[1992] | 1 | |
---|
[524] | 2 | ! $Header$ |
---|
| 3 | |
---|
[1992] | 4 | SUBROUTINE conflx(dtime, pres_h, pres_f, t, q, con_t, con_q, pqhfl, w, d_t, & |
---|
| 5 | d_q, rain, snow, pmfu, pmfd, pen_u, pde_u, pen_d, pde_d, kcbot, kctop, & |
---|
| 6 | kdtop, pmflxr, pmflxs) |
---|
[524] | 7 | |
---|
[1992] | 8 | USE dimphy |
---|
[5285] | 9 | USE yomcst_mod_h |
---|
[5284] | 10 | USE yoethf_mod_h |
---|
[5274] | 11 | IMPLICIT NONE |
---|
[1992] | 12 | ! ====================================================================== |
---|
| 13 | ! Auteur(s): Z.X. Li (LMD/CNRS) date: 19941014 |
---|
| 14 | ! Objet: Schema flux de masse pour la convection |
---|
| 15 | ! (schema de Tiedtke avec qqs modifications mineures) |
---|
| 16 | ! Dec.97: Prise en compte des modifications introduites par |
---|
| 17 | ! Olivier Boucher et Alexandre Armengaud pour melange |
---|
| 18 | ! et lessivage des traceurs passifs. |
---|
| 19 | ! ====================================================================== |
---|
[5274] | 20 | |
---|
[1992] | 21 | ! Entree: |
---|
| 22 | REAL dtime ! pas d'integration (s) |
---|
| 23 | REAL pres_h(klon, klev+1) ! pression half-level (Pa) |
---|
| 24 | REAL pres_f(klon, klev) ! pression full-level (Pa) |
---|
| 25 | REAL t(klon, klev) ! temperature (K) |
---|
| 26 | REAL q(klon, klev) ! humidite specifique (g/g) |
---|
| 27 | REAL w(klon, klev) ! vitesse verticale (Pa/s) |
---|
| 28 | REAL con_t(klon, klev) ! convergence de temperature (K/s) |
---|
| 29 | REAL con_q(klon, klev) ! convergence de l'eau vapeur (g/g/s) |
---|
| 30 | REAL pqhfl(klon) ! evaporation (negative vers haut) mm/s |
---|
| 31 | ! Sortie: |
---|
| 32 | REAL d_t(klon, klev) ! incrementation de temperature |
---|
| 33 | REAL d_q(klon, klev) ! incrementation d'humidite |
---|
| 34 | REAL pmfu(klon, klev) ! flux masse (kg/m2/s) panache ascendant |
---|
| 35 | REAL pmfd(klon, klev) ! flux masse (kg/m2/s) panache descendant |
---|
| 36 | REAL pen_u(klon, klev) |
---|
| 37 | REAL pen_d(klon, klev) |
---|
| 38 | REAL pde_u(klon, klev) |
---|
| 39 | REAL pde_d(klon, klev) |
---|
| 40 | REAL rain(klon) ! pluie (mm/s) |
---|
| 41 | REAL snow(klon) ! neige (mm/s) |
---|
| 42 | REAL pmflxr(klon, klev+1) |
---|
| 43 | REAL pmflxs(klon, klev+1) |
---|
| 44 | INTEGER kcbot(klon) ! niveau du bas de la convection |
---|
| 45 | INTEGER kctop(klon) ! niveau du haut de la convection |
---|
| 46 | INTEGER kdtop(klon) ! niveau du haut des downdrafts |
---|
| 47 | ! Local: |
---|
| 48 | REAL pt(klon, klev) |
---|
| 49 | REAL pq(klon, klev) |
---|
| 50 | REAL pqs(klon, klev) |
---|
| 51 | REAL pvervel(klon, klev) |
---|
| 52 | LOGICAL land(klon) |
---|
| 53 | |
---|
| 54 | REAL d_t_bis(klon, klev) |
---|
| 55 | REAL d_q_bis(klon, klev) |
---|
| 56 | REAL paprs(klon, klev+1) |
---|
| 57 | REAL paprsf(klon, klev) |
---|
| 58 | REAL zgeom(klon, klev) |
---|
| 59 | REAL zcvgq(klon, klev) |
---|
| 60 | REAL zcvgt(klon, klev) |
---|
| 61 | ! AA |
---|
| 62 | REAL zmfu(klon, klev) |
---|
| 63 | REAL zmfd(klon, klev) |
---|
| 64 | REAL zen_u(klon, klev) |
---|
| 65 | REAL zen_d(klon, klev) |
---|
| 66 | REAL zde_u(klon, klev) |
---|
| 67 | REAL zde_d(klon, klev) |
---|
| 68 | REAL zmflxr(klon, klev+1) |
---|
| 69 | REAL zmflxs(klon, klev+1) |
---|
| 70 | ! AA |
---|
| 71 | |
---|
| 72 | |
---|
| 73 | INTEGER i, k |
---|
| 74 | REAL zdelta, zqsat |
---|
| 75 | |
---|
| 76 | include "FCTTRE.h" |
---|
| 77 | |
---|
| 78 | ! initialiser les variables de sortie (pour securite) |
---|
| 79 | DO i = 1, klon |
---|
| 80 | rain(i) = 0.0 |
---|
| 81 | snow(i) = 0.0 |
---|
| 82 | kcbot(i) = 0 |
---|
| 83 | kctop(i) = 0 |
---|
| 84 | kdtop(i) = 0 |
---|
| 85 | END DO |
---|
| 86 | DO k = 1, klev |
---|
| 87 | DO i = 1, klon |
---|
| 88 | d_t(i, k) = 0.0 |
---|
| 89 | d_q(i, k) = 0.0 |
---|
| 90 | pmfu(i, k) = 0.0 |
---|
| 91 | pmfd(i, k) = 0.0 |
---|
| 92 | pen_u(i, k) = 0.0 |
---|
| 93 | pde_u(i, k) = 0.0 |
---|
| 94 | pen_d(i, k) = 0.0 |
---|
| 95 | pde_d(i, k) = 0.0 |
---|
| 96 | zmfu(i, k) = 0.0 |
---|
| 97 | zmfd(i, k) = 0.0 |
---|
| 98 | zen_u(i, k) = 0.0 |
---|
| 99 | zde_u(i, k) = 0.0 |
---|
| 100 | zen_d(i, k) = 0.0 |
---|
| 101 | zde_d(i, k) = 0.0 |
---|
| 102 | END DO |
---|
| 103 | END DO |
---|
| 104 | DO k = 1, klev + 1 |
---|
| 105 | DO i = 1, klon |
---|
| 106 | zmflxr(i, k) = 0.0 |
---|
| 107 | zmflxs(i, k) = 0.0 |
---|
| 108 | END DO |
---|
| 109 | END DO |
---|
| 110 | |
---|
| 111 | ! calculer la nature du sol (pour l'instant, ocean partout) |
---|
| 112 | DO i = 1, klon |
---|
| 113 | land(i) = .FALSE. |
---|
| 114 | END DO |
---|
| 115 | |
---|
| 116 | ! preparer les variables d'entree (attention: l'ordre des niveaux |
---|
| 117 | ! verticaux augmente du haut vers le bas) |
---|
| 118 | DO k = 1, klev |
---|
| 119 | DO i = 1, klon |
---|
| 120 | pt(i, k) = t(i, klev-k+1) |
---|
| 121 | pq(i, k) = q(i, klev-k+1) |
---|
| 122 | paprsf(i, k) = pres_f(i, klev-k+1) |
---|
| 123 | paprs(i, k) = pres_h(i, klev+1-k+1) |
---|
| 124 | pvervel(i, k) = w(i, klev+1-k) |
---|
| 125 | zcvgt(i, k) = con_t(i, klev-k+1) |
---|
| 126 | zcvgq(i, k) = con_q(i, klev-k+1) |
---|
| 127 | |
---|
| 128 | zdelta = max(0., sign(1.,rtt-pt(i,k))) |
---|
| 129 | zqsat = r2es*foeew(pt(i,k), zdelta)/paprsf(i, k) |
---|
| 130 | zqsat = min(0.5, zqsat) |
---|
| 131 | zqsat = zqsat/(1.-retv*zqsat) |
---|
| 132 | pqs(i, k) = zqsat |
---|
| 133 | END DO |
---|
| 134 | END DO |
---|
| 135 | DO i = 1, klon |
---|
| 136 | paprs(i, klev+1) = pres_h(i, 1) |
---|
| 137 | zgeom(i, klev) = rd*pt(i, klev)/(0.5*(paprs(i,klev+1)+paprsf(i, & |
---|
| 138 | klev)))*(paprs(i,klev+1)-paprsf(i,klev)) |
---|
| 139 | END DO |
---|
| 140 | DO k = klev - 1, 1, -1 |
---|
| 141 | DO i = 1, klon |
---|
| 142 | zgeom(i, k) = zgeom(i, k+1) + rd*0.5*(pt(i,k+1)+pt(i,k))/paprs(i, k+1)* & |
---|
| 143 | (paprsf(i,k+1)-paprsf(i,k)) |
---|
| 144 | END DO |
---|
| 145 | END DO |
---|
| 146 | |
---|
| 147 | ! appeler la routine principale |
---|
| 148 | |
---|
| 149 | CALL flxmain(dtime, pt, pq, pqs, pqhfl, paprsf, paprs, zgeom, land, zcvgt, & |
---|
| 150 | zcvgq, pvervel, rain, snow, kcbot, kctop, kdtop, zmfu, zmfd, zen_u, & |
---|
| 151 | zde_u, zen_d, zde_d, d_t_bis, d_q_bis, zmflxr, zmflxs) |
---|
| 152 | |
---|
| 153 | ! AA-------------------------------------------------------- |
---|
| 154 | ! AA rem : De la meme facon que l'on effectue le reindicage |
---|
| 155 | ! AA pour la temperature t et le champ q |
---|
| 156 | ! AA on reindice les flux necessaires a la convection |
---|
| 157 | ! AA des traceurs |
---|
| 158 | ! AA-------------------------------------------------------- |
---|
| 159 | DO k = 1, klev |
---|
| 160 | DO i = 1, klon |
---|
| 161 | d_q(i, klev+1-k) = dtime*d_q_bis(i, k) |
---|
| 162 | d_t(i, klev+1-k) = dtime*d_t_bis(i, k) |
---|
| 163 | END DO |
---|
| 164 | END DO |
---|
| 165 | |
---|
| 166 | DO i = 1, klon |
---|
| 167 | pmfu(i, 1) = 0. |
---|
| 168 | pmfd(i, 1) = 0. |
---|
| 169 | pen_d(i, 1) = 0. |
---|
| 170 | pde_d(i, 1) = 0. |
---|
| 171 | END DO |
---|
| 172 | |
---|
| 173 | DO k = 2, klev |
---|
| 174 | DO i = 1, klon |
---|
| 175 | pmfu(i, klev+2-k) = zmfu(i, k) |
---|
| 176 | pmfd(i, klev+2-k) = zmfd(i, k) |
---|
| 177 | END DO |
---|
| 178 | END DO |
---|
| 179 | |
---|
| 180 | DO k = 1, klev |
---|
| 181 | DO i = 1, klon |
---|
| 182 | pen_u(i, klev+1-k) = zen_u(i, k) |
---|
| 183 | pde_u(i, klev+1-k) = zde_u(i, k) |
---|
| 184 | END DO |
---|
| 185 | END DO |
---|
| 186 | |
---|
| 187 | DO k = 1, klev - 1 |
---|
| 188 | DO i = 1, klon |
---|
| 189 | pen_d(i, klev+1-k) = -zen_d(i, k+1) |
---|
| 190 | pde_d(i, klev+1-k) = -zde_d(i, k+1) |
---|
| 191 | END DO |
---|
| 192 | END DO |
---|
| 193 | |
---|
| 194 | DO k = 1, klev + 1 |
---|
| 195 | DO i = 1, klon |
---|
| 196 | pmflxr(i, klev+2-k) = zmflxr(i, k) |
---|
| 197 | pmflxs(i, klev+2-k) = zmflxs(i, k) |
---|
| 198 | END DO |
---|
| 199 | END DO |
---|
| 200 | |
---|
| 201 | RETURN |
---|
| 202 | END SUBROUTINE conflx |
---|
| 203 | ! -------------------------------------------------------------------- |
---|
| 204 | SUBROUTINE flxmain(pdtime, pten, pqen, pqsen, pqhfl, pap, paph, pgeo, ldland, & |
---|
| 205 | ptte, pqte, pvervel, prsfc, pssfc, kcbot, kctop, kdtop, & ! * |
---|
| 206 | ! ldcum, ktype, |
---|
| 207 | pmfu, pmfd, pen_u, pde_u, pen_d, pde_d, dt_con, dq_con, pmflxr, pmflxs) |
---|
[5289] | 208 | USE yoecumf_mod_h |
---|
| 209 | USE yoethf_mod_h |
---|
[5284] | 210 | USE dimphy |
---|
[5285] | 211 | USE yomcst_mod_h |
---|
[5274] | 212 | IMPLICIT NONE |
---|
[1992] | 213 | ! ------------------------------------------------------------------ |
---|
[5274] | 214 | |
---|
[1992] | 215 | ! ---------------------------------------------------------------- |
---|
| 216 | REAL pten(klon, klev), pqen(klon, klev), pqsen(klon, klev) |
---|
| 217 | REAL ptte(klon, klev) |
---|
| 218 | REAL pqte(klon, klev) |
---|
| 219 | REAL pvervel(klon, klev) |
---|
| 220 | REAL pgeo(klon, klev), pap(klon, klev), paph(klon, klev+1) |
---|
