[5061] | 1 | !SFX_LIC Copyright 1994-2014 CNRS, Meteo-France and Universite Paul Sabatier |
---|
| 2 | !SFX_LIC This is part of the SURFEX software governed by the CeCILL-C licence |
---|
| 3 | !SFX_LIC version 1. See LICENSE, CeCILL-C_V1-en.txt and CeCILL-C_V1-fr.txt |
---|
| 4 | !SFX_LIC for details. version 1. |
---|
| 5 | ! ######### |
---|
| 6 | |
---|
| 7 | module coare30_flux_cnrm_mod |
---|
| 8 | implicit none |
---|
| 9 | private |
---|
| 10 | public COARE30_FLUX_CNRM |
---|
| 11 | |
---|
| 12 | contains |
---|
| 13 | |
---|
| 14 | |
---|
| 15 | SUBROUTINE COARE30_FLUX_CNRM(PZ0SEA,PTA,PSST,PQA, & |
---|
| 16 | PVMOD,PZREF,PUREF,PPS,PQSATA,PQSAT,PSFTH,PSFTQ,PUSTAR,PCD,PCDN,PCH,PCE,PRI,& |
---|
| 17 | PRESA,PRAIN,PPA,PZ0HSEA,LPRECIP, LPWG,coeffs ) |
---|
| 18 | ! ####################################################################### |
---|
| 19 | ! |
---|
| 20 | ! |
---|
| 21 | !!**** *COARE25_FLUX* |
---|
| 22 | !! |
---|
| 23 | !! PURPOSE |
---|
| 24 | !! ------- |
---|
| 25 | ! Calculate the surface fluxes of heat, moisture, and momentum over |
---|
| 26 | ! sea surface with bulk algorithm COARE3.0. |
---|
| 27 | ! |
---|
| 28 | !!** METHOD |
---|
| 29 | !! ------ |
---|
| 30 | ! transfer coefficients were obtained using a dataset which combined COARE |
---|
| 31 | ! data with those from three other ETL field experiments, and reanalysis of |
---|
| 32 | ! the HEXMAX data (DeCosmos et al. 1996). |
---|
| 33 | ! ITERMAX=3 |
---|
| 34 | ! Take account of the surface gravity waves on the velocity roughness and |
---|
| 35 | ! hence the momentum transfer coefficient |
---|
| 36 | ! NGRVWAVES=0 no gravity waves action (Charnock) !default value |
---|
| 37 | ! NGRVWAVES=1 wave age parameterization of Oost et al. 2002 |
---|
| 38 | ! NGRVWAVES=2 model of Taylor and Yelland 2001 |
---|
| 39 | ! |
---|
| 40 | !! EXTERNAL |
---|
| 41 | !! -------- |
---|
| 42 | !! |
---|
| 43 | !! IMPLICIT ARGUMENTS |
---|
| 44 | !! ------------------ |
---|
| 45 | !! |
---|
| 46 | !! REFERENCE |
---|
| 47 | !! --------- |
---|
| 48 | !! Fairall et al (2003), J. of Climate, vol. 16, 571-591 |
---|
| 49 | !! Fairall et al (1996), JGR, 3747-3764 |
---|
| 50 | !! Gosnell et al (1995), JGR, 437-442 |
---|
| 51 | !! Fairall et al (1996), JGR, 1295-1308 |
---|
| 52 | !! |
---|
| 53 | !! AUTHOR |
---|
| 54 | !! ------ |
---|
| 55 | !! C. Lebeaupin *Météo-France* (adapted from C. Fairall's code) |
---|
| 56 | !! |
---|
| 57 | !! MODIFICATIONS |
---|
| 58 | !! ------------- |
---|
| 59 | !! Original 1/06/2006 |
---|
| 60 | !! B. Decharme 06/2009 limitation of Ri |
---|
| 61 | !! B. Decharme 09/2012 Bug in Ri calculation and limitation of Ri in surface_ri.F90 |
---|
| 62 | !! B. Decharme 06/2013 bug in z0 (output) computation |
---|
| 63 | !! J.Escobar 06/2013 for REAL4/8 add EPSILON management |
---|
| 64 | !! C. Lebeaupin 03/2014 bug if PTA=PSST and PEXNA=PEXNS: set a minimum value |
---|
| 65 | !! add abort if no convergence |
---|
| 66 | !------------------------------------------------------------------------------- |
---|
| 67 | ! |
---|
| 68 | !* 0. DECLARATIONS |
---|
| 69 | ! ------------ |
---|
| 70 | ! |
---|
| 71 | ! |
---|
[5282] | 72 | USE clesphys_mod_h |
---|
[5061] | 73 | !USE MODD_SEAFLUX_n, ONLY : SEAFLUX_t |
---|
| 74 | ! |
---|
| 75 | |
---|
