1 | ! $Revision: 88 $, $Date: 2013-11-13 15:08:38 +0100 (mer. 13 nov. 2013) $ |
---|
2 | ! $URL: http://cfmip-obs-sim.googlecode.com/svn/stable/v1.4.0/icarus-scops-4.1-bsd/icarus.f $ |
---|
3 | SUBROUTINE ICARUS( & |
---|
4 | debug, & |
---|
5 | debugcol, & |
---|
6 | npoints, & |
---|
7 | sunlit, & |
---|
8 | nlev, & |
---|
9 | ncol, & |
---|
10 | pfull, & |
---|
11 | phalf, & |
---|
12 | qv, & |
---|
13 | cc, & |
---|
14 | conv, & |
---|
15 | dtau_s, & |
---|
16 | dtau_c, & |
---|
17 | top_height, & |
---|
18 | top_height_direction, & |
---|
19 | overlap, & |
---|
20 | frac_out, & |
---|
21 | skt, & |
---|
22 | emsfc_lw, & |
---|
23 | at, & |
---|
24 | dem_s, & |
---|
25 | dem_c, & |
---|
26 | fq_isccp, & |
---|
27 | totalcldarea, & |
---|
28 | meanptop, & |
---|
29 | meantaucld, & |
---|
30 | meanalbedocld, & |
---|
31 | meantb, & |
---|
32 | meantbclr, & |
---|
33 | boxtau, & |
---|
34 | boxptop & |
---|
35 | ) |
---|
36 | |
---|
37 | !$Id: icarus.f,v 4.1 2010/05/27 16:30:18 hadmw Exp $ |
---|
38 | |
---|
39 | ! *****************************COPYRIGHT**************************** |
---|
40 | ! (c) 2009, Lawrence Livermore National Security Limited Liability |
---|
41 | ! Corporation. |
---|
42 | ! All rights reserved. |
---|
43 | ! |
---|
44 | ! Redistribution and use in source and binary forms, with or without |
---|
45 | ! modification, are permitted provided that the |
---|
46 | ! following conditions are met: |
---|
47 | ! |
---|
48 | ! * Redistributions of source code must retain the above |
---|
49 | ! copyright notice, this list of conditions and the following |
---|
50 | ! disclaimer. |
---|
51 | ! * Redistributions in binary form must reproduce the above |
---|
52 | ! copyright notice, this list of conditions and the following |
---|
53 | ! disclaimer in the documentation and/or other materials |
---|
54 | ! provided with the distribution. |
---|
55 | ! * Neither the name of the Lawrence Livermore National Security |
---|
56 | ! Limited Liability Corporation nor the names of its |
---|
57 | ! contributors may be used to endorse or promote products |
---|
58 | ! derived from this software without specific prior written |
---|
59 | ! permission. |
---|
60 | ! |
---|
61 | ! THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
---|
62 | ! "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
---|
63 | ! LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR |
---|
64 | ! A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT |
---|
65 | ! OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
---|
66 | ! SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT |
---|
67 | ! LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
---|
68 | ! DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
---|
69 | ! THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
---|
70 | ! (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
---|
71 | ! OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
---|
72 | ! |
---|
73 | ! *****************************COPYRIGHT******************************* |
---|
74 | ! *****************************COPYRIGHT******************************* |
---|
75 | ! *****************************COPYRIGHT******************************* |
---|
76 | ! *****************************COPYRIGHT******************************* |
---|
77 | |
---|
78 | implicit none |
---|
79 | |
---|
80 | ! NOTE: the maximum number of levels and columns is set by |
---|
81 | ! the following parameter statement |
---|
82 | |
---|
83 | INTEGER :: ncolprint |
---|
84 | |
---|
85 | ! ----- |
---|
86 | ! Input |
---|
87 | ! ----- |
---|
88 | |
---|
89 | INTEGER :: npoints ! number of model points in the horizontal |
---|
90 | INTEGER :: nlev ! number of model levels in column |
---|
91 | INTEGER :: ncol ! number of subcolumns |
---|
92 | |
---|
93 | INTEGER :: sunlit(npoints) ! 1 for day points, 0 for night time |
---|
94 | |
---|
95 | REAL :: pfull(npoints,nlev) |
---|
96 | ! ! pressure of full model levels (Pascals) |
---|
97 | ! ! pfull(npoints,1) is top level of model |
---|
98 | ! ! pfull(npoints,nlev) is bot of model |
---|
99 | |
---|
100 | REAL :: phalf(npoints,nlev+1) |
---|
101 | ! ! pressure of half model levels (Pascals) |
---|
102 | ! ! phalf(npoints,1) is top of model |
---|
103 | ! ! phalf(npoints,nlev+1) is the surface pressure |
---|
104 | |
---|
105 | REAL :: qv(npoints,nlev) |
---|
106 | ! ! water vapor specific humidity (kg vapor/ kg air) |
---|
107 | ! ! on full model levels |
---|
108 | |
---|
109 | REAL :: cc(npoints,nlev) |
---|
110 | ! ! input cloud cover in each model level (fraction) |
---|
111 | ! ! NOTE: This is the HORIZONTAL area of each |
---|
112 | ! ! grid box covered by clouds |
---|
113 | |
---|
114 | REAL :: conv(npoints,nlev) |
---|
115 | ! ! input convective cloud cover in each model |
---|
116 | ! ! level (fraction) |
---|
117 | ! ! NOTE: This is the HORIZONTAL area of each |
---|
118 | ! ! grid box covered by convective clouds |
---|
119 | |
---|
120 | REAL :: dtau_s(npoints,nlev) |
---|
121 | ! ! mean 0.67 micron optical depth of stratiform |
---|
122 | ! ! clouds in each model level |
---|
123 | ! ! NOTE: this the cloud optical depth of only the |
---|
124 | ! ! cloudy part of the grid box, it is not weighted |
---|
125 | ! ! with the 0 cloud optical depth of the clear |
---|
126 | ! ! part of the grid box |
---|
127 | |
---|
128 | REAL :: dtau_c(npoints,nlev) |
---|
129 | ! ! mean 0.67 micron optical depth of convective |
---|
130 | ! ! clouds in each |
---|
131 | ! ! model level. Same note applies as in dtau_s. |
---|
132 | |
---|
133 | INTEGER :: overlap ! overlap type |
---|
134 | ! ! 1=max |
---|
135 | ! ! 2=rand |
---|
136 | ! ! 3=max/rand |
---|
137 | |
---|
138 | INTEGER :: top_height ! 1 = adjust top height using both a computed |
---|
139 | ! ! infrared brightness temperature and the visible |
---|
140 | ! ! optical depth to adjust cloud top pressure. Note |
---|
141 | ! ! that this calculation is most appropriate to compare |
