zi = nlev |
---|
| 160 | zf = 1 |
---|
| 161 | zinc = -1 |
---|
| 162 | else |
---|
| 163 | zi = 1 |
---|
| 164 | zf = nlev |
---|
| 165 | zinc = 1 |
---|
| 166 | endif |
---|
| 167 | |
---|
| 168 | ! #################################################################################### |
---|
| 169 | ! *) Molecular signal |
---|
| 170 | ! #################################################################################### |
---|
| 171 | call cmp_backsignal(nlev,npoints,beta_mol(1:npoints,zi:zf:zinc),& |
---|
| 172 | tau_mol(1:npoints,zi:zf:zinc),pmol(1:npoints,zi:zf:zinc)) |
---|
| 173 | |
---|
| 174 | ! #################################################################################### |
---|
| 175 | ! PLANE PARRALLEL FIELDS |
---|
| 176 | ! #################################################################################### |
---|
| 177 | do icol=1,ncolumns |
---|
| 178 | ! ################################################################################# |
---|
| 179 | ! *) Total Backscatter signal |
---|
| 180 | ! ################################################################################# |
---|
| 181 | call cmp_backsignal(nlev,npoints,betatot(1:npoints,icol,zi:zf:zinc),& |
---|
| 182 | tautot(1:npoints,icol,zi:zf:zinc),pnorm(1:npoints,icol,zi:zf:zinc)) |
---|
| 183 | |
---|
| 184 | ! ################################################################################# |
---|
| 185 | ! *) Ice/Liq Backscatter signal |
---|
| 186 | ! ################################################################################# |
---|
| 187 | if (lphaseoptics) then |
---|
| 188 | ! Computation of the ice and liquid lidar backscattered signal (ATBice and ATBliq) |
---|
| 189 | ! Ice only |
---|
| 190 | call cmp_backsignal(nlev,npoints,betatot_ice(1:npoints,icol,zi:zf:zinc),& |
---|
| 191 | tautot_ice(1:npoints,icol,zi:zf:zinc), pnorm_ice(1:npoints,icol,zi:zf:zinc)) |
---|
| 192 | ! Liquid only |
---|
| 193 | call cmp_backsignal(nlev,npoints,betatot_liq(1:npoints,icol,zi:zf:zinc),& |
---|
| 194 | tautot_liq(1:npoints,icol,zi:zf:zinc), pnorm_liq(1:npoints,icol,zi:zf:zinc)) |
---|
| 195 | endif |
---|
| 196 | enddo |
---|
| 197 | |
---|
| 198 | ! #################################################################################### |
---|
| 199 | ! PERDENDICULAR FIELDS (Only needed if distinguishing by phase (ice/liquid)) |
---|
| 200 | ! #################################################################################### |
---|
| 201 | if (lphaseoptics) then |
---|
| 202 | do icol=1,ncolumns |
---|
| 203 | ! ################################################################################# |
---|
| 204 | ! *) Ice/Liq Perpendicular Backscatter signal |
---|
| 205 | ! ################################################################################# |
---|
| 206 | ! Computation of ATBperp,ice/liq from ATBice/liq including the multiple scattering |
---|
| 207 | ! contribution (Cesana and Chepfer 2013, JGR) |
---|
| 208 | do k=1,nlev |
---|
| 209 | ! Ice particles |
---|
| 210 | pnorm_perp_ice(1:npoints,icol,k) = Alpha * pnorm_ice(1:npoints,icol,k) |
---|
| 211 | |
---|
| 212 | ! Liquid particles |
---|
| 213 | pnorm_perp_liq(1:npoints,icol,k) = 1000._wp*Beta*pnorm_liq(1:npoints,icol,k)**2+& |
---|
| 214 | Gamma*pnorm_liq(1:npoints,icol,k) |
---|
| 215 | enddo |
---|
| 216 | |
---|
| 217 | ! ################################################################################# |
---|
| 218 | ! *) Computation of beta_perp_ice/liq using the lidar equation |
---|
| 219 | ! ################################################################################# |
---|
| 220 | ! Ice only |
---|
| 221 | call cmp_beta(nlev,npoints,pnorm_perp_ice(1:npoints,icol,zi:zf:zinc),& |
---|
| 222 | tautot_ice(1:npoints,icol,zi:zf:zinc),beta_perp_ice(1:npoints,icol,zi:zf:zinc)) |
---|
| 223 | |
---|
| 224 | ! Liquid only |
---|
| 225 | call cmp_beta(nlev,npoints,pnorm_perp_liq(1:npoints,icol,zi:zf:zinc),& |
---|
| 226 | tautot_liq(1:npoints,icol,zi:zf:zinc),beta_perp_liq(1:npoints,icol,zi:zf:zinc)) |
---|
| 227 | |
---|
| 228 | ! ################################################################################# |
---|
| 229 | ! *) Perpendicular Backscatter signal |
---|
| 230 | ! ################################################################################# |
---|
| 231 | ! Computation of the total perpendicular lidar signal (ATBperp for liq+ice) |
---|
| 232 | ! Upper layer |
---|
| 233 | WHERE(tautot(1:npoints,icol,1) .gt. 0) |
---|
| 234 | pnorm_perp_tot(1:npoints,icol,1) = (beta_perp_ice(1:npoints,icol,1)+ & |
---|
| 235 | beta_perp_liq(1:npoints,icol,1)- & |
---|
| 236 | (beta_mol(1:npoints,1)/(1._wp+1._wp/0.0284_wp))) / & |
---|
| 237 | (2._wp*tautot(1:npoints,icol,1))* & |
---|
| 238 | (1._wp-exp(-2._wp*tautot(1:npoints,icol,1))) |
---|
| 239 | ELSEWHERE |
---|
| 240 | pnorm_perp_tot(1:npoints,icol,1) = 0._wp |
---|
| 241 | ENDWHERE |
---|
| 242 | |
---|
| 243 | ! Other layers |
---|
| 244 | do k=2,nlev |
---|
| 245 | ! Optical thickness of layer k |
---|
| 246 | tautot_lay(1:npoints) = tautot(1:npoints,icol,k)-tautot(1:npoints,icol,k-1) |
---|
| 247 | |
---|
| 248 | ! The perpendicular component of the molecular backscattered signal (Betaperp) |
---|
| 249 | ! has been taken into account two times (once for liquid and once for ice). |
---|
| 250 | ! We remove one contribution using |
---|
| 251 | ! Betaperp=beta_mol(:,k)/(1+1/0.0284)) [bodhaine et al. 1999] in the following |
---|
| 252 | ! equations: |
---|
| 253 | WHERE (pnorm(1:npoints,icol,k) .eq. 0) |
---|
| 254 | pnorm_perp_tot(1:npoints,icol,k)=0._wp |
---|
| 255 | ELSEWHERE |
---|
| 256 | where(tautot_lay(1:npoints) .gt. 0.) |
---|
| 257 | pnorm_perp_tot(1:npoints,icol,k) = (beta_perp_ice(1:npoints,icol,k)+ & |
---|
| 258 | beta_perp_liq(1:npoints,icol,k)-(beta_mol(1:npoints,k)/(1._wp+1._wp/ & |
---|
| 259 | 0.0284_wp)))*EXP(-2._wp*tautot(1:npoints,icol,k-1))/ & |
---|
| 260 | (2._wp*tautot_lay(1:npoints))* (1._wp-EXP(-2._wp*tautot_lay(1:npoints))) |
---|
| 261 | elsewhere |
---|
| 262 | pnorm_perp_tot(1:npoints,icol,k) = (beta_perp_ice(1:npoints,icol,k)+ & |
---|
| 263 | beta_perp_liq(1:npoints,icol,k)-(beta_mol(1:npoints,k)/(1._wp+1._wp/ & |
---|
| 264 | 0.0284_wp)))*EXP(-2._wp*tautot(1:npoints,icol,k-1)) |
---|
| 265 | endwhere |
---|
| 266 | ENDWHERE |
---|
| 267 | END DO |
---|
| 268 | enddo |
---|
| 269 | end if |
---|
| 270 | end subroutine lidar_subcolumn |
---|
| 271 | |
---|
| 272 | ! ###################################################################################### |
---|
| 273 | ! SUBROUTINE lidar_column |
---|
| 274 | ! ###################################################################################### |
---|
| 275 | subroutine lidar_column(npoints, ncol, nlevels, llm, max_bin, ntype, platform, pnorm, pmol, & |
---|
| 276 | pplay, zlev, zlev_half, vgrid_z, ok_lidar_cfad, ncat, cfad2, lidarcld, cldlayer, & |
---|
| 277 | ! Optional stuff below |
---|
| 278 | tmp, pnorm_perp, surfelev, lidarcldphase, lidarcldtype, cldtype, cldtypetemp, & |
---|
| 279 | cldtypemeanz, cldtypemeanzse, cldthinemis, cldlayerphase, lidarcldtmp) |
---|
| 280 | |
---|
| 281 | integer,parameter :: & |
---|
| 282 | nphase = 6 ! Number of cloud layer phase types |
---|
| 283 | |
---|
| 284 | ! Inputs |
---|
| 285 | integer,intent(in) :: & |
---|
| 286 | npoints, & ! Number of horizontal grid points |
---|
| 287 | ncol, & ! Number of subcolumns |
---|
| 288 | nlevels, & ! Number of vertical layers (OLD grid) |
---|
| 289 | llm, & ! Number of vertical layers (NEW grid) |
---|
| 290 | max_bin, & ! Number of bins for SR CFADs |
---|
| 291 | ncat, & ! Number of cloud layer types (low,mid,high,total) |
---|
| 292 | ntype ! Number of OPAQ products (opaque/thin cloud + z_opaque) |
---|
| 293 | character(len=*),intent(in) :: & |
---|
| 294 | platform ! Name of platform (e.g. calipso,atlid,grLidar532) |
---|
| 295 | real(wp),intent(in),dimension(npoints,ncol,Nlevels) :: & |
---|
| 296 | pnorm ! Lidar ATB |
---|
| 297 | real(wp),intent(in),dimension(npoints,Nlevels) :: & |
---|
| 298 | pmol, & ! Molecular ATB |
---|
| 299 | pplay ! Pressure on model levels (Pa) |
---|
| 300 | logical,intent(in) :: & |
---|
| 301 | ok_lidar_cfad ! True if lidar CFAD diagnostics need to be computed |
---|
| 302 | real(wp),intent(in),dimension(npoints,nlevels) :: & |
---|
| 303 | zlev ! Model full levels |
---|
| 304 | real(wp),intent(in),dimension(npoints,nlevels+1) :: & |
---|
| 305 | zlev_half ! Model half levels |
---|
| 306 | real(wp),intent(in),dimension(llm) :: & |
---|
| 307 | vgrid_z ! mid-level altitude of the output vertical grid |
---|
| 308 | ! Optional Inputs |
---|
