1 | MODULE cloudth_mod |
---|
2 | |
---|
3 | IMPLICIT NONE |
---|
4 | |
---|
5 | CONTAINS |
---|
6 | |
---|
7 | SUBROUTINE cloudth(ngrid,klev,ind2, & |
---|
8 | & ztv,po,zqta,fraca, & |
---|
9 | & qcloud,ctot,zpspsk,paprs,pplay,ztla,zthl, & |
---|
10 | & ratqs,zqs,t) |
---|
11 | |
---|
12 | |
---|
13 | IMPLICIT NONE |
---|
14 | |
---|
15 | |
---|
16 | !=========================================================================== |
---|
17 | ! Auteur : Arnaud Octavio Jam (LMD/CNRS) |
---|
18 | ! Date : 25 Mai 2010 |
---|
19 | ! Objet : calcule les valeurs de qc et rneb dans les thermiques |
---|
20 | !=========================================================================== |
---|
21 | |
---|
22 | |
---|
23 | #include "YOMCST.h" |
---|
24 | #include "YOETHF.h" |
---|
25 | #include "FCTTRE.h" |
---|
26 | #include "thermcell.h" |
---|
27 | #include "nuage.h" |
---|
28 | |
---|
29 | INTEGER itap,ind1,ind2 |
---|
30 | INTEGER ngrid,klev,klon,l,ig |
---|
31 | |
---|
32 | REAL ztv(ngrid,klev) |
---|
33 | REAL po(ngrid) |
---|
34 | REAL zqenv(ngrid) |
---|
35 | REAL zqta(ngrid,klev) |
---|
36 | |
---|
37 | REAL fraca(ngrid,klev+1) |
---|
38 | REAL zpspsk(ngrid,klev) |
---|
39 | REAL paprs(ngrid,klev+1) |
---|
40 | REAL pplay(ngrid,klev) |
---|
41 | REAL ztla(ngrid,klev) |
---|
42 | REAL zthl(ngrid,klev) |
---|
43 | |
---|
44 | REAL zqsatth(ngrid,klev) |
---|
45 | REAL zqsatenv(ngrid,klev) |
---|
46 | |
---|
47 | |
---|
48 | REAL sigma1(ngrid,klev) |
---|
49 | REAL sigma2(ngrid,klev) |
---|
50 | REAL qlth(ngrid,klev) |
---|
51 | REAL qlenv(ngrid,klev) |
---|
52 | REAL qltot(ngrid,klev) |
---|
53 | REAL cth(ngrid,klev) |
---|
54 | REAL cenv(ngrid,klev) |
---|
55 | REAL ctot(ngrid,klev) |
---|
56 | REAL rneb(ngrid,klev) |
---|
57 | REAL t(ngrid,klev) |
---|
58 | REAL qsatmmussig1,qsatmmussig2,sqrt2pi,pi |
---|
59 | REAL rdd,cppd,Lv |
---|
60 | REAL alth,alenv,ath,aenv |
---|
61 | REAL sth,senv,sigma1s,sigma2s,xth,xenv |
---|
62 | REAL Tbef,zdelta,qsatbef,zcor |
---|
63 | REAL qlbef |
---|
64 | REAL ratqs(ngrid,klev) ! determine la largeur de distribution de vapeur |
---|
65 | |
---|
66 | REAL zpdf_sig(ngrid),zpdf_k(ngrid),zpdf_delta(ngrid) |
---|
67 | REAL zpdf_a(ngrid),zpdf_b(ngrid),zpdf_e1(ngrid),zpdf_e2(ngrid) |
---|
68 | REAL zqs(ngrid), qcloud(ngrid) |
---|
69 | REAL erf |
---|
70 | |
---|
71 | |
---|
72 | |
---|
73 | |
---|
74 | !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! |
---|
75 | ! Gestion de deux versions de cloudth |
---|
76 | !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! |
---|
77 | |
---|
78 | IF (iflag_cloudth_vert.GE.1) THEN |
---|
79 | CALL cloudth_vert(ngrid,klev,ind2, & |
---|
80 | & ztv,po,zqta,fraca, & |
---|
81 | & qcloud,ctot,zpspsk,paprs,pplay,ztla,zthl, & |
---|
82 | & ratqs,zqs,t) |
---|
83 | RETURN |
---|
84 | ENDIF |
---|
85 | !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! |
---|
86 | |
---|
87 | |
---|
88 | !------------------------------------------------------------------------------- |
---|
89 | ! Initialisation des variables r?elles |
---|
90 | !------------------------------------------------------------------------------- |
---|
91 | sigma1(:,:)=0. |
---|
92 | sigma2(:,:)=0. |
---|
93 | qlth(:,:)=0. |
---|
94 | qlenv(:,:)=0. |
---|
95 | qltot(:,:)=0. |
---|
96 | rneb(:,:)=0. |
---|
97 | qcloud(:)=0. |
---|
98 | cth(:,:)=0. |
---|
99 | cenv(:,:)=0. |
---|
100 | ctot(:,:)=0. |
---|
101 | qsatmmussig1=0. |
---|
102 | qsatmmussig2=0. |
---|
103 | rdd=287.04 |
---|
104 | cppd=1005.7 |
---|
105 | pi=3.14159 |
---|
106 | Lv=2.5e6 |
---|
107 | sqrt2pi=sqrt(2.*pi) |
---|
108 | |
---|
109 | |
---|
110 | |
---|
111 | !------------------------------------------------------------------------------- |
---|
112 | ! Calcul de la fraction du thermique et des ?cart-types des distributions |
---|
113 | !------------------------------------------------------------------------------- |
---|
114 | do ind1=1,ngrid |
---|
115 | |
---|
116 | if ((ztv(ind1,1).gt.ztv(ind1,2)).and.(fraca(ind1,ind2).gt.1.e-10)) then |
---|
117 | |
---|
118 | zqenv(ind1)=(po(ind1)-fraca(ind1,ind2)*zqta(ind1,ind2))/(1.-fraca(ind1,ind2)) |
---|
119 | |
---|
120 | |
---|
121 | ! zqenv(ind1)=po(ind1) |
---|
122 | Tbef=zthl(ind1,ind2)*zpspsk(ind1,ind2) |
---|
123 | zdelta=MAX(0.,SIGN(1.,RTT-Tbef)) |
---|
124 | qsatbef= R2ES * FOEEW(Tbef,zdelta)/paprs(ind1,ind2) |
---|
125 | qsatbef=MIN(0.5,qsatbef) |
---|
126 | zcor=1./(1.-retv*qsatbef) |
---|
127 | qsatbef=qsatbef*zcor |
---|
128 | zqsatenv(ind1,ind2)=qsatbef |