| 221 | REAL pqhfl(klon) |
---|
| 222 | |
---|
| 223 | REAL ptu(klon, klev), pqu(klon, klev), plu(klon, klev) |
---|
| 224 | REAL plude(klon, klev) |
---|
| 225 | REAL pmfu(klon, klev) |
---|
| 226 | REAL prsfc(klon), pssfc(klon) |
---|
| 227 | INTEGER kcbot(klon), kctop(klon), ktype(klon) |
---|
| 228 | LOGICAL ldland(klon), ldcum(klon) |
---|
| 229 | |
---|
| 230 | REAL ztenh(klon, klev), zqenh(klon, klev), zqsenh(klon, klev) |
---|
| 231 | REAL zgeoh(klon, klev) |
---|
| 232 | REAL zmfub(klon), zmfub1(klon) |
---|
| 233 | REAL zmfus(klon, klev), zmfuq(klon, klev), zmful(klon, klev) |
---|
| 234 | REAL zdmfup(klon, klev), zdpmel(klon, klev) |
---|
| 235 | REAL zentr(klon), zhcbase(klon) |
---|
| 236 | REAL zdqpbl(klon), zdqcv(klon), zdhpbl(klon) |
---|
| 237 | REAL zrfl(klon) |
---|
| 238 | REAL pmflxr(klon, klev+1) |
---|
| 239 | REAL pmflxs(klon, klev+1) |
---|
| 240 | INTEGER ilab(klon, klev), ictop0(klon) |
---|
| 241 | LOGICAL llo1 |
---|
| 242 | REAL dt_con(klon, klev), dq_con(klon, klev) |
---|
| 243 | REAL zmfmax, zdh |
---|
| 244 | REAL pdtime, zqumqe, zdqmin, zalvdcp, zhsat, zzz |
---|
| 245 | REAL zhhat, zpbmpt, zgam, zeps, zfac |
---|
| 246 | INTEGER i, k, ikb, itopm2, kcum |
---|
| 247 | |
---|
| 248 | REAL pen_u(klon, klev), pde_u(klon, klev) |
---|
| 249 | REAL pen_d(klon, klev), pde_d(klon, klev) |
---|
| 250 | |
---|
| 251 | REAL ptd(klon, klev), pqd(klon, klev), pmfd(klon, klev) |
---|
| 252 | REAL zmfds(klon, klev), zmfdq(klon, klev), zdmfdp(klon, klev) |
---|
| 253 | INTEGER kdtop(klon) |
---|
| 254 | LOGICAL lddraf(klon) |
---|
| 255 | ! --------------------------------------------------------------------- |
---|
| 256 | LOGICAL firstcal |
---|
| 257 | SAVE firstcal |
---|
| 258 | DATA firstcal/.TRUE./ |
---|
| 259 | !$OMP THREADPRIVATE(firstcal) |
---|
| 260 | ! --------------------------------------------------------------------- |
---|
| 261 | IF (firstcal) THEN |
---|
| 262 | CALL flxsetup |
---|
| 263 | firstcal = .FALSE. |
---|
| 264 | END IF |
---|
| 265 | ! --------------------------------------------------------------------- |
---|
| 266 | DO i = 1, klon |
---|
| 267 | ldcum(i) = .FALSE. |
---|
| 268 | END DO |
---|
| 269 | DO k = 1, klev |
---|
| 270 | DO i = 1, klon |
---|
| 271 | dt_con(i, k) = 0.0 |
---|
| 272 | dq_con(i, k) = 0.0 |
---|
| 273 | END DO |
---|
| 274 | END DO |
---|
| 275 | ! ---------------------------------------------------------------------- |
---|
| 276 | ! initialiser les variables et faire l'interpolation verticale |
---|
| 277 | ! ---------------------------------------------------------------------- |
---|
| 278 | CALL flxini(pten, pqen, pqsen, pgeo, paph, zgeoh, ztenh, zqenh, zqsenh, & |
---|
| 279 | ptu, pqu, ptd, pqd, pmfd, zmfds, zmfdq, zdmfdp, pmfu, zmfus, zmfuq, & |
---|
| 280 | zdmfup, zdpmel, plu, plude, ilab, pen_u, pde_u, pen_d, pde_d) |
---|
| 281 | ! --------------------------------------------------------------------- |
---|
| 282 | ! determiner les valeurs au niveau de base de la tour convective |
---|
| 283 | ! --------------------------------------------------------------------- |
---|
| 284 | CALL flxbase(ztenh, zqenh, zgeoh, paph, ptu, pqu, plu, ldcum, kcbot, ilab) |
---|
| 285 | ! --------------------------------------------------------------------- |
---|
| 286 | ! calculer la convergence totale de l'humidite et celle en provenance |
---|
| 287 | ! de la couche limite, plus precisement, la convergence integree entre |
---|
| 288 | ! le sol et la base de la convection. Cette derniere convergence est |
---|
| 289 | ! comparee avec l'evaporation obtenue dans la couche limite pour |
---|
| 290 | ! determiner le type de la convection |
---|
| 291 | ! --------------------------------------------------------------------- |
---|
| 292 | k = 1 |
---|
| 293 | DO i = 1, klon |
---|
| 294 | zdqcv(i) = pqte(i, k)*(paph(i,k+1)-paph(i,k)) |
---|
| 295 | zdhpbl(i) = 0.0 |
---|
| 296 | zdqpbl(i) = 0.0 |
---|
| 297 | END DO |
---|
| 298 | |
---|
| 299 | DO k = 2, klev |
---|
| 300 | DO i = 1, klon |
---|
| 301 | zdqcv(i) = zdqcv(i) + pqte(i, k)*(paph(i,k+1)-paph(i,k)) |
---|
| 302 | IF (k>=kcbot(i)) THEN |
---|
| 303 | zdqpbl(i) = zdqpbl(i) + pqte(i, k)*(paph(i,k+1)-paph(i,k)) |
---|
| 304 | zdhpbl(i) = zdhpbl(i) + (rcpd*ptte(i,k)+rlvtt*pqte(i,k))*(paph(i,k+1) & |
---|
| 305 | -paph(i,k)) |
---|
| 306 | END IF |
---|
| 307 | END DO |
---|
| 308 | END DO |
---|
| 309 | |
---|
| 310 | DO i = 1, klon |
---|
| 311 | ktype(i) = 2 |
---|
| 312 | IF (zdqcv(i)>max(0.,-1.5*pqhfl(i)*rg)) ktype(i) = 1 |
---|
| 313 | ! cc if (zdqcv(i).GT.MAX(0.,-1.1*pqhfl(i)*RG)) ktype(i) = 1 |
---|
| 314 | END DO |
---|
| 315 | |
---|
| 316 | ! --------------------------------------------------------------------- |
---|
| 317 | ! determiner le flux de masse entrant a travers la base. |
---|
| 318 | ! on ignore, pour l'instant, l'effet du panache descendant |
---|
| 319 | ! --------------------------------------------------------------------- |
---|
| 320 | DO i = 1, klon |
---|
| 321 | ikb = kcbot(i) |
---|
| 322 | zqumqe = pqu(i, ikb) + plu(i, ikb) - zqenh(i, ikb) |
---|
| 323 | zdqmin = max(0.01*zqenh(i,ikb), 1.E-10) |
---|
| 324 | IF (zdqpbl(i)>0. .AND. zqumqe>zdqmin .AND. ldcum(i)) THEN |
---|
| 325 | zmfub(i) = zdqpbl(i)/(rg*max(zqumqe,zdqmin)) |
---|
| 326 | ELSE |
---|
| 327 | zmfub(i) = 0.01 |
---|
| 328 | ldcum(i) = .FALSE. |
---|
| 329 | END IF |
---|
| 330 | IF (ktype(i)==2) THEN |
---|
| 331 | zdh = rcpd*(ptu(i,ikb)-ztenh(i,ikb)) + rlvtt*zqumqe |
---|
| 332 | zdh = rg*max(zdh, 1.0E5*zdqmin) |
---|
| 333 | IF (zdhpbl(i)>0. .AND. ldcum(i)) zmfub(i) = zdhpbl(i)/zdh |
---|
| 334 | END IF |
---|
| 335 | zmfmax = (paph(i,ikb)-paph(i,ikb-1))/(rg*pdtime) |
---|
| 336 | zmfub(i) = min(zmfub(i), zmfmax) |
---|
| 337 | zentr(i) = entrscv |
---|
| 338 | IF (ktype(i)==1) zentr(i) = entrpen |
---|
| 339 | END DO |
---|
| 340 | ! ----------------------------------------------------------------------- |
---|
| 341 | ! DETERMINE CLOUD ASCENT FOR ENTRAINING PLUME |
---|
| 342 | ! ----------------------------------------------------------------------- |
---|
| 343 | ! (A) calculer d'abord la hauteur "theorique" de la tour convective sans |
---|
| 344 | ! considerer l'entrainement ni le detrainement du panache, sachant |
---|
| 345 | ! ces derniers peuvent abaisser la hauteur theorique. |
---|
| 346 | |
---|
| 347 | DO i = 1, klon |
---|
| 348 | ikb = kcbot(i) |
---|
| 349 | zhcbase(i) = rcpd*ptu(i, ikb) + zgeoh(i, ikb) + rlvtt*pqu(i, ikb) |
---|
| 350 | ictop0(i) = kcbot(i) - 1 |
---|
| 351 | END DO |
---|
| 352 | |
---|
| 353 | zalvdcp = rlvtt/rcpd |
---|
| 354 | DO k = klev - 1, 3, -1 |
---|
| 355 | DO i = 1, klon |
---|
| 356 | zhsat = rcpd*ztenh(i, k) + zgeoh(i, k) + rlvtt*zqsenh(i, k) |
---|
| 357 | zgam = r5les*zalvdcp*zqsenh(i, k)/((1.-retv*zqsenh(i,k))*(ztenh(i, & |
---|
| 358 | k)-r4les)**2) |
---|
| 359 | zzz = rcpd*ztenh(i, k)*0.608 |
---|
| 360 | zhhat = zhsat - (zzz+zgam*zzz)/(1.+zgam*zzz/rlvtt)*max(zqsenh(i,k)- & |
---|
| 361 | zqenh(i,k), 0.) |
---|
| 362 | IF (k<ictop0(i) .AND. zhcbase(i)>zhhat) ictop0(i) = k |
---|
| 363 | END DO |
---|
| 364 | END DO |
---|
| 365 | |
---|
| 366 | ! (B) calculer le panache ascendant |
---|
| 367 | |
---|
| 368 | CALL flxasc(pdtime, ztenh, zqenh, pten, pqen, pqsen, pgeo, zgeoh, pap, & |
---|
| 369 | paph, pqte, pvervel, ldland, ldcum, ktype, ilab, ptu, pqu, plu, pmfu, & |
---|
| 370 | zmfub, zentr, zmfus, zmfuq, zmful, plude, zdmfup, kcbot, kctop, ictop0, & |
---|
| 371 | kcum, pen_u, pde_u) |
---|
| 372 | IF (kcum==0) GO TO 1000 |
---|
| 373 | |
---|
| 374 | ! verifier l'epaisseur de la convection et changer eventuellement |
---|
| 375 | ! le taux d'entrainement/detrainement |
---|
| 376 | |
---|
| 377 | DO i = 1, klon |
---|
| 378 | zpbmpt = paph(i, kcbot(i)) - paph(i, kctop(i)) |
---|
| 379 | IF (ldcum(i) .AND. ktype(i)==1 .AND. zpbmpt<2.E4) ktype(i) = 2 |
---|
| 380 | IF (ldcum(i)) ictop0(i) = kctop(i) |
---|
| 381 | IF (ktype(i)==2) zentr(i) = entrscv |
---|
| 382 | END DO |
---|
| 383 | |
---|
| 384 | IF (lmfdd) THEN ! si l'on considere le panache descendant |
---|
| 385 | |
---|
| 386 | ! calculer la precipitation issue du panache ascendant pour |
---|
| 387 | ! determiner l'existence du panache descendant dans la convection |
---|
| 388 | DO i = 1, klon |
---|
| 389 | zrfl(i) = zdmfup(i, 1) |
---|
| 390 | END DO |
---|
| 391 | DO k = 2, klev |
---|
[524] | 392 | DO i = 1, klon |
---|
[1992] | 393 | zrfl(i) = zrfl(i) + zdmfup(i, k) |
---|
| 394 | END DO |
---|
| 395 | END DO |
---|
[524] | 396 | |
---|
[1992] | 397 | ! determiner le LFS (level of free sinking: niveau de plonge libre) |
---|
| 398 | CALL flxdlfs(ztenh, zqenh, zgeoh, paph, ptu, pqu, ldcum, kcbot, kctop, & |
---|
| 399 | zmfub, zrfl, ptd, pqd, pmfd, zmfds, zmfdq, zdmfdp, kdtop, lddraf) |
---|
| 400 | |
---|
| 401 | ! calculer le panache descendant |
---|
| 402 | CALL flxddraf(ztenh, zqenh, zgeoh, paph, zrfl, ptd, pqd, pmfd, zmfds, & |
---|
| 403 | zmfdq, zdmfdp, lddraf, pen_d, pde_d) |