| 309 | real(wp),intent(in),dimension(npoints,ncol,Nlevels),optional :: & |
---|
| 310 | pnorm_perp ! Lidar perpendicular ATB |
---|
| 311 | real(wp),intent(in),dimension(npoints),optional :: & |
---|
| 312 | surfelev ! Surface Elevation (m) |
---|
| 313 | real(wp),intent(in),dimension(npoints,Nlevels),optional :: & |
---|
| 314 | tmp ! Temperature at each levels |
---|
| 315 | |
---|
| 316 | ! Outputs |
---|
| 317 | real(wp),intent(inout),dimension(npoints,llm) :: & |
---|
| 318 | lidarcld ! 3D "lidar" cloud fraction |
---|
| 319 | real(wp),intent(inout),dimension(npoints,ncat) :: & |
---|
| 320 | cldlayer ! "lidar" cloud layer fraction (low, mid, high, total) |
---|
| 321 | real(wp),intent(inout),dimension(npoints,max_bin,llm) :: & |
---|
| 322 | cfad2 ! CFADs of SR |
---|
| 323 | ! Optional Outputs |
---|
| 324 | real(wp),intent(out),dimension(npoints,ntype),optional :: & |
---|
| 325 | cldtype, & ! "lidar" OPAQ type covers (opaque/thin cloud + z_opaque) |
---|
| 326 | cldtypetemp ! Opaque and thin clouds + z_opaque temperature |
---|
| 327 | real(wp),intent(out),dimension(npoints,2),optional :: & |
---|
| 328 | cldtypemeanz ! Opaque and thin clouds altitude |
---|
| 329 | real(wp),intent(out),dimension(npoints,3),optional :: & |
---|
| 330 | cldtypemeanzse ! Opaque, thin clouds and z_opaque altitude with respect to SE |
---|
| 331 | real(wp),intent(out),dimension(npoints),optional :: & |
---|
| 332 | cldthinemis ! Thin clouds emissivity computed from SR |
---|
| 333 | real(wp),intent(out),dimension(npoints,llm,nphase),optional :: & |
---|
| 334 | lidarcldphase ! 3D "lidar" phase cloud fraction |
---|
| 335 | real(wp),intent(out),dimension(npoints,llm,ntype+1),optional :: & |
---|
| 336 | lidarcldtype ! 3D "lidar" OPAQ type fraction |
---|
| 337 | real(wp),intent(out),dimension(npoints,40,5),optional :: & |
---|
| 338 | lidarcldtmp ! 3D "lidar" phase cloud fraction as a function of temp |
---|
| 339 | real(wp),intent(out),dimension(npoints,ncat,nphase),optional :: & |
---|
| 340 | cldlayerphase ! "lidar" phase low mid high cloud fraction |
---|
| 341 | |
---|
| 342 | ! Local Variables |
---|
| 343 | integer :: ic,i,j |
---|
| 344 | logical :: lcalipso,latlid,lgrlidar532 |
---|
| 345 | real(wp),dimension(npoints,ncol,llm) :: & |
---|
| 346 | x3d |
---|
| 347 | real(wp),dimension(npoints,llm) :: & |
---|
| 348 | x3d_c,pnorm_c |
---|
| 349 | real(wp) :: & |
---|
| 350 | xmax |
---|
| 351 | real(wp),dimension(npoints,1,Nlevels) :: t_in,ph_in,betamol_in |
---|
| 352 | real(wp),dimension(npoints,ncol,llm) :: pnormFlip,pnorm_perpFlip |
---|
| 353 | real(wp),dimension(npoints,1,llm) :: tmpFlip,pplayFlip,betamolFlip |
---|
| 354 | real(wp),dimension(SR_BINS+1) :: histBsct |
---|
| 355 | |
---|
| 356 | ! Which lidar platform? |
---|
| 357 | lcalipso = .false. |
---|
| 358 | latlid = .false. |
---|
| 359 | lgrlidar532 = .false. |
---|
| 360 | if (platform .eq. 'calipso') lcalipso=.true. |
---|
| 361 | if (platform .eq. 'atlid') latlid=.true. |
---|
| 362 | if (platform .eq. 'grlidar532') lgrlidar532=.true. |
---|
| 363 | |
---|
| 364 | ! Vertically regrid input data |
---|
| 365 | if (use_vgrid) then |
---|
| 366 | ph_in(:,1,:) = pplay(:,nlevels:1:-1) |
---|
| 367 | call cosp_change_vertical_grid(Npoints,1,Nlevels,zlev(:,nlevels:1:-1),zlev_half(:,nlevels:1:-1),& |
---|
| 368 | ph_in,llm,vgrid_zl(llm:1:-1),vgrid_zu(llm:1:-1),pplayFlip(:,1,llm:1:-1)) |
---|
| 369 | betamol_in(:,1,:) = pmol(:,nlevels:1:-1) |
---|
| 370 | call cosp_change_vertical_grid(Npoints,1,Nlevels,zlev(:,nlevels:1:-1),zlev_half(:,nlevels:1:-1),& |
---|
| 371 | betamol_in,llm,vgrid_zl(llm:1:-1),vgrid_zu(llm:1:-1),betamolFlip(:,1,llm:1:-1)) |
---|
| 372 | call cosp_change_vertical_grid(Npoints,Ncol,Nlevels,zlev(:,nlevels:1:-1),zlev_half(:,nlevels:1:-1),& |
---|
| 373 | pnorm(:,:,nlevels:1:-1),llm,vgrid_zl(llm:1:-1),vgrid_zu(llm:1:-1),pnormFlip(:,:,llm:1:-1)) |
---|
| 374 | if (lcalipso) then |
---|
| 375 | t_in(:,1,:)=tmp(:,nlevels:1:-1) |
---|
| 376 | call cosp_change_vertical_grid(Npoints,1,Nlevels,zlev(:,nlevels:1:-1),zlev_half(:,nlevels:1:-1),& |
---|
| 377 | t_in,llm,vgrid_zl(llm:1:-1),vgrid_zu(llm:1:-1),tmpFlip(:,1,llm:1:-1)) |
---|
| 378 | call cosp_change_vertical_grid(Npoints,Ncol,Nlevels,zlev(:,nlevels:1:-1),zlev_half(:,nlevels:1:-1),& |
---|
| 379 | pnorm_perp(:,:,nlevels:1:-1),llm,vgrid_zl(llm:1:-1),vgrid_zu(llm:1:-1),pnorm_perpFlip(:,:,llm:1:-1)) |
---|
| 380 | endif |
---|
| 381 | endif |
---|
| 382 | |
---|
| 383 | ! Initialization (The histogram bins, are set up during initialization and the |
---|
| 384 | ! maximum value is used as the upper bounds.) |
---|
| 385 | if (lcalipso) then |
---|
| 386 | xmax = maxval(calipso_histBsct) |
---|
| 387 | histBsct = calipso_histBsct |
---|
| 388 | endif |
---|
| 389 | if (latlid) then |
---|
| 390 | xmax = maxval(atlid_histBsct) |
---|
| 391 | histBsct = atlid_histBsct |
---|
| 392 | endif |
---|
| 393 | if (lgrlidar532) then |
---|
| 394 | xmax = maxval(grLidar532_histBsct) |
---|
| 395 | histBsct = grLidar532_histBsct |
---|
| 396 | endif |
---|
| 397 | |
---|
| 398 | ! Compute LIDAR scattering ratio |
---|
| 399 | if (use_vgrid) then |
---|
| 400 | do ic = 1, ncol |
---|
| 401 | pnorm_c = pnormFlip(:,ic,:) |
---|
| 402 | where ((pnorm_c .lt. xmax) .and. (betamolFlip(:,1,:) .lt. xmax) .and. & |
---|
| 403 | (betamolFlip(:,1,:) .gt. 0.0 )) |
---|
| 404 | x3d_c = pnorm_c/betamolFlip(:,1,:) |
---|
| 405 | elsewhere |
---|
| 406 | x3d_c = R_UNDEF |
---|
| 407 | end where |
---|
| 408 | x3d(:,ic,:) = x3d_c |
---|
| 409 | enddo |
---|
| 410 | if (lcalipso) then |
---|
| 411 | ! Diagnose cloud fractions for subcolumn lidar scattering ratios |
---|
| 412 | CALL COSP_CLDFRAC(npoints,ncol,llm,ncat,nphase,tmpFlip,x3d,pnormFlip,pnorm_perpFlip,& |
---|
| 413 | pplayFlip,S_att,S_cld,S_cld_att,R_UNDEF,lidarcld,cldlayer,lidarcldphase,& |
---|
| 414 | cldlayerphase,lidarcldtmp) |
---|
| 415 | |
---|
| 416 | ! Calipso opaque cloud diagnostics |
---|
| 417 | CALL COSP_OPAQ(npoints,ncol,llm,ntype,tmpFlip,x3d,S_att,S_cld,R_UNDEF,lidarcldtype, & |
---|
| 418 | cldtype,cldtypetemp,cldtypemeanz,cldtypemeanzse,cldthinemis,vgrid_z,surfelev) |
---|
| 419 | endif |
---|
| 420 | if (latlid) then |
---|
| 421 | CALL COSP_CLDFRAC_NOPHASE(npoints,ncol,llm,ncat,x3d,pnormFlip,pplayFlip, & |
---|
| 422 | S_att_atlid,S_cld_atlid,S_cld_att_atlid,R_UNDEF,lidarcld,cldlayer) |
---|
| 423 | endif |
---|
| 424 | if (lgrLidar532) then |
---|
| 425 | CALL COSP_CLDFRAC_NOPHASE(npoints,ncol,llm,ncat,x3d,pnormFlip,pplayFlip, & |
---|
| 426 | S_att,S_cld,S_cld_att,R_UNDEF,lidarcld,cldlayer) |
---|
| 427 | endif |
---|
| 428 | else |
---|
| 429 | do ic = 1, ncol |
---|
| 430 | pnorm_c = pnorm(:,ic,:) |
---|
| 431 | where ((pnorm_c.lt.xmax) .and. (pmol.lt.xmax) .and. (pmol.gt. 0.0 )) |
---|
| 432 | x3d_c = pnorm_c/pmol |
---|
| 433 | elsewhere |
---|
| 434 | x3d_c = R_UNDEF |
---|
| 435 | end where |
---|
| 436 | x3d(:,ic,:) = x3d_c |
---|
| 437 | enddo |
---|
| 438 | if (lcalipso) then |
---|
| 439 | ! Diagnose cloud fractions for subcolumn lidar scattering ratios |
---|
| 440 | CALL COSP_CLDFRAC(npoints,ncol,nlevels,ncat,nphase,tmp,x3d,pnorm,pnorm_perp,pplay,& |
---|
| 441 | S_att,S_cld,S_cld_att,R_UNDEF,lidarcld,cldlayer,lidarcldphase, & |
---|
| 442 | cldlayerphase,lidarcldtmp) |
---|
| 443 | ! Calipso opaque cloud diagnostics |
---|
| 444 | CALL COSP_OPAQ(npoints,ncol,nlevels,ntype,tmp,x3d,S_att,S_cld,R_UNDEF,lidarcldtype, & |
---|
| 445 | cldtype,cldtypetemp,cldtypemeanz,cldtypemeanzse,cldthinemis,vgrid_z,surfelev) |
---|
| 446 | endif |
---|
| 447 | if (latlid) then |
---|
| 448 | CALL COSP_CLDFRAC_NOPHASE(npoints,ncol,nlevels,ncat,x3d,pnorm,pplay, & |
---|
| 449 | S_att_atlid,S_cld_atlid,S_cld_att_atlid, R_UNDEF,lidarcld,cldlayer) |
---|
| 450 | endif |
---|
| 451 | if (lgrlidar532) then |
---|
| 452 | CALL COSP_CLDFRAC_NOPHASE(npoints,ncol,nlevels,ncat,x3d,pnorm,pplay, & |
---|
| 453 | S_att,S_cld,S_cld_att,R_UNDEF,lidarcld,cldlayer) |
---|
| 454 | endif |
---|
| 455 | endif |
---|
| 456 | |
---|
| 457 | ! CFADs |
---|
| 458 | if (ok_lidar_cfad) then |
---|
| 459 | ! CFADs of subgrid-scale lidar scattering ratios |
---|
| 460 | do i=1,Npoints |
---|
| 461 | do j=1,llm |
---|
| 462 | cfad2(i,:,j) = hist1D(ncol,x3d(i,:,j),SR_BINS,histBsct) |
---|
| 463 | enddo |
---|
| 464 | enddo |
---|
| 465 | where(cfad2 .ne. R_UNDEF) cfad2=cfad2/ncol |
---|
| 466 | endif |
---|
| 467 | |
---|
| 468 | ! Unit conversions |
---|
| 469 | where(lidarcld /= R_UNDEF) lidarcld = lidarcld*100._wp |
---|
| 470 | where(cldlayer /= R_UNDEF) cldlayer = cldlayer*100._wp |
---|
| 471 | if (lcalipso) then |
---|
| 472 | where(cldtype(:,1) /= R_UNDEF) cldtype(:,1) = cldtype(:,1)*100._wp |