| 76 | !----------Rajout Olive --------- |
---|
| 77 | USE dimphy |
---|
| 78 | USE indice_sol_mod |
---|
| 79 | USE coare_cp_mod, ONLY: PSIFCTT=>psit_30, PSIFCTU=>psiuo |
---|
| 80 | |
---|
| 81 | !-------------------------------- |
---|
| 82 | |
---|
| 83 | USE MODD_CSTS, ONLY : XKARMAN, XG, XSTEFAN, XRD, XRV, XPI, & |
---|
| 84 | XLVTT, XCL, XCPD, XCPV, XRHOLW, XTT, & |
---|
| 85 | XP00 |
---|
| 86 | |
---|
| 87 | !USE MODD_SURF_ATM, ONLY : XVZ0CM |
---|
| 88 | ! |
---|
| 89 | !USE MODD_SURF_PAR, ONLY : XUNDEF, XSURF_EPSILON |
---|
| 90 | !USE MODD_WATER_PAR |
---|
| 91 | ! |
---|
| 92 | !USE MODI_SURFACE_RI |
---|
| 93 | !USE MODI_WIND_THRESHOLD |
---|
| 94 | !USE MODE_COARE30_PSI |
---|
| 95 | ! |
---|
| 96 | !USE MODE_THERMOS |
---|
| 97 | ! |
---|
| 98 | ! |
---|
| 99 | !USE MODI_ABOR1_SFX |
---|
| 100 | ! |
---|
| 101 | ! |
---|
| 102 | !USE YOMHOOK ,ONLY : LHOOK, DR_HOOK |
---|
| 103 | !USE PARKIND1 ,ONLY : JPRB |
---|
[5285] | 104 | USE yomcst_mod_h |
---|
[5061] | 105 | IMPLICIT NONE |
---|
| 106 | ! |
---|
| 107 | !* 0.1 declarations of arguments |
---|
| 108 | ! |
---|
| 109 | ! |
---|
| 110 | ! |
---|
| 111 | !TYPE(SEAFLUX_t), INTENT(INOUT) :: S |
---|
| 112 | ! |
---|
| 113 | REAL, DIMENSION(klon), INTENT(IN) :: PTA ! air temperature at atm. level (K) |
---|
| 114 | REAL, DIMENSION(klon), INTENT(IN) :: PQA ! air humidity at atm. level (kg/kg) |
---|
| 115 | !REAL, DIMENSION(:), INTENT(IN) :: PEXNA ! Exner function at atm. level |
---|
| 116 | !REAL, DIMENSION(:), INTENT(IN) :: PRHOA ! air density at atm. level |
---|
| 117 | REAL, DIMENSION(klon), INTENT(IN) :: PVMOD ! module of wind at atm. wind level (m/s) |
---|
| 118 | REAL, DIMENSION(klon), INTENT(IN) :: PZREF ! atm. level for temp. and humidity (m) |
---|
| 119 | REAL, DIMENSION(klon), INTENT(IN) :: PUREF ! atm. level for wind (m) |
---|
| 120 | REAL, DIMENSION(klon), INTENT(IN) :: PSST ! Sea Surface Temperature (K) |
---|
| 121 | !REAL, DIMENSION(:), INTENT(IN) :: PEXNS ! Exner function at sea surface |
---|
| 122 | REAL, DIMENSION(klon), INTENT(IN) :: PPS ! air pressure at sea surface (Pa) |
---|
| 123 | REAL, DIMENSION(klon), INTENT(IN) :: PRAIN !precipitation rate (kg/s/m2) |
---|
| 124 | REAL, DIMENSION(klon), INTENT(IN) :: PPA ! air pressure at atm level (Pa) |
---|
| 125 | REAL, DIMENSION(klon), INTENT(IN) :: PQSATA ! air pressure at atm level (Pa) |
---|
| 126 | ! |
---|
| 127 | REAL, DIMENSION(klon), INTENT(INOUT) :: PZ0SEA! roughness length over the ocean |
---|
| 128 | ! |
---|
| 129 | ! surface fluxes : latent heat, sensible heat, friction fluxes |
---|
| 130 | REAL, DIMENSION(klon), INTENT(OUT) :: PSFTH ! heat flux (W/m2) |
---|
| 131 | REAL, DIMENSION(klon), INTENT(OUT) :: PSFTQ ! water flux (kg/m2/s) |
---|
| 132 | REAL, DIMENSION(klon), INTENT(OUT) :: PUSTAR! friction velocity (m/s) |
---|
| 133 | ! |
---|
| 134 | ! diagnostics |
---|
| 135 | REAL, DIMENSION(klon), INTENT(OUT) :: PQSAT ! humidity at saturation |
---|
| 136 | REAL, DIMENSION(klon), INTENT(OUT) :: PCD ! heat drag coefficient |
---|
| 137 | REAL, DIMENSION(klon), INTENT(OUT) :: PCDN ! momentum drag coefficient |
---|
| 138 | REAL, DIMENSION(klon), INTENT(OUT) :: PCH ! neutral momentum drag coefficient |
---|
| 139 | REAL, DIMENSION(klon), INTENT(OUT) :: PCE !transfer coef. for latent heat flux |
---|