---|
142 | ! ! to ISCCP data during sunlit hours. |
---|
143 | ! ! 2 = do not adjust top height, that is cloud top |
---|
144 | ! ! pressure is the actual cloud top pressure |
---|
145 | ! ! in the model |
---|
146 | ! ! 3 = adjust top height using only the computed |
---|
147 | ! ! infrared brightness temperature. Note that this |
---|
148 | ! ! calculation is most appropriate to compare to ISCCP |
---|
149 | ! ! IR only algortihm (i.e. you can compare to nighttime |
---|
150 | ! ! ISCCP data with this option) |
---|
151 | |
---|
152 | INTEGER :: top_height_direction ! direction for finding atmosphere pressure level |
---|
153 | ! ! with interpolated temperature equal to the radiance |
---|
154 | ! determined cloud-top temperature |
---|
155 | ! |
---|
156 | ! 1 = find the *lowest* altitude (highest pressure) level |
---|
157 | ! with interpolated temperature equal to the radiance |
---|
158 | ! determined cloud-top temperature |
---|
159 | ! |
---|
160 | ! 2 = find the *highest* altitude (lowest pressure) level |
---|
161 | ! with interpolated temperature equal to the radiance |
---|
162 | ! determined cloud-top temperature |
---|
163 | ! |
---|
164 | ! ONLY APPLICABLE IF top_height EQUALS 1 or 3 |
---|
165 | ! ! |
---|
166 | ! 1 = old setting: matches all versions of |
---|
167 | ! ISCCP simulator with versions numbers 3.5.1 and lower |
---|
168 | ! |
---|
169 | ! 2 = default setting: for version numbers 4.0 and higher |
---|
170 | ! |
---|
171 | ! The following input variables are used only if top_height = 1 or top_height = 3 |
---|
172 | ! |
---|
173 | REAL :: skt(npoints) ! skin Temperature (K) |
---|
174 | REAL :: emsfc_lw ! 10.5 micron emissivity of surface (fraction) |
---|
175 | REAL :: at(npoints,nlev) ! temperature in each model level (K) |
---|
176 | REAL :: dem_s(npoints,nlev) ! 10.5 micron longwave emissivity of stratiform |
---|
177 | ! ! clouds in each |
---|
178 | ! ! model level. Same note applies as in dtau_s. |
---|
179 | REAL :: dem_c(npoints,nlev) ! 10.5 micron longwave emissivity of convective |
---|
180 | ! ! clouds in each |
---|
181 | ! ! model level. Same note applies as in dtau_s. |
---|
182 | |
---|
183 | REAL :: frac_out(npoints,ncol,nlev) ! boxes gridbox divided up into |
---|
184 | ! ! Equivalent of BOX in original version, but |
---|
185 | ! ! indexed by column then row, rather than |
---|
186 | ! ! by row then column |
---|
187 | |
---|
188 | |
---|
189 | |
---|
190 | ! ------ |
---|
191 | ! Output |
---|
192 | ! ------ |
---|
193 | |
---|
194 | REAL :: fq_isccp(npoints,7,7) ! the fraction of the model grid box covered by |
---|
195 | ! ! each of the 49 ISCCP D level cloud types |
---|
196 | |
---|
197 | REAL :: totalcldarea(npoints) ! the fraction of model grid box columns |
---|
198 | ! ! with cloud somewhere in them. NOTE: This diagnostic |
---|
199 | ! does not count model clouds with tau < isccp_taumin |
---|
200 | ! ! Thus this diagnostic does not equal the sum over all entries of fq_isccp. |
---|
201 | ! However, this diagnostic does equal the sum over entries of fq_isccp with |
---|
202 | ! itau = 2:7 (omitting itau = 1) |
---|
203 | |
---|
204 | |
---|
205 | ! ! The following three means are averages only over the cloudy areas with tau > isccp_taumin. |
---|
206 | ! ! If no clouds with tau > isccp_taumin are in grid box all three quantities should equal zero. |
---|
207 | |
---|
208 | REAL :: meanptop(npoints) ! mean cloud top pressure (mb) - linear averaging |
---|
209 | ! ! in cloud top pressure. |
---|
210 | |
---|
211 | REAL :: meantaucld(npoints) ! mean optical thickness |
---|
212 | ! ! linear averaging in albedo performed. |
---|
213 | |
---|
214 | real :: meanalbedocld(npoints) ! mean cloud albedo |
---|
215 | ! ! linear averaging in albedo performed |
---|
216 | |
---|
217 | real :: meantb(npoints) ! mean all-sky 10.5 micron brightness temperature |
---|
218 | |
---|
219 | real :: meantbclr(npoints) ! mean clear-sky 10.5 micron brightness temperature |
---|
220 | |
---|
221 | REAL :: boxtau(npoints,ncol) ! optical thickness in each column |
---|
222 | |
---|
223 | REAL :: boxptop(npoints,ncol) ! cloud top pressure (mb) in each column |
---|
224 | |
---|
225 | |
---|
226 | ! |
---|
227 | ! ------ |
---|
228 | ! Working variables added when program updated to mimic Mark Webb's PV-Wave code |
---|
229 | ! ------ |
---|
230 | |
---|
231 | REAL :: dem(npoints,ncol),bb(npoints) ! working variables for 10.5 micron longwave |
---|
232 | ! ! emissivity in part of |
---|
233 | ! ! gridbox under consideration |
---|
234 | |
---|
235 | REAL :: ptrop(npoints) |
---|
236 | REAL :: attrop(npoints) |
---|
237 | REAL :: attropmin (npoints) |
---|
238 | REAL :: atmax(npoints) |
---|
239 | REAL :: btcmin(npoints) |
---|
240 | REAL :: transmax(npoints) |
---|
241 | |
---|
242 | INTEGER :: i,j,ilev,ibox,itrop(npoints) |
---|
243 | INTEGER :: ipres(npoints) |
---|
244 | INTEGER :: itau(npoints),ilev2 |
---|
245 | INTEGER :: acc(nlev,ncol) |
---|
246 | INTEGER :: match(npoints,nlev-1) |
---|
247 | INTEGER :: nmatch(npoints) |
---|
248 | INTEGER :: levmatch(npoints,ncol) |
---|
249 | |
---|
250 | ! !variables needed for water vapor continuum absorption |
---|
251 | real :: fluxtop_clrsky(npoints),trans_layers_above_clrsky(npoints) |
---|
252 | real :: taumin(npoints) |
---|
253 | real :: dem_wv(npoints,nlev), wtmair, wtmh20, Navo, grav, pstd, t0 |
---|
254 | real :: press(npoints), dpress(npoints), atmden(npoints) |
---|
255 | real :: rvh20(npoints), wk(npoints), rhoave(npoints) |
---|
256 | real :: rh20s(npoints), rfrgn(npoints) |
---|
257 | real :: tmpexp(npoints),tauwv(npoints) |
---|
258 | |
---|
259 | character(len=1) :: cchar(6),cchar_realtops(6) |
---|
260 | integer :: icycle |
---|
261 | REAL :: tau(npoints,ncol) |
---|
262 | LOGICAL :: box_cloudy(npoints,ncol) |
---|
263 | REAL :: tb(npoints,ncol) |
---|
264 | REAL :: ptop(npoints,ncol) |
---|
265 | REAL :: emcld(npoints,ncol) |
---|
266 | REAL :: fluxtop(npoints,ncol) |
---|