---|
| 473 | where(cldtype(:,2) /= R_UNDEF) cldtype(:,2) = cldtype(:,2)*100._wp |
---|
| 474 | where(cldlayerphase /= R_UNDEF) cldlayerphase = cldlayerphase*100._wp |
---|
| 475 | where(lidarcldphase /= R_UNDEF) lidarcldphase = lidarcldphase*100._wp |
---|
| 476 | where(lidarcldtype /= R_UNDEF) lidarcldtype = lidarcldtype*100._wp |
---|
| 477 | where(lidarcldtmp /= R_UNDEF) lidarcldtmp = lidarcldtmp*100._wp |
---|
| 478 | endif |
---|
| 479 | end subroutine lidar_column |
---|
| 480 | |
---|
| 481 | ! ###################################################################################### |
---|
| 482 | ! The subroutines below compute the attenuated backscatter signal and the lidar |
---|
| 483 | ! backscatter coefficients using eq (1) from doi:0094-8276/08/2008GL034207 |
---|
| 484 | ! ###################################################################################### |
---|
| 485 | subroutine cmp_backsignal(nlev,npoints,beta,tau,pnorm) |
---|
| 486 | ! INPUTS |
---|
| 487 | integer, intent(in) :: nlev,npoints |
---|
| 488 | real(wp),intent(in),dimension(npoints,nlev) :: beta,tau |
---|
| 489 | |
---|
| 490 | ! OUTPUTS |
---|
| 491 | real(wp),intent(out),dimension(npoints,nlev) :: pnorm |
---|
| 492 | |
---|
| 493 | ! Internal Variables |
---|
| 494 | real(wp), dimension(npoints) :: tautot_lay |
---|
| 495 | integer :: k |
---|
| 496 | |
---|
| 497 | ! Uppermost layer |
---|
| 498 | pnorm(:,1) = beta(:,1) / (2._wp*tau(:,1)) * (1._wp-exp(-2._wp*tau(:,1))) |
---|
| 499 | |
---|
| 500 | ! Other layers |
---|
| 501 | do k=2,nlev |
---|
| 502 | tautot_lay(:) = tau(:,k)-tau(:,k-1) |
---|
| 503 | WHERE (tautot_lay(:) .gt. 0.) |
---|
| 504 | pnorm(:,k) = beta(:,k)*EXP(-2._wp*tau(:,k-1)) /& |
---|
| 505 | (2._wp*tautot_lay(:))*(1._wp-EXP(-2._wp*tautot_lay(:))) |
---|
| 506 | ELSEWHERE |
---|
| 507 | ! This must never happen, but just in case, to avoid div. by 0 |
---|
| 508 | pnorm(:,k) = beta(:,k) * EXP(-2._wp*tau(:,k-1)) |
---|
| 509 | END WHERE |
---|
| 510 | |
---|
| 511 | END DO |
---|
| 512 | end subroutine cmp_backsignal |
---|
| 513 | |
---|
| 514 | subroutine cmp_beta(nlev,npoints,pnorm,tau,beta) |
---|
| 515 | ! INPUTS |
---|
| 516 | integer, intent(in) :: nlev,npoints |
---|
| 517 | real(wp),intent(in),dimension(npoints,nlev) :: pnorm,tau |
---|
| 518 | |
---|
| 519 | ! OUTPUTS |
---|
| 520 | real(wp),intent(out),dimension(npoints,nlev) :: beta |
---|
| 521 | |
---|
| 522 | ! Internal Variables |
---|
| 523 | real(wp), dimension(npoints) :: tautot_lay |
---|
| 524 | integer :: k |
---|
| 525 | real(wp) :: epsrealwp |
---|
| 526 | |
---|
| 527 | epsrealwp = epsilon(1._wp) |
---|
| 528 | beta(:,1) = pnorm(:,1) * (2._wp*tau(:,1))/(1._wp-exp(-2._wp*tau(:,1))) |
---|
| 529 | do k=2,nlev |
---|
| 530 | tautot_lay(:) = tau(:,k)-tau(:,k-1) |
---|
| 531 | WHERE ( EXP(-2._wp*tau(:,k-1)) .gt. epsrealwp ) |
---|
| 532 | WHERE (tautot_lay(:) .gt. 0.) |
---|
| 533 | beta(:,k) = pnorm(:,k)/ EXP(-2._wp*tau(:,k-1))* & |
---|
| 534 | (2._wp*tautot_lay(:))/(1._wp-exp(-2._wp*tautot_lay(:))) |
---|
| 535 | ELSEWHERE |
---|
| 536 | beta(:,k)=pnorm(:,k)/EXP(-2._wp*tau(:,k-1)) |
---|
| 537 | END WHERE |
---|
| 538 | ELSEWHERE |
---|
| 539 | beta(:,k)=pnorm(:,k)/epsrealwp |
---|
| 540 | END WHERE |
---|
| 541 | ENDDO |
---|
| 542 | |
---|
| 543 | end subroutine cmp_beta |
---|
| 544 | ! #################################################################################### |
---|
| 545 | ! SUBROUTINE cosp_cldfrac |
---|
| 546 | ! Conventions: Ncat must be equal to 4 |
---|
| 547 | ! #################################################################################### |
---|
| 548 | SUBROUTINE COSP_CLDFRAC(Npoints,Ncolumns,Nlevels,Ncat,Nphase,tmp,x,ATB,ATBperp, & |
---|
| 549 | pplay,S_att,S_cld,S_cld_att,undef,lidarcld,cldlayer, & |
---|
| 550 | lidarcldphase,cldlayerphase,lidarcldtemp) |
---|
| 551 | ! Parameters |
---|
| 552 | integer,parameter :: Ntemp=40 ! indice of the temperature vector |
---|
| 553 | real(wp),parameter,dimension(Ntemp+1) :: & |
---|
| 554 | tempmod = [0.0, 183.15,186.15,189.15,192.15,195.15,198.15,201.15,204.15,207.15, & |
---|
| 555 | 210.15,213.15,216.15,219.15,222.15,225.15,228.15,231.15,234.15,237.15, & |
---|
| 556 | 240.15,243.15,246.15,249.15,252.15,255.15,258.15,261.15,264.15,267.15, & |
---|
| 557 | 270.15,273.15,276.15,279.15,282.15,285.15,288.15,291.15,294.15,297.15, & |
---|
| 558 | 473.15] |
---|
| 559 | |
---|
| 560 | ! Polynomial coefficient of the phase discrimination line used to separate liquid from ice |
---|
| 561 | ! (Cesana and Chepfer, JGR, 2013) |
---|
| 562 | ! ATBperp = ATB^5*alpha50 + ATB^4*beta50 + ATB^3*gamma50 + ATB^2*delta50 + ATB*epsilon50 + zeta50 |
---|
| 563 | real(wp),parameter :: & |
---|
| 564 | alpha50 = 9.0322e+15_wp, & ! |
---|
| 565 | beta50 = -2.1358e+12_wp, & ! |
---|
| 566 | gamma50 = 173.3963e06_wp, & ! |
---|
| 567 | delta50 = -3.9514e03_wp, & ! |
---|
| 568 | epsilon50 = 0.2559_wp, & ! |
---|
| 569 | zeta50 = -9.4776e-07_wp ! |
---|
| 570 | |
---|
| 571 | ! Inputs |
---|
| 572 | integer,intent(in) :: & |
---|
| 573 | Npoints, & ! Number of gridpoints |
---|
| 574 | Ncolumns, & ! Number of subcolumns |
---|
| 575 | Nlevels, & ! Number of vertical levels |
---|
| 576 | Ncat, & ! Number of cloud layer types |
---|
| 577 | Nphase ! Number of cloud layer phase types |
---|
| 578 | ! [ice,liquid,undefined,false ice,false liquid,Percent of ice] |
---|
| 579 | real(wp),intent(in) :: & |
---|
| 580 | S_att, & ! |
---|
| 581 | S_cld, & ! |
---|
| 582 | S_cld_att,& ! New threshold for undefine cloud phase detection |
---|
| 583 | undef ! Undefined value |
---|
| 584 | real(wp),intent(in),dimension(Npoints,Ncolumns,Nlevels) :: & |
---|
| 585 | x, & ! |
---|
| 586 | ATB, & ! 3D attenuated backscatter |
---|
| 587 | ATBperp ! 3D attenuated backscatter (perpendicular) |
---|
| 588 | real(wp),intent(in),dimension(Npoints,Nlevels) :: & |
---|
| 589 | tmp, & ! Temperature |
---|
| 590 | pplay ! Pressure |
---|
| 591 | |
---|
| 592 | ! Outputs |
---|
| 593 | real(wp),intent(out),dimension(Npoints,Ntemp,5) :: & |
---|
| 594 | lidarcldtemp ! 3D Temperature 1=tot,2=ice,3=liq,4=undef,5=ice/ice+liq |
---|
| 595 | real(wp),intent(out),dimension(Npoints,Nlevels,Nphase) :: & |
---|
| 596 | lidarcldphase ! 3D cloud phase fraction |
---|
| 597 | real(wp),intent(out),dimension(Npoints,Nlevels) :: & |
---|
| 598 | lidarcld ! 3D cloud fraction |
---|
| 599 | real(wp),intent(out),dimension(Npoints,Ncat) :: & |
---|
| 600 | cldlayer ! Low, middle, high, total cloud fractions |
---|
| 601 | real(wp),intent(out),dimension(Npoints,Ncat,Nphase) :: & |
---|
| 602 | cldlayerphase ! Low, middle, high, total cloud fractions for ice liquid and undefine phase |
---|
| 603 | |
---|
| 604 | ! Local variables |
---|
| 605 | integer :: & |
---|
| 606 | ip, k, iz, ic, ncol, nlev, i, itemp, toplvlsat |
---|
| 607 | real(wp) :: & |
---|
| 608 | p1,checktemp, ATBperp_tmp,checkcldlayerphase, checkcldlayerphase2 |
---|
| 609 | real(wp),dimension(Npoints,Nlevels) :: & |
---|
| 610 | nsub,lidarcldphasetmp |
---|
| 611 | real(wp),dimension(Npoints,Ntemp) :: & |
---|
| 612 | sumlidarcldtemp,lidarcldtempind |
---|
| 613 | real(wp),dimension(Npoints,Ncolumns,Ncat) :: & |
---|
| 614 | cldlay,nsublay |
---|
| 615 | real(wp),dimension(Npoints,Ncat) :: & |
---|
| 616 | nsublayer,cldlayerphasetmp,cldlayerphasesum |
---|
| 617 | real(wp),dimension(Npoints,Ncolumns,Nlevels) :: & |
---|
| 618 | tmpi, & ! Temperature of ice cld |
---|
| 619 | tmpl, & ! Temperature of liquid cld |
---|
| 620 | tmpu, & ! Temperature of undef cld |
---|
| 621 | cldy, & ! |
---|
| 622 | srok ! |
---|
| 623 | real(wp),dimension(Npoints,Ncolumns,Ncat,Nphase) :: & |
---|
| 624 | cldlayphase ! subgrided low mid high phase cloud fraction |
---|
| 625 | |
---|
| 626 | ! #################################################################################### |
---|
| 627 | ! 1) Initialize |
---|
| 628 | ! #################################################################################### |
---|
| 629 | lidarcld = 0._wp |
---|
| 630 | nsub = 0._wp |
---|
| 631 | cldlay = 0._wp |
---|
| 632 | nsublay = 0._wp |
---|
| 633 | ATBperp_tmp = 0._wp |
---|
| 634 | lidarcldphase(:,:,:) = 0._wp |
---|
| 635 | cldlayphase(:,:,:,:) = 0._wp |
---|
| 636 | cldlayerphase(:,:,:) = 0._wp |
---|
| 637 | tmpi(:,:,:) = 0._wp |
---|
| 638 | tmpl(:,:,:) = 0._wp |
---|
| 639 | tmpu(:,:,:) = 0._wp |
---|
| 640 | cldlayerphasesum(:,:) = 0._wp |
---|
| 641 | lidarcldtemp(:,:,:) = 0._wp |
---|
| 642 | lidarcldtempind(:,:) = 0._wp |
---|
| 643 | sumlidarcldtemp(:,:) = 0._wp |
---|
| 644 | lidarcldphasetmp(:,:) = 0._wp |
---|
| 645 | toplvlsat = 0 |
---|
| 646 | |