| 140 | REAL, DIMENSION(klon), INTENT(OUT) :: PRI ! Richardson number |
---|
| 141 | REAL, DIMENSION(klon), INTENT(OUT) :: PRESA ! aerodynamical resistance |
---|
| 142 | REAL, DIMENSION(klon), INTENT(OUT) :: PZ0HSEA ! heat roughness length |
---|
| 143 | |
---|
| 144 | LOGICAL, INTENT(IN) :: LPRECIP ! |
---|
| 145 | LOGICAL, INTENT(IN) :: LPWG ! |
---|
| 146 | real, dimension(3), intent(inout) :: coeffs |
---|
| 147 | |
---|
| 148 | !* 0.2 declarations of local variables |
---|
| 149 | ! |
---|
| 150 | REAL, DIMENSION(SIZE(PTA)) :: ZVMOD ! wind intensity |
---|
| 151 | REAL, DIMENSION(SIZE(PTA)) :: ZPA ! Pressure at atm. level |
---|
| 152 | REAL, DIMENSION(SIZE(PTA)) :: ZTA ! Temperature at atm. level |
---|
| 153 | REAL, DIMENSION(SIZE(PTA)) :: ZQASAT ! specific humidity at saturation at atm. level (kg/kg) |
---|
| 154 | ! |
---|
| 155 | !rajout |
---|
| 156 | REAL, DIMENSION(SIZE(PTA)) :: PEXNA ! Exner function at atm level |
---|
| 157 | REAL, DIMENSION(SIZE(PTA)) :: PEXNS ! Exner function at atm level |
---|
| 158 | ! |
---|
| 159 | REAL, DIMENSION(SIZE(PTA)) :: ZO ! rougness length ref |
---|
| 160 | REAL, DIMENSION(SIZE(PTA)) :: ZWG ! gustiness factor (m/s) |
---|
| 161 | ! |
---|
| 162 | REAL, DIMENSION(SIZE(PTA)) :: ZDU,ZDT,ZDQ,ZDUWG !differences |
---|
| 163 | ! |
---|
| 164 | REAL, DIMENSION(SIZE(PTA)) :: ZUSR !velocity scaling parameter "ustar" (m/s) = friction velocity |
---|
| 165 | REAL, DIMENSION(SIZE(PTA)) :: ZTSR !temperature sacling parameter "tstar" (degC) |
---|
| 166 | REAL, DIMENSION(SIZE(PTA)) :: ZQSR !humidity scaling parameter "qstar" (kg/kg) |
---|
| 167 | ! |
---|
| 168 | REAL, DIMENSION(SIZE(PTA)) :: ZU10,ZT10 !vertical profils (10-m height) |
---|
| 169 | REAL, DIMENSION(SIZE(PTA)) :: ZVISA !kinematic viscosity of dry air |
---|
| 170 | REAL, DIMENSION(SIZE(PTA)) :: ZO10,ZOT10 !roughness length at 10m |
---|
| 171 | REAL, DIMENSION(SIZE(PTA)) :: ZCD,ZCT,ZCC |
---|
| 172 | REAL, DIMENSION(SIZE(PTA)) :: ZCD10,ZCT10 !transfer coef. at 10m |
---|
| 173 | REAL, DIMENSION(SIZE(PTA)) :: ZRIBU,ZRIBCU |
---|
| 174 | REAL, DIMENSION(SIZE(PTA)) :: ZETU,ZL10 |
---|
| 175 | ! |
---|
| 176 | REAL, DIMENSION(SIZE(PTA)) :: ZCHARN !Charnock number depends on wind module |
---|
| 177 | REAL, DIMENSION(SIZE(PTA)) :: ZTWAVE,ZHWAVE,ZCWAVE,ZLWAVE !to compute gravity waves' impact |
---|
| 178 | ! |
---|
| 179 | REAL, DIMENSION(SIZE(PTA)) :: ZZL,ZZTL!,ZZQL !Obukhovs stability |
---|
| 180 | !param. z/l for u,T,q |
---|
| 181 | REAL, DIMENSION(SIZE(PTA)) :: ZRR |
---|
| 182 | REAL, DIMENSION(SIZE(PTA)) :: ZOT,ZOQ !rougness length ref |
---|
| 183 | REAL, DIMENSION(SIZE(PTA)) :: ZPUZ,ZPTZ,ZPQZ !PHI funct. for u,T,q |
---|
| 184 | ! |
---|
| 185 | REAL, DIMENSION(SIZE(PTA)) :: ZBF !constants to compute gustiness factor |
---|
| 186 | ! |
---|
| 187 | REAL, DIMENSION(SIZE(PTA)) :: ZTAU !momentum flux (W/m2) |
---|
| 188 | REAL, DIMENSION(SIZE(PTA)) :: ZHF !sensible heat flux (W/m2) |
---|
| 189 | REAL, DIMENSION(SIZE(PTA)) :: ZEF !latent heat flux (W/m2) |
---|
| 190 | REAL, DIMENSION(SIZE(PTA)) :: ZWBAR !diag for webb correction but not used here after |
---|
| 191 | REAL, DIMENSION(SIZE(PTA)) :: ZTAUR !momentum flux due to rain (W/m2) |
---|
| 192 | REAL, DIMENSION(SIZE(PTA)) :: ZRF !sensible heat flux due to rain (W/m2) |
---|
| 193 | REAL, DIMENSION(SIZE(PTA)) :: ZCHN,ZCEN !neutral coef. for heat and vapor |