---|
| 404 | |
---|
| 405 | ! calculer de nouveau le flux de masse entrant a travers la base |
---|
| 406 | ! de la convection, sachant qu'il a ete modifie par le panache |
---|
| 407 | ! descendant |
---|
| 408 | DO i = 1, klon |
---|
[524] | 409 | IF (lddraf(i)) THEN |
---|
[1992] | 410 | ikb = kcbot(i) |
---|
| 411 | llo1 = pmfd(i, ikb) < 0. |
---|
| 412 | zeps = 0. |
---|
| 413 | IF (llo1) zeps = cmfdeps |
---|
| 414 | zqumqe = pqu(i, ikb) + plu(i, ikb) - zeps*pqd(i, ikb) - & |
---|
| 415 | (1.-zeps)*zqenh(i, ikb) |
---|
| 416 | zdqmin = max(0.01*zqenh(i,ikb), 1.E-10) |
---|
| 417 | zmfmax = (paph(i,ikb)-paph(i,ikb-1))/(rg*pdtime) |
---|
| 418 | IF (zdqpbl(i)>0. .AND. zqumqe>zdqmin .AND. ldcum(i) .AND. & |
---|
| 419 | zmfub(i)<zmfmax) THEN |
---|
| 420 | zmfub1(i) = zdqpbl(i)/(rg*max(zqumqe,zdqmin)) |
---|
| 421 | ELSE |
---|
| 422 | zmfub1(i) = zmfub(i) |
---|
| 423 | END IF |
---|
| 424 | IF (ktype(i)==2) THEN |
---|
| 425 | zdh = rcpd*(ptu(i,ikb)-zeps*ptd(i,ikb)-(1.-zeps)*ztenh(i,ikb)) + & |
---|
| 426 | rlvtt*zqumqe |
---|
| 427 | zdh = rg*max(zdh, 1.0E5*zdqmin) |
---|
| 428 | IF (zdhpbl(i)>0. .AND. ldcum(i)) zmfub1(i) = zdhpbl(i)/zdh |
---|
| 429 | END IF |
---|
| 430 | IF (.NOT. ((ktype(i)==1 .OR. ktype(i)==2) .AND. abs(zmfub1(i)-zmfub(i & |
---|
| 431 | ))<0.2*zmfub(i))) zmfub1(i) = zmfub(i) |
---|
| 432 | END IF |
---|
| 433 | END DO |
---|
| 434 | DO k = 1, klev |
---|
[524] | 435 | DO i = 1, klon |
---|
[1992] | 436 | IF (lddraf(i)) THEN |
---|
| 437 | zfac = zmfub1(i)/max(zmfub(i), 1.E-10) |
---|
| 438 | pmfd(i, k) = pmfd(i, k)*zfac |
---|
| 439 | zmfds(i, k) = zmfds(i, k)*zfac |
---|
| 440 | zmfdq(i, k) = zmfdq(i, k)*zfac |
---|
| 441 | zdmfdp(i, k) = zdmfdp(i, k)*zfac |
---|
| 442 | pen_d(i, k) = pen_d(i, k)*zfac |
---|
| 443 | pde_d(i, k) = pde_d(i, k)*zfac |
---|
| 444 | END IF |
---|
| 445 | END DO |
---|
| 446 | END DO |
---|
| 447 | DO i = 1, klon |
---|
| 448 | IF (lddraf(i)) zmfub(i) = zmfub1(i) |
---|
| 449 | END DO |
---|
| 450 | |
---|
| 451 | END IF ! fin de test sur lmfdd |
---|
| 452 | |
---|
| 453 | ! ----------------------------------------------------------------------- |
---|
| 454 | ! calculer de nouveau le panache ascendant |
---|
| 455 | ! ----------------------------------------------------------------------- |
---|
| 456 | CALL flxasc(pdtime, ztenh, zqenh, pten, pqen, pqsen, pgeo, zgeoh, pap, & |
---|
| 457 | paph, pqte, pvervel, ldland, ldcum, ktype, ilab, ptu, pqu, plu, pmfu, & |
---|
| 458 | zmfub, zentr, zmfus, zmfuq, zmful, plude, zdmfup, kcbot, kctop, ictop0, & |
---|
| 459 | kcum, pen_u, pde_u) |
---|
| 460 | |
---|
| 461 | ! ----------------------------------------------------------------------- |
---|
| 462 | ! determiner les flux convectifs en forme finale, ainsi que |
---|
| 463 | ! la quantite des precipitations |
---|
| 464 | ! ----------------------------------------------------------------------- |
---|
| 465 | CALL flxflux(pdtime, pqen, pqsen, ztenh, zqenh, pap, paph, ldland, zgeoh, & |
---|
| 466 | kcbot, kctop, lddraf, kdtop, ktype, ldcum, pmfu, pmfd, zmfus, zmfds, & |
---|
| 467 | zmfuq, zmfdq, zmful, plude, zdmfup, zdmfdp, pten, prsfc, pssfc, zdpmel, & |
---|
| 468 | itopm2, pmflxr, pmflxs) |
---|
| 469 | |
---|
| 470 | ! ---------------------------------------------------------------------- |
---|
| 471 | ! calculer les tendances pour T et Q |
---|
| 472 | ! ---------------------------------------------------------------------- |
---|
| 473 | CALL flxdtdq(pdtime, itopm2, paph, ldcum, pten, zmfus, zmfds, zmfuq, zmfdq, & |
---|
| 474 | zmful, zdmfup, zdmfdp, zdpmel, dt_con, dq_con) |
---|
| 475 | |
---|
| 476 | 1000 CONTINUE |
---|
| 477 | RETURN |
---|
| 478 | END SUBROUTINE flxmain |
---|
| 479 | SUBROUTINE flxini(pten, pqen, pqsen, pgeo, paph, pgeoh, ptenh, pqenh, pqsenh, & |
---|
| 480 | ptu, pqu, ptd, pqd, pmfd, pmfds, pmfdq, pdmfdp, pmfu, pmfus, pmfuq, & |
---|
| 481 | pdmfup, pdpmel, plu, plude, klab, pen_u, pde_u, pen_d, pde_d) |
---|
| 482 | USE dimphy |
---|
[5285] | 483 | USE yomcst_mod_h |
---|
[5284] | 484 | USE yoethf_mod_h |
---|
[5274] | 485 | IMPLICIT NONE |
---|
[1992] | 486 | ! ---------------------------------------------------------------------- |
---|
| 487 | ! THIS ROUTINE INTERPOLATES LARGE-SCALE FIELDS OF T,Q ETC. |
---|
| 488 | ! TO HALF LEVELS (I.E. GRID FOR MASSFLUX SCHEME), |
---|
| 489 | ! AND INITIALIZES VALUES FOR UPDRAFTS |
---|
| 490 | ! ---------------------------------------------------------------------- |
---|
[5274] | 491 | |
---|
[1992] | 492 | REAL pten(klon, klev) ! temperature (environnement) |
---|
| 493 | REAL pqen(klon, klev) ! humidite (environnement) |
---|
| 494 | REAL pqsen(klon, klev) ! humidite saturante (environnement) |
---|
| 495 | REAL pgeo(klon, klev) ! geopotentiel (g * metre) |
---|
| 496 | REAL pgeoh(klon, klev) ! geopotentiel aux demi-niveaux |
---|
| 497 | REAL paph(klon, klev+1) ! pression aux demi-niveaux |
---|
| 498 | REAL ptenh(klon, klev) ! temperature aux demi-niveaux |
---|
| 499 | REAL pqenh(klon, klev) ! humidite aux demi-niveaux |
---|
| 500 | REAL pqsenh(klon, klev) ! humidite saturante aux demi-niveaux |
---|
| 501 | |
---|
| 502 | REAL ptu(klon, klev) ! temperature du panache ascendant (p-a) |
---|
| 503 | REAL pqu(klon, klev) ! humidite du p-a |
---|
| 504 | REAL plu(klon, klev) ! eau liquide du p-a |
---|
| 505 | REAL pmfu(klon, klev) ! flux de masse du p-a |
---|
| 506 | REAL pmfus(klon, klev) ! flux de l'energie seche dans le p-a |
---|
| 507 | REAL pmfuq(klon, klev) ! flux de l'humidite dans le p-a |
---|
| 508 | REAL pdmfup(klon, klev) ! quantite de l'eau precipitee dans p-a |
---|
| 509 | REAL plude(klon, klev) ! quantite de l'eau liquide jetee du |
---|
| 510 | ! p-a a l'environnement |
---|
| 511 | REAL pdpmel(klon, klev) ! quantite de neige fondue |
---|
| 512 | |
---|
| 513 | REAL ptd(klon, klev) ! temperature du panache descendant (p-d) |
---|
| 514 | REAL pqd(klon, klev) ! humidite du p-d |
---|
| 515 | REAL pmfd(klon, klev) ! flux de masse du p-d |
---|
| 516 | REAL pmfds(klon, klev) ! flux de l'energie seche dans le p-d |
---|
| 517 | REAL pmfdq(klon, klev) ! flux de l'humidite dans le p-d |
---|
| 518 | REAL pdmfdp(klon, klev) ! quantite de precipitation dans p-d |
---|
| 519 | |
---|
| 520 | REAL pen_u(klon, klev) ! quantite de masse entrainee pour p-a |
---|
| 521 | REAL pde_u(klon, klev) ! quantite de masse detrainee pour p-a |
---|
| 522 | REAL pen_d(klon, klev) ! quantite de masse entrainee pour p-d |
---|
| 523 | REAL pde_d(klon, klev) ! quantite de masse detrainee pour p-d |
---|
| 524 | |
---|
| 525 | INTEGER klab(klon, klev) |
---|
| 526 | LOGICAL llflag(klon) |
---|
| 527 | INTEGER k, i, icall |
---|
| 528 | REAL zzs |
---|
| 529 | ! ---------------------------------------------------------------------- |
---|
| 530 | ! SPECIFY LARGE SCALE PARAMETERS AT HALF LEVELS |
---|
| 531 | ! ADJUST TEMPERATURE FIELDS IF STATICLY UNSTABLE |
---|
| 532 | ! ---------------------------------------------------------------------- |
---|
| 533 | DO k = 2, klev |
---|
| 534 | |
---|
| 535 | DO i = 1, klon |
---|
| 536 | pgeoh(i, k) = pgeo(i, k) + (pgeo(i,k-1)-pgeo(i,k))*0.5 |
---|
| 537 | ptenh(i, k) = (max(rcpd*pten(i,k-1)+pgeo(i,k-1),rcpd*pten(i,k)+pgeo(i, & |
---|
| 538 | k))-pgeoh(i,k))/rcpd |
---|
| 539 | pqsenh(i, k) = pqsen(i, k-1) |
---|
| 540 | llflag(i) = .TRUE. |
---|
| 541 | END DO |
---|
| 542 | |
---|
| 543 | icall = 0 |
---|
| 544 | CALL flxadjtq(paph(1,k), ptenh(1,k), pqsenh(1,k), llflag, icall) |
---|
| 545 | |
---|
| 546 | DO i = 1, klon |
---|
| 547 | pqenh(i, k) = min(pqen(i,k-1), pqsen(i,k-1)) + & |
---|
| 548 | (pqsenh(i,k)-pqsen(i,k-1)) |
---|
| 549 | pqenh(i, k) = max(pqenh(i,k), 0.) |
---|
| 550 | END DO |
---|
| 551 | |
---|
| 552 | END DO |
---|
| 553 | |
---|
| 554 | DO i = 1, klon |
---|
| 555 | ptenh(i, klev) = (rcpd*pten(i,klev)+pgeo(i,klev)-pgeoh(i,klev))/rcpd |
---|
| 556 | pqenh(i, klev) = pqen(i, klev) |
---|
| 557 | ptenh(i, 1) = pten(i, 1) |
---|
| 558 | pqenh(i, 1) = pqen(i, 1) |
---|
| 559 | pgeoh(i, 1) = pgeo(i, 1) |
---|
| 560 | END DO |
---|
| 561 | |
---|
| 562 | DO k = klev - 1, 2, -1 |
---|
| 563 | DO i = 1, klon |
---|
| 564 | zzs = max(rcpd*ptenh(i,k)+pgeoh(i,k), rcpd*ptenh(i,k+1)+pgeoh(i,k+1)) |
---|
| 565 | ptenh(i, k) = (zzs-pgeoh(i,k))/rcpd |
---|
| 566 | END DO |
---|
| 567 | END DO |
---|
| 568 | |
---|
| 569 | ! ----------------------------------------------------------------------- |
---|
| 570 | ! INITIALIZE VALUES FOR UPDRAFTS AND DOWNDRAFTS |
---|
| 571 | ! ----------------------------------------------------------------------- |
---|
| 572 | DO k = 1, klev |
---|
| 573 | DO i = 1, klon |
---|
| 574 | ptu(i, k) = ptenh(i, k) |
---|
| 575 | pqu(i, k) = pqenh(i, k) |
---|
| 576 | plu(i, k) = 0. |
---|
| 577 | pmfu(i, k) = 0. |
---|
| 578 | pmfus(i, k) = 0. |
---|
| 579 | pmfuq(i, k) = 0. |
---|
| 580 | pdmfup(i, k) = 0. |
---|
| 581 | pdpmel(i, k) = 0. |
---|
| 582 | plude(i, k) = 0. |
---|
| 583 | |