---|
129 | |
---|
130 | |
---|
131 | |
---|
132 | |
---|
133 | alenv=(0.622*Lv*zqsatenv(ind1,ind2))/(rdd*zthl(ind1,ind2)**2) |
---|
134 | aenv=1./(1.+(alenv*Lv/cppd)) |
---|
135 | senv=aenv*(po(ind1)-zqsatenv(ind1,ind2)) |
---|
136 | |
---|
137 | |
---|
138 | |
---|
139 | |
---|
140 | Tbef=ztla(ind1,ind2)*zpspsk(ind1,ind2) |
---|
141 | zdelta=MAX(0.,SIGN(1.,RTT-Tbef)) |
---|
142 | qsatbef= R2ES * FOEEW(Tbef,zdelta)/paprs(ind1,ind2) |
---|
143 | qsatbef=MIN(0.5,qsatbef) |
---|
144 | zcor=1./(1.-retv*qsatbef) |
---|
145 | qsatbef=qsatbef*zcor |
---|
146 | zqsatth(ind1,ind2)=qsatbef |
---|
147 | |
---|
148 | alth=(0.622*Lv*zqsatth(ind1,ind2))/(rdd*ztla(ind1,ind2)**2) |
---|
149 | ath=1./(1.+(alth*Lv/cppd)) |
---|
150 | sth=ath*(zqta(ind1,ind2)-zqsatth(ind1,ind2)) |
---|
151 | |
---|
152 | |
---|
153 | |
---|
154 | !------------------------------------------------------------------------------ |
---|
155 | ! Calcul des ?cart-types pour s |
---|
156 | !------------------------------------------------------------------------------ |
---|
157 | |
---|
158 | ! sigma1s=(1.1**0.5)*(fraca(ind1,ind2)**0.6)/(1-fraca(ind1,ind2))*((sth-senv)**2)**0.5+ratqs(ind1,ind2)*po(ind1) |
---|
159 | ! sigma2s=0.11*((sth-senv)**2)**0.5/(fraca(ind1,ind2)+0.02)**0.4+0.002*zqta(ind1,ind2) |
---|
160 | ! if (paprs(ind1,ind2).gt.90000) then |
---|
161 | ! ratqs(ind1,ind2)=0.002 |
---|
162 | ! else |
---|
163 | ! ratqs(ind1,ind2)=0.002+0.0*(90000-paprs(ind1,ind2))/20000 |
---|
164 | ! endif |
---|
165 | sigma1s=(1.1**0.5)*(fraca(ind1,ind2)**0.6)/(1-fraca(ind1,ind2))*((sth-senv)**2)**0.5+0.002*po(ind1) |
---|
166 | sigma2s=0.11*((sth-senv)**2)**0.5/(fraca(ind1,ind2)+0.01)**0.4+0.002*zqta(ind1,ind2) |
---|
167 | ! sigma1s=ratqs(ind1,ind2)*po(ind1) |
---|
168 | ! sigma2s=0.11*((sth-senv)**2)**0.5/(fraca(ind1,ind2)+0.02)**0.4+0.00003 |
---|
169 | |
---|
170 | !------------------------------------------------------------------------------ |
---|
171 | ! Calcul de l'eau condens?e et de la couverture nuageuse |
---|
172 | !------------------------------------------------------------------------------ |
---|
173 | sqrt2pi=sqrt(2.*pi) |
---|
174 | xth=sth/(sqrt(2.)*sigma2s) |
---|
175 | xenv=senv/(sqrt(2.)*sigma1s) |
---|
176 | cth(ind1,ind2)=0.5*(1.+1.*erf(xth)) |
---|
177 | cenv(ind1,ind2)=0.5*(1.+1.*erf(xenv)) |
---|
178 | ctot(ind1,ind2)=fraca(ind1,ind2)*cth(ind1,ind2)+(1.-1.*fraca(ind1,ind2))*cenv(ind1,ind2) |
---|
179 | |
---|
180 | qlth(ind1,ind2)=sigma2s*((exp(-1.*xth**2)/sqrt2pi)+xth*sqrt(2.)*cth(ind1,ind2)) |
---|
181 | qlenv(ind1,ind2)=sigma1s*((exp(-1.*xenv**2)/sqrt2pi)+xenv*sqrt(2.)*cenv(ind1,ind2)) |
---|
182 | qltot(ind1,ind2)=fraca(ind1,ind2)*qlth(ind1,ind2)+(1.-1.*fraca(ind1,ind2))*qlenv(ind1,ind2) |
---|
183 | |
---|
184 | !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! |
---|
185 | if (ctot(ind1,ind2).lt.1.e-10) then |
---|
186 | ctot(ind1,ind2)=0. |
---|
187 | qcloud(ind1)=zqsatenv(ind1,ind2) |
---|
188 | |
---|
189 | else |
---|
190 | |
---|
191 | ctot(ind1,ind2)=ctot(ind1,ind2) |
---|
192 | qcloud(ind1)=qltot(ind1,ind2)/ctot(ind1,ind2)+zqs(ind1) |
---|
193 | |
---|
194 | endif |
---|
195 | |
---|
196 | |
---|
197 | ! print*,sth,sigma2s,qlth(ind1,ind2),ctot(ind1,ind2),qltot(ind1,ind2),'verif' |
---|
198 | |
---|
199 | |
---|
200 | else ! gaussienne environnement seule |
---|
201 | |
---|
202 | zqenv(ind1)=po(ind1) |
---|
203 | Tbef=t(ind1,ind2) |
---|
204 | zdelta=MAX(0.,SIGN(1.,RTT-Tbef)) |
---|
205 | qsatbef= R2ES * FOEEW(Tbef,zdelta)/paprs(ind1,ind2) |
---|
206 | qsatbef=MIN(0.5,qsatbef) |
---|
207 | zcor=1./(1.-retv*qsatbef) |
---|
208 | qsatbef=qsatbef*zcor |
---|
209 | zqsatenv(ind1,ind2)=qsatbef |
---|
210 | |
---|
211 | |
---|
212 | ! qlbef=Max(po(ind1)-zqsatenv(ind1,ind2),0.) |
---|
213 | zthl(ind1,ind2)=t(ind1,ind2)*(101325/paprs(ind1,ind2))**(rdd/cppd) |
---|
214 | alenv=(0.622*Lv*zqsatenv(ind1,ind2))/(rdd*zthl(ind1,ind2)**2) |
---|
215 | aenv=1./(1.+(alenv*Lv/cppd)) |
---|
216 | senv=aenv*(po(ind1)-zqsatenv(ind1,ind2)) |
---|
217 | |
---|
218 | |
---|
219 | sigma1s=ratqs(ind1,ind2)*zqenv(ind1) |
---|
220 | |
---|
221 | sqrt2pi=sqrt(2.*pi) |
---|
222 | xenv=senv/(sqrt(2.)*sigma1s) |
---|
223 | ctot(ind1,ind2)=0.5*(1.+1.*erf(xenv)) |
---|
224 | qltot(ind1,ind2)=sigma1s*((exp(-1.*xenv**2)/sqrt2pi)+xenv*sqrt(2.)*cenv(ind1,ind2)) |
---|
225 | |
---|
226 | if (ctot(ind1,ind2).lt.1.e-3) then |
---|
227 | ctot(ind1,ind2)=0. |
---|
228 | qcloud(ind1)=zqsatenv(ind1,ind2) |
---|
229 | |
---|
230 | else |
---|
231 | |
---|