---|
| 194 | ! |
---|
| 195 | REAL, DIMENSION(SIZE(PTA)) :: ZLV !latent heat constant |
---|
| 196 | ! |
---|
| 197 | REAL, DIMENSION(SIZE(PTA)) :: ZTAC,ZDQSDT,ZDTMP,ZDWAT,ZALFAC ! for precipitation impact |
---|
| 198 | REAL, DIMENSION(SIZE(PTA)) :: ZXLR ! vaporisation heat at a given temperature |
---|
| 199 | REAL, DIMENSION(SIZE(PTA)) :: ZCPLW ! specific heat for water at a given temperature |
---|
| 200 | ! |
---|
| 201 | REAL, DIMENSION(SIZE(PTA)) :: ZUSTAR2 ! square of friction velocity |
---|
| 202 | ! |
---|
| 203 | REAL, DIMENSION(SIZE(PTA)) :: ZDIRCOSZW! orography slope cosine (=1 on water!) |
---|
| 204 | REAL, DIMENSION(SIZE(PTA)) :: ZAC ! Aerodynamical conductance |
---|
| 205 | ! |
---|
| 206 | ! |
---|
| 207 | INTEGER, DIMENSION(SIZE(PTA)) :: ITERMAX ! maximum number of iterations |
---|
| 208 | ! |
---|
| 209 | REAL :: ZRVSRDM1,ZRDSRV,ZR2 ! thermodynamic constants |
---|
| 210 | REAL :: ZBETAGUST !gustiness factor |
---|
| 211 | REAL :: ZZBL !atm. boundary layer depth (m) |
---|
| 212 | REAL :: ZVISW !m2/s kinematic viscosity of water |
---|
| 213 | REAL :: ZS !height of rougness length ref |
---|
| 214 | REAL :: ZCH10 !transfer coef. at 10m |
---|
| 215 | |
---|
| 216 | REAL :: QSAT_SEAWATER |
---|
| 217 | REAL :: QSATSEAW_1D |
---|
| 218 | ! |
---|
| 219 | INTEGER :: J, JLOOP !loop indice |
---|
| 220 | !REAL(KIND=JPRB) :: ZHOOK_HANDLE |
---|
| 221 | |
---|
| 222 | !--------- Modif Olive ----------------- |
---|
| 223 | REAL, DIMENSION(SIZE(PTA)) :: PRHOA |
---|
| 224 | REAL, PARAMETER :: XUNDEF = 1.E+20 |
---|
| 225 | |
---|
| 226 | REAL :: XVCHRNK = 0.021 |
---|
| 227 | REAL :: XVZ0CM = 1.0E-5 |
---|
| 228 | !REAL :: XRIMAX |
---|
| 229 | |
---|
| 230 | |
---|
| 231 | INTEGER :: PREF ! reference pressure for exner function |
---|
| 232 | INTEGER :: NGRVWAVES ! Pour le choix du z0 |
---|
| 233 | |
---|
| 234 | |
---|
| 235 | !-------------------------------------- |
---|
| 236 | |
---|
| 237 | |
---|
| 238 | PRHOA(:) = PPS(:) / (287.1 * PTA(:) * (1.+.61*PQA(:))) |
---|
| 239 | |
---|
| 240 | PREF = 100000. ! = 1000 hPa |
---|
| 241 | NGRVWAVES = 1 |
---|
| 242 | |
---|
| 243 | PEXNA = (PPA/PREF)**(RD/RCPD) |
---|
| 244 | PEXNS = (PPS/PREF)**(RD/RCPD) |
---|
| 245 | |
---|
| 246 | ! |
---|
| 247 | !------------------------------------------------------------------------------- |
---|
| 248 | ! |
---|
| 249 | ! 1. Initializations |
---|
| 250 | ! --------------- |
---|
| 251 | ! |
---|
| 252 | ! 1.1 Constants and parameters |
---|
| 253 | ! |
---|
| 254 | !IF (LHOOK) CALL DR_HOOK('COARE30_FLUX',0,ZHOOK_HANDLE) |
---|
| 255 | ! |
---|
| 256 | ZRVSRDM1 = XRV/XRD-1. ! 0.607766 |
---|
| 257 | ZRDSRV = XRD/XRV ! 0.62198 |
---|
| 258 | ZR2 = 1.-ZRDSRV ! pas utilisé dans cette routine |
---|
| 259 | ZBETAGUST = 1.2 ! value based on TOGA-COARE experiment |
---|
| 260 | ZZBL = 600. ! Set a default value for boundary layer depth |
---|
| 261 | ZS = 10. ! Standard heigth =10m |
---|
| 262 | ZCH10 = 0.00115 |
---|
| 263 | ! |
---|
| 264 | ZVISW = 1.E-6 |
---|
| 265 | ! |
---|
| 266 | ! 1.2 Array initialization by undefined values |
---|
| 267 | ! |
---|
| 268 | PSFTH (:)=XUNDEF |
---|
| 269 | PSFTQ (:)=XUNDEF |
---|
| 270 | PUSTAR(:)=XUNDEF |
---|
| 271 | ! |
---|
| 272 | PCD(:) = XUNDEF |
---|
| 273 | PCDN(:) = XUNDEF |