---|
| 584 | klab(i, k) = 0 |
---|
| 585 | |
---|
| 586 | ptd(i, k) = ptenh(i, k) |
---|
| 587 | pqd(i, k) = pqenh(i, k) |
---|
| 588 | pmfd(i, k) = 0.0 |
---|
| 589 | pmfds(i, k) = 0.0 |
---|
| 590 | pmfdq(i, k) = 0.0 |
---|
| 591 | pdmfdp(i, k) = 0.0 |
---|
| 592 | |
---|
| 593 | pen_u(i, k) = 0.0 |
---|
| 594 | pde_u(i, k) = 0.0 |
---|
| 595 | pen_d(i, k) = 0.0 |
---|
| 596 | pde_d(i, k) = 0.0 |
---|
| 597 | END DO |
---|
| 598 | END DO |
---|
| 599 | |
---|
| 600 | RETURN |
---|
| 601 | END SUBROUTINE flxini |
---|
| 602 | SUBROUTINE flxbase(ptenh, pqenh, pgeoh, paph, ptu, pqu, plu, ldcum, kcbot, & |
---|
| 603 | klab) |
---|
| 604 | USE dimphy |
---|
[5285] | 605 | USE yomcst_mod_h |
---|
[5284] | 606 | USE yoethf_mod_h |
---|
[5274] | 607 | IMPLICIT NONE |
---|
[1992] | 608 | ! ---------------------------------------------------------------------- |
---|
| 609 | ! THIS ROUTINE CALCULATES CLOUD BASE VALUES (T AND Q) |
---|
| 610 | |
---|
| 611 | ! INPUT ARE ENVIRONM. VALUES OF T,Q,P,PHI AT HALF LEVELS. |
---|
| 612 | ! IT RETURNS CLOUD BASE VALUES AND FLAGS AS FOLLOWS; |
---|
| 613 | ! klab=1 FOR SUBCLOUD LEVELS |
---|
| 614 | ! klab=2 FOR CONDENSATION LEVEL |
---|
| 615 | |
---|
| 616 | ! LIFT SURFACE AIR DRY-ADIABATICALLY TO CLOUD BASE |
---|
| 617 | ! (NON ENTRAINING PLUME,I.E.CONSTANT MASSFLUX) |
---|
| 618 | ! ---------------------------------------------------------------------- |
---|
| 619 | REAL ptenh(klon, klev), pqenh(klon, klev) |
---|
| 620 | REAL pgeoh(klon, klev), paph(klon, klev+1) |
---|
| 621 | |
---|
| 622 | REAL ptu(klon, klev), pqu(klon, klev), plu(klon, klev) |
---|
| 623 | INTEGER klab(klon, klev), kcbot(klon) |
---|
| 624 | |
---|
| 625 | LOGICAL llflag(klon), ldcum(klon) |
---|
| 626 | INTEGER i, k, icall, is |
---|
| 627 | REAL zbuo, zqold(klon) |
---|
| 628 | ! ---------------------------------------------------------------------- |
---|
| 629 | ! INITIALIZE VALUES AT LIFTING LEVEL |
---|
| 630 | ! ---------------------------------------------------------------------- |
---|
| 631 | DO i = 1, klon |
---|
| 632 | klab(i, klev) = 1 |
---|
| 633 | kcbot(i) = klev - 1 |
---|
| 634 | ldcum(i) = .FALSE. |
---|
| 635 | END DO |
---|
| 636 | ! ---------------------------------------------------------------------- |
---|
| 637 | ! DO ASCENT IN SUBCLOUD LAYER, |
---|
| 638 | ! CHECK FOR EXISTENCE OF CONDENSATION LEVEL, |
---|
| 639 | ! ADJUST T,Q AND L ACCORDINGLY |
---|
| 640 | ! CHECK FOR BUOYANCY AND SET FLAGS |
---|
| 641 | ! ---------------------------------------------------------------------- |
---|
| 642 | DO k = klev - 1, 2, -1 |
---|
| 643 | |
---|
| 644 | is = 0 |
---|
| 645 | DO i = 1, klon |
---|
| 646 | IF (klab(i,k+1)==1) is = is + 1 |
---|
| 647 | llflag(i) = .FALSE. |
---|
| 648 | IF (klab(i,k+1)==1) llflag(i) = .TRUE. |
---|
| 649 | END DO |
---|
| 650 | IF (is==0) GO TO 290 |
---|
| 651 | |
---|
| 652 | DO i = 1, klon |
---|
| 653 | IF (llflag(i)) THEN |
---|
| 654 | pqu(i, k) = pqu(i, k+1) |
---|
| 655 | ptu(i, k) = ptu(i, k+1) + (pgeoh(i,k+1)-pgeoh(i,k))/rcpd |
---|
| 656 | zbuo = ptu(i, k)*(1.+retv*pqu(i,k)) - ptenh(i, k)*(1.+retv*pqenh(i,k) & |
---|
| 657 | ) + 0.5 |
---|
| 658 | IF (zbuo>0.) klab(i, k) = 1 |
---|
| 659 | zqold(i) = pqu(i, k) |
---|
| 660 | END IF |
---|
| 661 | END DO |
---|
| 662 | |
---|
| 663 | icall = 1 |
---|
| 664 | CALL flxadjtq(paph(1,k), ptu(1,k), pqu(1,k), llflag, icall) |
---|
| 665 | |
---|
| 666 | DO i = 1, klon |
---|
| 667 | IF (llflag(i) .AND. pqu(i,k)/=zqold(i)) THEN |
---|
| 668 | klab(i, k) = 2 |
---|
| 669 | plu(i, k) = plu(i, k) + zqold(i) - pqu(i, k) |
---|
| 670 | zbuo = ptu(i, k)*(1.+retv*pqu(i,k)) - ptenh(i, k)*(1.+retv*pqenh(i,k) & |
---|
| 671 | ) + 0.5 |
---|
| 672 | IF (zbuo>0.) kcbot(i) = k |
---|
| 673 | IF (zbuo>0.) ldcum(i) = .TRUE. |
---|
| 674 | END IF |
---|
| 675 | END DO |
---|
| 676 | |
---|
| 677 | 290 END DO |
---|
| 678 | |
---|
| 679 | RETURN |
---|
| 680 | END SUBROUTINE flxbase |
---|
| 681 | SUBROUTINE flxasc(pdtime, ptenh, pqenh, pten, pqen, pqsen, pgeo, pgeoh, pap, & |
---|
| 682 | paph, pqte, pvervel, ldland, ldcum, ktype, klab, ptu, pqu, plu, pmfu, & |
---|
| 683 | pmfub, pentr, pmfus, pmfuq, pmful, plude, pdmfup, kcbot, kctop, kctop0, & |
---|
| 684 | kcum, pen_u, pde_u) |
---|
[5289] | 685 | USE yoecumf_mod_h |
---|
| 686 | USE yoethf_mod_h |
---|
[5284] | 687 | USE dimphy |
---|
[5285] | 688 | USE yomcst_mod_h |
---|
[5274] | 689 | IMPLICIT NONE |
---|
[1992] | 690 | ! ---------------------------------------------------------------------- |
---|
| 691 | ! THIS ROUTINE DOES THE CALCULATIONS FOR CLOUD ASCENTS |
---|
| 692 | ! FOR CUMULUS PARAMETERIZATION |
---|
| 693 | ! ---------------------------------------------------------------------- |
---|
[5274] | 694 | |
---|
[1992] | 695 | |
---|
| 696 | REAL pdtime |
---|
| 697 | REAL pten(klon, klev), ptenh(klon, klev) |
---|
| 698 | REAL pqen(klon, klev), pqenh(klon, klev), pqsen(klon, klev) |
---|
| 699 | REAL pgeo(klon, klev), pgeoh(klon, klev) |
---|
| 700 | REAL pap(klon, klev), paph(klon, klev+1) |
---|
| 701 | REAL pqte(klon, klev) |
---|
| 702 | REAL pvervel(klon, klev) ! vitesse verticale en Pa/s |
---|
| 703 | |
---|
| 704 | REAL pmfub(klon), pentr(klon) |
---|
| 705 | REAL ptu(klon, klev), pqu(klon, klev), plu(klon, klev) |
---|
| 706 | REAL plude(klon, klev) |
---|
| 707 | REAL pmfu(klon, klev), pmfus(klon, klev) |
---|
| 708 | REAL pmfuq(klon, klev), pmful(klon, klev) |
---|
| 709 | REAL pdmfup(klon, klev) |
---|
| 710 | INTEGER ktype(klon), klab(klon, klev), kcbot(klon), kctop(klon) |
---|
| 711 | INTEGER kctop0(klon) |
---|
| 712 | LOGICAL ldland(klon), ldcum(klon) |
---|
| 713 | |
---|
| 714 | REAL pen_u(klon, klev), pde_u(klon, klev) |
---|
| 715 | REAL zqold(klon) |
---|
| 716 | REAL zdland(klon) |
---|
| 717 | LOGICAL llflag(klon) |
---|
| 718 | INTEGER k, i, is, icall, kcum |
---|
| 719 | REAL ztglace, zdphi, zqeen, zseen, zscde, zqude |
---|
| 720 | REAL zmfusk, zmfuqk, zmfulk, zbuo, zdnoprc, zprcon, zlnew |
---|
| 721 | |
---|
| 722 | REAL zpbot(klon), zptop(klon), zrho(klon) |
---|
| 723 | REAL zdprho, zentr, zpmid, zmftest, zmfmax |
---|
| 724 | LOGICAL llo1, llo2 |
---|
| 725 | |
---|
| 726 | REAL zwmax(klon), zzzmb |
---|
| 727 | INTEGER klwmin(klon) ! level of maximum vertical velocity |
---|
| 728 | REAL fact |
---|
| 729 | ! ---------------------------------------------------------------------- |
---|
| 730 | ztglace = rtt - 13. |
---|
| 731 | |
---|
| 732 | ! Chercher le niveau ou la vitesse verticale est maximale: |
---|
| 733 | DO i = 1, klon |
---|
| 734 | klwmin(i) = klev |
---|
| 735 | zwmax(i) = 0.0 |
---|
| 736 | END DO |
---|
| 737 | DO k = klev, 3, -1 |
---|
| 738 | DO i = 1, klon |
---|
| 739 | IF (pvervel(i,k)<zwmax(i)) THEN |
---|
| 740 | zwmax(i) = pvervel(i, k) |
---|
| 741 | klwmin(i) = k |
---|
| 742 | END IF |
---|
| 743 | END DO |
---|
| 744 | END DO |
---|
| 745 | ! ---------------------------------------------------------------------- |
---|
| 746 | ! SET DEFAULT VALUES |
---|
| 747 | ! ---------------------------------------------------------------------- |
---|
| 748 | DO i = 1, klon |
---|
| 749 | IF (.NOT. ldcum(i)) ktype(i) = 0 |
---|
| 750 | END DO |
---|
| 751 | |
---|
| 752 | DO k = 1, klev |
---|
| 753 | DO i = 1, klon |
---|
| 754 | plu(i, k) = 0. |
---|
| 755 | pmfu(i, k) = 0. |
---|
| 756 | pmfus(i, k) = 0. |
---|
| 757 | pmfuq(i, k) = 0. |
---|
| 758 | pmful(i, k) = 0. |
---|
| 759 | plude(i, k) = 0. |
---|
| 760 | pdmfup(i, k) = 0. |
---|
| 761 | IF (.NOT. ldcum(i) .OR. ktype(i)==3) klab(i, k) = 0 |
---|
| 762 | IF (.NOT. ldcum(i) .AND. paph(i,k)<4.E4) kctop0(i) = k |
---|
| 763 | END DO |
---|
| 764 | END DO |
---|
| 765 | |
---|
| 766 | DO i = 1, klon |
---|
| 767 | IF (ldland(i)) THEN |
---|
| 768 | zdland(i) = 3.0E4 |
---|
| 769 | zdphi = pgeoh(i, kctop0(i)) - pgeoh(i, kcbot(i)) |
---|
| 770 | IF (ptu(i,kctop0(i))>=ztglace) zdland(i) = zdphi |
---|
| 771 | zdland(i) = max(3.0E4, zdland(i)) |
---|
| 772 | zdland(i) = min(5.0E4, zdland(i)) |
---|
| 773 | END IF |
---|
| 774 | END DO |
---|
| 775 | |
---|
| 776 | ! Initialiser les valeurs au niveau d'ascendance |
---|
| 777 | |
---|
| 778 | DO i = 1, klon |
---|
| 779 | kctop(i) = klev - 1 |
---|
| 780 | IF (.NOT. ldcum(i)) THEN |
---|
| 781 | kcbot(i) = klev - 1 |
---|
| 782 | pmfub(i) = 0. |
---|
| 783 | pqu(i, klev) = 0. |
---|
| 784 | END IF |
---|
| 785 | pmfu(i, klev) = pmfub(i) |
---|
| 786 | pmfus(i, klev) = pmfub(i)*(rcpd*ptu(i,klev)+pgeoh(i,klev)) |
---|
| 787 | pmfuq(i, klev) = pmfub(i)*pqu(i, klev) |
---|
| 788 | END DO |
---|
| 789 | |
---|
| 790 | DO i = 1, klon |
---|
| 791 | ldcum(i) = .FALSE. |
---|
| 792 | END DO |
---|
| 793 | ! ---------------------------------------------------------------------- |
---|
| 794 | ! DO ASCENT: SUBCLOUD LAYER (klab=1) ,CLOUDS (klab=2) |
---|
| 795 | ! BY DOING FIRST DRY-ADIABATIC ASCENT AND THEN |
---|
| 796 | ! BY ADJUSTING T,Q AND L ACCORDINGLY IN *flxadjtq*, |
---|