---|
| 647 | ! #################################################################################### |
---|
| 648 | ! 2) Cloud detection |
---|
| 649 | ! #################################################################################### |
---|
| 650 | do k=1,Nlevels |
---|
| 651 | ! Cloud detection at subgrid-scale: |
---|
| 652 | where ((x(:,:,k) .gt. S_cld) .and. (x(:,:,k) .ne. undef) ) |
---|
| 653 | cldy(:,:,k)=1._wp |
---|
| 654 | elsewhere |
---|
| 655 | cldy(:,:,k)=0._wp |
---|
| 656 | endwhere |
---|
| 657 | |
---|
| 658 | ! Number of usefull sub-columns: |
---|
| 659 | where ((x(:,:,k) .gt. S_att) .and. (x(:,:,k) .ne. undef) ) |
---|
| 660 | srok(:,:,k)=1._wp |
---|
| 661 | elsewhere |
---|
| 662 | srok(:,:,k)=0._wp |
---|
| 663 | endwhere |
---|
| 664 | enddo |
---|
| 665 | |
---|
| 666 | ! #################################################################################### |
---|
| 667 | ! 3) Grid-box 3D cloud fraction and layered cloud fractions(ISCCP pressure categories) |
---|
| 668 | ! #################################################################################### |
---|
| 669 | lidarcld = 0._wp |
---|
| 670 | nsub = 0._wp |
---|
| 671 | cldlay = 0._wp |
---|
| 672 | nsublay = 0._wp |
---|
| 673 | do k=1,Nlevels |
---|
| 674 | do ic = 1, Ncolumns |
---|
| 675 | do ip = 1, Npoints |
---|
| 676 | |
---|
| 677 | ! Computation of the cloud fraction as a function of the temperature instead |
---|
| 678 | ! of height, for ice,liquid and all clouds |
---|
| 679 | if(srok(ip,ic,k).gt.0.)then |
---|
| 680 | do itemp=1,Ntemp |
---|
| 681 | if( (tmp(ip,k).ge.tempmod(itemp)).and.(tmp(ip,k).lt.tempmod(itemp+1)) )then |
---|
| 682 | lidarcldtempind(ip,itemp)=lidarcldtempind(ip,itemp)+1._wp |
---|
| 683 | endif |
---|
| 684 | enddo |
---|
| 685 | endif |
---|
| 686 | |
---|
| 687 | if(cldy(ip,ic,k).eq.1.)then |
---|
| 688 | do itemp=1,Ntemp |
---|
| 689 | if( (tmp(ip,k) .ge. tempmod(itemp)).and.(tmp(ip,k) .lt. tempmod(itemp+1)) )then |
---|
| 690 | lidarcldtemp(ip,itemp,1)=lidarcldtemp(ip,itemp,1)+1._wp |
---|
| 691 | endif |
---|
| 692 | enddo |
---|
| 693 | endif |
---|
| 694 | |
---|
| 695 | iz=1 |
---|
| 696 | p1 = pplay(ip,k) |
---|
| 697 | if ( p1.gt.0. .and. p1.lt.(440._wp*100._wp)) then ! high clouds |
---|
| 698 | iz=3 |
---|
| 699 | else if(p1.ge.(440._wp*100._wp) .and. p1.lt.(680._wp*100._wp)) then ! mid clouds |
---|
| 700 | iz=2 |
---|
| 701 | endif |
---|
| 702 | |
---|
| 703 | cldlay(ip,ic,iz) = MAX(cldlay(ip,ic,iz),cldy(ip,ic,k)) |
---|
| 704 | cldlay(ip,ic,4) = MAX(cldlay(ip,ic,4),cldy(ip,ic,k)) |
---|
| 705 | lidarcld(ip,k) = lidarcld(ip,k) + cldy(ip,ic,k) |
---|
| 706 | |
---|
| 707 | nsublay(ip,ic,iz) = MAX(nsublay(ip,ic,iz),srok(ip,ic,k)) |
---|
| 708 | nsublay(ip,ic,4) = MAX(nsublay(ip,ic,4),srok(ip,ic,k)) |
---|
| 709 | nsub(ip,k) = nsub(ip,k) + srok(ip,ic,k) |
---|
| 710 | |
---|
| 711 | enddo |
---|
| 712 | enddo |
---|
| 713 | enddo |
---|
| 714 | |
---|
| 715 | ! Grid-box 3D cloud fraction |
---|
| 716 | where ( nsub(:,:).gt.0.0 ) |
---|
| 717 | lidarcld(:,:) = lidarcld(:,:)/nsub(:,:) |
---|
| 718 | elsewhere |
---|
| 719 | lidarcld(:,:) = undef |
---|
| 720 | endwhere |
---|
| 721 | |
---|
| 722 | ! Layered cloud fractions |
---|
| 723 | cldlayer = 0._wp |
---|
| 724 | nsublayer = 0._wp |
---|
| 725 | do iz = 1, Ncat |
---|
| 726 | do ic = 1, Ncolumns |
---|
| 727 | cldlayer(:,iz) = cldlayer(:,iz) + cldlay(:,ic,iz) |
---|
| 728 | nsublayer(:,iz) = nsublayer(:,iz) + nsublay(:,ic,iz) |
---|
| 729 | enddo |
---|
| 730 | enddo |
---|
| 731 | where (nsublayer(:,:) .gt. 0.0) |
---|
| 732 | cldlayer(:,:) = cldlayer(:,:)/nsublayer(:,:) |
---|
| 733 | elsewhere |
---|
| 734 | cldlayer(:,:) = undef |
---|
| 735 | endwhere |
---|
| 736 | |
---|
| 737 | ! #################################################################################### |
---|
| 738 | ! 4) Grid-box 3D cloud Phase |
---|
| 739 | ! #################################################################################### |
---|
| 740 | |
---|
| 741 | ! #################################################################################### |
---|
| 742 | ! 4.1) For Cloudy pixels with 8.16km < z < 19.2km |
---|
| 743 | ! #################################################################################### |
---|
| 744 | do ncol=1,Ncolumns |
---|
| 745 | do i=1,Npoints |
---|
| 746 | do nlev=1,23 ! from 19.2km until 8.16km |
---|
| 747 | p1 = pplay(1,nlev) |
---|
| 748 | |
---|
| 749 | ! Avoid zero values |
---|
| 750 | if( (cldy(i,ncol,nlev).eq.1.) .and. (ATBperp(i,ncol,nlev).gt.0.) )then |
---|
| 751 | ! Computation of the ATBperp along the phase discrimination line |
---|
| 752 | ATBperp_tmp = (ATB(i,ncol,nlev)**5)*alpha50 + (ATB(i,ncol,nlev)**4)*beta50 + & |
---|
| 753 | (ATB(i,ncol,nlev)**3)*gamma50 + (ATB(i,ncol,nlev)**2)*delta50 + & |
---|
| 754 | ATB(i,ncol,nlev)*epsilon50 + zeta50 |
---|
| 755 | ! ######################################################################## |
---|
| 756 | ! 4.1.a) Ice: ATBperp above the phase discrimination line |
---|
| 757 | ! ######################################################################## |
---|
| 758 | if((ATBperp(i,ncol,nlev)-ATBperp_tmp) .ge. 0.)then ! Ice clouds |
---|
| 759 | |
---|
| 760 | ! ICE with temperature above 273,15°K = Liquid (false ice) |
---|
| 761 | if(tmp(i,nlev) .gt. 273.15) then ! Temperature above 273,15 K |
---|
| 762 | ! Liquid: False ice corrected by the temperature to Liquid |
---|
| 763 | lidarcldphase(i,nlev,2) = lidarcldphase(i,nlev,2)+1._wp ! False ice detection ==> added to Liquid |
---|
| 764 | |
---|
| 765 | tmpl(i,ncol,nlev) = tmp(i,nlev) |
---|
| 766 | lidarcldphase(i,nlev,5) = lidarcldphase(i,nlev,5)+1._wp ! Keep the information "temperature criterium used" |
---|
| 767 | ! to classify the phase cloud |
---|
| 768 | cldlayphase(i,ncol,4,2) = 1. ! tot cloud |
---|
| 769 | if (p1 .gt. 0. .and. p1.lt.(440._wp*100._wp)) then ! high cloud |
---|
| 770 | cldlayphase(i,ncol,3,2) = 1._wp |
---|
| 771 | else if(p1 .ge. (440._wp*100._wp) .and. p1 .lt. (680._wp*100._wp)) then ! mid cloud |
---|
| 772 | cldlayphase(i,ncol,2,2) = 1._wp |
---|
| 773 | else ! low cloud |
---|
| 774 | cldlayphase(i,ncol,1,2) = 1._wp |
---|
| 775 | endif |
---|
| 776 | cldlayphase(i,ncol,4,5) = 1._wp ! tot cloud |
---|
| 777 | ! High cloud |
---|
| 778 | if (p1 .gt. 0. .and. p1 .lt. (440._wp*100._wp)) then |
---|
| 779 | cldlayphase(i,ncol,3,5) = 1._wp |
---|
| 780 | ! Middle cloud |
---|
| 781 | else if(p1 .ge. (440._wp*100._wp) .and. p1 .lt. (680._wp*100._wp)) then |
---|
| 782 | cldlayphase(i,ncol,2,5) = 1._wp |
---|
| 783 | ! Low cloud |
---|
| 784 | else |
---|
| 785 | cldlayphase(i,ncol,1,5) = 1._wp |
---|
| 786 | endif |
---|
| 787 | else |
---|
| 788 | ! ICE with temperature below 273,15°K |
---|
| 789 | lidarcldphase(i,nlev,1) = lidarcldphase(i,nlev,1)+1._wp |
---|
| 790 | tmpi(i,ncol,nlev) = tmp(i,nlev) |
---|
| 791 | cldlayphase(i,ncol,4,1) = 1._wp ! tot cloud |
---|
| 792 | ! High cloud |
---|
| 793 | if (p1 .gt. 0. .and. p1 .lt. (440._wp*100._wp)) then |
---|
| 794 | cldlayphase(i,ncol,3,1) = 1._wp |
---|
| 795 | ! Middle cloud |
---|
| 796 | else if(p1 .ge. (440._wp*100._wp) .and. p1 .lt. (680._wp*100._wp)) then |
---|
| 797 | cldlayphase(i,ncol,2,1) = 1._wp |
---|
| 798 | ! Low cloud |
---|
| 799 | else |
---|
| 800 | cldlayphase(i,ncol,1,1) = 1._wp |
---|
| 801 | endif |
---|
| 802 | endif |
---|
| 803 | ! ######################################################################## |
---|
| 804 | ! 4.1.b) Liquid: ATBperp below the phase discrimination line |
---|
| 805 | ! ######################################################################## |
---|
| 806 | else |
---|
| 807 | ! Liquid with temperature above 231,15°K |
---|
| 808 | if(tmp(i,nlev) .gt. 231.15_wp) then |
---|
| 809 | lidarcldphase(i,nlev,2) = lidarcldphase(i,nlev,2)+1._wp |
---|
| 810 | tmpl(i,ncol,nlev) = tmp(i,nlev) |
---|
| 811 | cldlayphase(i,ncol,4,2) = 1._wp ! tot cloud |
---|
| 812 | ! High cloud |
---|
| 813 | if (p1 .gt. 0. .and. p1 .lt. (440._wp*100._wp)) then |
---|
| 814 | cldlayphase(i,ncol,3,2) = 1._wp |
---|
| 815 | ! Middle cloud |
---|
| 816 | else if(p1 .ge. (440._wp*100._wp) .and. p1 .lt. (680._wp*100._wp)) then |
---|
| 817 | cldlayphase(i,ncol,2,2) = 1._wp |
---|
| 818 | ! Low cloud |
---|
| 819 | else |
---|
| 820 | cldlayphase(i,ncol,1,2) = 1._wp |
---|
| 821 | endif |
---|
| 822 | else |
---|
| 823 | ! Liquid with temperature below 231,15°K = Ice (false liquid) |
---|
| 824 | tmpi(i,ncol,nlev) = tmp(i,nlev) |
---|
| 825 | lidarcldphase(i,nlev,1) = lidarcldphase(i,nlev,1)+1._wp ! false liquid detection ==> added to ice |
---|
| 826 | lidarcldphase(i,nlev,4) = lidarcldphase(i,nlev,4)+1._wp |