232 | ctot(ind1,ind2)=ctot(ind1,ind2) |
---|
233 | qcloud(ind1)=qltot(ind1,ind2)/ctot(ind1,ind2)+zqsatenv(ind1,ind2) |
---|
234 | |
---|
235 | endif |
---|
236 | |
---|
237 | |
---|
238 | |
---|
239 | |
---|
240 | |
---|
241 | |
---|
242 | endif |
---|
243 | enddo |
---|
244 | |
---|
245 | return |
---|
246 | ! end |
---|
247 | END SUBROUTINE cloudth |
---|
248 | |
---|
249 | |
---|
250 | |
---|
251 | !=========================================================================== |
---|
252 | SUBROUTINE cloudth_vert(ngrid,klev,ind2, & |
---|
253 | & ztv,po,zqta,fraca, & |
---|
254 | & qcloud,ctot,zpspsk,paprs,pplay,ztla,zthl, & |
---|
255 | & ratqs,zqs,t) |
---|
256 | |
---|
257 | !=========================================================================== |
---|
258 | ! Auteur : Arnaud Octavio Jam (LMD/CNRS) |
---|
259 | ! Date : 25 Mai 2010 |
---|
260 | ! Objet : calcule les valeurs de qc et rneb dans les thermiques |
---|
261 | !=========================================================================== |
---|
262 | |
---|
263 | |
---|
264 | USE ioipsl_getin_p_mod, ONLY : getin_p |
---|
265 | |
---|
266 | IMPLICIT NONE |
---|
267 | |
---|
268 | #include "YOMCST.h" |
---|
269 | #include "YOETHF.h" |
---|
270 | #include "FCTTRE.h" |
---|
271 | #include "thermcell.h" |
---|
272 | #include "nuage.h" |
---|
273 | |
---|
274 | INTEGER itap,ind1,ind2 |
---|
275 | INTEGER ngrid,klev,klon,l,ig |
---|
276 | |
---|
277 | REAL ztv(ngrid,klev) |
---|
278 | REAL po(ngrid) |
---|
279 | REAL zqenv(ngrid) |
---|
280 | REAL zqta(ngrid,klev) |
---|
281 | |
---|
282 | REAL fraca(ngrid,klev+1) |
---|
283 | REAL zpspsk(ngrid,klev) |
---|
284 | REAL paprs(ngrid,klev+1) |
---|
285 | REAL pplay(ngrid,klev) |
---|
286 | REAL ztla(ngrid,klev) |
---|
287 | REAL zthl(ngrid,klev) |
---|
288 | |
---|
289 | REAL zqsatth(ngrid,klev) |
---|
290 | REAL zqsatenv(ngrid,klev) |
---|
291 | |
---|
292 | |
---|
293 | REAL sigma1(ngrid,klev) |
---|
294 | REAL sigma2(ngrid,klev) |
---|
295 | REAL qlth(ngrid,klev) |
---|
296 | REAL qlenv(ngrid,klev) |
---|
297 | REAL qltot(ngrid,klev) |
---|
298 | REAL cth(ngrid,klev) |
---|
299 | REAL cenv(ngrid,klev) |
---|
300 | REAL ctot(ngrid,klev) |
---|
301 | REAL rneb(ngrid,klev) |
---|
302 | REAL t(ngrid,klev) |
---|
303 | REAL qsatmmussig1,qsatmmussig2,sqrt2pi,pi |
---|
304 | REAL rdd,cppd,Lv,sqrt2,sqrtpi |
---|
305 | REAL alth,alenv,ath,aenv |
---|
306 | REAL sth,senv,sigma1s,sigma2s,xth,xenv |
---|
307 | REAL xth1,xth2,xenv1,xenv2,deltasth, deltasenv |
---|
308 | REAL IntJ,IntI1,IntI2,IntI3,coeffqlenv,coeffqlth |
---|
309 | REAL Tbef,zdelta,qsatbef,zcor |
---|
310 | REAL qlbef |
---|
311 | REAL ratqs(ngrid,klev) ! determine la largeur de distribution de vapeur |
---|
312 | ! Change the width of the PDF used for vertical subgrid scale heterogeneity |
---|
313 | ! (J Jouhaud, JL Dufresne, JB Madeleine) |
---|
314 | REAL,SAVE :: vert_alpha |
---|
315 | !$OMP THREADPRIVATE(vert_alpha) |
---|
316 | LOGICAL, SAVE :: firstcall = .TRUE. |
---|
317 | !$OMP THREADPRIVATE(firstcall) |
---|
318 | |
---|
319 | REAL zpdf_sig(ngrid),zpdf_k(ngrid),zpdf_delta(ngrid) |
---|
320 | REAL zpdf_a(ngrid),zpdf_b(ngrid),zpdf_e1(ngrid),zpdf_e2(ngrid) |
---|
321 | REAL zqs(ngrid), qcloud(ngrid) |
---|
322 | REAL erf |
---|
323 | |
---|
324 | !------------------------------------------------------------------------------ |
---|
325 | ! Initialisation des variables r?elles |
---|
326 | !------------------------------------------------------------------------------ |
---|
327 | sigma1(:,:)=0. |
---|
328 | sigma2(:,:)=0. |
---|
329 | qlth(:,:)=0. |
---|
330 | qlenv(:,:)=0. |
---|
331 | qltot(:,:)=0. |
---|
332 | rneb(:,:)=0. |
---|
333 | qcloud(:)=0. |
---|
334 | cth(:,:)=0. |
---|
335 | cenv(:,:)=0. |
---|
336 | ctot(:,:)=0. |
---|
337 | qsatmmussig1=0. |
---|
338 | qsatmmussig2=0. |
---|
339 | rdd=287.04 |
---|
340 | cppd=1005.7 |
---|
341 | pi=3.14159 |
---|
342 | Lv=2.5e6 |
---|
343 | sqrt2pi=sqrt(2.*pi) |
---|
344 | sqrt2=sqrt(2.) |
---|
345 | sqrtpi=sqrt(pi) |
---|
346 | |
---|
347 | IF (firstcall) THEN |
---|
348 | vert_alpha=0.5 |
---|
349 | CALL getin_p('cloudth_vert_alpha',vert_alpha) |
---|
350 | WRITE(*,*) 'cloudth_vert_alpha = ', vert_alpha |
---|
351 | firstcall=.FALSE. |
---|
352 | ENDIF |
---|
353 | |
---|
354 | !------------------------------------------------------------------------------- |
---|
355 | ! Calcul de la fraction du thermique et des ?cart-types des distributions |
---|
356 | !------------------------------------------------------------------------------- |