---|
| 274 | PCH(:) = XUNDEF |
---|
| 275 | PCE(:) =XUNDEF |
---|
| 276 | PRI(:) = XUNDEF |
---|
| 277 | ! |
---|
| 278 | PRESA(:)=XUNDEF |
---|
| 279 | ! |
---|
| 280 | !------------------------------------------------------------------------------- |
---|
| 281 | ! 2. INITIAL GUESS FOR THE ITERATIVE METHOD |
---|
| 282 | ! ------------------------------------- |
---|
| 283 | ! |
---|
| 284 | ! 2.0 Temperature |
---|
| 285 | ! |
---|
| 286 | ! Set a non-zero value for the temperature gradient |
---|
| 287 | ! |
---|
| 288 | WHERE((PTA(:)*PEXNS(:)/PEXNA(:)-PSST(:))==0.) |
---|
| 289 | ZTA(:)=PTA(:)-1E-3 |
---|
| 290 | ELSEWHERE |
---|
| 291 | ZTA(:)=PTA(:) |
---|
| 292 | ENDWHERE |
---|
| 293 | |
---|
| 294 | ! 2.1 Wind and humidity |
---|
| 295 | ! |
---|
| 296 | ! Sea surface specific humidity |
---|
| 297 | ! |
---|
| 298 | !PQSAT(:)=QSAT_SEAWATER(PSST(:),PPS(:)) |
---|
| 299 | PQSAT(:)=QSATSEAW_1D(PSST(:),PPS(:)) |
---|
| 300 | |
---|
| 301 | |
---|
| 302 | |
---|
| 303 | ! |
---|
| 304 | ! Set a minimum value to wind |
---|
| 305 | ! |
---|
| 306 | !ZVMOD(:) = WIND_THRESHOLD(PVMOD(:),PUREF(:)) |
---|
| 307 | |
---|
| 308 | |
---|
| 309 | ZVMOD = MAX(PVMOD , 0.1 * MIN(10.,PUREF) ) !set a minimum value to wind |
---|
| 310 | !ZVMOD = PVMOD !set a minimum value to wind |
---|
| 311 | |
---|
| 312 | ! |
---|
| 313 | ! Specific humidity at saturation at the atm. level |
---|
| 314 | ! |
---|
| 315 | ZPA(:) = XP00* (PEXNA(:)**(XCPD/XRD)) |
---|
| 316 | !ZQASAT(:) = QSAT_SEAWATER(ZTA(:),ZPA(:)) |
---|
| 317 | ZQASAT = QSATSEAW_1D(ZTA(:),ZPA(:)) |
---|
| 318 | |
---|
| 319 | |
---|
| 320 | ! |
---|
| 321 | ! |
---|
| 322 | ZO(:) = 0.0001 |
---|
| 323 | ZWG(:) = 0. |
---|
| 324 | IF (LPWG) ZWG(:) = 0.5 |
---|
| 325 | ! |
---|
| 326 | ZCHARN(:) = 0.011 |
---|
| 327 | ! |
---|
| 328 | DO J=1,SIZE(PTA) |
---|
| 329 | ! |
---|
| 330 | ! 2.2 initial guess |
---|
| 331 | ! |
---|
| 332 | ZDU(J) = ZVMOD(J) !wind speed difference with surface current(=0) (m/s) |
---|
| 333 | !initial guess for gustiness factor |
---|
| 334 | ZDT(J) = -(ZTA(J)/PEXNA(J)) + (PSST(J)/PEXNS(J)) !potential temperature difference |
---|
| 335 | ZDQ(J) = PQSAT(J)-PQA(J) !specific humidity difference |
---|
| 336 | ! |
---|
| 337 | ZDUWG(J) = SQRT(ZDU(J)**2+ZWG(J)**2) !wind speed difference including gustiness ZWG |
---|
| 338 | ! |
---|
| 339 | ! 2.3 initialization of neutral coefficients |
---|
| 340 | ! |
---|
| 341 | ZU10(J) = ZDUWG(J)*LOG(ZS/ZO(J))/LOG(PUREF(J)/ZO(J)) |
---|
| 342 | ZUSR(J) = 0.035*ZU10(J) |
---|
| 343 | ZVISA(J) = 1.326E-5*(1.+6.542E-3*(ZTA(J)-XTT)+& |
---|
| 344 | 8.301E-6*(ZTA(J)-XTT)**2-4.84E-9*(ZTA(J)-XTT)**3) !Andrea (1989) CRREL Rep. 89-11 |
---|
| 345 | ! |
---|
| 346 | ZO10(J) = ZCHARN(J)*ZUSR(J)*ZUSR(J)/XG+0.11*ZVISA(J)/ZUSR(J) |
---|
| 347 | ZCD(J) = (XKARMAN/LOG(PUREF(J)/ZO10(J)))**2 !drag coefficient |
---|
| 348 | ZCD10(J)= (XKARMAN/LOG(ZS/ZO10(J)))**2 |
---|
| 349 | ZCT10(J)= ZCH10/SQRT(ZCD10(J)) |
---|
| 350 | ZOT10(J)= ZS/EXP(XKARMAN/ZCT10(J)) |
---|
| 351 | ! |
---|
| 352 | !------------------------------------------------------------------------------- |
---|
| 353 | ! Grachev and Fairall (JAM, 1997) |
---|
| 354 | ZCT(J) = XKARMAN/LOG(PZREF(J)/ZOT10(J)) !temperature transfer coefficient |
---|
| 355 | ZCC(J) = XKARMAN*ZCT(J)/ZCD(J) !z/L vs Rib linear coef. |