---|
| 827 | cldlayphase(i,ncol,4,4) = 1._wp ! tot cloud |
---|
| 828 | ! High cloud |
---|
| 829 | if (p1 .gt. 0. .and. p1 .lt. (440._wp*100._wp)) then |
---|
| 830 | cldlayphase(i,ncol,3,4) = 1._wp |
---|
| 831 | ! Middle cloud |
---|
| 832 | else if(p1 .ge. (440._wp*100._wp) .and. p1 .lt. (680._wp*100._wp)) then |
---|
| 833 | cldlayphase(i,ncol,2,4) = 1._wp |
---|
| 834 | ! Low cloud |
---|
| 835 | else |
---|
| 836 | cldlayphase(i,ncol,1,4) = 1._wp |
---|
| 837 | endif |
---|
| 838 | cldlayphase(i,ncol,4,1) = 1._wp ! tot cloud |
---|
| 839 | ! High cloud |
---|
| 840 | if (p1 .gt. 0. .and. p1 .lt. (440._wp*100._wp)) then |
---|
| 841 | cldlayphase(i,ncol,3,1) = 1._wp |
---|
| 842 | ! Middle cloud |
---|
| 843 | else if(p1 .ge. (440._wp*100._wp) .and. p1 .lt. (680._wp*100._wp)) then |
---|
| 844 | cldlayphase(i,ncol,2,1) = 1._wp |
---|
| 845 | ! Low cloud |
---|
| 846 | else |
---|
| 847 | cldlayphase(i,ncol,1,1) = 1._wp |
---|
| 848 | endif |
---|
| 849 | endif |
---|
| 850 | endif ! end of discrimination condition |
---|
| 851 | endif ! end of cloud condition |
---|
| 852 | enddo ! end of altitude loop |
---|
| 853 | |
---|
| 854 | ! ############################################################################## |
---|
| 855 | ! 4.2) For Cloudy pixels with 0km < z < 8.16km |
---|
| 856 | ! ############################################################################## |
---|
| 857 | toplvlsat = 0 |
---|
| 858 | do nlev=24,Nlevels! from 8.16km until 0km |
---|
| 859 | p1 = pplay(i,nlev) |
---|
| 860 | |
---|
| 861 | if((cldy(i,ncol,nlev) .eq. 1.) .and. (ATBperp(i,ncol,nlev) .gt. 0.) )then |
---|
| 862 | ! Computation of the ATBperp of the phase discrimination line |
---|
| 863 | ATBperp_tmp = (ATB(i,ncol,nlev)**5)*alpha50 + (ATB(i,ncol,nlev)**4)*beta50 + & |
---|
| 864 | (ATB(i,ncol,nlev)**3)*gamma50 + (ATB(i,ncol,nlev)**2)*delta50 + & |
---|
| 865 | ATB(i,ncol,nlev)*epsilon50 + zeta50 |
---|
| 866 | ! ######################################################################## |
---|
| 867 | ! 4.2.a) Ice: ATBperp above the phase discrimination line |
---|
| 868 | ! ######################################################################## |
---|
| 869 | ! ICE with temperature above 273,15°K = Liquid (false ice) |
---|
| 870 | if((ATBperp(i,ncol,nlev)-ATBperp_tmp) .ge. 0.)then ! Ice clouds |
---|
| 871 | if(tmp(i,nlev) .gt. 273.15)then |
---|
| 872 | lidarcldphase(i,nlev,2) = lidarcldphase(i,nlev,2)+1._wp ! false ice ==> liq |
---|
| 873 | tmpl(i,ncol,nlev) = tmp(i,nlev) |
---|
| 874 | lidarcldphase(i,nlev,5) = lidarcldphase(i,nlev,5)+1._wp |
---|
| 875 | cldlayphase(i,ncol,4,2) = 1._wp ! tot cloud |
---|
| 876 | ! High cloud |
---|
| 877 | if (p1 .gt. 0. .and. p1 .lt. (440._wp*100._wp)) then |
---|
| 878 | cldlayphase(i,ncol,3,2) = 1._wp |
---|
| 879 | ! Middle cloud |
---|
| 880 | else if(p1 .ge. (440._wp*100._wp) .and. p1 .lt. (680._wp*100._wp)) then |
---|
| 881 | cldlayphase(i,ncol,2,2) = 1._wp |
---|
| 882 | ! Low cloud |
---|
| 883 | else |
---|
| 884 | cldlayphase(i,ncol,1,2) = 1._wp |
---|
| 885 | endif |
---|
| 886 | |
---|
| 887 | cldlayphase(i,ncol,4,5) = 1. ! tot cloud |
---|
| 888 | ! High cloud |
---|
| 889 | if (p1 .gt. 0. .and. p1 .lt. (440._wp*100._wp)) then |
---|
| 890 | cldlayphase(i,ncol,3,5) = 1._wp |
---|
| 891 | ! Middle cloud |
---|
| 892 | else if(p1 .ge. (440._wp*100._wp) .and. p1 .lt. (680._wp*100._wp)) then |
---|
| 893 | cldlayphase(i,ncol,2,5) = 1._wp |
---|
| 894 | ! Low cloud |
---|
| 895 | else |
---|
| 896 | cldlayphase(i,ncol,1,5) = 1._wp |
---|
| 897 | endif |
---|
| 898 | else |
---|
| 899 | ! ICE with temperature below 273,15°K |
---|
| 900 | lidarcldphase(i,nlev,1) = lidarcldphase(i,nlev,1)+1._wp |
---|
| 901 | tmpi(i,ncol,nlev) = tmp(i,nlev) |
---|
| 902 | cldlayphase(i,ncol,4,1) = 1._wp ! tot cloud |
---|
| 903 | ! High cloud |
---|
| 904 | if (p1 .gt. 0. .and. p1 .lt. (440._wp*100._wp)) then |
---|
| 905 | cldlayphase(i,ncol,3,1) = 1._wp |
---|
| 906 | ! Middle cloud |
---|
| 907 | else if(p1 .ge. (440._wp*100._wp) .and. p1 .lt.(680._wp*100._wp)) then |
---|
| 908 | cldlayphase(i,ncol,2,1) = 1._wp |
---|
| 909 | ! Low cloud |
---|
| 910 | else |
---|
| 911 | cldlayphase(i,ncol,1,1) = 1._wp |
---|
| 912 | endif |
---|
| 913 | endif |
---|
| 914 | |
---|
| 915 | ! ######################################################################## |
---|
| 916 | ! 4.2.b) Liquid: ATBperp below the phase discrimination line |
---|
| 917 | ! ######################################################################## |
---|
| 918 | else |
---|
| 919 | ! Liquid with temperature above 231,15°K |
---|
| 920 | if(tmp(i,nlev) .gt. 231.15)then |
---|
| 921 | lidarcldphase(i,nlev,2) = lidarcldphase(i,nlev,2)+1._wp |
---|
| 922 | tmpl(i,ncol,nlev) = tmp(i,nlev) |
---|
| 923 | cldlayphase(i,ncol,4,2) = 1._wp ! tot cloud |
---|
| 924 | ! High cloud |
---|
| 925 | if (p1 .gt. 0. .and. p1 .lt. (440._wp*100._wp)) then |
---|
| 926 | cldlayphase(i,ncol,3,2) = 1._wp |
---|
| 927 | ! Middle cloud |
---|
| 928 | else if(p1 .ge. (440._wp*100._wp) .and. p1 .lt. (680._wp*100._wp)) then |
---|
| 929 | cldlayphase(i,ncol,2,2) = 1._wp |
---|
| 930 | ! Low cloud |
---|
| 931 | else |
---|
| 932 | cldlayphase(i,ncol,1,2) = 1._wp |
---|
| 933 | endif |
---|
| 934 | else |
---|
| 935 | ! Liquid with temperature below 231,15°K = Ice (false liquid) |
---|
| 936 | tmpi(i,ncol,nlev) = tmp(i,nlev) |
---|
| 937 | lidarcldphase(i,nlev,1) = lidarcldphase(i,nlev,1)+1._wp ! false liq ==> ice |
---|
| 938 | lidarcldphase(i,nlev,4) = lidarcldphase(i,nlev,4)+1._wp ! false liq ==> ice |
---|
| 939 | cldlayphase(i,ncol,4,4) = 1._wp ! tot cloud |
---|
| 940 | ! High cloud |
---|
| 941 | if (p1 .gt. 0. .and. p1 .lt. (440._wp*100._wp)) then |
---|
| 942 | cldlayphase(i,ncol,3,4) = 1._wp |
---|
| 943 | ! Middle |
---|
| 944 | else if(p1 .ge. (440._wp*100._wp) .and. p1 .lt. (680._wp*100._wp)) then |
---|
| 945 | cldlayphase(i,ncol,2,4) = 1._wp |
---|
| 946 | ! Low cloud |
---|
| 947 | else |
---|
| 948 | cldlayphase(i,ncol,1,4) = 1._wp |
---|
| 949 | endif |
---|
| 950 | |
---|
| 951 | cldlayphase(i,ncol,4,1) = 1._wp ! tot cloud |
---|
| 952 | ! High cloud |
---|
| 953 | if (p1 .gt. 0. .and. p1 .lt. (440._wp*100._wp)) then |
---|
| 954 | cldlayphase(i,ncol,3,1) = 1._wp |
---|
| 955 | ! Middle cloud |
---|
| 956 | else if(p1 .ge. (440._wp*100._wp) .and. p1 .lt. (680._wp*100._wp)) then |
---|
| 957 | cldlayphase(i,ncol,2,1) = 1._wp |
---|
| 958 | ! Low cloud |
---|
| 959 | else |
---|
| 960 | cldlayphase(i,ncol,1,1) = 1._wp |
---|
| 961 | endif |
---|
| 962 | endif |
---|
| 963 | endif ! end of discrimination condition |
---|
| 964 | |
---|
| 965 | toplvlsat=0 |
---|
| 966 | |
---|
| 967 | ! Find the level of the highest cloud with SR>30 |
---|
| 968 | if(x(i,ncol,nlev) .gt. S_cld_att) then ! SR > 30. |
---|
| 969 | toplvlsat = nlev+1 |
---|
| 970 | goto 99 |
---|
| 971 | endif |
---|
| 972 | endif ! end of cloud condition |
---|
| 973 | enddo ! end of altitude loop |
---|
| 974 | 99 continue |
---|
| 975 | |
---|
| 976 | ! ############################################################################## |
---|
| 977 | ! Undefined phase: For a cloud located below another cloud with SR>30 |
---|
| 978 | ! see Cesana and Chepfer 2013 Sect.III.2 |
---|
| 979 | ! ############################################################################## |
---|
| 980 | if(toplvlsat.ne.0) then |
---|
| 981 | do nlev = toplvlsat,Nlevels |
---|
| 982 | p1 = pplay(i,nlev) |
---|
| 983 | if(cldy(i,ncol,nlev).eq.1.)then |
---|
| 984 | lidarcldphase(i,nlev,3) = lidarcldphase(i,nlev,3)+1._wp |
---|
| 985 | tmpu(i,ncol,nlev) = tmp(i,nlev) |
---|
| 986 | cldlayphase(i,ncol,4,3) = 1._wp ! tot cloud |
---|
| 987 | ! High cloud |
---|
| 988 | if (p1 .gt. 0. .and. p1 .lt. (440._wp*100._wp)) then |
---|
| 989 | cldlayphase(i,ncol,3,3) = 1._wp |
---|
| 990 | ! Middle cloud |
---|
| 991 | else if(p1 .ge. (440._wp*100._wp) .and. p1 .lt. (680._wp*100._wp)) then |
---|
| 992 | cldlayphase(i,ncol,2,3) = 1._wp |
---|
| 993 | ! Low cloud |
---|
| 994 | else |
---|
| 995 | cldlayphase(i,ncol,1,3) = 1._wp |
---|
| 996 | endif |
---|
| 997 | endif |
---|
| 998 | enddo |
---|
| 999 | endif |
---|
| 1000 | toplvlsat=0 |
---|
| 1001 | enddo |
---|
| 1002 | enddo |
---|
| 1003 | |
---|
| 1004 | ! #################################################################################### |
---|
| 1005 | ! Computation of final cloud phase diagnosis |
---|
| 1006 | ! #################################################################################### |
---|
| 1007 | |
---|
| 1008 | ! Compute the Ice percentage in cloud = ice/(ice+liq) as a function of the occurrences |