267 | REAL :: trans_layers_above(npoints,ncol) |
---|
268 | real :: isccp_taumin,fluxtopinit(npoints),tauir(npoints) |
---|
269 | REAL :: albedocld(npoints,ncol) |
---|
270 | real :: boxarea |
---|
271 | integer :: debug ! set to non-zero value to print out inputs |
---|
272 | ! ! with step debug |
---|
273 | integer :: debugcol ! set to non-zero value to print out column |
---|
274 | ! ! decomposition with step debugcol |
---|
275 | integer :: rangevec(npoints),rangeerror |
---|
276 | |
---|
277 | integer :: index1(npoints),num1,jj,k1,k2 |
---|
278 | real :: rec2p13,tauchk,logp,logp1,logp2,atd |
---|
279 | real :: output_missing_value |
---|
280 | |
---|
281 | character(len=10) :: ftn09 |
---|
282 | |
---|
283 | DATA isccp_taumin / 0.3 / |
---|
284 | DATA output_missing_value / -1.E+30 / |
---|
285 | DATA cchar / ' ','-','1','+','I','+'/ |
---|
286 | DATA cchar_realtops / ' ',' ','1','1','I','I'/ |
---|
287 | |
---|
288 | ! ------ End duplicate definitions common to wrapper routine |
---|
289 | |
---|
290 | tauchk = -1.*log(0.9999999) |
---|
291 | rec2p13=1./2.13 |
---|
292 | |
---|
293 | ncolprint=0 |
---|
294 | |
---|
295 | if ( debug.ne.0 ) then |
---|
296 | j=1 |
---|
297 | write(6,'(a10)') 'j=' |
---|
298 | write(6,'(8I10)') j |
---|
299 | write(6,'(a10)') 'debug=' |
---|
300 | write(6,'(8I10)') debug |
---|
301 | write(6,'(a10)') 'debugcol=' |
---|
302 | write(6,'(8I10)') debugcol |
---|
303 | write(6,'(a10)') 'npoints=' |
---|
304 | write(6,'(8I10)') npoints |
---|
305 | write(6,'(a10)') 'nlev=' |
---|
306 | write(6,'(8I10)') nlev |
---|
307 | write(6,'(a10)') 'ncol=' |
---|
308 | write(6,'(8I10)') ncol |
---|
309 | write(6,'(a11)') 'top_height=' |
---|
310 | write(6,'(8I10)') top_height |
---|
311 | write(6,'(a21)') 'top_height_direction=' |
---|
312 | write(6,'(8I10)') top_height_direction |
---|
313 | write(6,'(a10)') 'overlap=' |
---|
314 | write(6,'(8I10)') overlap |
---|
315 | write(6,'(a10)') 'emsfc_lw=' |
---|
316 | write(6,'(8f10.2)') emsfc_lw |
---|
317 | do j=1,npoints,debug |
---|
318 | write(6,'(a10)') 'j=' |
---|
319 | write(6,'(8I10)') j |
---|
320 | write(6,'(a10)') 'sunlit=' |
---|
321 | write(6,'(8I10)') sunlit(j) |
---|
322 | write(6,'(a10)') 'pfull=' |
---|
323 | write(6,'(8f10.2)') (pfull(j,i),i=1,nlev) |
---|
324 | write(6,'(a10)') 'phalf=' |
---|
325 | write(6,'(8f10.2)') (phalf(j,i),i=1,nlev+1) |
---|
326 | write(6,'(a10)') 'qv=' |
---|
327 | write(6,'(8f10.3)') (qv(j,i),i=1,nlev) |
---|
328 | write(6,'(a10)') 'cc=' |
---|
329 | write(6,'(8f10.3)') (cc(j,i),i=1,nlev) |
---|
330 | write(6,'(a10)') 'conv=' |
---|
331 | write(6,'(8f10.2)') (conv(j,i),i=1,nlev) |
---|
332 | write(6,'(a10)') 'dtau_s=' |
---|
333 | write(6,'(8g12.5)') (dtau_s(j,i),i=1,nlev) |
---|
334 | write(6,'(a10)') 'dtau_c=' |
---|
335 | write(6,'(8f10.2)') (dtau_c(j,i),i=1,nlev) |
---|
336 | write(6,'(a10)') 'skt=' |
---|
337 | write(6,'(8f10.2)') skt(j) |
---|
338 | write(6,'(a10)') 'at=' |
---|
339 | write(6,'(8f10.2)') (at(j,i),i=1,nlev) |
---|
340 | write(6,'(a10)') 'dem_s=' |
---|
341 | write(6,'(8f10.3)') (dem_s(j,i),i=1,nlev) |
---|
342 | write(6,'(a10)') 'dem_c=' |
---|
343 | write(6,'(8f10.3)') (dem_c(j,i),i=1,nlev) |
---|
344 | enddo |
---|
345 | endif |
---|
346 | |
---|
347 | ! ---------------------------------------------------! |
---|
348 | |
---|
349 | if (ncolprint.ne.0) then |
---|
350 | do j=1,npoints,1000 |
---|
351 | write(6,'(a10)') 'j=' |
---|
352 | write(6,'(8I10)') j |
---|
353 | enddo |
---|
354 | endif |
---|
355 | |
---|
356 | if (top_height .eq. 1 .or. top_height .eq. 3) then |
---|
357 | |
---|
358 | do j=1,npoints |
---|
359 | ptrop(j)=5000. |
---|
360 | attropmin(j) = 400. |
---|
361 | atmax(j) = 0. |
---|
362 | attrop(j) = 120. |
---|
363 | itrop(j) = 1 |
---|
364 | enddo |
---|
365 | |
---|
366 | do ilev=1,nlev |
---|
367 | do j=1,npoints |
---|
368 | if (pfull(j,ilev) .lt. 40000. .and. & |
---|
369 | pfull(j,ilev) .gt. 5000. .and. & |
---|
370 | at(j,ilev) .lt. attropmin(j)) then |
---|
371 | ptrop(j) = pfull(j,ilev) |
---|
372 | attropmin(j) = at(j,ilev) |
---|
373 | attrop(j) = attropmin(j) |
---|
374 | itrop(j)=ilev |
---|
375 | end if |
---|
376 | enddo |
---|
377 | end do |
---|
378 | |
---|
379 | do ilev=1,nlev |
---|
380 | do j=1,npoints |
---|
381 | if (at(j,ilev) .gt. atmax(j) .and. & |
---|
382 | ilev .ge. itrop(j)) atmax(j)=at(j,ilev) |
---|
383 | enddo |
---|
384 | end do |
---|
385 | |
---|
386 | end if |
---|
387 | |
---|
388 | |
---|
389 | if (top_height .eq. 1 .or. top_height .eq. 3) then |
---|
390 | do j=1,npoints |
---|
391 | meantb(j) = 0. |
---|
392 | meantbclr(j) = 0. |
---|
393 | end do |
---|
394 | else |
---|
395 | do j=1,npoints |
---|
396 | meantb(j) = output_missing_value |
---|
397 | meantbclr(j) = output_missing_value |
---|
398 | end do |
---|
399 | end if |
---|
400 | |
---|
401 | ! -----------------------------------------------------! |
---|
402 | |
---|
403 | ! ---------------------------------------------------! |
---|
404 | |
---|
405 | do ilev=1,nlev |
---|
406 | do j=1,npoints |
---|
407 | |
---|
408 | rangevec(j)=0 |
---|
409 | |
---|
410 | if (cc(j,ilev) .lt. 0. .or. cc(j,ilev) .gt. 1.) then |
---|
411 | ! error = cloud fraction less than zero |
---|
412 | ! error = cloud fraction greater than 1 |
---|
413 | rangevec(j)=rangevec(j)+1 |
---|
414 | endif |
---|
415 | |
---|
416 | if (conv(j,ilev) .lt. 0. .or. conv(j,ilev) .gt. 1.) then |
---|
417 | ! ' error = convective cloud fraction less than zero' |
---|
418 | ! ' error = convective cloud fraction greater than 1' |
---|
419 | rangevec(j)=rangevec(j)+2 |
---|
420 | endif |
---|
421 | |
---|
422 | if (dtau_s(j,ilev) .lt. 0.) then |
---|
423 | ! ' error = stratiform cloud opt. depth less than zero' |
---|
424 | rangevec(j)=rangevec(j)+4 |
---|
425 | endif |
---|
426 | |
---|
427 | if (dtau_c(j,ilev) .lt. 0.) then |
---|
428 | ! ' error = convective cloud opt. depth less than zero' |
---|
429 | rangevec(j)=rangevec(j)+8 |
---|
430 | endif |
---|
431 | |
---|