---|
| 356 | ! |
---|
| 357 | ZRIBCU(J) = -PUREF(J)/(ZZBL*0.004*ZBETAGUST**3) !saturation or plateau Rib |
---|
| 358 | !ZRIBU(J) =-XG*PUREF(J)*(ZDT(J)+ZRVSRDM1*(ZTA(J)-XTT)*ZDQ)/& |
---|
| 359 | ! &((ZTA(J)-XTT)*ZDUWG(J)**2) |
---|
| 360 | ZRIBU(J) = -XG*PUREF(J)*(ZDT(J)+ZRVSRDM1*ZTA(J)*ZDQ(J))/& |
---|
| 361 | (ZTA(J)*ZDUWG(J)**2) |
---|
| 362 | ! |
---|
| 363 | IF (ZRIBU(J)<0.) THEN |
---|
| 364 | ZETU(J) = ZCC(J)*ZRIBU(J)/(1.+ZRIBU(J)/ZRIBCU(J)) !Unstable G and F |
---|
| 365 | ELSE |
---|
| 366 | ZETU(J) = ZCC(J)*ZRIBU(J)/(1.+27./9.*ZRIBU(J)/ZCC(J))!Stable |
---|
| 367 | ENDIF |
---|
| 368 | ! |
---|
| 369 | ZL10(J) = PUREF(J)/ZETU(J) !MO length |
---|
| 370 | ! |
---|
| 371 | ENDDO |
---|
| 372 | ! |
---|
| 373 | ! First guess M-O stability dependent scaling params. (u*,T*,q*) to estimate ZO and z/L (ZZL) |
---|
| 374 | ZUSR(:) = ZDUWG(:)*XKARMAN/(LOG(PUREF(:)/ZO10(:))-PSIFCTU(PUREF(1)/ZL10(1))) |
---|
| 375 | ZTSR(:) = -ZDT(:)*XKARMAN/(LOG(PZREF(:)/ZOT10(:))-PSIFCTT(PZREF(1)/ZL10(1))) |
---|
| 376 | ZQSR(:) = -ZDQ(:)*XKARMAN/(LOG(PZREF(:)/ZOT10(:))-PSIFCTT(PZREF(1)/ZL10(1))) |
---|
| 377 | ! |
---|
| 378 | ZZL(:) = 0.0 |
---|
| 379 | ! |
---|
| 380 | DO J=1,SIZE(PTA) |
---|
| 381 | ! |
---|
| 382 | IF (ZETU(J)>50.) THEN |
---|
| 383 | ITERMAX(J) = 1 |
---|
| 384 | ELSE |
---|
| 385 | ITERMAX(J) = 3 !number of iterations |
---|
| 386 | ENDIF |
---|
| 387 | ! |
---|
| 388 | !then modify Charnork for high wind speeds Chris Fairall's data |
---|
| 389 | IF (ZDUWG(J)>10.) ZCHARN(J) = 0.011 + (0.018-0.011)*(ZDUWG(J)-10.)/(18.-10.) |
---|
| 390 | IF (ZDUWG(J)>18.) ZCHARN(J) = 0.018 |
---|
| 391 | ! |
---|
| 392 | ! 3. ITERATIVE LOOP TO COMPUTE USR, TSR, QSR |
---|
| 393 | ! ------------------------------------------- |
---|
| 394 | ! |
---|
| 395 | ZHWAVE(J) = 0.018*ZVMOD(J)*ZVMOD(J)*(1.+0.015*ZVMOD(J)) |
---|
| 396 | ZTWAVE(J) = 0.729*ZVMOD(J) |
---|
| 397 | ZCWAVE(J) = XG*ZTWAVE(J)/(2.*XPI) |
---|
| 398 | ZLWAVE(J) = ZTWAVE(J)*ZCWAVE(J) |
---|
| 399 | ! |
---|
| 400 | ENDDO |
---|
| 401 | ! |
---|
| 402 | |
---|
| 403 | ! |
---|
| 404 | DO JLOOP=1,MAXVAL(ITERMAX) ! begin of iterative loop |
---|
| 405 | ! |
---|
| 406 | DO J=1,SIZE(PTA) |
---|
| 407 | ! |
---|
| 408 | IF (JLOOP>ITERMAX(J)) CYCLE |
---|
| 409 | ! |
---|
| 410 | IF (NGRVWAVES==0) THEN |
---|
| 411 | ZO(J) = ZCHARN(J)*ZUSR(J)*ZUSR(J)/XG + 0.11*ZVISA(J)/ZUSR(J) !Smith 1988 |
---|
| 412 | ELSE IF (NGRVWAVES==1) THEN |
---|
| 413 | ZO(J) = (50./(2.*XPI))*ZLWAVE(J)*(ZUSR(J)/ZCWAVE(J))**4.5 & |
---|
| 414 | + 0.11*ZVISA(J)/ZUSR(J) !Oost et al. 2002 |
---|
| 415 | ELSE IF (NGRVWAVES==2) THEN |
---|
| 416 | ZO(J) = 1200.*ZHWAVE(J)*(ZHWAVE(J)/ZLWAVE(J))**4.5 & |
---|
| 417 | + 0.11*ZVISA(J)/ZUSR(J) !Taulor and Yelland 2001 |
---|
| 418 | ENDIF |
---|
| 419 | ! |
---|
| 420 | ZRR(J) = ZO(J)*ZUSR(J)/ZVISA(J) |
---|
| 421 | ZOQ(J) = MIN(1.15E-4 , 5.5E-5/ZRR(J)**0.6) |
---|
| 422 | ZOT(J) = ZOQ(J) |
---|
| 423 | ! |
---|
| 424 | ZZL(J) = XKARMAN * XG * PUREF(J) * & |
---|
| 425 | ( ZTSR(J)*(1.+ZRVSRDM1*PQA(J)) + ZRVSRDM1*ZTA(J)*ZQSR(J) ) / & |
---|
| 426 | ( ZTA(J)*ZUSR(J)*ZUSR(J)*(1.+ZRVSRDM1*PQA(J)) ) |
---|
| 427 | ZZTL(J)= ZZL(J)*PZREF(J)/PUREF(J) ! for T |
---|
| 428 | ! ZZQL(J)=ZZL(J)*PZREF(J)/PUREF(J) ! for Q |
---|
| 429 | ENDDO |
---|
| 430 | ! |
---|
| 431 | ZPUZ(:) = PSIFCTU(ZZL(1)) |