---|
| 1009 | lidarcldphasetmp(:,:) = lidarcldphase(:,:,1)+lidarcldphase(:,:,2); |
---|
| 1010 | WHERE (lidarcldphasetmp(:,:) .gt. 0.) |
---|
| 1011 | lidarcldphase(:,:,6)=lidarcldphase(:,:,1)/lidarcldphasetmp(:,:) |
---|
| 1012 | ELSEWHERE |
---|
| 1013 | lidarcldphase(:,:,6) = undef |
---|
| 1014 | ENDWHERE |
---|
| 1015 | |
---|
| 1016 | ! Compute Phase 3D Cloud Fraction |
---|
| 1017 | !WHERE (nsub(:,Nlevels:1:-1) .gt. 0.0 ) |
---|
| 1018 | WHERE (nsub(:,:) .gt. 0.0 ) |
---|
| 1019 | lidarcldphase(:,:,1)=lidarcldphase(:,:,1)/nsub(:,:) |
---|
| 1020 | lidarcldphase(:,:,2)=lidarcldphase(:,:,2)/nsub(:,:) |
---|
| 1021 | lidarcldphase(:,:,3)=lidarcldphase(:,:,3)/nsub(:,:) |
---|
| 1022 | lidarcldphase(:,:,4)=lidarcldphase(:,:,4)/nsub(:,:) |
---|
| 1023 | lidarcldphase(:,:,5)=lidarcldphase(:,:,5)/nsub(:,:) |
---|
| 1024 | ELSEWHERE |
---|
| 1025 | lidarcldphase(:,:,1) = undef |
---|
| 1026 | lidarcldphase(:,:,2) = undef |
---|
| 1027 | lidarcldphase(:,:,3) = undef |
---|
| 1028 | lidarcldphase(:,:,4) = undef |
---|
| 1029 | lidarcldphase(:,:,5) = undef |
---|
| 1030 | ENDWHERE |
---|
| 1031 | |
---|
| 1032 | ! Compute Phase low mid high cloud fractions |
---|
| 1033 | do iz = 1, Ncat |
---|
| 1034 | do i=1,Nphase-3 |
---|
| 1035 | do ic = 1, Ncolumns |
---|
| 1036 | cldlayerphase(:,iz,i) = cldlayerphase(:,iz,i) + cldlayphase(:,ic,iz,i) |
---|
| 1037 | cldlayerphasesum(:,iz) = cldlayerphasesum(:,iz) + cldlayphase(:,ic,iz,i) |
---|
| 1038 | enddo |
---|
| 1039 | enddo |
---|
| 1040 | enddo |
---|
| 1041 | do iz = 1, Ncat |
---|
| 1042 | do i=4,5 |
---|
| 1043 | do ic = 1, Ncolumns |
---|
| 1044 | cldlayerphase(:,iz,i) = cldlayerphase(:,iz,i) + cldlayphase(:,ic,iz,i) |
---|
| 1045 | enddo |
---|
| 1046 | enddo |
---|
| 1047 | enddo |
---|
| 1048 | |
---|
| 1049 | ! Compute the Ice percentage in cloud = ice/(ice+liq) |
---|
| 1050 | cldlayerphasetmp(:,:)=cldlayerphase(:,:,1)+cldlayerphase(:,:,2) |
---|
| 1051 | WHERE (cldlayerphasetmp(:,:).gt. 0.) |
---|
| 1052 | cldlayerphase(:,:,6)=cldlayerphase(:,:,1)/cldlayerphasetmp(:,:) |
---|
| 1053 | ELSEWHERE |
---|
| 1054 | cldlayerphase(:,:,6) = undef |
---|
| 1055 | ENDWHERE |
---|
| 1056 | |
---|
| 1057 | do i=1,Nphase-1 |
---|
| 1058 | WHERE ( cldlayerphasesum(:,:).gt.0.0 ) |
---|
| 1059 | cldlayerphase(:,:,i) = (cldlayerphase(:,:,i)/cldlayerphasesum(:,:)) * cldlayer(:,:) |
---|
| 1060 | ENDWHERE |
---|
| 1061 | enddo |
---|
| 1062 | |
---|
| 1063 | do i=1,Npoints |
---|
| 1064 | do iz=1,Ncat |
---|
| 1065 | checkcldlayerphase=0. |
---|
| 1066 | checkcldlayerphase2=0. |
---|
| 1067 | if (cldlayerphasesum(i,iz) .gt. 0.0 )then |
---|
| 1068 | do ic=1,Nphase-3 |
---|
| 1069 | checkcldlayerphase = checkcldlayerphase+cldlayerphase(i,iz,ic) |
---|
| 1070 | enddo |
---|
| 1071 | checkcldlayerphase2 = cldlayer(i,iz)-checkcldlayerphase |
---|
| 1072 | if((checkcldlayerphase2 .gt. 0.01) .or. (checkcldlayerphase2 .lt. -0.01) ) print *, checkcldlayerphase,cldlayer(i,iz) |
---|
| 1073 | endif |
---|
| 1074 | enddo |
---|
| 1075 | enddo |
---|
| 1076 | |
---|
| 1077 | do i=1,Nphase-1 |
---|
| 1078 | WHERE (nsublayer(:,:) .eq. 0.0) |
---|
| 1079 | cldlayerphase(:,:,i) = undef |
---|
| 1080 | ENDWHERE |
---|
| 1081 | enddo |
---|
| 1082 | |
---|
| 1083 | ! Compute Phase 3D as a function of temperature |
---|
| 1084 | do nlev=1,Nlevels |
---|
| 1085 | do ncol=1,Ncolumns |
---|
| 1086 | do i=1,Npoints |
---|
| 1087 | do itemp=1,Ntemp |
---|
| 1088 | if(tmpi(i,ncol,nlev).gt.0.)then |
---|
| 1089 | if((tmpi(i,ncol,nlev) .ge. tempmod(itemp)) .and. (tmpi(i,ncol,nlev) .lt. tempmod(itemp+1)) )then |
---|
| 1090 | lidarcldtemp(i,itemp,2)=lidarcldtemp(i,itemp,2)+1._wp |
---|
| 1091 | endif |
---|
| 1092 | elseif(tmpl(i,ncol,nlev) .gt. 0.)then |
---|
| 1093 | if((tmpl(i,ncol,nlev) .ge. tempmod(itemp)) .and. (tmpl(i,ncol,nlev) .lt. tempmod(itemp+1)) )then |
---|
| 1094 | lidarcldtemp(i,itemp,3)=lidarcldtemp(i,itemp,3)+1._wp |
---|
| 1095 | endif |
---|
| 1096 | elseif(tmpu(i,ncol,nlev) .gt. 0.)then |
---|
| 1097 | if((tmpu(i,ncol,nlev) .ge. tempmod(itemp)) .and. (tmpu(i,ncol,nlev) .lt. tempmod(itemp+1)) )then |
---|
| 1098 | lidarcldtemp(i,itemp,4)=lidarcldtemp(i,itemp,4)+1._wp |
---|
| 1099 | endif |
---|
| 1100 | endif |
---|
| 1101 | enddo |
---|
| 1102 | enddo |
---|
| 1103 | enddo |
---|
| 1104 | enddo |
---|
| 1105 | |
---|
| 1106 | ! Check temperature cloud fraction |
---|
| 1107 | do i=1,Npoints |
---|
| 1108 | do itemp=1,Ntemp |
---|
| 1109 | checktemp=lidarcldtemp(i,itemp,2)+lidarcldtemp(i,itemp,3)+lidarcldtemp(i,itemp,4) |
---|
| 1110 | !if(checktemp .NE. lidarcldtemp(i,itemp,1))then |
---|
| 1111 | ! print *, i,itemp |
---|
| 1112 | ! print *, lidarcldtemp(i,itemp,1:4) |
---|
| 1113 | !endif |
---|
| 1114 | |
---|
| 1115 | enddo |
---|
| 1116 | enddo |
---|
| 1117 | |
---|
| 1118 | ! Compute the Ice percentage in cloud = ice/(ice+liq) |
---|
| 1119 | sumlidarcldtemp(:,:)=lidarcldtemp(:,:,2)+lidarcldtemp(:,:,3) |
---|
| 1120 | WHERE(sumlidarcldtemp(:,:) .gt. 0.) |
---|
| 1121 | lidarcldtemp(:,:,5)=lidarcldtemp(:,:,2)/sumlidarcldtemp(:,:) |
---|
| 1122 | ELSEWHERE |
---|
| 1123 | lidarcldtemp(:,:,5)=undef |
---|
| 1124 | ENDWHERE |
---|
| 1125 | |
---|
| 1126 | do i=1,4 |
---|
| 1127 | WHERE(lidarcldtempind(:,:) .gt. 0.) |
---|
| 1128 | lidarcldtemp(:,:,i) = lidarcldtemp(:,:,i)/lidarcldtempind(:,:) |
---|
| 1129 | ELSEWHERE |
---|
| 1130 | lidarcldtemp(:,:,i) = undef |
---|
| 1131 | ENDWHERE |
---|
| 1132 | enddo |
---|
| 1133 | |
---|
| 1134 | RETURN |
---|
| 1135 | END SUBROUTINE COSP_CLDFRAC |
---|
| 1136 | |
---|
| 1137 | ! #################################################################################### |
---|
| 1138 | ! SUBROUTINE cosp_cldfrac_nophase |
---|
| 1139 | ! Conventions: Ncat must be equal to 4 |
---|
| 1140 | ! #################################################################################### |
---|
| 1141 | SUBROUTINE COSP_CLDFRAC_NOPHASE(Npoints,Ncolumns,Nlevels,Ncat,x,ATB,pplay, & |
---|
| 1142 | S_att,S_cld,S_cld_att,undef,lidarcld,cldlayer) |
---|
| 1143 | |
---|
| 1144 | ! Inputs |
---|
| 1145 | integer,intent(in) :: & |
---|
| 1146 | Npoints, & ! Number of gridpoints |
---|
| 1147 | Ncolumns, & ! Number of subcolumns |
---|
| 1148 | Nlevels, & ! Number of vertical levels |
---|
| 1149 | Ncat ! Number of cloud layer types |
---|
| 1150 | real(wp),intent(in) :: & |
---|
| 1151 | S_att, & ! |
---|
| 1152 | S_cld, & ! |
---|
| 1153 | S_cld_att,& ! New threshold for undefine cloud phase detection |
---|
| 1154 | undef ! Undefined value |
---|
| 1155 | real(wp),intent(in),dimension(Npoints,Ncolumns,Nlevels) :: & |
---|
| 1156 | x, & ! |
---|
| 1157 | ATB ! 3D attenuated backscatter |
---|
| 1158 | real(wp),intent(in),dimension(Npoints,Nlevels) :: & |
---|
| 1159 | pplay ! Pressure |
---|
| 1160 | |
---|
| 1161 | ! Outputs |
---|
| 1162 | real(wp),intent(out),dimension(Npoints,Nlevels) :: & |
---|
| 1163 | lidarcld ! 3D cloud fraction |
---|
| 1164 | real(wp),intent(out),dimension(Npoints,Ncat) :: & |
---|
| 1165 | cldlayer ! Low, middle, high, total cloud fractions |
---|
| 1166 | |
---|
| 1167 | ! Local variables |
---|
| 1168 | integer :: & |
---|
| 1169 | ip, k, iz, ic, ncol, nlev, i |
---|
| 1170 | real(wp) :: & |
---|
| 1171 | p1 |
---|
| 1172 | real(wp),dimension(Npoints,Nlevels) :: & |
---|
| 1173 | nsub |
---|
| 1174 | real(wp),dimension(Npoints,Ncolumns,Ncat) :: & |
---|
| 1175 | cldlay,nsublay |
---|
| 1176 | real(wp),dimension(Npoints,Ncat) :: & |
---|
| 1177 | nsublayer |
---|
| 1178 | real(wp),dimension(Npoints,Ncolumns,Nlevels) :: & |
---|
| 1179 | cldy, & ! |
---|
| 1180 | srok ! |
---|
| 1181 | |
---|
| 1182 | ! #################################################################################### |
---|
| 1183 | ! 1) Initialize |
---|
| 1184 | ! #################################################################################### |
---|
| 1185 | lidarcld = 0._wp |
---|
| 1186 | nsub = 0._wp |
---|
| 1187 | cldlay = 0._wp |
---|
| 1188 | nsublay = 0._wp |
---|
| 1189 | |
---|
| 1190 | ! #################################################################################### |
---|
| 1191 | ! 2) Cloud detection |
---|
| 1192 | ! #################################################################################### |
---|
| 1193 | do k=1,Nlevels |
---|
| 1194 | ! Cloud detection at subgrid-scale: |
---|
| 1195 | where ((x(:,:,k) .gt. S_cld) .and. (x(:,:,k) .ne. undef) ) |
---|
| 1196 | cldy(:,:,k)=1._wp |
---|
| 1197 | elsewhere |
---|
| 1198 | cldy(:,:,k)=0._wp |
---|
| 1199 | endwhere |
---|
| 1200 | |
---|
| 1201 | ! Number of usefull sub-columns: |
---|
| 1202 | where ((x(:,:,k) .gt. S_att) .and. (x(:,:,k) .ne. undef) ) |