---|
357 | do ind1=1,ngrid |
---|
358 | |
---|
359 | if ((ztv(ind1,1).gt.ztv(ind1,2)).and.(fraca(ind1,ind2).gt.1.e-10)) then |
---|
360 | |
---|
361 | zqenv(ind1)=(po(ind1)-fraca(ind1,ind2)*zqta(ind1,ind2))/(1.-fraca(ind1,ind2)) |
---|
362 | |
---|
363 | |
---|
364 | ! zqenv(ind1)=po(ind1) |
---|
365 | Tbef=zthl(ind1,ind2)*zpspsk(ind1,ind2) |
---|
366 | zdelta=MAX(0.,SIGN(1.,RTT-Tbef)) |
---|
367 | qsatbef= R2ES * FOEEW(Tbef,zdelta)/paprs(ind1,ind2) |
---|
368 | qsatbef=MIN(0.5,qsatbef) |
---|
369 | zcor=1./(1.-retv*qsatbef) |
---|
370 | qsatbef=qsatbef*zcor |
---|
371 | zqsatenv(ind1,ind2)=qsatbef |
---|
372 | |
---|
373 | |
---|
374 | |
---|
375 | |
---|
376 | alenv=(0.622*Lv*zqsatenv(ind1,ind2))/(rdd*zthl(ind1,ind2)**2) |
---|
377 | aenv=1./(1.+(alenv*Lv/cppd)) |
---|
378 | senv=aenv*(po(ind1)-zqsatenv(ind1,ind2)) |
---|
379 | |
---|
380 | |
---|
381 | |
---|
382 | |
---|
383 | Tbef=ztla(ind1,ind2)*zpspsk(ind1,ind2) |
---|
384 | zdelta=MAX(0.,SIGN(1.,RTT-Tbef)) |
---|
385 | qsatbef= R2ES * FOEEW(Tbef,zdelta)/paprs(ind1,ind2) |
---|
386 | qsatbef=MIN(0.5,qsatbef) |
---|
387 | zcor=1./(1.-retv*qsatbef) |
---|
388 | qsatbef=qsatbef*zcor |
---|
389 | zqsatth(ind1,ind2)=qsatbef |
---|
390 | |
---|
391 | alth=(0.622*Lv*zqsatth(ind1,ind2))/(rdd*ztla(ind1,ind2)**2) |
---|
392 | ath=1./(1.+(alth*Lv/cppd)) |
---|
393 | sth=ath*(zqta(ind1,ind2)-zqsatth(ind1,ind2)) |
---|
394 | |
---|
395 | |
---|
396 | |
---|
397 | !------------------------------------------------------------------------------ |
---|
398 | ! Calcul des ?cart-types pour s |
---|
399 | !------------------------------------------------------------------------------ |
---|
400 | |
---|
401 | sigma1s=(0.92**0.5)*(fraca(ind1,ind2)**0.5)/(1-fraca(ind1,ind2))*((sth-senv)**2)**0.5+ratqs(ind1,ind2)*po(ind1) |
---|
402 | sigma2s=0.09*((sth-senv)**2)**0.5/(fraca(ind1,ind2)+0.02)**0.5+0.002*zqta(ind1,ind2) |
---|
403 | ! if (paprs(ind1,ind2).gt.90000) then |
---|
404 | ! ratqs(ind1,ind2)=0.002 |
---|
405 | ! else |
---|
406 | ! ratqs(ind1,ind2)=0.002+0.0*(90000-paprs(ind1,ind2))/20000 |
---|
407 | ! endif |
---|
408 | ! sigma1s=(1.1**0.5)*(fraca(ind1,ind2)**0.6)/(1-fraca(ind1,ind2))*((sth-senv)**2)**0.5+0.002*po(ind1) |
---|
409 | ! sigma2s=0.11*((sth-senv)**2)**0.5/(fraca(ind1,ind2)+0.01)**0.4+0.002*zqta(ind1,ind2) |
---|
410 | ! sigma1s=ratqs(ind1,ind2)*po(ind1) |
---|
411 | ! sigma2s=0.11*((sth-senv)**2)**0.5/(fraca(ind1,ind2)+0.02)**0.4+0.00003 |
---|
412 | |
---|
413 | !------------------------------------------------------------------------------ |
---|
414 | ! Calcul de l'eau condens?e et de la couverture nuageuse |
---|
415 | !------------------------------------------------------------------------------ |
---|
416 | sqrt2pi=sqrt(2.*pi) |
---|
417 | xth=sth/(sqrt(2.)*sigma2s) |
---|
418 | xenv=senv/(sqrt(2.)*sigma1s) |
---|
419 | cth(ind1,ind2)=0.5*(1.+1.*erf(xth)) |
---|
420 | cenv(ind1,ind2)=0.5*(1.+1.*erf(xenv)) |
---|
421 | ctot(ind1,ind2)=fraca(ind1,ind2)*cth(ind1,ind2)+(1.-1.*fraca(ind1,ind2))*cenv(ind1,ind2) |
---|
422 | |
---|
423 | qlth(ind1,ind2)=sigma2s*((exp(-1.*xth**2)/sqrt2pi)+xth*sqrt(2.)*cth(ind1,ind2)) |
---|
424 | qlenv(ind1,ind2)=sigma1s*((exp(-1.*xenv**2)/sqrt2pi)+xenv*sqrt(2.)*cenv(ind1,ind2)) |
---|
425 | qltot(ind1,ind2)=fraca(ind1,ind2)*qlth(ind1,ind2)+(1.-1.*fraca(ind1,ind2))*qlenv(ind1,ind2) |
---|
426 | |
---|
427 | IF (iflag_cloudth_vert == 1) THEN |
---|
428 | !------------------------------------------------------------------------------- |
---|
429 | ! Version 2: Modification selon J.-Louis. On condense ?? partir de qsat-ratqs |
---|
430 | !------------------------------------------------------------------------------- |
---|
431 | ! deltasenv=aenv*ratqs(ind1,ind2)*po(ind1) |
---|
432 | ! deltasth=ath*ratqs(ind1,ind2)*zqta(ind1,ind2) |
---|
433 | deltasenv=aenv*ratqs(ind1,ind2)*zqsatenv(ind1,ind2) |
---|
434 | deltasth=ath*ratqs(ind1,ind2)*zqsatth(ind1,ind2) |
---|
435 | ! deltasenv=aenv*0.01*po(ind1) |
---|
436 | ! deltasth=ath*0.01*zqta(ind1,ind2) |
---|
437 | xenv1=(senv-deltasenv)/(sqrt(2.)*sigma1s) |
---|
438 | xenv2=(senv+deltasenv)/(sqrt(2.)*sigma1s) |
---|
439 | xth1=(sth-deltasth)/(sqrt(2.)*sigma2s) |
---|
440 | xth2=(sth+deltasth)/(sqrt(2.)*sigma2s) |
---|
441 | coeffqlenv=(sigma1s)**2/(2*sqrtpi*deltasenv) |
---|
442 | coeffqlth=(sigma2s)**2/(2*sqrtpi*deltasth) |
---|
443 | |
---|
444 | cth(ind1,ind2)=0.5*(1.+1.*erf(xth2)) |
---|
445 | cenv(ind1,ind2)=0.5*(1.+1.*erf(xenv2)) |