---|
| 432 | ZPTZ(:) = PSIFCTT(ZZTL(1)) |
---|
| 433 | ! |
---|
| 434 | DO J=1,SIZE(PTA) |
---|
| 435 | ! |
---|
| 436 | ! ZPQZ(J)=PSIFCTT(ZZQL(J)) |
---|
| 437 | ZPQZ(J) = ZPTZ(J) |
---|
| 438 | ! |
---|
| 439 | ! 3.1 scale parameters |
---|
| 440 | ! |
---|
| 441 | ZUSR(J) = ZDUWG(J)*XKARMAN/(LOG(PUREF(J)/ZO(J)) -ZPUZ(J)) |
---|
| 442 | ZTSR(J) = -ZDT(J) *XKARMAN/(LOG(PZREF(J)/ZOT(J))-ZPTZ(J)) |
---|
| 443 | ZQSR(J) = -ZDQ(J) *XKARMAN/(LOG(PZREF(J)/ZOQ(J))-ZPQZ(J)) |
---|
| 444 | ! |
---|
| 445 | ! 3.2 Gustiness factor (ZWG) |
---|
| 446 | ! |
---|
| 447 | IF(LPWG) THEN |
---|
| 448 | ZBF(J) = -XG/ZTA(J)*ZUSR(J)*(ZTSR(J)+ZRVSRDM1*ZTA(J)*ZQSR(J)) |
---|
| 449 | IF (ZBF(J)>0.) THEN |
---|
| 450 | ZWG(J) = ZBETAGUST*(ZBF(J)*ZZBL)**(1./3.) |
---|
| 451 | ELSE |
---|
| 452 | ZWG(J) = 0.2 |
---|
| 453 | ENDIF |
---|
| 454 | ENDIF |
---|
| 455 | ZDUWG(J) = SQRT(ZVMOD(J)**2 + ZWG(J)**2) |
---|
| 456 | ! |
---|
| 457 | ENDDO |
---|
| 458 | ! |
---|
| 459 | ENDDO |
---|
| 460 | !------------------------------------------------------------------------------- |
---|
| 461 | ! |
---|
| 462 | ! 4. COMPUTE transfer coefficients PCD, PCH, ZCE and SURFACE FLUXES |
---|
| 463 | ! -------------------------------------------------------------- |
---|
| 464 | ! |
---|
| 465 | ZTAU(:) = XUNDEF |
---|
| 466 | ZHF(:) = XUNDEF |
---|
| 467 | ZEF(:) = XUNDEF |
---|
| 468 | ! |
---|
| 469 | ZWBAR(:) = 0. |
---|
| 470 | ZTAUR(:) = 0. |
---|
| 471 | ZRF(:) = 0. |
---|
| 472 | ! |
---|
| 473 | DO J=1,SIZE(PTA) |
---|
| 474 | ! |
---|
| 475 | ! |
---|
| 476 | ! 4. transfert coefficients PCD, PCH and PCE |
---|
| 477 | ! and neutral PCDN, ZCHN, ZCEN |
---|
| 478 | ! |
---|
| 479 | PCD(J) = (ZUSR(J)/ZDUWG(J))**2. |
---|
| 480 | PCH(J) = ZUSR(J)*ZTSR(J)/(ZDUWG(J)*(ZTA(J)*PEXNS(J)/PEXNA(J)-PSST(J))) |
---|
| 481 | PCE(J) = ZUSR(J)*ZQSR(J)/(ZDUWG(J)*(PQA(J)-PQSAT(J))) |
---|
| 482 | ! |
---|
| 483 | PCDN(J) = (XKARMAN/LOG(ZS/ZO(J)))**2. |
---|
| 484 | ZCHN(J) = (XKARMAN/LOG(ZS/ZO(J)))*(XKARMAN/LOG(ZS/ZOT(J))) |
---|
| 485 | ZCEN(J) = (XKARMAN/LOG(ZS/ZO(J)))*(XKARMAN/LOG(ZS/ZOQ(J))) |
---|
| 486 | ! |
---|
| 487 | ZLV(J) = XLVTT + (XCPV-XCL)*(PSST(J)-XTT) |
---|
| 488 | ! |
---|
| 489 | ! 4. 2 surface fluxes |
---|
| 490 | ! |
---|
| 491 | IF (ABS(PCDN(J))>1.E-2) THEN !!!! secure COARE3.0 CODE |
---|
| 492 | write(*,*) 'pb PCDN in COARE30: ',PCDN(J) |
---|
| 493 | write(*,*) 'point: ',J,"/",SIZE(PTA) |
---|
| 494 | write(*,*) 'roughness: ', ZO(J) |
---|
| 495 | write(*,*) 'ustar: ',ZUSR(J) |
---|
| 496 | write(*,*) 'wind: ',ZDUWG(J) |
---|
| 497 | CALL abort_physic('COARE30',': PCDN too large -> no convergence',1) |
---|
| 498 | ELSE |
---|
| 499 | ZTSR(J) = -ZTSR(J) |
---|
| 500 | ZQSR(J) = -ZQSR(J) |
---|
| 501 | ZTAU(J) = -PRHOA(J)*ZUSR(J)*ZUSR(J)*ZVMOD(J)/ZDUWG(J) |
---|
| 502 | ZHF(J) = PRHOA(J)*XCPD*ZUSR(J)*ZTSR(J) |
---|
| 503 | ZEF(J) = PRHOA(J)*ZLV(J)*ZUSR(J)*ZQSR(J) |
---|
| 504 | ! |
---|
| 505 | ! 4.3 Contributions to surface fluxes due to rainfall |
---|
| 506 | ! |
---|
| 507 | ! SB: a priori, le facteur ZRDSRV=XRD/XRV est introduit pour |
---|
| 508 | ! adapter la formule de Clausius-Clapeyron (pour l'air |
---|
| 509 | ! sec) au cas humide. |
---|
| 510 | IF (LPRECIP) THEN |
---|
| 511 | ! |
---|
| 512 | ! heat surface fluxes |
---|
| 513 | ! |
---|
| 514 | ZTAC(J) = ZTA(J)-XTT |