---|
| 1203 | srok(:,:,k)=1._wp |
---|
| 1204 | elsewhere |
---|
| 1205 | srok(:,:,k)=0._wp |
---|
| 1206 | endwhere |
---|
| 1207 | enddo |
---|
| 1208 | |
---|
| 1209 | ! #################################################################################### |
---|
| 1210 | ! 3) Grid-box 3D cloud fraction and layered cloud fractions(ISCCP pressure categories) |
---|
| 1211 | ! #################################################################################### |
---|
| 1212 | do k=1,Nlevels |
---|
| 1213 | do ic = 1, Ncolumns |
---|
| 1214 | do ip = 1, Npoints |
---|
| 1215 | |
---|
| 1216 | iz=1 |
---|
| 1217 | p1 = pplay(ip,k) |
---|
| 1218 | if ( p1.gt.0. .and. p1.lt.(440._wp*100._wp)) then ! high clouds |
---|
| 1219 | iz=3 |
---|
| 1220 | else if(p1.ge.(440._wp*100._wp) .and. p1.lt.(680._wp*100._wp)) then ! mid clouds |
---|
| 1221 | iz=2 |
---|
| 1222 | endif |
---|
| 1223 | |
---|
| 1224 | cldlay(ip,ic,iz) = MAX(cldlay(ip,ic,iz),cldy(ip,ic,k)) |
---|
| 1225 | cldlay(ip,ic,4) = MAX(cldlay(ip,ic,4),cldy(ip,ic,k)) |
---|
| 1226 | lidarcld(ip,k) = lidarcld(ip,k) + cldy(ip,ic,k) |
---|
| 1227 | |
---|
| 1228 | nsublay(ip,ic,iz) = MAX(nsublay(ip,ic,iz),srok(ip,ic,k)) |
---|
| 1229 | nsublay(ip,ic,4) = MAX(nsublay(ip,ic,4),srok(ip,ic,k)) |
---|
| 1230 | nsub(ip,k) = nsub(ip,k) + srok(ip,ic,k) |
---|
| 1231 | |
---|
| 1232 | enddo |
---|
| 1233 | enddo |
---|
| 1234 | enddo |
---|
| 1235 | |
---|
| 1236 | ! Grid-box 3D cloud fraction |
---|
| 1237 | where ( nsub(:,:).gt.0.0 ) |
---|
| 1238 | lidarcld(:,:) = lidarcld(:,:)/nsub(:,:) |
---|
| 1239 | elsewhere |
---|
| 1240 | lidarcld(:,:) = undef |
---|
| 1241 | endwhere |
---|
| 1242 | |
---|
| 1243 | ! Layered cloud fractions |
---|
| 1244 | cldlayer = 0._wp |
---|
| 1245 | nsublayer = 0._wp |
---|
| 1246 | do iz = 1, Ncat |
---|
| 1247 | do ic = 1, Ncolumns |
---|
| 1248 | cldlayer(:,iz) = cldlayer(:,iz) + cldlay(:,ic,iz) |
---|
| 1249 | nsublayer(:,iz) = nsublayer(:,iz) + nsublay(:,ic,iz) |
---|
| 1250 | enddo |
---|
| 1251 | enddo |
---|
| 1252 | where (nsublayer(:,:) .gt. 0.0) |
---|
| 1253 | cldlayer(:,:) = cldlayer(:,:)/nsublayer(:,:) |
---|
| 1254 | elsewhere |
---|
| 1255 | cldlayer(:,:) = undef |
---|
| 1256 | endwhere |
---|
| 1257 | |
---|
| 1258 | RETURN |
---|
| 1259 | END SUBROUTINE COSP_CLDFRAC_NOPHASE |
---|
| 1260 | |
---|
| 1261 | ! #################################################################################### |
---|
| 1262 | ! SUBROUTINE cosp_opaq |
---|
| 1263 | ! Conventions: Ntype must be equal to 3 |
---|
| 1264 | ! #################################################################################### |
---|
| 1265 | SUBROUTINE COSP_OPAQ(Npoints,Ncolumns,Nlevels,Ntype,tmp,x,S_att,S_cld,undef,lidarcldtype, & |
---|
| 1266 | cldtype,cldtypetemp,cldtypemeanz,cldtypemeanzse,cldthinemis,vgrid_z, & |
---|
| 1267 | surfelev) |
---|
| 1268 | |
---|
| 1269 | ! Local parameter |
---|
| 1270 | real(wp),parameter :: & |
---|
| 1271 | S_att_opaq = 0.06_wp, & ! Fully Attenuated threshold (Guzman et al. 2017, JGR-Atmospheres) |
---|
| 1272 | eta = 0.6_wp ! Multiple-scattering factor (Vaillant de Guelis et al. 2017a, AMT) |
---|
| 1273 | |
---|
| 1274 | ! Inputs |
---|
| 1275 | integer,intent(in) :: & |
---|
| 1276 | Npoints, & ! Number of gridpoints |
---|
| 1277 | Ncolumns, & ! Number of subcolumns |
---|
| 1278 | Nlevels, & ! Number of vertical levels |
---|
| 1279 | Ntype ! Number of OPAQ cloud types (opaque, thin clouds and z_opaque) |
---|
| 1280 | real(wp),intent(in) :: & |
---|
| 1281 | S_att, & ! Fully Attenuated legacy threshold |
---|
| 1282 | S_cld, & ! Cloud detection threshold |
---|
| 1283 | undef ! Undefined value |
---|
| 1284 | real(wp),intent(in),dimension(Nlevels) :: & |
---|
| 1285 | vgrid_z ! mid-level vertical profile altitude (subcolumns) |
---|
| 1286 | real(wp),intent(in),dimension(Npoints,Ncolumns,Nlevels) :: & |
---|
| 1287 | x ! SR profiles (subcolumns) |
---|
| 1288 | real(wp),intent(in),dimension(Npoints,Nlevels) :: & |
---|
| 1289 | tmp ! Temperature profiles |
---|
| 1290 | real(wp),intent(in),dimension(Npoints) :: & |
---|
| 1291 | surfelev ! Surface Elevation (SE) |
---|
| 1292 | |
---|
| 1293 | ! Outputs |
---|
| 1294 | real(wp),intent(out),dimension(Npoints,Nlevels,Ntype+1) :: & |
---|
| 1295 | lidarcldtype ! 3D OPAQ product fraction (opaque clouds, thin clouds, z_opaque, opacity) |
---|
| 1296 | real(wp),intent(out),dimension(Npoints,Ntype) :: & |
---|
| 1297 | cldtype, & ! Opaque/thin cloud covers + z_opaque altitude |
---|
| 1298 | cldtypetemp ! Opaque and thin clouds + z_opaque temperature |
---|
| 1299 | real(wp),intent(out),dimension(Npoints,2) :: & |
---|
| 1300 | cldtypemeanz ! Opaque and thin clouds altitude |
---|
| 1301 | real(wp),intent(out),dimension(Npoints,3) :: & |
---|
| 1302 | cldtypemeanzse ! Opaque, thin clouds and z_opaque altitude with respect to SE |
---|
| 1303 | real(wp),intent(out),dimension(Npoints) :: & |
---|
| 1304 | cldthinemis ! Thin clouds emissivity |
---|
| 1305 | |
---|
| 1306 | ! Local variables |
---|
| 1307 | integer :: & |
---|
| 1308 | ip, k, zopac, ic, iz, z_top, z_base, topcloud |
---|
| 1309 | real(wp) :: & |
---|
| 1310 | srmean, srcount, trans2, tau_app, tau_vis, tau_ir, cloudemis |
---|
| 1311 | real(wp),dimension(Npoints) :: & |
---|
| 1312 | count_emis |
---|
| 1313 | real(wp),dimension(Npoints,Nlevels) :: & |
---|
| 1314 | nsub, nsubopaq |
---|
| 1315 | real(wp),dimension(Npoints,Ncolumns,Ntype+1) :: & ! Opaque, thin, z_opaque and all cloud cover |
---|
| 1316 | cldlay, nsublay |
---|
| 1317 | real(wp),dimension(Npoints,Ntype) :: & |
---|
| 1318 | nsublayer |
---|
| 1319 | real(wp),dimension(Npoints,Ncolumns,Nlevels) :: & |
---|
| 1320 | cldy, & ! |
---|
| 1321 | cldyopaq, & ! |
---|
| 1322 | srok, & ! |
---|
| 1323 | srokopaq ! |
---|
| 1324 | |
---|
| 1325 | ! #################################################################################### |
---|
| 1326 | ! 1) Initialize |
---|
| 1327 | ! #################################################################################### |
---|
| 1328 | cldtype(:,:) = 0._wp |
---|
| 1329 | cldtypetemp(:,:) = 0._wp |
---|
| 1330 | cldtypemeanz(:,:) = 0._wp |
---|
| 1331 | cldtypemeanzse(:,:) = 0._wp |
---|
| 1332 | cldthinemis(:) = 0._wp |
---|
| 1333 | count_emis(:) = 0._wp |
---|
| 1334 | lidarcldtype(:,:,:) = 0._wp |
---|
| 1335 | nsub = 0._wp |
---|
| 1336 | nsubopaq = 0._wp |
---|
| 1337 | cldlay = 0._wp |
---|
| 1338 | nsublay = 0._wp |
---|
| 1339 | nsublayer = 0._wp |
---|
| 1340 | |
---|
| 1341 | ! #################################################################################### |
---|
| 1342 | ! 2) Cloud detection and Fully attenuated layer detection |
---|
| 1343 | ! #################################################################################### |
---|
| 1344 | do k=1,Nlevels |
---|
| 1345 | ! Cloud detection at subgrid-scale: |
---|
| 1346 | where ( (x(:,:,k) .gt. S_cld) .and. (x(:,:,k) .ne. undef) ) |
---|
| 1347 | cldy(:,:,k)=1._wp |
---|
| 1348 | elsewhere |
---|
| 1349 | cldy(:,:,k)=0._wp |
---|
| 1350 | endwhere |
---|
| 1351 | ! Fully attenuated layer detection at subgrid-scale: |
---|
| 1352 | where ( (x(:,:,k) .lt. S_att_opaq) .and. (x(:,:,k) .ge. 0.) .and. (x(:,:,k) .ne. undef) ) !DEBUG |
---|
| 1353 | cldyopaq(:,:,k)=1._wp |
---|
| 1354 | elsewhere |
---|
| 1355 | cldyopaq(:,:,k)=0._wp |
---|
| 1356 | endwhere |
---|
| 1357 | |
---|
| 1358 | |
---|
| 1359 | ! Number of usefull sub-column layers: |
---|
| 1360 | where ( (x(:,:,k) .gt. S_att) .and. (x(:,:,k) .ne. undef) ) |
---|
| 1361 | srok(:,:,k)=1._wp |
---|
| 1362 | elsewhere |
---|
| 1363 | srok(:,:,k)=0._wp |
---|
| 1364 | endwhere |
---|
| 1365 | ! Number of usefull sub-columns layers for z_opaque 3D fraction: |
---|
| 1366 | where ( (x(:,:,k) .ge. 0.) .and. (x(:,:,k) .ne. undef) ) !DEBUG |
---|
| 1367 | srokopaq(:,:,k)=1._wp |
---|
| 1368 | elsewhere |
---|
| 1369 | srokopaq(:,:,k)=0._wp |
---|
| 1370 | endwhere |
---|
| 1371 | enddo |
---|
| 1372 | |
---|
| 1373 | ! #################################################################################### |
---|
| 1374 | ! 3) Grid-box 3D OPAQ product fraction and cloud type cover (opaque/thin) + mean z_opaque |
---|
| 1375 | ! #################################################################################### |
---|
| 1376 | |
---|
| 1377 | do k=1,Nlevels |
---|
| 1378 | do ic = 1, Ncolumns |
---|
| 1379 | do ip = 1, Npoints |
---|
| 1380 | |
---|
| 1381 | cldlay(ip,ic,1) = MAX(cldlay(ip,ic,1),cldyopaq(ip,ic,k)) ! Opaque cloud |
---|
| 1382 | cldlay(ip,ic,4) = MAX(cldlay(ip,ic,4),cldy(ip,ic,k)) ! All cloud |
---|
| 1383 | |
---|
| 1384 | nsublay(ip,ic,1) = MAX(nsublay(ip,ic,1),srok(ip,ic,k)) |