---|
446 | ctot(ind1,ind2)=fraca(ind1,ind2)*cth(ind1,ind2)+(1.-1.*fraca(ind1,ind2))*cenv(ind1,ind2) |
---|
447 | |
---|
448 | IntJ=sigma1s*(exp(-1.*xenv1**2)/sqrt2pi)+0.5*senv*(1+erf(xenv1)) |
---|
449 | IntI1=coeffqlenv*0.5*(0.5*sqrtpi*(erf(xenv2)-erf(xenv1))+xenv1*exp(-1.*xenv1**2)-xenv2*exp(-1.*xenv2**2)) |
---|
450 | IntI2=coeffqlenv*xenv2*(exp(-1.*xenv2**2)-exp(-1.*xenv1**2)) |
---|
451 | IntI3=coeffqlenv*0.5*sqrtpi*xenv2**2*(erf(xenv2)-erf(xenv1)) |
---|
452 | |
---|
453 | qlenv(ind1,ind2)=IntJ+IntI1+IntI2+IntI3 |
---|
454 | ! qlenv(ind1,ind2)=IntJ |
---|
455 | ! print*, qlenv(ind1,ind2),'VERIF EAU' |
---|
456 | |
---|
457 | |
---|
458 | IntJ=sigma2s*(exp(-1.*xth1**2)/sqrt2pi)+0.5*sth*(1+erf(xth1)) |
---|
459 | ! IntI1=coeffqlth*((0.5*xth1-xth2)*exp(-1.*xth1**2)+0.5*xth2*exp(-1.*xth2**2)) |
---|
460 | ! IntI2=coeffqlth*0.5*sqrtpi*(0.5+xth2**2)*(erf(xth2)-erf(xth1)) |
---|
461 | IntI1=coeffqlth*0.5*(0.5*sqrtpi*(erf(xth2)-erf(xth1))+xth1*exp(-1.*xth1**2)-xth2*exp(-1.*xth2**2)) |
---|
462 | IntI2=coeffqlth*xth2*(exp(-1.*xth2**2)-exp(-1.*xth1**2)) |
---|
463 | IntI3=coeffqlth*0.5*sqrtpi*xth2**2*(erf(xth2)-erf(xth1)) |
---|
464 | qlth(ind1,ind2)=IntJ+IntI1+IntI2+IntI3 |
---|
465 | ! qlth(ind1,ind2)=IntJ |
---|
466 | ! print*, IntJ,IntI1,IntI2,IntI3,qlth(ind1,ind2),'VERIF EAU2' |
---|
467 | qltot(ind1,ind2)=fraca(ind1,ind2)*qlth(ind1,ind2)+(1.-1.*fraca(ind1,ind2))*qlenv(ind1,ind2) |
---|
468 | |
---|
469 | ELSE IF (iflag_cloudth_vert == 2) THEN |
---|
470 | |
---|
471 | !------------------------------------------------------------------------------- |
---|
472 | ! Version 3: Modification Jean Jouhaud. On condense a partir de -delta s |
---|
473 | !------------------------------------------------------------------------------- |
---|
474 | ! deltasenv=aenv*ratqs(ind1,ind2)*po(ind1) |
---|
475 | ! deltasth=ath*ratqs(ind1,ind2)*zqta(ind1,ind2) |
---|
476 | ! deltasenv=aenv*ratqs(ind1,ind2)*zqsatenv(ind1,ind2) |
---|
477 | ! deltasth=ath*ratqs(ind1,ind2)*zqsatth(ind1,ind2) |
---|
478 | deltasenv=aenv*vert_alpha*sigma1s |
---|
479 | deltasth=ath*vert_alpha*sigma2s |
---|
480 | |
---|
481 | xenv1=-(senv+deltasenv)/(sqrt(2.)*sigma1s) |
---|
482 | xenv2=-(senv-deltasenv)/(sqrt(2.)*sigma1s) |
---|
483 | xth1=-(sth+deltasth)/(sqrt(2.)*sigma2s) |
---|
484 | xth2=-(sth-deltasth)/(sqrt(2.)*sigma2s) |
---|
485 | ! coeffqlenv=(sigma1s)**2/(2*sqrtpi*deltasenv) |
---|
486 | ! coeffqlth=(sigma2s)**2/(2*sqrtpi*deltasth) |
---|
487 | |
---|
488 | cth(ind1,ind2)=0.5*(1.-1.*erf(xth1)) |
---|
489 | cenv(ind1,ind2)=0.5*(1.-1.*erf(xenv1)) |
---|
490 | ctot(ind1,ind2)=fraca(ind1,ind2)*cth(ind1,ind2)+(1.-1.*fraca(ind1,ind2))*cenv(ind1,ind2) |
---|
491 | |
---|
492 | IntJ=0.5*senv*(1-erf(xenv2))+(sigma1s/sqrt2pi)*exp(-1.*xenv2**2) |
---|
493 | IntI1=(((senv+deltasenv)**2+(sigma1s)**2)/(8*deltasenv))*(erf(xenv2)-erf(xenv1)) |
---|
494 | IntI2=(sigma1s**2/(4*deltasenv*sqrtpi))*(xenv1*exp(-1.*xenv1**2)-xenv2*exp(-1.*xenv2**2)) |
---|
495 | IntI3=((sqrt2*sigma1s*(senv+deltasenv))/(4*sqrtpi*deltasenv))*(exp(-1.*xenv1**2)-exp(-1.*xenv2**2)) |
---|
496 | |
---|
497 | ! IntI1=0.5*(0.5*sqrtpi*(erf(xenv2)-erf(xenv1))+xenv1*exp(-1.*xenv1**2)-xenv2*exp(-1.*xenv2**2)) |
---|
498 | ! IntI2=xenv2*(exp(-1.*xenv2**2)-exp(-1.*xenv1**2)) |
---|
499 | ! IntI3=0.5*sqrtpi*xenv2**2*(erf(xenv2)-erf(xenv1)) |
---|
500 | |
---|
501 | qlenv(ind1,ind2)=IntJ+IntI1+IntI2+IntI3 |
---|
502 | ! qlenv(ind1,ind2)=IntJ |
---|
503 | ! print*, qlenv(ind1,ind2),'VERIF EAU' |
---|
504 | |
---|
505 | IntJ=0.5*sth*(1-erf(xth2))+(sigma2s/sqrt2pi)*exp(-1.*xth2**2) |
---|
506 | IntI1=(((sth+deltasth)**2+(sigma2s)**2)/(8*deltasth))*(erf(xth2)-erf(xth1)) |
---|
507 | IntI2=(sigma2s**2/(4*deltasth*sqrtpi))*(xth1*exp(-1.*xth1**2)-xth2*exp(-1.*xth2**2)) |
---|
508 | IntI3=((sqrt2*sigma2s*(sth+deltasth))/(4*sqrtpi*deltasth))*(exp(-1.*xth1**2)-exp(-1.*xth2**2)) |
---|
509 | |
---|
510 | qlth(ind1,ind2)=IntJ+IntI1+IntI2+IntI3 |
---|
511 | ! qlth(ind1,ind2)=IntJ |
---|
512 | ! print*, IntJ,IntI1,IntI2,IntI3,qlth(ind1,ind2),'VERIF EAU2' |
---|
513 | qltot(ind1,ind2)=fraca(ind1,ind2)*qlth(ind1,ind2)+(1.-1.*fraca(ind1,ind2))*qlenv(ind1,ind2) |
---|
514 | |
---|
515 | |
---|
516 | |
---|
517 | |
---|
518 | ENDIF ! of if (iflag_cloudth_vert==1 or 2) |
---|
519 | |
---|
520 | !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! |
---|
521 | |
---|
522 | if (cenv(ind1,ind2).lt.1.e-10.or.cth(ind1,ind2).lt.1.e-10) then |
---|
523 | ctot(ind1,ind2)=0. |
---|
524 | qcloud(ind1)=zqsatenv(ind1,ind2) |
---|