---|
| 515 | ! |
---|
| 516 | ZXLR(J) = XLVTT + (XCPV-XCL)* ZTAC(J) ! latent heat of rain vaporization |
---|
| 517 | ZDQSDT(J)= ZQASAT(J) * ZXLR(J) / (XRD*ZTA(J)**2) ! Clausius-Clapeyron relation |
---|
| 518 | ZDTMP(J) = (1.0 + 3.309e-3*ZTAC(J) -1.44e-6*ZTAC(J)*ZTAC(J)) * & !heat diffusivity |
---|
| 519 | 0.02411 / (PRHOA(J)*XCPD) |
---|
| 520 | ! |
---|
| 521 | ZDWAT(J) = 2.11e-5 * (XP00/ZPA(J)) * (ZTA(J)/XTT)**1.94 ! water vapour diffusivity from eq (13.3) |
---|
| 522 | ! ! of Pruppacher and Klett (1978) |
---|
| 523 | ZALFAC(J)= 1.0 / (1.0 + & ! Eq.11 in GoF95 |
---|
| 524 | ZRDSRV*ZDQSDT(J)*ZXLR(J)*ZDWAT(J)/(ZDTMP(J)*XCPD)) ! ZALFAC=wet-bulb factor (sans dim) |
---|
| 525 | ZCPLW(J) = 4224.8482 + ZTAC(J) * & |
---|
| 526 | ( -4.707 + ZTAC(J) * & |
---|
| 527 | (0.08499 + ZTAC(J) * & |
---|
| 528 | (1.2826e-3 + ZTAC(J) * & |
---|
| 529 | (4.7884e-5 - 2.0027e-6* ZTAC(J))))) ! specific heat |
---|
| 530 | ! |
---|
| 531 | ZRF(J) = PRAIN(J) * ZCPLW(J) * ZALFAC(J) * & !Eq.12 in GoF95 !SIGNE? |
---|
| 532 | (PSST(J) - ZTA(J) + (PQSAT(J)-PQA(J))*ZXLR(J)/XCPD ) |
---|
| 533 | ! |
---|
| 534 | ! Momentum flux due to rainfall |
---|
| 535 | ! |
---|
| 536 | ZTAUR(J)=-0.85*(PRAIN(J) *ZVMOD(J)) !pp3752 in FBR96 |
---|
| 537 | ! |
---|
| 538 | ENDIF |
---|
| 539 | ! |
---|
| 540 | ! 4.4 Webb correction to latent heat flux |
---|
| 541 | ! |
---|
| 542 | ZWBAR(J)=- (1./ZRDSRV)*ZUSR(J)*ZQSR(J) / (1.0+(1./ZRDSRV)*PQA(J)) & |
---|
| 543 | - ZUSR(J)*ZTSR(J)/ZTA(J) ! Eq.21*rhoa in FBR96 |
---|
| 544 | ! |
---|
| 545 | ! 4.5 friction velocity which contains correction du to rain |
---|
| 546 | ! |
---|
| 547 | ZUSTAR2(J)= - (ZTAU(J) + ZTAUR(J)) / PRHOA(J) |
---|
| 548 | PUSTAR(J) = SQRT(ZUSTAR2(J)) |
---|
| 549 | ! |
---|
| 550 | ! 4.6 Total surface fluxes |
---|
| 551 | ! |
---|
| 552 | PSFTH (J) = ZHF(J) + ZRF(J) |
---|
| 553 | PSFTQ (J) = ZEF(J) / ZLV(J) |
---|
| 554 | ! |
---|
| 555 | ENDIF |
---|
| 556 | ENDDO |
---|
| 557 | |
---|
| 558 | |
---|
| 559 | coeffs = [PCD,& |
---|
| 560 | PCE,& |
---|
| 561 | PCH] |
---|
| 562 | |
---|
| 563 | !------------------------------------------------------------------------------- |
---|
| 564 | ! |
---|
| 565 | ! 5. FINAL STEP : TOTAL SURFACE FLUXES AND DERIVED DIAGNOSTICS |
---|
| 566 | ! ----------- |
---|
| 567 | ! 5.1 Richardson number |
---|
| 568 | ! |
---|
| 569 | ! |
---|
| 570 | !------------STOP LA -------------------- |
---|
| 571 | !ZDIRCOSZW(:) = 1. |
---|
| 572 | ! CALL SURFACE_RI(PSST,PQSAT,PEXNS,PEXNA,ZTA,ZQASAT,& |
---|
| 573 | ! PZREF,PUREF,ZDIRCOSZW,PVMOD,PRI ) |
---|
| 574 | !! |
---|
| 575 | !! 5.2 Aerodynamical conductance and resistance |
---|
| 576 | !! |
---|
| 577 | !ZAC(:) = PCH(:)*ZVMOD(:) |
---|
| 578 | !PRESA(:) = 1. / MAX(ZAC(:),XSURF_EPSILON) |
---|
| 579 | ! |
---|
| 580 | !! 5.3 Z0 and Z0H over sea |
---|
| 581 | !! |
---|
| 582 | !PZ0SEA(:) = ZCHARN(:) * ZUSTAR2(:) / XG + XVZ0CM * PCD(:) / PCDN(:) |
---|
| 583 | !! |
---|
| 584 | !!PZ0HSEA(:) = PZ0SEA(:) |
---|
| 585 | !! |
---|
| 586 | !IF (LHOOK) CALL DR_HOOK('COARE30_FLUX',1,ZHOOK_HANDLE) |
---|
| 587 | ! |
---|
| 588 | !------------------------------------------------------------------------------- |
---|
| 589 | ! |
---|
| 590 | END SUBROUTINE COARE30_FLUX_CNRM |
---|
| 591 | |
---|
| 592 | end module coare30_flux_cnrm_mod |
---|