---|
| 1385 | nsublay(ip,ic,2) = MAX(nsublay(ip,ic,2),srok(ip,ic,k)) |
---|
| 1386 | ! nsublay(ip,ic,4) = MAX(nsublay(ip,ic,4),srok(ip,ic,k)) |
---|
| 1387 | nsub(ip,k) = nsub(ip,k) + srok(ip,ic,k) |
---|
| 1388 | nsubopaq(ip,k) = nsubopaq(ip,k) + srokopaq(ip,ic,k) |
---|
| 1389 | |
---|
| 1390 | enddo |
---|
| 1391 | enddo |
---|
| 1392 | enddo |
---|
| 1393 | |
---|
| 1394 | ! OPAQ variables |
---|
| 1395 | do ic = 1, Ncolumns |
---|
| 1396 | do ip = 1, Npoints |
---|
| 1397 | |
---|
| 1398 | ! Declaring non-opaque cloudy profiles as thin cloud profiles |
---|
| 1399 | if ( cldlay(ip,ic,4).gt. 0. .and. cldlay(ip,ic,1) .eq. 0. ) then |
---|
| 1400 | cldlay(ip,ic,2) = 1._wp |
---|
| 1401 | endif |
---|
| 1402 | |
---|
| 1403 | ! Filling in 3D and 2D variables |
---|
| 1404 | |
---|
| 1405 | ! Opaque cloud profiles |
---|
| 1406 | if ( cldlay(ip,ic,1) .eq. 1. ) then |
---|
| 1407 | zopac = 0._wp |
---|
| 1408 | z_top = 0._wp |
---|
| 1409 | do k=1,Nlevels-1 |
---|
| 1410 | ! Declaring z_opaque altitude and opaque cloud fraction for 3D and 2D variables |
---|
| 1411 | ! From SFC-2-TOA ( actually from vgrid_z(SFC+1) = vgrid_z(Nlevels-1) ) |
---|
| 1412 | if ( cldy(ip,ic,Nlevels-k) .eq. 1. .and. zopac .eq. 0. ) then |
---|
| 1413 | lidarcldtype(ip,Nlevels-k + 1,3) = lidarcldtype(ip,Nlevels-k + 1,3) + 1._wp |
---|
| 1414 | cldlay(ip,ic,3) = vgrid_z(Nlevels-k+1) ! z_opaque altitude |
---|
| 1415 | nsublay(ip,ic,3) = 1._wp |
---|
| 1416 | zopac = Nlevels-k+1 ! z_opaque vertical index on vgrid_z |
---|
| 1417 | endif |
---|
| 1418 | if ( cldy(ip,ic,Nlevels-k) .eq. 1. ) then |
---|
| 1419 | lidarcldtype(ip,Nlevels-k ,1) = lidarcldtype(ip,Nlevels-k ,1) + 1._wp |
---|
| 1420 | z_top = Nlevels-k ! top cloud layer vertical index on vgrid_z |
---|
| 1421 | endif |
---|
| 1422 | enddo |
---|
| 1423 | ! Summing opaque cloud mean temperatures and altitudes |
---|
| 1424 | ! as defined in Vaillant de Guelis et al. 2017a, AMT |
---|
| 1425 | if (zopac .ne. 0) then |
---|
| 1426 | cldtypetemp(ip,1) = cldtypetemp(ip,1) + ( tmp(ip,zopac) + tmp(ip,z_top) )/2. |
---|
| 1427 | cldtypetemp(ip,3) = cldtypetemp(ip,3) + tmp(ip,zopac) ! z_opaque |
---|
| 1428 | cldtypemeanz(ip,1) = cldtypemeanz(ip,1) + ( vgrid_z(zopac) + vgrid_z(z_top) )/2. |
---|
| 1429 | cldtypemeanzse(ip,1) = cldtypemeanzse(ip,1) + (( vgrid_z(zopac) + vgrid_z(z_top) )/2.) - surfelev(ip) |
---|
| 1430 | cldtypemeanzse(ip,3) = cldtypemeanzse(ip,3) + ( vgrid_z(zopac) - surfelev(ip) ) |
---|
| 1431 | else |
---|
| 1432 | cldlay(ip,ic,1) = 0 |
---|
| 1433 | endif |
---|
| 1434 | endif |
---|
| 1435 | |
---|
| 1436 | ! Thin cloud profiles |
---|
| 1437 | if ( cldlay(ip,ic,2) .eq. 1. ) then |
---|
| 1438 | topcloud = 0._wp |
---|
| 1439 | z_top = 0._wp |
---|
| 1440 | z_base = 0._wp |
---|
| 1441 | do k=1,Nlevels |
---|
| 1442 | ! Declaring thin cloud fraction for 3D variable |
---|
| 1443 | ! From TOA-2-SFC |
---|
| 1444 | if ( cldy(ip,ic,k) .eq. 1. .and. topcloud .eq. 1. ) then |
---|
| 1445 | lidarcldtype(ip,k,2) = lidarcldtype(ip,k,2) + 1._wp |
---|
| 1446 | z_base = k ! bottom cloud layer |
---|
| 1447 | endif |
---|
| 1448 | if ( cldy(ip,ic,k) .eq. 1. .and. topcloud .eq. 0. ) then |
---|
| 1449 | lidarcldtype(ip,k,2) = lidarcldtype(ip,k,2) + 1._wp |
---|
| 1450 | z_top = k ! top cloud layer |
---|
| 1451 | z_base = k ! bottom cloud layer |
---|
| 1452 | topcloud = 1._wp |
---|
| 1453 | endif |
---|
| 1454 | enddo |
---|
| 1455 | ! Computing mean emissivity using layers below the bottom cloud layer to the surface |
---|
| 1456 | srmean = 0._wp |
---|
| 1457 | srcount = 0._wp |
---|
| 1458 | cloudemis = 0._wp |
---|
| 1459 | do k=z_base+1,Nlevels |
---|
| 1460 | if ( (x(ip,ic,k) .gt. S_att_opaq) .and. (x(ip,ic,k) .lt. 1.0) .and. (x(ip,ic,k) .ne. undef) ) then |
---|
| 1461 | srmean = srmean + x(ip,ic,k) |
---|
| 1462 | srcount = srcount + 1. |
---|
| 1463 | endif |
---|
| 1464 | enddo |
---|
| 1465 | ! If clear sky layers exist below bottom cloud layer |
---|
| 1466 | if ( srcount .gt. 0. ) then |
---|
| 1467 | trans2 = srmean/srcount ! thin cloud transmittance**2 |
---|
| 1468 | tau_app = -(log(trans2))/2. ! apparent cloud optical depth |
---|
| 1469 | tau_vis = tau_app/eta ! cloud visible optical depth (multiple scat.) |
---|
| 1470 | tau_ir = tau_vis/2. ! approx. relation between visible and IR ODs |
---|
| 1471 | cloudemis = 1. - exp(-tau_ir) ! no diffusion in IR considered : emis = 1-T |
---|
| 1472 | count_emis(ip) = count_emis(ip) + 1. |
---|
| 1473 | endif |
---|
| 1474 | ! Summing thin cloud mean temperatures and altitudes |
---|
| 1475 | ! as defined in Vaillant de Guelis et al. 2017a, AMT |
---|
| 1476 | cldtypetemp(ip,2) = cldtypetemp(ip,2) + ( tmp(ip,z_base) + tmp(ip,z_top) )/2. |
---|
| 1477 | cldtypemeanz(ip,2) = cldtypemeanz(ip,2) + ( vgrid_z(z_base) + vgrid_z(z_top) )/2. |
---|
| 1478 | cldtypemeanzse(ip,2) = cldtypemeanzse(ip,2) + (( vgrid_z(z_base) + vgrid_z(z_top) )/2.) - surfelev(ip) |
---|
| 1479 | cldthinemis(ip) = cldthinemis(ip) + cloudemis |
---|
| 1480 | endif |
---|
| 1481 | |
---|
| 1482 | enddo |
---|
| 1483 | enddo |
---|
| 1484 | |
---|
| 1485 | ! 3D cloud types fraction (opaque=1 and thin=2 clouds) |
---|
| 1486 | where ( nsub(:,:) .gt. 0. ) |
---|
| 1487 | lidarcldtype(:,:,1) = lidarcldtype(:,:,1)/nsub(:,:) |
---|
| 1488 | lidarcldtype(:,:,2) = lidarcldtype(:,:,2)/nsub(:,:) |
---|
| 1489 | elsewhere |
---|
| 1490 | lidarcldtype(:,:,1) = undef |
---|
| 1491 | lidarcldtype(:,:,2) = undef |
---|
| 1492 | endwhere |
---|
| 1493 | ! 3D z_opaque fraction (=3) |
---|
| 1494 | where ( nsubopaq(:,:) .gt. 0. ) |
---|
| 1495 | lidarcldtype(:,:,3) = lidarcldtype(:,:,3)/nsubopaq(:,:) |
---|
| 1496 | elsewhere |
---|
| 1497 | lidarcldtype(:,:,3) = undef |
---|
| 1498 | lidarcldtype(:,:,4) = undef !declaring undef for opacity as well |
---|
| 1499 | endwhere |
---|
| 1500 | ! 3D opacity fraction (=4) !Summing z_opaque fraction from TOA(k=1) to SFC(k=Nlevels) |
---|
| 1501 | lidarcldtype(:,1,4) = lidarcldtype(:,1,3) !top layer equal to 3D z_opaque fraction |
---|
| 1502 | do ip = 1, Npoints |
---|
| 1503 | do k = 2, Nlevels |
---|
| 1504 | if ( (lidarcldtype(ip,k,3) .ne. undef) .and. (lidarcldtype(ip,k-1,4) .ne. undef) ) then |
---|
| 1505 | lidarcldtype(ip,k,4) = lidarcldtype(ip,k,3) + lidarcldtype(ip,k-1,4) |
---|
| 1506 | else |
---|
| 1507 | lidarcldtype(ip,k,4) = undef |
---|
| 1508 | endif |
---|
| 1509 | enddo |
---|
| 1510 | enddo |
---|
| 1511 | |
---|
| 1512 | ! Layered cloud types (opaque, thin and z_opaque 2D variables) |
---|
| 1513 | |
---|
| 1514 | do iz = 1, Ntype |
---|
| 1515 | do ic = 1, Ncolumns |
---|
| 1516 | cldtype(:,iz) = cldtype(:,iz) + cldlay(:,ic,iz) |
---|
| 1517 | nsublayer(:,iz) = nsublayer(:,iz) + nsublay(:,ic,iz) |
---|
| 1518 | enddo |
---|
| 1519 | enddo |
---|
| 1520 | |
---|
| 1521 | ! Mean temperature and altitude |
---|
| 1522 | where (cldtype(:,1) .gt. 0.) |
---|
| 1523 | cldtypetemp(:,1) = cldtypetemp(:,1)/cldtype(:,1) ! opaque cloud temp |
---|
| 1524 | cldtypetemp(:,3) = cldtypetemp(:,3)/cldtype(:,1) ! z_opaque |
---|
| 1525 | cldtypemeanz(:,1) = cldtypemeanz(:,1)/cldtype(:,1) ! opaque cloud alt |
---|
| 1526 | cldtypemeanzse(:,1) = cldtypemeanzse(:,1)/cldtype(:,1) ! opaque cloud alt - SE |
---|
| 1527 | cldtypemeanzse(:,3) = cldtypemeanzse(:,3)/cldtype(:,1) ! z_opaque - SE |
---|
| 1528 | elsewhere |
---|
| 1529 | cldtypetemp(:,1) = undef |
---|
| 1530 | cldtypetemp(:,3) = undef |
---|
| 1531 | cldtypemeanz(:,1) = undef |
---|
| 1532 | cldtypemeanzse(:,1) = undef |
---|
| 1533 | cldtypemeanzse(:,3) = undef |
---|
| 1534 | endwhere |
---|
| 1535 | |
---|
| 1536 | where (cldtype(:,2) .gt. 0.) ! thin cloud |
---|
| 1537 | cldtypetemp(:,2) = cldtypetemp(:,2)/cldtype(:,2) |
---|
| 1538 | cldtypemeanz(:,2) = cldtypemeanz(:,2)/cldtype(:,2) |
---|
| 1539 | cldtypemeanzse(:,2) = cldtypemeanzse(:,2)/cldtype(:,2) |
---|
| 1540 | elsewhere |
---|
| 1541 | cldtypetemp(:,2) = undef |
---|
| 1542 | cldtypemeanz(:,2) = undef |
---|
| 1543 | cldtypemeanzse(:,2) = undef |
---|
| 1544 | endwhere |
---|
| 1545 | |
---|
| 1546 | ! Mean thin cloud emissivity |
---|
| 1547 | where (count_emis(:) .gt. 0.) ! thin cloud |
---|
| 1548 | cldthinemis(:) = cldthinemis(:)/count_emis(:) |
---|
| 1549 | elsewhere |
---|
| 1550 | cldthinemis(:) = undef |
---|
| 1551 | endwhere |
---|
| 1552 | |
---|
| 1553 | where (nsublayer(:,:) .gt. 0.) |
---|
| 1554 | cldtype(:,:) = cldtype(:,:)/nsublayer(:,:) |
---|
| 1555 | elsewhere |
---|
| 1556 | cldtype(:,:) = undef |
---|
| 1557 | endwhere |
---|
| 1558 | |
---|
| 1559 | END SUBROUTINE COSP_OPAQ |
---|
| 1560 | |
---|
| 1561 | end module mod_lidar_simulator |
---|