432 | if (dem_s(j,ilev) .lt. 0. .or. dem_s(j,ilev) .gt. 1.) then |
---|
433 | ! ' error = stratiform cloud emissivity less than zero' |
---|
434 | ! ' error = stratiform cloud emissivity greater than 1' |
---|
435 | rangevec(j)=rangevec(j)+16 |
---|
436 | endif |
---|
437 | |
---|
438 | if (dem_c(j,ilev) .lt. 0. .or. dem_c(j,ilev) .gt. 1.) then |
---|
439 | ! ' error = convective cloud emissivity less than zero' |
---|
440 | ! ' error = convective cloud emissivity greater than 1' |
---|
441 | rangevec(j)=rangevec(j)+32 |
---|
442 | endif |
---|
443 | enddo |
---|
444 | |
---|
445 | rangeerror=0 |
---|
446 | do j=1,npoints |
---|
447 | rangeerror=rangeerror+rangevec(j) |
---|
448 | enddo |
---|
449 | |
---|
450 | if (rangeerror.ne.0) then |
---|
451 | write (6,*) 'Input variable out of range' |
---|
452 | write (6,*) 'rangevec:' |
---|
453 | write (6,*) rangevec |
---|
454 | STOP |
---|
455 | endif |
---|
456 | enddo |
---|
457 | |
---|
458 | ! |
---|
459 | ! ---------------------------------------------------! |
---|
460 | |
---|
461 | |
---|
462 | ! |
---|
463 | ! ---------------------------------------------------! |
---|
464 | ! COMPUTE CLOUD OPTICAL DEPTH FOR EACH COLUMN and |
---|
465 | ! put into vector tau |
---|
466 | |
---|
467 | ! !initialize tau and albedocld to zero |
---|
468 | do ibox=1,ncol |
---|
469 | do j=1,npoints |
---|
470 | tau(j,ibox)=0. |
---|
471 | albedocld(j,ibox)=0. |
---|
472 | boxtau(j,ibox)=output_missing_value |
---|
473 | boxptop(j,ibox)=output_missing_value |
---|
474 | box_cloudy(j,ibox)=.false. |
---|
475 | enddo |
---|
476 | end do |
---|
477 | |
---|
478 | ! !compute total cloud optical depth for each column |
---|
479 | do ilev=1,nlev |
---|
480 | ! !increment tau for each of the boxes |
---|
481 | do ibox=1,ncol |
---|
482 | do j=1,npoints |
---|
483 | if (frac_out(j,ibox,ilev).eq.1) then |
---|
484 | tau(j,ibox)=tau(j,ibox) & |
---|
485 | + dtau_s(j,ilev) |
---|
486 | endif |
---|
487 | if (frac_out(j,ibox,ilev).eq.2) then |
---|
488 | tau(j,ibox)=tau(j,ibox) & |
---|
489 | + dtau_c(j,ilev) |
---|
490 | end if |
---|
491 | enddo |
---|
492 | enddo ! ibox |
---|
493 | enddo ! ilev |
---|
494 | if (ncolprint.ne.0) then |
---|
495 | |
---|
496 | do j=1,npoints ,1000 |
---|
497 | write(6,'(a10)') 'j=' |
---|
498 | write(6,'(8I10)') j |
---|
499 | write(6,'(i2,1X,8(f7.2,1X))') & |
---|
500 | ilev, & |
---|
501 | (tau(j,ibox),ibox=1,ncolprint) |
---|
502 | enddo |
---|
503 | endif |
---|
504 | ! |
---|
505 | ! ---------------------------------------------------! |
---|
506 | |
---|
507 | |
---|
508 | |
---|
509 | ! |
---|
510 | ! ---------------------------------------------------! |
---|
511 | ! COMPUTE INFRARED BRIGHTNESS TEMPERUATRES |
---|
512 | ! AND CLOUD TOP TEMPERATURE SATELLITE SHOULD SEE |
---|
513 | ! |
---|
514 | ! again this is only done if top_height = 1 or 3 |
---|
515 | ! |
---|
516 | ! fluxtop is the 10.5 micron radiance at the top of the |
---|
517 | ! atmosphere |
---|
518 | ! trans_layers_above is the total transmissivity in the layers |
---|
519 | ! above the current layer |
---|
520 | ! fluxtop_clrsky(j) and trans_layers_above_clrsky(j) are the clear |
---|
521 | ! sky versions of these quantities. |
---|
522 | |
---|
523 | if (top_height .eq. 1 .or. top_height .eq. 3) then |
---|
524 | |
---|
525 | |
---|
526 | ! !---------------------------------------------------------------------- |
---|
527 | ! ! |
---|
528 | ! ! DO CLEAR SKY RADIANCE CALCULATION FIRST |
---|
529 | ! ! |
---|
530 | ! !compute water vapor continuum emissivity |
---|
531 | ! !this treatment follows Schwarkzopf and Ramasamy |
---|
532 | ! !JGR 1999,vol 104, pages 9467-9499. |
---|
533 | ! !the emissivity is calculated at a wavenumber of 955 cm-1, |
---|
534 | ! !or 10.47 microns |
---|
535 | wtmair = 28.9644 |
---|
536 | wtmh20 = 18.01534 |
---|
537 | Navo = 6.023E+23 |
---|
538 | grav = 9.806650E+02 |
---|
539 | pstd = 1.013250E+06 |
---|
540 | t0 = 296. |
---|
541 | if (ncolprint .ne. 0) & |
---|
542 | write(6,*) 'ilev pw (kg/m2) tauwv(j) dem_wv' |
---|
543 | do ilev=1,nlev |
---|
544 | do j=1,npoints |
---|
545 | ! !press and dpress are dyne/cm2 = Pascals *10 |
---|
546 | press(j) = pfull(j,ilev)*10. |
---|
547 | dpress(j) = (phalf(j,ilev+1)-phalf(j,ilev))*10 |
---|
548 | ! !atmden = g/cm2 = kg/m2 / 10 |
---|
549 | atmden(j) = dpress(j)/grav |
---|
550 | rvh20(j) = qv(j,ilev)*wtmair/wtmh20 |
---|
551 | wk(j) = rvh20(j)*Navo*atmden(j)/wtmair |
---|
552 | rhoave(j) = (press(j)/pstd)*(t0/at(j,ilev)) |
---|
553 | rh20s(j) = rvh20(j)*rhoave(j) |
---|
554 | rfrgn(j) = rhoave(j)-rh20s(j) |
---|
555 | tmpexp(j) = exp(-0.02*(at(j,ilev)-t0)) |
---|
556 | tauwv(j) = wk(j)*1.e-20*( & |
---|
557 | (0.0224697*rh20s(j)*tmpexp(j)) + & |
---|
558 | (3.41817e-7*rfrgn(j)) )*0.98 |
---|
559 | dem_wv(j,ilev) = 1. - exp( -1. * tauwv(j)) |
---|
560 | enddo |
---|
561 | if (ncolprint .ne. 0) then |
---|
562 | do j=1,npoints ,1000 |
---|
563 | write(6,'(a10)') 'j=' |
---|
564 | write(6,'(8I10)') j |
---|
565 | write(6,'(i2,1X,3(f8.3,3X))') ilev, & |
---|
566 | qv(j,ilev)*(phalf(j,ilev+1)-phalf(j,ilev))/(grav/100.), & |
---|
567 | tauwv(j),dem_wv(j,ilev) |
---|
568 | enddo |
---|
569 | endif |
---|
570 | end do |
---|
571 | |
---|
572 | ! !initialize variables |
---|
573 | do j=1,npoints |
---|
574 | fluxtop_clrsky(j) = 0. |
---|
575 | trans_layers_above_clrsky(j)=1. |
---|
576 | enddo |
---|
577 | |
---|
578 | do ilev=1,nlev |
---|
579 | do j=1,npoints |
---|
580 | |
---|
581 | ! ! Black body emission at temperature of the layer |
---|
582 | |
---|
583 | bb(j)=1 / ( exp(1307.27/at(j,ilev)) - 1. ) |
---|
584 | ! !bb(j)= 5.67e-8*at(j,ilev)**4 |
---|
585 | |
---|
586 | ! ! increase TOA flux by flux emitted from layer |
---|
587 | ! ! times total transmittance in layers above |
---|
588 | |
---|
589 | fluxtop_clrsky(j) = fluxtop_clrsky(j) & |
---|
590 | + dem_wv(j,ilev)*bb(j)*trans_layers_above_clrsky(j) |
---|
591 | |
---|
592 | ! ! update trans_layers_above with transmissivity |