| 797 | ! THEN CHECK FOR BUOYANCY AND SET FLAGS ACCORDINGLY |
---|
| 798 | ! ---------------------------------------------------------------------- |
---|
| 799 | DO k = klev - 1, 3, -1 |
---|
| 800 | |
---|
| 801 | IF (lmfmid .AND. k<klev-1) THEN |
---|
[524] | 802 | DO i = 1, klon |
---|
[1992] | 803 | IF (.NOT. ldcum(i) .AND. klab(i,k+1)==0 .AND. & |
---|
| 804 | pqen(i,k)>0.9*pqsen(i,k) .AND. pap(i,k)/paph(i,klev+1)>0.4) THEN |
---|
| 805 | ptu(i, k+1) = pten(i, k) + (pgeo(i,k)-pgeoh(i,k+1))/rcpd |
---|
| 806 | pqu(i, k+1) = pqen(i, k) |
---|
| 807 | plu(i, k+1) = 0.0 |
---|
| 808 | zzzmb = max(cmfcmin, -pvervel(i,k)/rg) |
---|
| 809 | zmfmax = (paph(i,k)-paph(i,k-1))/(rg*pdtime) |
---|
| 810 | pmfub(i) = min(zzzmb, zmfmax) |
---|
| 811 | pmfu(i, k+1) = pmfub(i) |
---|
| 812 | pmfus(i, k+1) = pmfub(i)*(rcpd*ptu(i,k+1)+pgeoh(i,k+1)) |
---|
| 813 | pmfuq(i, k+1) = pmfub(i)*pqu(i, k+1) |
---|
| 814 | pmful(i, k+1) = 0.0 |
---|
| 815 | pdmfup(i, k+1) = 0.0 |
---|
| 816 | kcbot(i) = k |
---|
| 817 | klab(i, k+1) = 1 |
---|
| 818 | ktype(i) = 3 |
---|
| 819 | pentr(i) = entrmid |
---|
| 820 | END IF |
---|
| 821 | END DO |
---|
| 822 | END IF |
---|
| 823 | |
---|
| 824 | is = 0 |
---|
| 825 | DO i = 1, klon |
---|
| 826 | is = is + klab(i, k+1) |
---|
| 827 | IF (klab(i,k+1)==0) klab(i, k) = 0 |
---|
| 828 | llflag(i) = .FALSE. |
---|
| 829 | IF (klab(i,k+1)>0) llflag(i) = .TRUE. |
---|
| 830 | END DO |
---|
| 831 | IF (is==0) GO TO 480 |
---|
| 832 | |
---|
| 833 | ! calculer le taux d'entrainement et de detrainement |
---|
| 834 | |
---|
| 835 | DO i = 1, klon |
---|
| 836 | pen_u(i, k) = 0.0 |
---|
| 837 | pde_u(i, k) = 0.0 |
---|
| 838 | zrho(i) = paph(i, k+1)/(rd*ptenh(i,k+1)) |
---|
| 839 | zpbot(i) = paph(i, kcbot(i)) |
---|
| 840 | zptop(i) = paph(i, kctop0(i)) |
---|
| 841 | END DO |
---|
| 842 | |
---|
| 843 | DO i = 1, klon |
---|
| 844 | IF (ldcum(i)) THEN |
---|
| 845 | zdprho = (paph(i,k+1)-paph(i,k))/(rg*zrho(i)) |
---|
| 846 | zentr = pentr(i)*pmfu(i, k+1)*zdprho |
---|
| 847 | llo1 = k < kcbot(i) |
---|
| 848 | IF (llo1) pde_u(i, k) = zentr |
---|
| 849 | zpmid = 0.5*(zpbot(i)+zptop(i)) |
---|
| 850 | llo2 = llo1 .AND. ktype(i) == 2 .AND. (zpbot(i)-paph(i,k)<0.2E5 .OR. & |
---|
| 851 | paph(i,k)>zpmid) |
---|
| 852 | IF (llo2) pen_u(i, k) = zentr |
---|
| 853 | llo2 = llo1 .AND. (ktype(i)==1 .OR. ktype(i)==3) .AND. & |
---|
| 854 | (k>=max(klwmin(i),kctop0(i)+2) .OR. pap(i,k)>zpmid) |
---|
| 855 | IF (llo2) pen_u(i, k) = zentr |
---|
| 856 | llo1 = pen_u(i, k) > 0. .AND. (ktype(i)==1 .OR. ktype(i)==2) |
---|
| 857 | IF (llo1) THEN |
---|
| 858 | fact = 1. + 3.*(1.-min(1.,(zpbot(i)-pap(i,k))/1.5E4)) |
---|
| 859 | zentr = zentr*fact |
---|
| 860 | pen_u(i, k) = pen_u(i, k)*fact |
---|
| 861 | pde_u(i, k) = pde_u(i, k)*fact |
---|
| 862 | END IF |
---|
| 863 | IF (llo2 .AND. pqenh(i,k+1)>1.E-5) pen_u(i, k) = zentr + & |
---|
| 864 | max(pqte(i,k), 0.)/pqenh(i, k+1)*zrho(i)*zdprho |
---|
| 865 | END IF |
---|
| 866 | END DO |
---|
| 867 | |
---|
| 868 | ! ---------------------------------------------------------------------- |
---|
| 869 | ! DO ADIABATIC ASCENT FOR ENTRAINING/DETRAINING PLUME |
---|
| 870 | ! ---------------------------------------------------------------------- |
---|
| 871 | |
---|
| 872 | DO i = 1, klon |
---|
[524] | 873 | IF (llflag(i)) THEN |
---|
[1992] | 874 | IF (k<kcbot(i)) THEN |
---|
| 875 | zmftest = pmfu(i, k+1) + pen_u(i, k) - pde_u(i, k) |
---|
| 876 | zmfmax = min(zmftest, (paph(i,k)-paph(i,k-1))/(rg*pdtime)) |
---|
| 877 | pen_u(i, k) = max(pen_u(i,k)-max(0.0,zmftest-zmfmax), 0.0) |
---|
| 878 | END IF |
---|
| 879 | pde_u(i, k) = min(pde_u(i,k), 0.75*pmfu(i,k+1)) |
---|
| 880 | ! calculer le flux de masse du niveau k a partir de celui du k+1 |
---|
| 881 | pmfu(i, k) = pmfu(i, k+1) + pen_u(i, k) - pde_u(i, k) |
---|
| 882 | ! calculer les valeurs Su, Qu et l du niveau k dans le panache |
---|
| 883 | ! montant |
---|
| 884 | zqeen = pqenh(i, k+1)*pen_u(i, k) |
---|
| 885 | zseen = (rcpd*ptenh(i,k+1)+pgeoh(i,k+1))*pen_u(i, k) |
---|
| 886 | zscde = (rcpd*ptu(i,k+1)+pgeoh(i,k+1))*pde_u(i, k) |
---|
| 887 | zqude = pqu(i, k+1)*pde_u(i, k) |
---|
| 888 | plude(i, k) = plu(i, k+1)*pde_u(i, k) |
---|
| 889 | zmfusk = pmfus(i, k+1) + zseen - zscde |
---|
| 890 | zmfuqk = pmfuq(i, k+1) + zqeen - zqude |
---|
| 891 | zmfulk = pmful(i, k+1) - plude(i, k) |
---|
| 892 | plu(i, k) = zmfulk*(1./max(cmfcmin,pmfu(i,k))) |
---|
| 893 | pqu(i, k) = zmfuqk*(1./max(cmfcmin,pmfu(i,k))) |
---|
| 894 | ptu(i, k) = (zmfusk*(1./max(cmfcmin,pmfu(i,k)))-pgeoh(i,k))/rcpd |
---|
| 895 | ptu(i, k) = max(100., ptu(i,k)) |
---|
| 896 | ptu(i, k) = min(400., ptu(i,k)) |
---|
| 897 | zqold(i) = pqu(i, k) |
---|
[524] | 898 | ELSE |
---|
[1992] | 899 | zqold(i) = 0.0 |
---|
| 900 | END IF |
---|
| 901 | END DO |
---|
| 902 | |
---|
| 903 | ! ---------------------------------------------------------------------- |
---|
| 904 | ! DO CORRECTIONS FOR MOIST ASCENT BY ADJUSTING T,Q AND L |
---|
| 905 | ! ---------------------------------------------------------------------- |
---|
| 906 | |
---|
| 907 | icall = 1 |
---|
| 908 | CALL flxadjtq(paph(1,k), ptu(1,k), pqu(1,k), llflag, icall) |
---|
| 909 | |
---|
| 910 | DO i = 1, klon |
---|
| 911 | IF (llflag(i) .AND. pqu(i,k)/=zqold(i)) THEN |
---|
| 912 | klab(i, k) = 2 |
---|
| 913 | plu(i, k) = plu(i, k) + zqold(i) - pqu(i, k) |
---|
| 914 | zbuo = ptu(i, k)*(1.+retv*pqu(i,k)) - ptenh(i, k)*(1.+retv*pqenh(i,k) & |
---|
| 915 | ) |
---|
| 916 | IF (klab(i,k+1)==1) zbuo = zbuo + 0.5 |
---|
| 917 | IF (zbuo>0. .AND. pmfu(i,k)>=0.1*pmfub(i)) THEN |
---|
| 918 | kctop(i) = k |
---|
| 919 | ldcum(i) = .TRUE. |
---|
| 920 | zdnoprc = 1.5E4 |
---|
| 921 | IF (ldland(i)) zdnoprc = zdland(i) |
---|
| 922 | zprcon = cprcon |
---|
| 923 | IF ((zpbot(i)-paph(i,k))<zdnoprc) zprcon = 0.0 |
---|
| 924 | zlnew = plu(i, k)/(1.+zprcon*(pgeoh(i,k)-pgeoh(i,k+1))) |
---|
| 925 | pdmfup(i, k) = max(0., (plu(i,k)-zlnew)*pmfu(i,k)) |
---|
| 926 | plu(i, k) = zlnew |
---|
| 927 | ELSE |
---|
| 928 | klab(i, k) = 0 |
---|
| 929 | pmfu(i, k) = 0. |
---|
| 930 | END IF |
---|
| 931 | END IF |
---|
| 932 | END DO |
---|
| 933 | DO i = 1, klon |
---|
[524] | 934 | IF (llflag(i)) THEN |
---|
[1992] | 935 | pmful(i, k) = plu(i, k)*pmfu(i, k) |
---|
| 936 | pmfus(i, k) = (rcpd*ptu(i,k)+pgeoh(i,k))*pmfu(i, k) |
---|
| 937 | pmfuq(i, k) = pqu(i, k)*pmfu(i, k) |
---|
| 938 | END IF |
---|
| 939 | END DO |
---|
| 940 | |
---|
| 941 | 480 END DO |
---|
| 942 | ! ---------------------------------------------------------------------- |
---|
| 943 | ! DETERMINE CONVECTIVE FLUXES ABOVE NON-BUOYANCY LEVEL |
---|
| 944 | ! (NOTE: CLOUD VARIABLES LIKE T,Q AND L ARE NOT |
---|
| 945 | ! AFFECTED BY DETRAINMENT AND ARE ALREADY KNOWN |
---|
| 946 | ! FROM PREVIOUS CALCULATIONS ABOVE) |
---|
| 947 | ! ---------------------------------------------------------------------- |
---|
| 948 | DO i = 1, klon |
---|
| 949 | IF (kctop(i)==klev-1) ldcum(i) = .FALSE. |
---|
| 950 | kcbot(i) = max(kcbot(i), kctop(i)) |
---|
| 951 | END DO |
---|
| 952 | |
---|
| 953 | ldcum(1) = ldcum(1) |
---|
| 954 | |
---|
| 955 | is = 0 |
---|
| 956 | DO i = 1, klon |
---|
| 957 | IF (ldcum(i)) is = is + 1 |
---|
| 958 | END DO |
---|
| 959 | kcum = is |
---|
| 960 | IF (is==0) GO TO 800 |
---|
| 961 | |
---|
| 962 | DO i = 1, klon |
---|
| 963 | IF (ldcum(i)) THEN |
---|
| 964 | k = kctop(i) - 1 |
---|
| 965 | pde_u(i, k) = (1.-cmfctop)*pmfu(i, k+1) |
---|
| 966 | plude(i, k) = pde_u(i, k)*plu(i, k+1) |
---|
| 967 | pmfu(i, k) = pmfu(i, k+1) - pde_u(i, k) |
---|
| 968 | zlnew = plu(i, k) |
---|
| 969 | pdmfup(i, k) = max(0., (plu(i,k)-zlnew)*pmfu(i,k)) |
---|
| 970 | plu(i, k) = zlnew |
---|
| 971 | pmfus(i, k) = (rcpd*ptu(i,k)+pgeoh(i,k))*pmfu(i, k) |
---|
| 972 | pmfuq(i, k) = pqu(i, k)*pmfu(i, k) |
---|
| 973 | pmful(i, k) = plu(i, k)*pmfu(i, k) |
---|
| 974 | plude(i, k-1) = pmful(i, k) |
---|
| 975 | END IF |
---|
| 976 | END DO |
---|
| 977 | |
---|
| 978 | 800 CONTINUE |
---|
| 979 | RETURN |
---|
| 980 | END SUBROUTINE flxasc |
---|
| 981 | SUBROUTINE flxflux(pdtime, pqen, pqsen, ptenh, pqenh, pap, paph, ldland, & |
---|
| 982 | pgeoh, kcbot, kctop, lddraf, kdtop, ktype, ldcum, pmfu, pmfd, pmfus, & |
---|
| 983 | pmfds, pmfuq, pmfdq, pmful, plude, pdmfup, pdmfdp, pten, prfl, psfl, & |
---|
| 984 | pdpmel, ktopm2, pmflxr, pmflxs) |
---|
[5289] | 985 | USE yoecumf_mod_h |
---|
| 986 | USE yoethf_mod_h |
---|
[5284] | 987 | USE dimphy |
---|
[2311] | 988 | USE print_control_mod, ONLY: prt_level |
---|
[5285] | 989 | USE yomcst_mod_h |
---|
[5274] | 990 | IMPLICIT NONE |
---|
[1992] | 991 | ! ---------------------------------------------------------------------- |
---|
| 992 | ! THIS ROUTINE DOES THE FINAL CALCULATION OF CONVECTIVE |
---|
| 993 | ! FLUXES IN THE CLOUD LAYER AND IN THE SUBCLOUD LAYER |
---|
| 994 | ! ---------------------------------------------------------------------- |
---|
[5274] | 995 | |
---|
[1992] | 996 | |
---|