525 | |
---|
526 | else |
---|
527 | |
---|
528 | ctot(ind1,ind2)=ctot(ind1,ind2) |
---|
529 | qcloud(ind1)=qltot(ind1,ind2)/ctot(ind1,ind2)+zqs(ind1) |
---|
530 | ! qcloud(ind1)=fraca(ind1,ind2)*qlth(ind1,ind2)/cth(ind1,ind2) & |
---|
531 | ! & +(1.-1.*fraca(ind1,ind2))*qlenv(ind1,ind2)/cenv(ind1,ind2)+zqs(ind1) |
---|
532 | |
---|
533 | endif |
---|
534 | |
---|
535 | |
---|
536 | |
---|
537 | ! print*,sth,sigma2s,qlth(ind1,ind2),ctot(ind1,ind2),qltot(ind1,ind2),'verif' |
---|
538 | |
---|
539 | |
---|
540 | else ! gaussienne environnement seule |
---|
541 | |
---|
542 | zqenv(ind1)=po(ind1) |
---|
543 | Tbef=t(ind1,ind2) |
---|
544 | zdelta=MAX(0.,SIGN(1.,RTT-Tbef)) |
---|
545 | qsatbef= R2ES * FOEEW(Tbef,zdelta)/paprs(ind1,ind2) |
---|
546 | qsatbef=MIN(0.5,qsatbef) |
---|
547 | zcor=1./(1.-retv*qsatbef) |
---|
548 | qsatbef=qsatbef*zcor |
---|
549 | zqsatenv(ind1,ind2)=qsatbef |
---|
550 | |
---|
551 | |
---|
552 | ! qlbef=Max(po(ind1)-zqsatenv(ind1,ind2),0.) |
---|
553 | zthl(ind1,ind2)=t(ind1,ind2)*(101325/paprs(ind1,ind2))**(rdd/cppd) |
---|
554 | alenv=(0.622*Lv*zqsatenv(ind1,ind2))/(rdd*zthl(ind1,ind2)**2) |
---|
555 | aenv=1./(1.+(alenv*Lv/cppd)) |
---|
556 | senv=aenv*(po(ind1)-zqsatenv(ind1,ind2)) |
---|
557 | |
---|
558 | |
---|
559 | sigma1s=ratqs(ind1,ind2)*zqenv(ind1) |
---|
560 | |
---|
561 | sqrt2pi=sqrt(2.*pi) |
---|
562 | xenv=senv/(sqrt(2.)*sigma1s) |
---|
563 | ctot(ind1,ind2)=0.5*(1.+1.*erf(xenv)) |
---|
564 | qltot(ind1,ind2)=sigma1s*((exp(-1.*xenv**2)/sqrt2pi)+xenv*sqrt(2.)*cenv(ind1,ind2)) |
---|
565 | |
---|
566 | if (ctot(ind1,ind2).lt.1.e-3) then |
---|
567 | ctot(ind1,ind2)=0. |
---|
568 | qcloud(ind1)=zqsatenv(ind1,ind2) |
---|
569 | |
---|
570 | else |
---|
571 | |
---|
572 | ctot(ind1,ind2)=ctot(ind1,ind2) |
---|
573 | qcloud(ind1)=qltot(ind1,ind2)/ctot(ind1,ind2)+zqsatenv(ind1,ind2) |
---|
574 | |
---|
575 | endif |
---|
576 | |
---|
577 | |
---|
578 | |
---|
579 | |
---|
580 | |
---|
581 | |
---|
582 | endif |
---|
583 | enddo |
---|
584 | |
---|
585 | return |
---|
586 | ! end |
---|
587 | END SUBROUTINE cloudth_vert |
---|
588 | |
---|
589 | |
---|
590 | |
---|
591 | |
---|
592 | SUBROUTINE cloudth_v3(ngrid,klev,ind2, & |
---|
593 | & ztv,po,zqta,fraca, & |
---|
594 | & qcloud,ctot,ctot_vol,zpspsk,paprs,pplay,ztla,zthl, & |
---|
595 | & ratqs,zqs,t) |
---|
596 | |
---|
597 | |
---|
598 | IMPLICIT NONE |
---|
599 | |
---|
600 | |
---|
601 | !=========================================================================== |
---|
602 | ! Author : Arnaud Octavio Jam (LMD/CNRS) |
---|
603 | ! Date : 25 Mai 2010 |
---|
604 | ! Objet : calcule les valeurs de qc et rneb dans les thermiques |
---|
605 | !=========================================================================== |
---|
606 | |
---|
607 | |
---|
608 | #include "YOMCST.h" |
---|
609 | #include "YOETHF.h" |
---|
610 | #include "FCTTRE.h" |
---|
611 | #include "thermcell.h" |
---|
612 | #include "nuage.h" |
---|
613 | |
---|
614 | INTEGER itap,ind1,ind2 |
---|
615 | INTEGER ngrid,klev,klon,l,ig |
---|
616 | |
---|
617 | REAL ztv(ngrid,klev) |
---|
618 | REAL po(ngrid) |
---|
619 | REAL zqenv(ngrid) |
---|
620 | REAL zqta(ngrid,klev) |
---|
621 | |
---|
622 | REAL fraca(ngrid,klev+1) |
---|
623 | REAL zpspsk(ngrid,klev) |
---|
624 | REAL paprs(ngrid,klev+1) |
---|
625 | REAL pplay(ngrid,klev) |
---|
626 | REAL ztla(ngrid,klev) |
---|
627 | REAL zthl(ngrid,klev) |
---|
628 | |
---|
629 | REAL zqsatth(ngrid,klev) |
---|
630 | REAL zqsatenv(ngrid,klev) |
---|
631 | |
---|
632 | REAL sigma1(ngrid,klev) |
---|
633 | REAL sigma2(ngrid,klev) |
---|
634 | REAL qlth(ngrid,klev) |
---|
635 | REAL qlenv(ngrid,klev) |
---|
636 | REAL qltot(ngrid,klev) |
---|
637 | REAL cth(ngrid,klev) |
---|
638 | REAL cenv(ngrid,klev) |
---|
639 | REAL ctot(ngrid,klev) |
---|
640 | REAL cth_vol(ngrid,klev) |
---|
641 | REAL cenv_vol(ngrid,klev) |
---|
642 | REAL ctot_vol(ngrid,klev) |
---|
643 | REAL rneb(ngrid,klev) |
---|
644 | REAL t(ngrid,klev) |
---|
645 | REAL qsatmmussig1,qsatmmussig2,sqrt2pi,sqrt2,sqrtpi,pi |
---|
646 | REAL rdd,cppd,Lv |
---|
647 | REAL alth,alenv,ath,aenv |
---|
648 | REAL sth,senv,sigma1s,sigma2s,xth,xenv, exp_xenv1, exp_xenv2,exp_xth1,exp_xth2 |
---|
649 | REAL inverse_rho,beta,a_Brooks,b_Brooks,A_Maj_Brooks,Dx_Brooks,f_Brooks |
---|
650 | REAL Tbef,zdelta,qsatbef,zcor |
---|
651 | REAL qlbef |
---|
652 | REAL ratqs(ngrid,klev) ! Determine the width of the vapour distribution |
---|
653 | REAL zpdf_sig(ngrid),zpdf_k(ngrid),zpdf_delta(ngrid) |