---|
593 | ! ! from this layer for next time around loop |
---|
594 | |
---|
595 | trans_layers_above_clrsky(j)= & |
---|
596 | trans_layers_above_clrsky(j)*(1.-dem_wv(j,ilev)) |
---|
597 | |
---|
598 | |
---|
599 | enddo |
---|
600 | if (ncolprint.ne.0) then |
---|
601 | do j=1,npoints ,1000 |
---|
602 | write(6,'(a10)') 'j=' |
---|
603 | write(6,'(8I10)') j |
---|
604 | write (6,'(a)') 'ilev:' |
---|
605 | write (6,'(I2)') ilev |
---|
606 | |
---|
607 | write (6,'(a)') & |
---|
608 | 'emiss_layer,100.*bb(j),100.*f,total_trans:' |
---|
609 | write (6,'(4(f7.2,1X))') dem_wv(j,ilev),100.*bb(j), & |
---|
610 | 100.*fluxtop_clrsky(j),trans_layers_above_clrsky(j) |
---|
611 | enddo |
---|
612 | endif |
---|
613 | |
---|
614 | enddo !loop over level |
---|
615 | |
---|
616 | do j=1,npoints |
---|
617 | ! !add in surface emission |
---|
618 | bb(j)=1/( exp(1307.27/skt(j)) - 1. ) |
---|
619 | ! !bb(j)=5.67e-8*skt(j)**4 |
---|
620 | |
---|
621 | fluxtop_clrsky(j) = fluxtop_clrsky(j) + emsfc_lw * bb(j) & |
---|
622 | * trans_layers_above_clrsky(j) |
---|
623 | |
---|
624 | ! !clear sky brightness temperature |
---|
625 | meantbclr(j) = 1307.27/(log(1.+(1./fluxtop_clrsky(j)))) |
---|
626 | |
---|
627 | enddo |
---|
628 | |
---|
629 | if (ncolprint.ne.0) then |
---|
630 | do j=1,npoints ,1000 |
---|
631 | write(6,'(a10)') 'j=' |
---|
632 | write(6,'(8I10)') j |
---|
633 | write (6,'(a)') 'id:' |
---|
634 | write (6,'(a)') 'surface' |
---|
635 | |
---|
636 | write (6,'(a)') 'emsfc,100.*bb(j),100.*f,total_trans:' |
---|
637 | write (6,'(5(f7.2,1X))') emsfc_lw,100.*bb(j), & |
---|
638 | 100.*fluxtop_clrsky(j), & |
---|
639 | trans_layers_above_clrsky(j), meantbclr(j) |
---|
640 | enddo |
---|
641 | endif |
---|
642 | |
---|
643 | |
---|
644 | ! ! |
---|
645 | ! ! END OF CLEAR SKY CALCULATION |
---|
646 | ! ! |
---|
647 | ! !---------------------------------------------------------------- |
---|
648 | |
---|
649 | |
---|
650 | |
---|
651 | if (ncolprint.ne.0) then |
---|
652 | |
---|
653 | do j=1,npoints ,1000 |
---|
654 | write(6,'(a10)') 'j=' |
---|
655 | write(6,'(8I10)') j |
---|
656 | write (6,'(a)') 'ts:' |
---|
657 | write (6,'(8f7.2)') (skt(j),ibox=1,ncolprint) |
---|
658 | |
---|
659 | write (6,'(a)') 'ta_rev:' |
---|
660 | write (6,'(8f7.2)') & |
---|
661 | ((at(j,ilev2),ibox=1,ncolprint),ilev2=1,nlev) |
---|
662 | |
---|
663 | enddo |
---|
664 | endif |
---|
665 | ! !loop over columns |
---|
666 | do ibox=1,ncol |
---|
667 | do j=1,npoints |
---|
668 | fluxtop(j,ibox)=0. |
---|
669 | trans_layers_above(j,ibox)=1. |
---|
670 | enddo |
---|
671 | enddo |
---|
672 | |
---|
673 | do ilev=1,nlev |
---|
674 | do j=1,npoints |
---|
675 | ! ! Black body emission at temperature of the layer |
---|
676 | |
---|
677 | bb(j)=1 / ( exp(1307.27/at(j,ilev)) - 1. ) |
---|
678 | ! !bb(j)= 5.67e-8*at(j,ilev)**4 |
---|
679 | enddo |
---|
680 | |
---|
681 | do ibox=1,ncol |
---|
682 | do j=1,npoints |
---|
683 | |
---|
684 | ! ! emissivity for point in this layer |
---|
685 | if (frac_out(j,ibox,ilev).eq.1) then |
---|
686 | dem(j,ibox)= 1. - & |
---|
687 | ( (1. - dem_wv(j,ilev)) * (1. - dem_s(j,ilev)) ) |
---|
688 | else if (frac_out(j,ibox,ilev).eq.2) then |
---|
689 | dem(j,ibox)= 1. - & |
---|
690 | ( (1. - dem_wv(j,ilev)) * (1. - dem_c(j,ilev)) ) |
---|
691 | else |
---|
692 | dem(j,ibox)= dem_wv(j,ilev) |
---|
693 | end if |
---|
694 | |
---|
695 | |
---|
696 | ! ! increase TOA flux by flux emitted from layer |
---|
697 | ! ! times total transmittance in layers above |
---|
698 | |
---|
699 | fluxtop(j,ibox) = fluxtop(j,ibox) & |
---|
700 | + dem(j,ibox) * bb(j) & |
---|
701 | * trans_layers_above(j,ibox) |
---|
702 | |
---|
703 | ! ! update trans_layers_above with transmissivity |
---|
704 | ! ! from this layer for next time around loop |
---|
705 | |
---|
706 | trans_layers_above(j,ibox)= & |
---|
707 | trans_layers_above(j,ibox)*(1.-dem(j,ibox)) |
---|
708 | |
---|
709 | enddo ! j |
---|
710 | enddo ! ibox |
---|
711 | |
---|
712 | if (ncolprint.ne.0) then |
---|
713 | do j=1,npoints,1000 |
---|
714 | write (6,'(a)') 'ilev:' |
---|
715 | write (6,'(I2)') ilev |
---|
716 | |
---|
717 | write(6,'(a10)') 'j=' |
---|
718 | write(6,'(8I10)') j |
---|
719 | write (6,'(a)') 'emiss_layer:' |
---|
720 | write (6,'(8f7.2)') (dem(j,ibox),ibox=1,ncolprint) |
---|
721 | |
---|
722 | write (6,'(a)') '100.*bb(j):' |
---|
723 | write (6,'(8f7.2)') (100.*bb(j),ibox=1,ncolprint) |
---|
724 | |
---|
725 | write (6,'(a)') '100.*f:' |
---|
726 | write (6,'(8f7.2)') & |
---|
727 | (100.*fluxtop(j,ibox),ibox=1,ncolprint) |
---|
728 | |
---|
729 | write (6,'(a)') 'total_trans:' |
---|
730 | write (6,'(8f7.2)') & |
---|
731 | (trans_layers_above(j,ibox),ibox=1,ncolprint) |
---|
732 | enddo |
---|
733 | endif |
---|
734 | |
---|
735 | enddo ! ilev |
---|
736 | |
---|
737 | |
---|
738 | do j=1,npoints |
---|
739 | ! !add in surface emission |
---|
740 | bb(j)=1/( exp(1307.27/skt(j)) - 1. ) |
---|
741 | ! !bb(j)=5.67e-8*skt(j)**4 |
---|
742 | end do |
---|
743 | |
---|
744 | do ibox=1,ncol |
---|
745 | do j=1,npoints |
---|
746 | |
---|
747 | ! !add in surface emission |
---|
748 | |
---|
749 | fluxtop(j,ibox) = fluxtop(j,ibox) & |
---|
750 | + emsfc_lw * bb(j) & |
---|
751 | * trans_layers_above(j,ibox) |
---|
752 | |
---|
753 | end do |
---|
754 | end do |
---|
755 | |
---|
756 | ! !calculate mean infrared brightness temperature |
---|
757 | do ibox=1,ncol |
---|
758 | do j=1,npoints |
---|
759 | meantb(j) = meantb(j)+1307.27/(log(1.+(1./fluxtop(j,ibox)))) |
---|
760 | end do |
---|
761 | end do |
---|
762 | do j=1, npoints |
---|
763 | meantb(j) = meantb(j) / real(ncol) |
---|
764 | end do |
---|
765 | |
---|
766 | if (ncolprint.ne.0) then |
---|
767 | |
---|
768 | do j=1,npoints ,1000 |
---|
769 | write(6,'(a10)') 'j=' |
---|
770 | write(6,'(8I10)') j |
---|
771 | write (6,'(a)') 'id:' |
---|
772 | write (6,'(a)') 'surface' |
---|
773 | |
---|
774 | write (6,'(a)') 'emiss_layer:' |
---|