| 997 | REAL cevapcu(klon, klev) |
---|
| 998 | ! ----------------------------------------------------------------- |
---|
| 999 | REAL pqen(klon, klev), pqenh(klon, klev), pqsen(klon, klev) |
---|
| 1000 | REAL pten(klon, klev), ptenh(klon, klev) |
---|
| 1001 | REAL paph(klon, klev+1), pgeoh(klon, klev) |
---|
| 1002 | |
---|
| 1003 | REAL pap(klon, klev) |
---|
| 1004 | REAL ztmsmlt, zdelta, zqsat |
---|
| 1005 | |
---|
| 1006 | REAL pmfu(klon, klev), pmfus(klon, klev) |
---|
| 1007 | REAL pmfd(klon, klev), pmfds(klon, klev) |
---|
| 1008 | REAL pmfuq(klon, klev), pmful(klon, klev) |
---|
| 1009 | REAL pmfdq(klon, klev) |
---|
| 1010 | REAL plude(klon, klev) |
---|
| 1011 | REAL pdmfup(klon, klev), pdpmel(klon, klev) |
---|
| 1012 | ! jq The variable maxpdmfdp(klon) has been introduced by Olivier Boucher |
---|
| 1013 | ! jq 14/11/00 to fix the problem with the negative precipitation. |
---|
| 1014 | REAL pdmfdp(klon, klev), maxpdmfdp(klon, klev) |
---|
| 1015 | REAL prfl(klon), psfl(klon) |
---|
| 1016 | REAL pmflxr(klon, klev+1), pmflxs(klon, klev+1) |
---|
| 1017 | INTEGER kcbot(klon), kctop(klon), ktype(klon) |
---|
| 1018 | LOGICAL ldland(klon), ldcum(klon) |
---|
| 1019 | INTEGER k, kp, i |
---|
| 1020 | REAL zcons1, zcons2, zcucov, ztmelp2 |
---|
| 1021 | REAL pdtime, zdp, zzp, zfac, zsnmlt, zrfl, zrnew |
---|
| 1022 | REAL zrmin, zrfln, zdrfl |
---|
| 1023 | REAL zpds, zpdr, zdenom |
---|
| 1024 | INTEGER ktopm2, itop, ikb |
---|
| 1025 | |
---|
| 1026 | LOGICAL lddraf(klon) |
---|
| 1027 | INTEGER kdtop(klon) |
---|
| 1028 | |
---|
| 1029 | include "FCTTRE.h" |
---|
| 1030 | |
---|
| 1031 | DO k = 1, klev |
---|
| 1032 | DO i = 1, klon |
---|
| 1033 | cevapcu(i, k) = 1.93E-6*261.*sqrt(1.E3/(38.3*0.293)*sqrt(0.5*(paph(i,k) & |
---|
| 1034 | +paph(i,k+1))/paph(i,klev+1)))*0.5/rg |
---|
| 1035 | END DO |
---|
| 1036 | END DO |
---|
| 1037 | |
---|
| 1038 | ! SPECIFY CONSTANTS |
---|
| 1039 | |
---|
| 1040 | zcons1 = rcpd/(rlmlt*rg*pdtime) |
---|
| 1041 | zcons2 = 1./(rg*pdtime) |
---|
| 1042 | zcucov = 0.05 |
---|
| 1043 | ztmelp2 = rtt + 2. |
---|
| 1044 | |
---|
| 1045 | ! DETERMINE FINAL CONVECTIVE FLUXES |
---|
| 1046 | |
---|
| 1047 | itop = klev |
---|
| 1048 | DO i = 1, klon |
---|
| 1049 | itop = min(itop, kctop(i)) |
---|
| 1050 | IF (.NOT. ldcum(i) .OR. kdtop(i)<kctop(i)) lddraf(i) = .FALSE. |
---|
| 1051 | IF (.NOT. ldcum(i)) ktype(i) = 0 |
---|
| 1052 | END DO |
---|
| 1053 | |
---|
| 1054 | ktopm2 = itop - 2 |
---|
| 1055 | DO k = ktopm2, klev |
---|
| 1056 | DO i = 1, klon |
---|
| 1057 | IF (ldcum(i) .AND. k>=kctop(i)-1) THEN |
---|
| 1058 | pmfus(i, k) = pmfus(i, k) - pmfu(i, k)*(rcpd*ptenh(i,k)+pgeoh(i,k)) |
---|
| 1059 | pmfuq(i, k) = pmfuq(i, k) - pmfu(i, k)*pqenh(i, k) |
---|
| 1060 | zdp = 1.5E4 |
---|
| 1061 | IF (ldland(i)) zdp = 3.E4 |
---|
| 1062 | |
---|
| 1063 | ! l'eau liquide detrainee est precipitee quand certaines |
---|
| 1064 | ! conditions sont reunies (sinon, elle est consideree |
---|
| 1065 | ! evaporee dans l'environnement) |
---|
| 1066 | |
---|
| 1067 | IF (paph(i,kcbot(i))-paph(i,kctop(i))>=zdp .AND. pqen(i,k-1)>0.8* & |
---|
| 1068 | pqsen(i,k-1)) pdmfup(i, k-1) = pdmfup(i, k-1) + plude(i, k-1) |
---|
| 1069 | |
---|
| 1070 | IF (lddraf(i) .AND. k>=kdtop(i)) THEN |
---|
| 1071 | pmfds(i, k) = pmfds(i, k) - pmfd(i, k)*(rcpd*ptenh(i,k)+pgeoh(i,k)) |
---|
| 1072 | pmfdq(i, k) = pmfdq(i, k) - pmfd(i, k)*pqenh(i, k) |
---|
| 1073 | ELSE |
---|
| 1074 | pmfd(i, k) = 0. |
---|
| 1075 | pmfds(i, k) = 0. |
---|
| 1076 | pmfdq(i, k) = 0. |
---|
| 1077 | pdmfdp(i, k-1) = 0. |
---|
| 1078 | END IF |
---|
[524] | 1079 | ELSE |
---|
[1992] | 1080 | pmfu(i, k) = 0. |
---|
| 1081 | pmfus(i, k) = 0. |
---|
| 1082 | pmfuq(i, k) = 0. |
---|
| 1083 | pmful(i, k) = 0. |
---|
| 1084 | pdmfup(i, k-1) = 0. |
---|
| 1085 | plude(i, k-1) = 0. |
---|
| 1086 | pmfd(i, k) = 0. |
---|
| 1087 | pmfds(i, k) = 0. |
---|
| 1088 | pmfdq(i, k) = 0. |
---|
| 1089 | pdmfdp(i, k-1) = 0. |
---|
| 1090 | END IF |
---|
| 1091 | END DO |
---|
| 1092 | END DO |
---|
| 1093 | |
---|
| 1094 | DO k = ktopm2, klev |
---|
| 1095 | DO i = 1, klon |
---|
| 1096 | IF (ldcum(i) .AND. k>kcbot(i)) THEN |
---|
| 1097 | ikb = kcbot(i) |
---|
| 1098 | zzp = ((paph(i,klev+1)-paph(i,k))/(paph(i,klev+1)-paph(i,ikb))) |
---|
| 1099 | IF (ktype(i)==3) zzp = zzp**2 |
---|
| 1100 | pmfu(i, k) = pmfu(i, ikb)*zzp |
---|
| 1101 | pmfus(i, k) = pmfus(i, ikb)*zzp |
---|
| 1102 | pmfuq(i, k) = pmfuq(i, ikb)*zzp |
---|
| 1103 | pmful(i, k) = pmful(i, ikb)*zzp |
---|
| 1104 | END IF |
---|
| 1105 | END DO |
---|
| 1106 | END DO |
---|
| 1107 | |
---|
| 1108 | ! CALCULATE RAIN/SNOW FALL RATES |
---|
| 1109 | ! CALCULATE MELTING OF SNOW |
---|
| 1110 | ! CALCULATE EVAPORATION OF PRECIP |
---|
| 1111 | |
---|
| 1112 | DO k = 1, klev + 1 |
---|
| 1113 | DO i = 1, klon |
---|
| 1114 | pmflxr(i, k) = 0.0 |
---|
| 1115 | pmflxs(i, k) = 0.0 |
---|
| 1116 | END DO |
---|
| 1117 | END DO |
---|
| 1118 | DO k = ktopm2, klev |
---|
| 1119 | DO i = 1, klon |
---|
[524] | 1120 | IF (ldcum(i)) THEN |
---|
[1992] | 1121 | IF (pmflxs(i,k)>0.0 .AND. pten(i,k)>ztmelp2) THEN |
---|
| 1122 | zfac = zcons1*(paph(i,k+1)-paph(i,k)) |
---|
| 1123 | zsnmlt = min(pmflxs(i,k), zfac*(pten(i,k)-ztmelp2)) |
---|
| 1124 | pdpmel(i, k) = zsnmlt |
---|
| 1125 | ztmsmlt = pten(i, k) - zsnmlt/zfac |
---|
| 1126 | zdelta = max(0., sign(1.,rtt-ztmsmlt)) |
---|
| 1127 | zqsat = r2es*foeew(ztmsmlt, zdelta)/pap(i, k) |
---|
| 1128 | zqsat = min(0.5, zqsat) |
---|
| 1129 | zqsat = zqsat/(1.-retv*zqsat) |
---|
| 1130 | pqsen(i, k) = zqsat |
---|
| 1131 | END IF |
---|
| 1132 | IF (pten(i,k)>rtt) THEN |
---|
| 1133 | pmflxr(i, k+1) = pmflxr(i, k) + pdmfup(i, k) + pdmfdp(i, k) + & |
---|
| 1134 | pdpmel(i, k) |
---|
| 1135 | pmflxs(i, k+1) = pmflxs(i, k) - pdpmel(i, k) |
---|
| 1136 | ELSE |
---|
| 1137 | pmflxs(i, k+1) = pmflxs(i, k) + pdmfup(i, k) + pdmfdp(i, k) |
---|
| 1138 | pmflxr(i, k+1) = pmflxr(i, k) |
---|
| 1139 | END IF |
---|
| 1140 | ! si la precipitation est negative, on ajuste le plux du |
---|
| 1141 | ! panache descendant pour eliminer la negativite |
---|
| 1142 | IF ((pmflxr(i,k+1)+pmflxs(i,k+1))<0.0) THEN |
---|
| 1143 | pdmfdp(i, k) = -pmflxr(i, k) - pmflxs(i, k) - pdmfup(i, k) |
---|
| 1144 | pmflxr(i, k+1) = 0.0 |
---|
| 1145 | pmflxs(i, k+1) = 0.0 |
---|
| 1146 | pdpmel(i, k) = 0.0 |
---|
| 1147 | END IF |
---|
| 1148 | END IF |
---|
| 1149 | END DO |
---|
| 1150 | END DO |
---|
| 1151 | |
---|
| 1152 | ! jq The new variable is initialized here. |
---|
| 1153 | ! jq It contains the humidity which is fed to the downdraft |
---|
| 1154 | ! jq by evaporation of precipitation in the column below the base |
---|
| 1155 | ! jq of convection. |
---|
| 1156 | ! jq |
---|
| 1157 | ! jq In the former version, this term has been subtracted from precip |
---|
| 1158 | ! jq as well as the evaporation. |
---|
| 1159 | ! jq |
---|
| 1160 | DO k = 1, klev |
---|
| 1161 | DO i = 1, klon |
---|
| 1162 | maxpdmfdp(i, k) = 0.0 |
---|
| 1163 | END DO |
---|
| 1164 | END DO |
---|
| 1165 | DO k = 1, klev |
---|
| 1166 | DO kp = k, klev |
---|
[524] | 1167 | DO i = 1, klon |
---|
[1992] | 1168 | maxpdmfdp(i, k) = maxpdmfdp(i, k) + pdmfdp(i, kp) |
---|
| 1169 | END DO |
---|
| 1170 | END DO |
---|
| 1171 | END DO |
---|
| 1172 | ! jq End of initialization |
---|
| 1173 | |
---|
| 1174 | DO k = ktopm2, klev |
---|
| 1175 | DO i = 1, klon |
---|
| 1176 | IF (ldcum(i) .AND. k>=kcbot(i)) THEN |
---|
| 1177 | zrfl = pmflxr(i, k) + pmflxs(i, k) |
---|
| 1178 | IF (zrfl>1.0E-20) THEN |
---|
| 1179 | zrnew = (max(0.,sqrt(zrfl/zcucov)-cevapcu(i, & |
---|
| 1180 | k)*(paph(i,k+1)-paph(i,k))*max(0.,pqsen(i,k)-pqen(i,k))))**2* & |
---|
| 1181 | zcucov |
---|
| 1182 | zrmin = zrfl - zcucov*max(0., 0.8*pqsen(i,k)-pqen(i,k))*zcons2*( & |
---|
| 1183 | paph(i,k+1)-paph(i,k)) |
---|
| 1184 | zrnew = max(zrnew, zrmin) |
---|
| 1185 | zrfln = max(zrnew, 0.) |
---|
| 1186 | zdrfl = min(0., zrfln-zrfl) |
---|
| 1187 | ! jq At least the amount of precipiation needed to feed the |
---|
| 1188 | ! downdraft |
---|
| 1189 | ! jq with humidity below the base of convection has to be left and |
---|
| 1190 | ! can't |
---|
| 1191 | ! jq be evaporated (surely the evaporation can't be positive): |
---|
| 1192 | zdrfl = max(zdrfl, min(-pmflxr(i,k)-pmflxs(i,k)-maxpdmfdp(i, & |
---|
| 1193 | k),0.0)) |
---|
| 1194 | ! jq End of insertion |
---|
| 1195 | |
---|
| 1196 | zdenom = 1.0/max(1.0E-20, pmflxr(i,k)+pmflxs(i,k)) |
---|
| 1197 | IF (pten(i,k)>rtt) THEN |
---|
| 1198 | zpdr = pdmfdp(i, k) |
---|
| 1199 | zpds = 0.0 |
---|
| 1200 | ELSE |
---|
| 1201 | zpdr = 0.0 |
---|
| 1202 | zpds = pdmfdp(i, k) |
---|
| 1203 | END IF |
---|
| 1204 | pmflxr(i, k+1) = pmflxr(i, k) + zpdr + pdpmel(i, k) + & |
---|
| 1205 | zdrfl*pmflxr(i, k)*zdenom |
---|
| 1206 | pmflxs(i, k+1) = pmflxs(i, k) + zpds - pdpmel(i, k) + & |
---|
| 1207 | zdrfl*pmflxs(i, k)*zdenom |
---|
| 1208 | pdmfup(i, k) = pdmfup(i, k) + zdrfl |
---|
| 1209 | ELSE |