---|
654 | REAL zpdf_a(ngrid),zpdf_b(ngrid),zpdf_e1(ngrid),zpdf_e2(ngrid) |
---|
655 | REAL zqs(ngrid), qcloud(ngrid) |
---|
656 | REAL erf |
---|
657 | |
---|
658 | |
---|
659 | |
---|
660 | IF (iflag_cloudth_vert.GE.1) THEN |
---|
661 | CALL cloudth_vert_v3(ngrid,klev,ind2, & |
---|
662 | & ztv,po,zqta,fraca, & |
---|
663 | & qcloud,ctot,ctot_vol,zpspsk,paprs,pplay,ztla,zthl, & |
---|
664 | & ratqs,zqs,t) |
---|
665 | RETURN |
---|
666 | ENDIF |
---|
667 | !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! |
---|
668 | |
---|
669 | |
---|
670 | !------------------------------------------------------------------------------- |
---|
671 | ! Initialisation des variables r?elles |
---|
672 | !------------------------------------------------------------------------------- |
---|
673 | sigma1(:,:)=0. |
---|
674 | sigma2(:,:)=0. |
---|
675 | qlth(:,:)=0. |
---|
676 | qlenv(:,:)=0. |
---|
677 | qltot(:,:)=0. |
---|
678 | rneb(:,:)=0. |
---|
679 | qcloud(:)=0. |
---|
680 | cth(:,:)=0. |
---|
681 | cenv(:,:)=0. |
---|
682 | ctot(:,:)=0. |
---|
683 | cth_vol(:,:)=0. |
---|
684 | cenv_vol(:,:)=0. |
---|
685 | ctot_vol(:,:)=0. |
---|
686 | qsatmmussig1=0. |
---|
687 | qsatmmussig2=0. |
---|
688 | rdd=287.04 |
---|
689 | cppd=1005.7 |
---|
690 | pi=3.14159 |
---|
691 | Lv=2.5e6 |
---|
692 | sqrt2pi=sqrt(2.*pi) |
---|
693 | sqrt2=sqrt(2.) |
---|
694 | sqrtpi=sqrt(pi) |
---|
695 | |
---|
696 | |
---|
697 | !------------------------------------------------------------------------------- |
---|
698 | ! Cloud fraction in the thermals and standard deviation of the PDFs |
---|
699 | !------------------------------------------------------------------------------- |
---|
700 | do ind1=1,ngrid |
---|
701 | |
---|
702 | if ((ztv(ind1,1).gt.ztv(ind1,2)).and.(fraca(ind1,ind2).gt.1.e-10)) then |
---|
703 | |
---|
704 | zqenv(ind1)=(po(ind1)-fraca(ind1,ind2)*zqta(ind1,ind2))/(1.-fraca(ind1,ind2)) |
---|
705 | |
---|
706 | Tbef=zthl(ind1,ind2)*zpspsk(ind1,ind2) |
---|
707 | zdelta=MAX(0.,SIGN(1.,RTT-Tbef)) |
---|
708 | qsatbef= R2ES*FOEEW(Tbef,zdelta)/paprs(ind1,ind2) |
---|
709 | qsatbef=MIN(0.5,qsatbef) |
---|
710 | zcor=1./(1.-retv*qsatbef) |
---|
711 | qsatbef=qsatbef*zcor |
---|
712 | zqsatenv(ind1,ind2)=qsatbef |
---|
713 | |
---|
714 | |
---|
715 | alenv=(0.622*Lv*zqsatenv(ind1,ind2))/(rdd*zthl(ind1,ind2)**2) !qsl, p84 |
---|
716 | aenv=1./(1.+(alenv*Lv/cppd)) !al, p84 |
---|
717 | senv=aenv*(po(ind1)-zqsatenv(ind1,ind2)) !s, p84 |
---|
718 | |
---|
719 | !po = qt de l'environnement ET des thermique |
---|
720 | !zqenv = qt environnement |
---|
721 | !zqsatenv = qsat environnement |
---|
722 | !zthl = Tl environnement |
---|
723 | |
---|
724 | |
---|
725 | Tbef=ztla(ind1,ind2)*zpspsk(ind1,ind2) |
---|
726 | zdelta=MAX(0.,SIGN(1.,RTT-Tbef)) |
---|
727 | qsatbef= R2ES * FOEEW(Tbef,zdelta)/paprs(ind1,ind2) |
---|
728 | qsatbef=MIN(0.5,qsatbef) |
---|
729 | zcor=1./(1.-retv*qsatbef) |
---|
730 | qsatbef=qsatbef*zcor |
---|
731 | zqsatth(ind1,ind2)=qsatbef |
---|
732 | |
---|
733 | alth=(0.622*Lv*zqsatth(ind1,ind2))/(rdd*ztla(ind1,ind2)**2) !qsl, p84 |
---|
734 | ath=1./(1.+(alth*Lv/cppd)) !al, p84 |
---|
735 | sth=ath*(zqta(ind1,ind2)-zqsatth(ind1,ind2)) !s, p84 |
---|
736 | |
---|
737 | !zqta = qt thermals |
---|
738 | !zqsatth = qsat thermals |
---|
739 | !ztla = Tl thermals |
---|
740 | |
---|
741 | !------------------------------------------------------------------------------ |
---|
742 | ! s standard deviations |
---|
743 | !------------------------------------------------------------------------------ |
---|
744 | |
---|
745 | ! tests |
---|
746 | ! sigma1s=(1.1**0.5)*(fraca(ind1,ind2)**0.6)/(1-fraca(ind1,ind2))*((sth-senv)**2)**0.5+0.002*po(ind1) |
---|
747 | ! sigma1s=(0.92*(fraca(ind1,ind2)**0.5)/(1-fraca(ind1,ind2))*(((sth-senv)**2)**0.5))+ratqs(ind1,ind2)*po(ind1) |
---|
748 | ! sigma2s=(0.09*(((sth-senv)**2)**0.5)/((fraca(ind1,ind2)+0.02)**0.5))+0.002*zqta(ind1,ind2) |
---|
749 | ! final option |
---|
750 | sigma1s=(1.1**0.5)*(fraca(ind1,ind2)**0.6)/(1-fraca(ind1,ind2))*((sth-senv)**2)**0.5+ratqs(ind1,ind2)*po(ind1) |
---|
751 | sigma2s=0.11*((sth-senv)**2)**0.5/(fraca(ind1,ind2)+0.01)**0.4+0.002*zqta(ind1,ind2) |
---|
752 | |
---|
753 | !------------------------------------------------------------------------------ |
---|
754 | ! Condensed water and cloud cover |
---|
755 | !------------------------------------------------------------------------------ |
---|
756 | xth=sth/(sqrt2*sigma2s) |
---|