775 | write (6,'(8f7.2)') (dem(1,ibox),ibox=1,ncolprint) |
---|
776 | |
---|
777 | write (6,'(a)') '100.*bb(j):' |
---|
778 | write (6,'(8f7.2)') (100.*bb(j),ibox=1,ncolprint) |
---|
779 | |
---|
780 | write (6,'(a)') '100.*f:' |
---|
781 | write (6,'(8f7.2)') (100.*fluxtop(j,ibox),ibox=1,ncolprint) |
---|
782 | |
---|
783 | write (6,'(a)') 'meantb(j):' |
---|
784 | write (6,'(8f7.2)') (meantb(j),ibox=1,ncolprint) |
---|
785 | |
---|
786 | end do |
---|
787 | endif |
---|
788 | |
---|
789 | ! !now that you have the top of atmosphere radiance account |
---|
790 | ! !for ISCCP procedures to determine cloud top temperature |
---|
791 | |
---|
792 | ! !account for partially transmitting cloud recompute flux |
---|
793 | ! !ISCCP would see assuming a single layer cloud |
---|
794 | ! !note choice here of 2.13, as it is primarily ice |
---|
795 | ! !clouds which have partial emissivity and need the |
---|
796 | ! !adjustment performed in this section |
---|
797 | ! ! |
---|
798 | ! !If it turns out that the cloud brightness temperature |
---|
799 | ! !is greater than 260K, then the liquid cloud conversion |
---|
800 | ! !factor of 2.56 is used. |
---|
801 | ! ! |
---|
802 | ! !Note that this is discussed on pages 85-87 of |
---|
803 | ! !the ISCCP D level documentation (Rossow et al. 1996) |
---|
804 | |
---|
805 | do j=1,npoints |
---|
806 | ! !compute minimum brightness temperature and optical depth |
---|
807 | btcmin(j) = 1. / ( exp(1307.27/(attrop(j)-5.)) - 1. ) |
---|
808 | enddo |
---|
809 | do ibox=1,ncol |
---|
810 | do j=1,npoints |
---|
811 | transmax(j) = (fluxtop(j,ibox)-btcmin(j)) & |
---|
812 | /(fluxtop_clrsky(j)-btcmin(j)) |
---|
813 | ! !note that the initial setting of tauir(j) is needed so that |
---|
814 | ! !tauir(j) has a realistic value should the next if block be |
---|
815 | ! !bypassed |
---|
816 | tauir(j) = tau(j,ibox) * rec2p13 |
---|
817 | taumin(j) = -1. * log(max(min(transmax(j),0.9999999),0.001)) |
---|
818 | |
---|
819 | enddo |
---|
820 | |
---|
821 | if (top_height .eq. 1) then |
---|
822 | do j=1,npoints |
---|
823 | if (transmax(j) .gt. 0.001 .and. & |
---|
824 | transmax(j) .le. 0.9999999) then |
---|
825 | fluxtopinit(j) = fluxtop(j,ibox) |
---|
826 | tauir(j) = tau(j,ibox) *rec2p13 |
---|
827 | endif |
---|
828 | enddo |
---|
829 | do icycle=1,2 |
---|
830 | do j=1,npoints |
---|
831 | if (tau(j,ibox) .gt. (tauchk )) then |
---|
832 | if (transmax(j) .gt. 0.001 .and. & |
---|
833 | transmax(j) .le. 0.9999999) then |
---|
834 | emcld(j,ibox) = 1. - exp(-1. * tauir(j) ) |
---|
835 | fluxtop(j,ibox) = fluxtopinit(j) - & |
---|
836 | ((1.-emcld(j,ibox))*fluxtop_clrsky(j)) |
---|
837 | fluxtop(j,ibox)=max(1.E-06, & |
---|
838 | (fluxtop(j,ibox)/emcld(j,ibox))) |
---|
839 | tb(j,ibox)= 1307.27 & |
---|
840 | / (log(1. + (1./fluxtop(j,ibox)))) |
---|
841 | if (tb(j,ibox) .gt. 260.) then |
---|
842 | tauir(j) = tau(j,ibox) / 2.56 |
---|
843 | end if |
---|
844 | end if |
---|
845 | end if |
---|
846 | enddo |
---|
847 | enddo |
---|
848 | |
---|
849 | endif |
---|
850 | |
---|
851 | do j=1,npoints |
---|
852 | if (tau(j,ibox) .gt. (tauchk )) then |
---|
853 | ! !cloudy box |
---|
854 | !NOTE: tb is the cloud-top temperature not infrared brightness temperature |
---|
855 | !at this point in the code |
---|
856 | tb(j,ibox)= 1307.27/ (log(1. + (1./fluxtop(j,ibox)))) |
---|
857 | if (top_height.eq.1.and.tauir(j).lt.taumin(j)) then |
---|
858 | tb(j,ibox) = attrop(j) - 5. |
---|
859 | tau(j,ibox) = 2.13*taumin(j) |
---|
860 | end if |
---|
861 | else |
---|
862 | ! !clear sky brightness temperature |
---|
863 | tb(j,ibox) = meantbclr(j) |
---|
864 | end if |
---|
865 | enddo ! j |
---|
866 | enddo ! ibox |
---|
867 | |
---|
868 | if (ncolprint.ne.0) then |
---|
869 | |
---|
870 | do j=1,npoints,1000 |
---|
871 | write(6,'(a10)') 'j=' |
---|
872 | write(6,'(8I10)') j |
---|
873 | |
---|
874 | write (6,'(a)') 'attrop:' |
---|
875 | write (6,'(8f7.2)') (attrop(j)) |
---|
876 | |
---|
877 | write (6,'(a)') 'btcmin:' |
---|
878 | write (6,'(8f7.2)') (btcmin(j)) |
---|
879 | |
---|
880 | write (6,'(a)') 'fluxtop_clrsky*100:' |
---|
881 | write (6,'(8f7.2)') & |
---|
882 | (100.*fluxtop_clrsky(j)) |
---|
883 | |
---|
884 | write (6,'(a)') '100.*f_adj:' |
---|
885 | write (6,'(8f7.2)') (100.*fluxtop(j,ibox),ibox=1,ncolprint) |
---|
886 | |
---|
887 | write (6,'(a)') 'transmax:' |
---|
888 | write (6,'(8f7.2)') (transmax(ibox),ibox=1,ncolprint) |
---|
889 | |
---|
890 | write (6,'(a)') 'tau:' |
---|
891 | write (6,'(8f7.2)') (tau(j,ibox),ibox=1,ncolprint) |
---|
892 | |
---|
893 | write (6,'(a)') 'emcld:' |
---|
894 | write (6,'(8f7.2)') (emcld(j,ibox),ibox=1,ncolprint) |
---|
895 | |
---|
896 | write (6,'(a)') 'total_trans:' |
---|
897 | write (6,'(8f7.2)') & |
---|
898 | (trans_layers_above(j,ibox),ibox=1,ncolprint) |
---|
899 | |
---|
900 | write (6,'(a)') 'total_emiss:' |
---|
901 | write (6,'(8f7.2)') & |
---|
902 | (1.0-trans_layers_above(j,ibox),ibox=1,ncolprint) |
---|
903 | |
---|
904 | write (6,'(a)') 'total_trans:' |
---|
905 | write (6,'(8f7.2)') & |
---|
906 | (trans_layers_above(j,ibox),ibox=1,ncolprint) |
---|
907 | |
---|
908 | write (6,'(a)') 'ppout:' |
---|
909 | write (6,'(8f7.2)') (tb(j,ibox),ibox=1,ncolprint) |
---|
910 | enddo ! j |
---|
911 | endif |
---|
912 | |
---|
913 | end if |
---|
914 | |
---|
915 | ! ---------------------------------------------------! |
---|
916 | |
---|
917 | ! |
---|
918 | ! ---------------------------------------------------! |
---|
919 | ! DETERMINE CLOUD TOP PRESSURE |
---|
920 | ! |
---|
921 | ! again the 2 methods differ according to whether |
---|
922 | ! or not you use the physical cloud top pressure (top_height = 2) |
---|
923 | ! or the radiatively determined cloud top pressure (top_height = 1 or 3) |
---|
924 | ! |
---|
925 | |
---|
926 | ! !compute cloud top pressure |
---|
927 | do ibox=1,ncol |
---|
928 | ! !segregate according to optical thickness |
---|
929 | if (top_height .eq. 1 .or. top_height .eq. 3) then |