---|
| 1210 | pmflxr(i, k+1) = 0.0 |
---|
| 1211 | pmflxs(i, k+1) = 0.0 |
---|
| 1212 | pdmfdp(i, k) = 0.0 |
---|
| 1213 | pdpmel(i, k) = 0.0 |
---|
| 1214 | END IF |
---|
| 1215 | IF (pmflxr(i,k)+pmflxs(i,k)<-1.E-26 .AND. prt_level>=1) WRITE (*, *) & |
---|
| 1216 | 'precip. < 1e-16 ', pmflxr(i, k) + pmflxs(i, k) |
---|
| 1217 | END IF |
---|
| 1218 | END DO |
---|
| 1219 | END DO |
---|
| 1220 | |
---|
| 1221 | DO i = 1, klon |
---|
| 1222 | prfl(i) = pmflxr(i, klev+1) |
---|
| 1223 | psfl(i) = pmflxs(i, klev+1) |
---|
| 1224 | END DO |
---|
| 1225 | |
---|
| 1226 | RETURN |
---|
| 1227 | END SUBROUTINE flxflux |
---|
| 1228 | SUBROUTINE flxdtdq(pdtime, ktopm2, paph, ldcum, pten, pmfus, pmfds, pmfuq, & |
---|
| 1229 | pmfdq, pmful, pdmfup, pdmfdp, pdpmel, dt_con, dq_con) |
---|
[5289] | 1230 | USE yoecumf_mod_h |
---|
| 1231 | USE yoethf_mod_h |
---|
[5284] | 1232 | USE dimphy |
---|
[5285] | 1233 | USE yomcst_mod_h |
---|
[5274] | 1234 | IMPLICIT NONE |
---|
[1992] | 1235 | ! ---------------------------------------------------------------------- |
---|
| 1236 | ! calculer les tendances T et Q |
---|
| 1237 | ! ---------------------------------------------------------------------- |
---|
[5274] | 1238 | |
---|
[1992] | 1239 | ! ----------------------------------------------------------------- |
---|
| 1240 | LOGICAL llo1 |
---|
| 1241 | |
---|
| 1242 | REAL pten(klon, klev), paph(klon, klev+1) |
---|
| 1243 | REAL pmfus(klon, klev), pmfuq(klon, klev), pmful(klon, klev) |
---|
| 1244 | REAL pmfds(klon, klev), pmfdq(klon, klev) |
---|
| 1245 | REAL pdmfup(klon, klev) |
---|
| 1246 | REAL pdmfdp(klon, klev) |
---|
| 1247 | REAL pdpmel(klon, klev) |
---|
| 1248 | LOGICAL ldcum(klon) |
---|
| 1249 | REAL dt_con(klon, klev), dq_con(klon, klev) |
---|
| 1250 | |
---|
| 1251 | INTEGER ktopm2 |
---|
| 1252 | REAL pdtime |
---|
| 1253 | |
---|
| 1254 | INTEGER i, k |
---|
| 1255 | REAL zalv, zdtdt, zdqdt |
---|
| 1256 | |
---|
| 1257 | DO k = ktopm2, klev - 1 |
---|
| 1258 | DO i = 1, klon |
---|
[524] | 1259 | IF (ldcum(i)) THEN |
---|
[1992] | 1260 | llo1 = (pten(i,k)-rtt) > 0. |
---|
| 1261 | zalv = rlstt |
---|
| 1262 | IF (llo1) zalv = rlvtt |
---|
| 1263 | zdtdt = rg/(paph(i,k+1)-paph(i,k))/rcpd*(pmfus(i,k+1)-pmfus(i,k)+ & |
---|
| 1264 | pmfds(i,k+1)-pmfds(i,k)-rlmlt*pdpmel(i,k)-zalv*(pmful(i, & |
---|
| 1265 | k+1)-pmful(i,k)-pdmfup(i,k)-pdmfdp(i,k))) |
---|
| 1266 | dt_con(i, k) = zdtdt |
---|
| 1267 | zdqdt = rg/(paph(i,k+1)-paph(i,k))*(pmfuq(i,k+1)-pmfuq(i,k)+pmfdq(i,k & |
---|
| 1268 | +1)-pmfdq(i,k)+pmful(i,k+1)-pmful(i,k)-pdmfup(i,k)-pdmfdp(i,k)) |
---|
| 1269 | dq_con(i, k) = zdqdt |
---|
| 1270 | END IF |
---|
| 1271 | END DO |
---|
| 1272 | END DO |
---|
| 1273 | |
---|
| 1274 | k = klev |
---|
| 1275 | DO i = 1, klon |
---|
| 1276 | IF (ldcum(i)) THEN |
---|
| 1277 | llo1 = (pten(i,k)-rtt) > 0. |
---|
| 1278 | zalv = rlstt |
---|
| 1279 | IF (llo1) zalv = rlvtt |
---|
| 1280 | zdtdt = -rg/(paph(i,k+1)-paph(i,k))/rcpd*(pmfus(i,k)+pmfds(i,k)+rlmlt* & |
---|
| 1281 | pdpmel(i,k)-zalv*(pmful(i,k)+pdmfup(i,k)+pdmfdp(i,k))) |
---|
| 1282 | dt_con(i, k) = zdtdt |
---|
| 1283 | zdqdt = -rg/(paph(i,k+1)-paph(i,k))*(pmfuq(i,k)+pmfdq(i,k)+pmful(i,k)+ & |
---|
| 1284 | pdmfup(i,k)+pdmfdp(i,k)) |
---|
| 1285 | dq_con(i, k) = zdqdt |
---|
| 1286 | END IF |
---|
| 1287 | END DO |
---|
| 1288 | |
---|
| 1289 | RETURN |
---|
| 1290 | END SUBROUTINE flxdtdq |
---|
| 1291 | SUBROUTINE flxdlfs(ptenh, pqenh, pgeoh, paph, ptu, pqu, ldcum, kcbot, kctop, & |
---|
| 1292 | pmfub, prfl, ptd, pqd, pmfd, pmfds, pmfdq, pdmfdp, kdtop, lddraf) |
---|
[5289] | 1293 | USE yoecumf_mod_h |
---|
| 1294 | USE yoethf_mod_h |
---|
[5284] | 1295 | USE dimphy |
---|
[5285] | 1296 | USE yomcst_mod_h |
---|
[5274] | 1297 | IMPLICIT NONE |
---|
[1992] | 1298 | |
---|
| 1299 | ! ---------------------------------------------------------------------- |
---|
| 1300 | ! THIS ROUTINE CALCULATES LEVEL OF FREE SINKING FOR |
---|
| 1301 | ! CUMULUS DOWNDRAFTS AND SPECIFIES T,Q,U AND V VALUES |
---|
| 1302 | |
---|
| 1303 | ! TO PRODUCE LFS-VALUES FOR CUMULUS DOWNDRAFTS |
---|
| 1304 | ! FOR MASSFLUX CUMULUS PARAMETERIZATION |
---|
| 1305 | |
---|
| 1306 | ! INPUT ARE ENVIRONMENTAL VALUES OF T,Q,U,V,P,PHI |
---|
| 1307 | ! AND UPDRAFT VALUES T,Q,U AND V AND ALSO |
---|
| 1308 | ! CLOUD BASE MASSFLUX AND CU-PRECIPITATION RATE. |
---|
| 1309 | ! IT RETURNS T,Q,U AND V VALUES AND MASSFLUX AT LFS. |
---|
| 1310 | |
---|
| 1311 | ! CHECK FOR NEGATIVE BUOYANCY OF AIR OF EQUAL PARTS OF |
---|
| 1312 | ! MOIST ENVIRONMENTAL AIR AND CLOUD AIR. |
---|
| 1313 | ! ---------------------------------------------------------------------- |
---|
[5274] | 1314 | |
---|
[1992] | 1315 | |
---|
| 1316 | REAL ptenh(klon, klev) |
---|
| 1317 | REAL pqenh(klon, klev) |
---|
| 1318 | REAL pgeoh(klon, klev), paph(klon, klev+1) |
---|
| 1319 | REAL ptu(klon, klev), pqu(klon, klev) |
---|
| 1320 | REAL pmfub(klon) |
---|
| 1321 | REAL prfl(klon) |
---|
| 1322 | |
---|
| 1323 | REAL ptd(klon, klev), pqd(klon, klev) |
---|
| 1324 | REAL pmfd(klon, klev), pmfds(klon, klev), pmfdq(klon, klev) |
---|
| 1325 | REAL pdmfdp(klon, klev) |
---|
| 1326 | INTEGER kcbot(klon), kctop(klon), kdtop(klon) |
---|
| 1327 | LOGICAL ldcum(klon), lddraf(klon) |
---|
| 1328 | |
---|
| 1329 | REAL ztenwb(klon, klev), zqenwb(klon, klev), zcond(klon) |
---|
| 1330 | REAL zttest, zqtest, zbuo, zmftop |
---|
| 1331 | LOGICAL llo2(klon) |
---|
| 1332 | INTEGER i, k, is, icall |
---|
| 1333 | ! ---------------------------------------------------------------------- |
---|
| 1334 | DO i = 1, klon |
---|
| 1335 | lddraf(i) = .FALSE. |
---|
| 1336 | kdtop(i) = klev + 1 |
---|
| 1337 | END DO |
---|
| 1338 | |
---|
| 1339 | ! ---------------------------------------------------------------------- |
---|
| 1340 | ! DETERMINE LEVEL OF FREE SINKING BY |
---|
| 1341 | ! DOING A SCAN FROM TOP TO BASE OF CUMULUS CLOUDS |
---|
| 1342 | |
---|
| 1343 | ! FOR EVERY POINT AND PROCEED AS FOLLOWS: |
---|
| 1344 | ! (1) DETEMINE WET BULB ENVIRONMENTAL T AND Q |
---|
| 1345 | ! (2) DO MIXING WITH CUMULUS CLOUD AIR |
---|
| 1346 | ! (3) CHECK FOR NEGATIVE BUOYANCY |
---|
| 1347 | |
---|
| 1348 | ! THE ASSUMPTION IS THAT AIR OF DOWNDRAFTS IS MIXTURE |
---|
| 1349 | ! OF 50% CLOUD AIR + 50% ENVIRONMENTAL AIR AT WET BULB |
---|
| 1350 | ! TEMPERATURE (I.E. WHICH BECAME SATURATED DUE TO |
---|
| 1351 | ! EVAPORATION OF RAIN AND CLOUD WATER) |
---|
| 1352 | ! ---------------------------------------------------------------------- |
---|
| 1353 | |
---|
| 1354 | DO k = 3, klev - 3 |
---|
| 1355 | |
---|
| 1356 | is = 0 |
---|
| 1357 | DO i = 1, klon |
---|
| 1358 | ztenwb(i, k) = ptenh(i, k) |
---|
| 1359 | zqenwb(i, k) = pqenh(i, k) |
---|
| 1360 | llo2(i) = ldcum(i) .AND. prfl(i) > 0. .AND. .NOT. lddraf(i) .AND. & |
---|
| 1361 | (k<kcbot(i) .AND. k>kctop(i)) |
---|
| 1362 | IF (llo2(i)) is = is + 1 |
---|
| 1363 | END DO |
---|
| 1364 | IF (is==0) GO TO 290 |
---|
| 1365 | |
---|
| 1366 | icall = 2 |
---|
| 1367 | CALL flxadjtq(paph(1,k), ztenwb(1,k), zqenwb(1,k), llo2, icall) |
---|
| 1368 | |
---|
| 1369 | ! ---------------------------------------------------------------------- |
---|
| 1370 | ! DO MIXING OF CUMULUS AND ENVIRONMENTAL AIR |
---|
| 1371 | ! AND CHECK FOR NEGATIVE BUOYANCY. |
---|
| 1372 | ! THEN SET VALUES FOR DOWNDRAFT AT LFS. |
---|
| 1373 | ! ---------------------------------------------------------------------- |
---|
| 1374 | DO i = 1, klon |
---|
[524] | 1375 | IF (llo2(i)) THEN |
---|
[1992] | 1376 | zttest = 0.5*(ptu(i,k)+ztenwb(i,k)) |
---|
| 1377 | zqtest = 0.5*(pqu(i,k)+zqenwb(i,k)) |
---|
| 1378 | zbuo = zttest*(1.+retv*zqtest) - ptenh(i, k)*(1.+retv*pqenh(i,k)) |
---|
| 1379 | zcond(i) = pqenh(i, k) - zqenwb(i, k) |
---|
| 1380 | zmftop = -cmfdeps*pmfub(i) |
---|
| 1381 | IF (zbuo<0. .AND. prfl(i)>10.*zmftop*zcond(i)) THEN |
---|
| 1382 | kdtop(i) = k |
---|
| 1383 | lddraf(i) = .TRUE. |
---|
| 1384 | ptd(i, k) = zttest |
---|
| 1385 | pqd(i, k) = zqtest |
---|
| 1386 | pmfd(i, k) = zmftop |
---|
| 1387 | pmfds(i, k) = pmfd(i, k)*(rcpd*ptd(i,k)+pgeoh(i,k)) |
---|
| 1388 | pmfdq(i, k) = pmfd(i, k)*pqd(i, k) |
---|
| 1389 | pdmfdp(i, k-1) = -0.5*pmfd(i, k)*zcond(i) |
---|
| 1390 | prfl(i) = prfl(i) + pdmfdp(i, k-1) |
---|
| 1391 | END IF |
---|
| 1392 | END IF |
---|
| 1393 | END DO |
---|
| 1394 | |
---|
| 1395 | 290 END DO |
---|
| 1396 | |
---|
| 1397 | RETURN |
---|
| 1398 | END SUBROUTINE flxdlfs |
---|
| 1399 | SUBROUTINE flxddraf(ptenh, pqenh, pgeoh, paph, prfl, ptd, pqd, pmfd, pmfds, & |
---|
| 1400 | pmfdq, pdmfdp, lddraf, pen_d, pde_d) |
---|
| 1401 | USE dimphy |
---|
[5285] | 1402 | USE yomcst_mod_h |
---|
[5284] | 1403 | USE yoethf_mod_h |
---|
[5289] | 1404 | USE yoecumf_mod_h |
---|
[5274] | 1405 | IMPLICIT NONE |
---|
[1992] | 1406 | |
---|
| 1407 | ! ---------------------------------------------------------------------- |
---|
| 1408 | ! THIS ROUTINE CALCULATES CUMULUS DOWNDRAFT DESCENT |