---|
930 | ! !find level whose temperature |
---|
931 | ! !most closely matches brightness temperature |
---|
932 | do j=1,npoints |
---|
933 | nmatch(j)=0 |
---|
934 | enddo |
---|
935 | do k1=1,nlev-1 |
---|
936 | if (top_height_direction .eq. 2) then |
---|
937 | ilev = nlev - k1 |
---|
938 | else |
---|
939 | ilev = k1 |
---|
940 | end if |
---|
941 | ! !cdir nodep |
---|
942 | do j=1,npoints |
---|
943 | if (ilev .ge. itrop(j)) then |
---|
944 | if ((at(j,ilev) .ge. tb(j,ibox) .and. & |
---|
945 | at(j,ilev+1) .le. tb(j,ibox)) .or. & |
---|
946 | (at(j,ilev) .le. tb(j,ibox) .and. & |
---|
947 | at(j,ilev+1) .ge. tb(j,ibox))) then |
---|
948 | nmatch(j)=nmatch(j)+1 |
---|
949 | match(j,nmatch(j))=ilev |
---|
950 | end if |
---|
951 | end if |
---|
952 | enddo |
---|
953 | end do |
---|
954 | |
---|
955 | do j=1,npoints |
---|
956 | if (nmatch(j) .ge. 1) then |
---|
957 | k1 = match(j,nmatch(j)) |
---|
958 | k2 = k1 + 1 |
---|
959 | logp1 = log(pfull(j,k1)) |
---|
960 | logp2 = log(pfull(j,k2)) |
---|
961 | atd = max(tauchk,abs(at(j,k2) - at(j,k1))) |
---|
962 | logp=logp1+(logp2-logp1)*abs(tb(j,ibox)-at(j,k1))/atd |
---|
963 | ptop(j,ibox) = exp(logp) |
---|
964 | if(abs(pfull(j,k1)-ptop(j,ibox)) .lt. & |
---|
965 | abs(pfull(j,k2)-ptop(j,ibox))) then |
---|
966 | levmatch(j,ibox)=k1 |
---|
967 | else |
---|
968 | levmatch(j,ibox)=k2 |
---|
969 | end if |
---|
970 | else |
---|
971 | if (tb(j,ibox) .le. attrop(j)) then |
---|
972 | ptop(j,ibox)=ptrop(j) |
---|
973 | levmatch(j,ibox)=itrop(j) |
---|
974 | end if |
---|
975 | if (tb(j,ibox) .ge. atmax(j)) then |
---|
976 | ptop(j,ibox)=pfull(j,nlev) |
---|
977 | levmatch(j,ibox)=nlev |
---|
978 | end if |
---|
979 | end if |
---|
980 | enddo ! j |
---|
981 | |
---|
982 | else ! if (top_height .eq. 1 .or. top_height .eq. 3) |
---|
983 | |
---|
984 | do j=1,npoints |
---|
985 | ptop(j,ibox)=0. |
---|
986 | enddo |
---|
987 | do ilev=1,nlev |
---|
988 | do j=1,npoints |
---|
989 | if ((ptop(j,ibox) .eq. 0. ) & |
---|
990 | .and.(frac_out(j,ibox,ilev) .ne. 0)) then |
---|
991 | ptop(j,ibox)=phalf(j,ilev) |
---|
992 | levmatch(j,ibox)=ilev |
---|
993 | end if |
---|
994 | end do |
---|
995 | end do |
---|
996 | end if |
---|
997 | |
---|
998 | do j=1,npoints |
---|
999 | if (tau(j,ibox) .le. (tauchk )) then |
---|
1000 | ptop(j,ibox)=0. |
---|
1001 | levmatch(j,ibox)=0 |
---|
1002 | endif |
---|
1003 | enddo |
---|
1004 | |
---|
1005 | end do |
---|
1006 | |
---|
1007 | ! |
---|
1008 | ! |
---|
1009 | ! ---------------------------------------------------! |
---|
1010 | |
---|
1011 | |
---|
1012 | ! |
---|
1013 | ! ---------------------------------------------------! |
---|
1014 | ! DETERMINE ISCCP CLOUD TYPE FREQUENCIES |
---|
1015 | ! |
---|
1016 | ! Now that ptop and tau have been determined, |
---|
1017 | ! determine amount of each of the 49 ISCCP cloud |
---|
1018 | ! types |
---|
1019 | ! |
---|
1020 | ! Also compute grid box mean cloud top pressure and |
---|
1021 | ! optical thickness. The mean cloud top pressure and |
---|
1022 | ! optical thickness are averages over the cloudy |
---|
1023 | ! area only. The mean cloud top pressure is a linear |
---|
1024 | ! average of the cloud top pressures. The mean cloud |
---|
1025 | ! optical thickness is computed by converting optical |
---|
1026 | ! thickness to an albedo, averaging in albedo units, |
---|
1027 | ! then converting the average albedo back to a mean |
---|
1028 | ! optical thickness. |
---|
1029 | ! |
---|
1030 | |
---|
1031 | ! !compute isccp frequencies |
---|
1032 | |
---|
1033 | ! !reset frequencies |
---|
1034 | do ilev=1,7 |
---|
1035 | do ilev2=1,7 |
---|
1036 | do j=1,npoints ! |
---|
1037 | if (sunlit(j).eq.1 .or. top_height .eq. 3) then |
---|
1038 | fq_isccp(j,ilev,ilev2)= 0. |
---|
1039 | else |
---|
1040 | fq_isccp(j,ilev,ilev2)= output_missing_value |
---|
1041 | end if |
---|
1042 | enddo |
---|
1043 | end do |
---|
1044 | end do |
---|
1045 | |
---|
1046 | ! !reset variables need for averaging cloud properties |
---|
1047 | do j=1,npoints |
---|
1048 | if (sunlit(j).eq.1 .or. top_height .eq. 3) then |
---|
1049 | totalcldarea(j) = 0. |
---|
1050 | meanalbedocld(j) = 0. |
---|
1051 | meanptop(j) = 0. |
---|
1052 | meantaucld(j) = 0. |
---|
1053 | else |
---|
1054 | totalcldarea(j) = output_missing_value |
---|
1055 | meanalbedocld(j) = output_missing_value |
---|
1056 | meanptop(j) = output_missing_value |
---|
1057 | meantaucld(j) = output_missing_value |
---|
1058 | end if |
---|
1059 | enddo ! j |
---|
1060 | |
---|
1061 | boxarea = 1./real(ncol) |
---|
1062 | |
---|
1063 | do ibox=1,ncol |
---|
1064 | do j=1,npoints |
---|
1065 | |
---|
1066 | if (tau(j,ibox) .gt. (tauchk ) & |
---|
1067 | .and. ptop(j,ibox) .gt. 0.) then |
---|
1068 | box_cloudy(j,ibox)=.true. |
---|
1069 | endif |
---|
1070 | |
---|
1071 | if (box_cloudy(j,ibox)) then |
---|
1072 | |
---|
1073 | if (sunlit(j).eq.1 .or. top_height .eq. 3) then |
---|
1074 | |
---|
1075 | boxtau(j,ibox) = tau(j,ibox) |
---|
1076 | |
---|
1077 | if (tau(j,ibox) .ge. isccp_taumin) then |
---|
1078 | totalcldarea(j) = totalcldarea(j) + boxarea |
---|
1079 | |
---|
1080 | ! !convert optical thickness to albedo |
---|
1081 | albedocld(j,ibox) & |
---|
1082 | = (tau(j,ibox)**0.895)/((tau(j,ibox)**0.895)+6.82) |
---|
1083 | |
---|
1084 | ! !contribute to averaging |
---|
1085 | meanalbedocld(j) = meanalbedocld(j) & |
---|
1086 | +albedocld(j,ibox)*boxarea |
---|
1087 | |
---|
1088 | end if |
---|
1089 | |
---|
1090 | endif |
---|
1091 | |
---|
1092 | endif |
---|
1093 | |
---|
1094 | if (sunlit(j).eq.1 .or. top_height .eq. 3) then |
---|
1095 | |
---|
1096 | if (box_cloudy(j,ibox)) then |
---|
1097 | |
---|
1098 | ! !convert ptop to millibars |
---|
1099 | ptop(j,ibox)=ptop(j,ibox) / 100. |
---|
1100 | |
---|
1101 | ! !save for output cloud top pressure and optical thickness |
---|
1102 | boxptop(j,ibox) = ptop(j,ibox) |
---|
1103 | |
---|
1104 | if (tau(j,ibox) .ge. isccp_taumin) then |
---|
1105 | meanptop(j) = meanptop(j) + ptop(j,ibox)*boxarea |
---|
1106 | end if |
---|
1107 | |
---|
1108 | ! !reset itau(j), ipres(j) |
---|
1109 | itau(j) = 0 |
---|
1110 | ipres(j) = 0 |
---|
1111 | |
---|
1112 | ! !determine optical depth category |
---|
1113 | if (tau(j,ibox) .lt. isccp_taumin) then |
---|
1114 | itau(j)=1 |
---|
1115 | else if (tau(j,ibox) .ge. isccp_taumin & |
---|
1116 | .and. tau(j,ibox) .lt. 1.3) then |
---|
1117 | itau(j)=2 |
---|
1118 | else if (tau(j,ibox) .ge. 1.3 & |
---|
1119 | .and. tau(j,ibox) .lt. 3.6) then |
---|
1120 | itau(j)=3 |
---|
1121 | else if (tau(j,ibox) .ge. 3.6 & |
---|
1122 | .and. tau(j,ibox) .lt. 9.4) then |
---|
1123 | itau(j)=4 |
---|
1124 | else if (tau(j,ibox) .ge. 9.4 & |
---|
1125 | .and. tau(j,ibox) .lt. 23.) then |
---|
1126 | itau(j)=5 |
---|
1127 | else if (tau(j,ibox) .ge. 23. & |
---|
1128 | .and. tau(j,ibox) .lt. 60.) then |
---|
1129 | itau(j)=6 |
---|
1130 | else if (tau(j,ibox) .ge. 60.) then |
---|
1131 | itau(j)=7 |
---|
1132 | end if |
---|
1133 | |
---|
1134 | ! !determine cloud top pressure category |
---|
1135 | if ( ptop(j,ibox) .gt. 0. & |
---|
1136 | .and.ptop(j,ibox) .lt. 180.) then |
---|
1137 | ipres(j)=1 |
---|
1138 | else if(ptop(j,ibox) .ge. 180. & |
---|
1139 | .and.ptop(j,ibox) .lt. 310.) then |
---|
1140 | ipres(j)=2 |
---|
1141 | else if(ptop(j,ibox) .ge. 310. & |
---|
1142 | .and.ptop(j,ibox) .lt. 440.) then |
---|
1143 | ipres(j)=3 |
---|
1144 | else if(ptop(j,ibox) .ge. 440. & |
---|
1145 | .and.ptop(j,ibox) .lt. 560.) then |
---|
1146 | ipres(j)=4 |
---|
1147 | else if(ptop(j,ibox) .ge. 560. & |
---|
1148 | .and.ptop(j,ibox) .lt. 680.) then |
---|
1149 | ipres(j)=5 |
---|
1150 | else if(ptop(j,ibox) .ge. 680. & |
---|
1151 | .and.ptop(j,ibox) .lt. 800.) then |
---|
1152 | ipres(j)=6 |
---|
1153 | else if(ptop(j,ibox) .ge. 800.) then |
---|
1154 | ipres(j)=7 |
---|
1155 | end if |
---|
1156 | |
---|
1157 | ! !update frequencies |
---|
1158 | if(ipres(j) .gt. 0.and.itau(j) .gt. 0) then |
---|
1159 | fq_isccp(j,itau(j),ipres(j))= & |
---|
1160 | fq_isccp(j,itau(j),ipres(j))+ boxarea |
---|
1161 | end if |
---|
1162 | |
---|
1163 | end if |
---|
1164 | |
---|
1165 | end if |
---|
1166 | |
---|
1167 | enddo ! j |
---|
1168 | end do |
---|
1169 | |
---|
1170 | ! !compute mean cloud properties |
---|
1171 | do j=1,npoints |
---|
1172 | if (totalcldarea(j) .gt. 0.) then |
---|
1173 | ! code above guarantees that totalcldarea > 0 |
---|
1174 | ! only if sunlit .eq. 1 .or. top_height = 3 |
---|
1175 | ! and applies only to clouds with tau > isccp_taumin |
---|
1176 | meanptop(j) = meanptop(j) / totalcldarea(j) |
---|
1177 | meanalbedocld(j) = meanalbedocld(j) / totalcldarea(j) |
---|
1178 | meantaucld(j) = (6.82/((1./meanalbedocld(j))-1.))**(1./0.895) |
---|
1179 | else |
---|
1180 | ! this code is necessary so that in the case that totalcldarea = 0., |
---|
1181 | ! that these variables, which are in-cloud averages, are set to missing |
---|
1182 | ! note that totalcldarea will be 0. if all the clouds in the grid box have |
---|
1183 | ! tau < isccp_taumin |
---|
1184 | meanptop(j) = output_missing_value |
---|
1185 | meanalbedocld(j) = output_missing_value |
---|
1186 | meantaucld(j) = output_missing_value |
---|
1187 | end if |
---|
1188 | enddo ! j |
---|
1189 | ! |
---|
1190 | ! ---------------------------------------------------! |
---|
1191 | |
---|
1192 | ! ---------------------------------------------------! |
---|
1193 | ! OPTIONAL PRINTOUT OF DATA TO CHECK PROGRAM |
---|
1194 | ! |
---|
1195 | if (debugcol.ne.0) then |
---|
1196 | ! |
---|
1197 | do j=1,npoints,debugcol |
---|
1198 | |
---|
1199 | ! !produce character output |
---|
1200 | do ilev=1,nlev |
---|
1201 | do ibox=1,ncol |
---|
1202 | acc(ilev,ibox)=0 |
---|
1203 | enddo |
---|
1204 | enddo |
---|
1205 | |
---|
1206 | do ilev=1,nlev |
---|
1207 | do ibox=1,ncol |
---|
1208 | acc(ilev,ibox)=frac_out(j,ibox,ilev)*2 |
---|
1209 | if (levmatch(j,ibox) .eq. ilev) & |
---|
1210 | acc(ilev,ibox)=acc(ilev,ibox)+1 |
---|
1211 | enddo |
---|
1212 | enddo |
---|
1213 | |
---|
1214 | ! !print test |
---|
1215 | |
---|
1216 | write(ftn09,11) j |
---|
1217 | 11 format('ftn09.',i4.4) |
---|
1218 | open(9, FILE=ftn09, FORM='FORMATTED') |
---|
1219 | |
---|
1220 | write(9,'(a1)') ' ' |
---|
1221 | write(9,'(10i5)') & |
---|
1222 | (ilev,ilev=5,nlev,5) |
---|
1223 | write(9,'(a1)') ' ' |
---|
1224 | |
---|
1225 | do ibox=1,ncol |
---|
1226 | write(9,'(40(a1),1x,40(a1))') & |
---|
1227 | (cchar_realtops(acc(ilev,ibox)+1),ilev=1,nlev) & |
---|
1228 | ,(cchar(acc(ilev,ibox)+1),ilev=1,nlev) |
---|
1229 | end do |
---|
1230 | close(9) |
---|
1231 | |
---|
1232 | if (ncolprint.ne.0) then |
---|
1233 | write(6,'(a1)') ' ' |
---|
1234 | write(6,'(a2,1X,5(a7,1X),a50)') & |
---|
1235 | 'ilev', & |
---|
1236 | 'pfull','at', & |
---|
1237 | 'cc*100','dem_s','dtau_s', & |
---|
1238 | 'cchar' |
---|
1239 | |
---|
1240 | ! do 4012 ilev=1,nlev |
---|
1241 | ! write(6,'(60i2)') (box(i,ilev),i=1,ncolprint) |
---|
1242 | ! write(6,'(i2,1X,5(f7.2,1X),50(a1))') |
---|
1243 | ! & ilev, |
---|
1244 | ! & pfull(j,ilev)/100.,at(j,ilev), |
---|
1245 | ! & cc(j,ilev)*100.0,dem_s(j,ilev),dtau_s(j,ilev) |
---|
1246 | ! & ,(cchar(acc(ilev,ibox)+1),ibox=1,ncolprint) |
---|
1247 | !4012 continue |
---|
1248 | write (6,'(a)') 'skt(j):' |
---|
1249 | write (6,'(8f7.2)') skt(j) |
---|
1250 | |
---|
1251 | write (6,'(8I7)') (ibox,ibox=1,ncolprint) |
---|
1252 | |
---|
1253 | write (6,'(a)') 'tau:' |
---|
1254 | write (6,'(8f7.2)') (tau(j,ibox),ibox=1,ncolprint) |
---|
1255 | |
---|
1256 | write (6,'(a)') 'tb:' |
---|
1257 | write (6,'(8f7.2)') (tb(j,ibox),ibox=1,ncolprint) |
---|
1258 | |
---|
1259 | write (6,'(a)') 'ptop:' |
---|
1260 | write (6,'(8f7.2)') (ptop(j,ibox),ibox=1,ncolprint) |
---|
1261 | endif |
---|
1262 | |
---|
1263 | enddo |
---|
1264 | |
---|
1265 | end if |
---|
1266 | |
---|
1267 | return |
---|
1268 | end subroutine icarus |
---|
1269 | |
---|
1270 | |
---|