---|
| 1409 | |
---|
| 1410 | ! TO PRODUCE THE VERTICAL PROFILES FOR CUMULUS DOWNDRAFTS |
---|
| 1411 | ! (I.E. T,Q,U AND V AND FLUXES) |
---|
| 1412 | |
---|
| 1413 | ! INPUT IS T,Q,P,PHI,U,V AT HALF LEVELS. |
---|
| 1414 | ! IT RETURNS FLUXES OF S,Q AND EVAPORATION RATE |
---|
| 1415 | ! AND U,V AT LEVELS WHERE DOWNDRAFT OCCURS |
---|
| 1416 | |
---|
| 1417 | ! CALCULATE MOIST DESCENT FOR ENTRAINING/DETRAINING PLUME BY |
---|
| 1418 | ! A) MOVING AIR DRY-ADIABATICALLY TO NEXT LEVEL BELOW AND |
---|
| 1419 | ! B) CORRECTING FOR EVAPORATION TO OBTAIN SATURATED STATE. |
---|
| 1420 | |
---|
| 1421 | ! ---------------------------------------------------------------------- |
---|
[5274] | 1422 | |
---|
[1992] | 1423 | REAL ptenh(klon, klev), pqenh(klon, klev) |
---|
| 1424 | REAL pgeoh(klon, klev), paph(klon, klev+1) |
---|
| 1425 | |
---|
| 1426 | REAL ptd(klon, klev), pqd(klon, klev) |
---|
| 1427 | REAL pmfd(klon, klev), pmfds(klon, klev), pmfdq(klon, klev) |
---|
| 1428 | REAL pdmfdp(klon, klev) |
---|
| 1429 | REAL prfl(klon) |
---|
| 1430 | LOGICAL lddraf(klon) |
---|
| 1431 | |
---|
| 1432 | REAL pen_d(klon, klev), pde_d(klon, klev), zcond(klon) |
---|
| 1433 | LOGICAL llo2(klon), llo1 |
---|
| 1434 | INTEGER i, k, is, icall, itopde |
---|
| 1435 | REAL zentr, zseen, zqeen, zsdde, zqdde, zmfdsk, zmfdqk, zdmfdp |
---|
| 1436 | REAL zbuo |
---|
| 1437 | ! ---------------------------------------------------------------------- |
---|
| 1438 | ! CALCULATE MOIST DESCENT FOR CUMULUS DOWNDRAFT BY |
---|
| 1439 | ! (A) CALCULATING ENTRAINMENT RATES, ASSUMING |
---|
| 1440 | ! LINEAR DECREASE OF MASSFLUX IN PBL |
---|
| 1441 | ! (B) DOING MOIST DESCENT - EVAPORATIVE COOLING |
---|
| 1442 | ! AND MOISTENING IS CALCULATED IN *flxadjtq* |
---|
| 1443 | ! (C) CHECKING FOR NEGATIVE BUOYANCY AND |
---|
| 1444 | ! SPECIFYING FINAL T,Q,U,V AND DOWNWARD FLUXES |
---|
| 1445 | |
---|
| 1446 | DO k = 3, klev |
---|
| 1447 | |
---|
| 1448 | is = 0 |
---|
| 1449 | DO i = 1, klon |
---|
| 1450 | llo2(i) = lddraf(i) .AND. pmfd(i, k-1) < 0. |
---|
| 1451 | IF (llo2(i)) is = is + 1 |
---|
| 1452 | END DO |
---|
| 1453 | IF (is==0) GO TO 180 |
---|
| 1454 | |
---|
| 1455 | DO i = 1, klon |
---|
[524] | 1456 | IF (llo2(i)) THEN |
---|
[1992] | 1457 | zentr = entrdd*pmfd(i, k-1)*rd*ptenh(i, k-1)/(rg*paph(i,k-1))* & |
---|
| 1458 | (paph(i,k)-paph(i,k-1)) |
---|
| 1459 | pen_d(i, k) = zentr |
---|
| 1460 | pde_d(i, k) = zentr |
---|
| 1461 | END IF |
---|
| 1462 | END DO |
---|
| 1463 | |
---|
| 1464 | itopde = klev - 2 |
---|
| 1465 | IF (k>itopde) THEN |
---|
[524] | 1466 | DO i = 1, klon |
---|
[1992] | 1467 | IF (llo2(i)) THEN |
---|
| 1468 | pen_d(i, k) = 0. |
---|
| 1469 | pde_d(i, k) = pmfd(i, itopde)*(paph(i,k)-paph(i,k-1))/ & |
---|
| 1470 | (paph(i,klev+1)-paph(i,itopde)) |
---|
| 1471 | END IF |
---|
| 1472 | END DO |
---|
| 1473 | END IF |
---|
| 1474 | |
---|
| 1475 | DO i = 1, klon |
---|
[524] | 1476 | IF (llo2(i)) THEN |
---|
[1992] | 1477 | pmfd(i, k) = pmfd(i, k-1) + pen_d(i, k) - pde_d(i, k) |
---|
| 1478 | zseen = (rcpd*ptenh(i,k-1)+pgeoh(i,k-1))*pen_d(i, k) |
---|
| 1479 | zqeen = pqenh(i, k-1)*pen_d(i, k) |
---|
| 1480 | zsdde = (rcpd*ptd(i,k-1)+pgeoh(i,k-1))*pde_d(i, k) |
---|
| 1481 | zqdde = pqd(i, k-1)*pde_d(i, k) |
---|
| 1482 | zmfdsk = pmfds(i, k-1) + zseen - zsdde |
---|
| 1483 | zmfdqk = pmfdq(i, k-1) + zqeen - zqdde |
---|
| 1484 | pqd(i, k) = zmfdqk*(1./min(-cmfcmin,pmfd(i,k))) |
---|
| 1485 | ptd(i, k) = (zmfdsk*(1./min(-cmfcmin,pmfd(i,k)))-pgeoh(i,k))/rcpd |
---|
| 1486 | ptd(i, k) = min(400., ptd(i,k)) |
---|
| 1487 | ptd(i, k) = max(100., ptd(i,k)) |
---|
| 1488 | zcond(i) = pqd(i, k) |
---|
| 1489 | END IF |
---|
| 1490 | END DO |
---|
| 1491 | |
---|
| 1492 | icall = 2 |
---|
| 1493 | CALL flxadjtq(paph(1,k), ptd(1,k), pqd(1,k), llo2, icall) |
---|
| 1494 | |
---|
| 1495 | DO i = 1, klon |
---|
[524] | 1496 | IF (llo2(i)) THEN |
---|
[1992] | 1497 | zcond(i) = zcond(i) - pqd(i, k) |
---|
| 1498 | zbuo = ptd(i, k)*(1.+retv*pqd(i,k)) - ptenh(i, k)*(1.+retv*pqenh(i,k) & |
---|
| 1499 | ) |
---|
| 1500 | llo1 = zbuo < 0. .AND. (prfl(i)-pmfd(i,k)*zcond(i)>0.) |
---|
| 1501 | IF (.NOT. llo1) pmfd(i, k) = 0.0 |
---|
| 1502 | pmfds(i, k) = (rcpd*ptd(i,k)+pgeoh(i,k))*pmfd(i, k) |
---|
| 1503 | pmfdq(i, k) = pqd(i, k)*pmfd(i, k) |
---|
| 1504 | zdmfdp = -pmfd(i, k)*zcond(i) |
---|
| 1505 | pdmfdp(i, k-1) = zdmfdp |
---|
| 1506 | prfl(i) = prfl(i) + zdmfdp |
---|
| 1507 | END IF |
---|
| 1508 | END DO |
---|
[524] | 1509 | |
---|
[1992] | 1510 | 180 END DO |
---|
| 1511 | RETURN |
---|
| 1512 | END SUBROUTINE flxddraf |
---|
| 1513 | SUBROUTINE flxadjtq(pp, pt, pq, ldflag, kcall) |
---|
| 1514 | USE dimphy |
---|
[5285] | 1515 | USE yomcst_mod_h |
---|
[5284] | 1516 | USE yoethf_mod_h |
---|
[1992] | 1517 | IMPLICIT NONE |
---|
| 1518 | ! ====================================================================== |
---|
| 1519 | ! Objet: ajustement entre T et Q |
---|
| 1520 | ! ====================================================================== |
---|
| 1521 | ! NOTE: INPUT PARAMETER kcall DEFINES CALCULATION AS |
---|
| 1522 | ! kcall=0 ENV. T AND QS IN*CUINI* |
---|
| 1523 | ! kcall=1 CONDENSATION IN UPDRAFTS (E.G. CUBASE, CUASC) |
---|
| 1524 | ! kcall=2 EVAPORATION IN DOWNDRAFTS (E.G. CUDLFS,CUDDRAF) |
---|
[524] | 1525 | |
---|
[1992] | 1526 | REAL pt(klon), pq(klon), pp(klon) |
---|
| 1527 | LOGICAL ldflag(klon) |
---|
| 1528 | INTEGER kcall |
---|
| 1529 | |
---|
| 1530 | REAL zcond(klon), zcond1 |
---|
| 1531 | REAL z5alvcp, z5alscp, zalvdcp, zalsdcp |
---|
| 1532 | REAL zdelta, zcvm5, zldcp, zqsat, zcor |
---|
| 1533 | INTEGER is, i |
---|
| 1534 | include "FCTTRE.h" |
---|
| 1535 | |
---|
| 1536 | z5alvcp = r5les*rlvtt/rcpd |
---|
| 1537 | z5alscp = r5ies*rlstt/rcpd |
---|
| 1538 | zalvdcp = rlvtt/rcpd |
---|
| 1539 | zalsdcp = rlstt/rcpd |
---|
| 1540 | |
---|
| 1541 | |
---|
| 1542 | DO i = 1, klon |
---|
| 1543 | zcond(i) = 0.0 |
---|
| 1544 | END DO |
---|
| 1545 | |
---|
| 1546 | DO i = 1, klon |
---|
| 1547 | IF (ldflag(i)) THEN |
---|
| 1548 | zdelta = max(0., sign(1.,rtt-pt(i))) |
---|
| 1549 | zcvm5 = z5alvcp*(1.-zdelta) + zdelta*z5alscp |
---|
| 1550 | zldcp = zalvdcp*(1.-zdelta) + zdelta*zalsdcp |
---|
| 1551 | zqsat = r2es*foeew(pt(i), zdelta)/pp(i) |
---|
| 1552 | zqsat = min(0.5, zqsat) |
---|
| 1553 | zcor = 1./(1.-retv*zqsat) |
---|
| 1554 | zqsat = zqsat*zcor |
---|
| 1555 | zcond(i) = (pq(i)-zqsat)/(1.+foede(pt(i),zdelta,zcvm5,zqsat,zcor)) |
---|
| 1556 | IF (kcall==1) zcond(i) = max(zcond(i), 0.) |
---|
| 1557 | IF (kcall==2) zcond(i) = min(zcond(i), 0.) |
---|
| 1558 | pt(i) = pt(i) + zldcp*zcond(i) |
---|
| 1559 | pq(i) = pq(i) - zcond(i) |
---|
| 1560 | END IF |
---|
| 1561 | END DO |
---|
| 1562 | |
---|
| 1563 | is = 0 |
---|
| 1564 | DO i = 1, klon |
---|
| 1565 | IF (zcond(i)/=0.) is = is + 1 |
---|
| 1566 | END DO |
---|
| 1567 | IF (is==0) GO TO 230 |
---|
| 1568 | |
---|
| 1569 | DO i = 1, klon |
---|
| 1570 | IF (ldflag(i) .AND. zcond(i)/=0.) THEN |
---|
| 1571 | zdelta = max(0., sign(1.,rtt-pt(i))) |
---|
| 1572 | zcvm5 = z5alvcp*(1.-zdelta) + zdelta*z5alscp |
---|
| 1573 | zldcp = zalvdcp*(1.-zdelta) + zdelta*zalsdcp |
---|
| 1574 | zqsat = r2es*foeew(pt(i), zdelta)/pp(i) |
---|
| 1575 | zqsat = min(0.5, zqsat) |
---|
| 1576 | zcor = 1./(1.-retv*zqsat) |
---|
| 1577 | zqsat = zqsat*zcor |
---|
| 1578 | zcond1 = (pq(i)-zqsat)/(1.+foede(pt(i),zdelta,zcvm5,zqsat,zcor)) |
---|
| 1579 | pt(i) = pt(i) + zldcp*zcond1 |
---|
| 1580 | pq(i) = pq(i) - zcond1 |
---|
| 1581 | END IF |
---|
| 1582 | END DO |
---|
| 1583 | |
---|
| 1584 | 230 CONTINUE |
---|
| 1585 | RETURN |
---|
| 1586 | END SUBROUTINE flxadjtq |
---|
| 1587 | SUBROUTINE flxsetup |
---|
[5289] | 1588 | USE yoecumf_mod_h |
---|
| 1589 | IMPLICIT NONE |
---|
[1992] | 1590 | |
---|
| 1591 | ! THIS ROUTINE DEFINES DISPOSABLE PARAMETERS FOR MASSFLUX SCHEME |
---|
| 1592 | |
---|
| 1593 | |
---|
| 1594 | entrpen = 1.0E-4 ! ENTRAINMENT RATE FOR PENETRATIVE CONVECTION |
---|
| 1595 | entrscv = 3.0E-4 ! ENTRAINMENT RATE FOR SHALLOW CONVECTION |
---|
| 1596 | entrmid = 1.0E-4 ! ENTRAINMENT RATE FOR MIDLEVEL CONVECTION |
---|
| 1597 | entrdd = 2.0E-4 ! ENTRAINMENT RATE FOR DOWNDRAFTS |
---|
| 1598 | cmfctop = 0.33 ! RELATIVE CLOUD MASSFLUX AT LEVEL ABOVE NONBUO LEVEL |
---|
| 1599 | cmfcmax = 1.0 ! MAXIMUM MASSFLUX VALUE ALLOWED FOR UPDRAFTS ETC |
---|
| 1600 | cmfcmin = 1.E-10 ! MINIMUM MASSFLUX VALUE (FOR SAFETY) |
---|
| 1601 | cmfdeps = 0.3 ! FRACTIONAL MASSFLUX FOR DOWNDRAFTS AT LFS |
---|
| 1602 | cprcon = 2.0E-4 ! CONVERSION FROM CLOUD WATER TO RAIN |
---|
| 1603 | rhcdd = 1. ! RELATIVE SATURATION IN DOWNDRAFRS (NO LONGER USED) |
---|
| 1604 | ! (FORMULATION IMPLIES SATURATION) |
---|
| 1605 | lmfpen = .TRUE. |
---|
| 1606 | lmfscv = .TRUE. |
---|
| 1607 | lmfmid = .TRUE. |
---|
| 1608 | lmfdd = .TRUE. |
---|
| 1609 | lmfdudv = .TRUE. |
---|
| 1610 | |
---|
| 1611 | RETURN |
---|
| 1612 | END SUBROUTINE flxsetup |
---|