757 | xenv=senv/(sqrt2*sigma1s) |
---|
758 | cth(ind1,ind2)=0.5*(1.+1.*erf(xth)) !4.18 p 111, l.7 p115 & 4.20 p 119 thesis Arnaud Jam |
---|
759 | cenv(ind1,ind2)=0.5*(1.+1.*erf(xenv)) !4.18 p 111, l.7 p115 & 4.20 p 119 thesis Arnaud Jam |
---|
760 | ctot(ind1,ind2)=fraca(ind1,ind2)*cth(ind1,ind2)+(1.-1.*fraca(ind1,ind2))*cenv(ind1,ind2) |
---|
761 | ctot_vol(ind1,ind2)=ctot(ind1,ind2) |
---|
762 | |
---|
763 | qlth(ind1,ind2)=sigma2s*((exp(-1.*xth**2)/sqrt2pi)+xth*sqrt2*cth(ind1,ind2)) |
---|
764 | qlenv(ind1,ind2)=sigma1s*((exp(-1.*xenv**2)/sqrt2pi)+xenv*sqrt2*cenv(ind1,ind2)) |
---|
765 | qltot(ind1,ind2)=fraca(ind1,ind2)*qlth(ind1,ind2)+(1.-1.*fraca(ind1,ind2))*qlenv(ind1,ind2) |
---|
766 | |
---|
767 | if (ctot(ind1,ind2).lt.1.e-10) then |
---|
768 | ctot(ind1,ind2)=0. |
---|
769 | qcloud(ind1)=zqsatenv(ind1,ind2) |
---|
770 | else |
---|
771 | qcloud(ind1)=qltot(ind1,ind2)/ctot(ind1,ind2)+zqs(ind1) |
---|
772 | endif |
---|
773 | |
---|
774 | else ! Environnement only, follow the if l.110 |
---|
775 | |
---|
776 | zqenv(ind1)=po(ind1) |
---|
777 | Tbef=t(ind1,ind2) |
---|
778 | zdelta=MAX(0.,SIGN(1.,RTT-Tbef)) |
---|
779 | qsatbef= R2ES * FOEEW(Tbef,zdelta)/paprs(ind1,ind2) |
---|
780 | qsatbef=MIN(0.5,qsatbef) |
---|
781 | zcor=1./(1.-retv*qsatbef) |
---|
782 | qsatbef=qsatbef*zcor |
---|
783 | zqsatenv(ind1,ind2)=qsatbef |
---|
784 | |
---|
785 | ! qlbef=Max(po(ind1)-zqsatenv(ind1,ind2),0.) |
---|
786 | zthl(ind1,ind2)=t(ind1,ind2)*(101325/paprs(ind1,ind2))**(rdd/cppd) |
---|
787 | alenv=(0.622*Lv*zqsatenv(ind1,ind2))/(rdd*zthl(ind1,ind2)**2) |
---|
788 | aenv=1./(1.+(alenv*Lv/cppd)) |
---|
789 | senv=aenv*(po(ind1)-zqsatenv(ind1,ind2)) |
---|
790 | |
---|
791 | sigma1s=ratqs(ind1,ind2)*zqenv(ind1) |
---|
792 | |
---|
793 | xenv=senv/(sqrt2*sigma1s) |
---|
794 | ctot(ind1,ind2)=0.5*(1.+1.*erf(xenv)) |
---|
795 | ctot_vol(ind1,ind2)=ctot(ind1,ind2) |
---|
796 | qltot(ind1,ind2)=sigma1s*((exp(-1.*xenv**2)/sqrt2pi)+xenv*sqrt2*cenv(ind1,ind2)) |
---|
797 | |
---|
798 | if (ctot(ind1,ind2).lt.1.e-3) then |
---|
799 | ctot(ind1,ind2)=0. |
---|
800 | qcloud(ind1)=zqsatenv(ind1,ind2) |
---|
801 | else |
---|
802 | qcloud(ind1)=qltot(ind1,ind2)/ctot(ind1,ind2)+zqsatenv(ind1,ind2) |
---|
803 | endif |
---|
804 | |
---|
805 | |
---|
806 | endif ! From the separation (thermal/envrionnement) et (environnement) only, l.110 et l.183 |
---|
807 | enddo ! from the loop on ngrid l.108 |
---|
808 | return |
---|
809 | ! end |
---|
810 | END SUBROUTINE cloudth_v3 |
---|
811 | |
---|
812 | |
---|
813 | |
---|
814 | !=========================================================================== |
---|
815 | SUBROUTINE cloudth_vert_v3(ngrid,klev,ind2, & |
---|
816 | & ztv,po,zqta,fraca, & |
---|
817 | & qcloud,ctot,ctot_vol,zpspsk,paprs,pplay,ztla,zthl, & |
---|
818 | & ratqs,zqs,t) |
---|
819 | |
---|
820 | !=========================================================================== |
---|
821 | ! Auteur : Arnaud Octavio Jam (LMD/CNRS) |
---|
822 | ! Date : 25 Mai 2010 |
---|
823 | ! Objet : calcule les valeurs de qc et rneb dans les thermiques |
---|
824 | !=========================================================================== |
---|
825 | |
---|
826 | |
---|
827 | USE ioipsl_getin_p_mod, ONLY : getin_p |
---|
828 | USE phys_output_var_mod, ONLY : cloudth_sth,cloudth_senv, & |
---|
829 | & cloudth_sigmath,cloudth_sigmaenv |
---|
830 | |
---|
831 | IMPLICIT NONE |
---|
832 | |
---|
833 | #include "YOMCST.h" |
---|
834 | #include "YOETHF.h" |
---|
835 | #include "FCTTRE.h" |
---|
836 | #include "thermcell.h" |
---|
837 | #include "nuage.h" |
---|
838 | |
---|
839 | INTEGER itap,ind1,ind2 |
---|
840 | INTEGER ngrid,klev,klon,l,ig |
---|
841 | |
---|
842 | REAL ztv(ngrid,klev) |
---|
843 | REAL po(ngrid) |
---|
844 | REAL zqenv(ngrid) |
---|
845 | REAL zqta(ngrid,klev) |
---|
846 | |
---|
847 | REAL fraca(ngrid,klev+1) |
---|
848 | REAL zpspsk(ngrid,klev) |
---|
849 | REAL paprs(ngrid,klev+1) |
---|
850 | REAL pplay(ngrid,klev) |
---|
851 | REAL ztla(ngrid,klev) |
---|
852 | REAL zthl(ngrid,klev) |
---|
853 | |
---|
854 | REAL zqsatth(ngrid,klev) |
---|
855 | REAL zqsatenv(ngrid,klev) |
---|
856 | |
---|
857 | REAL sigma1(ngrid,klev) |
---|
858 | REAL sigma2(ngrid,klev) |
---|
859 | REAL qlth(ngrid,klev) |
---|
860 | REAL qlenv(ngrid,klev) |
---|
861 | REAL qltot(ngrid,klev) |
---|
862 | REAL cth(ngrid,klev) |
---|
863 | REAL cenv(ngrid,klev) |
---|
864 | REAL ctot(ngrid,klev) |
---|
865 | REAL cth_vol(ngrid,klev) |
---|
866 | REAL cenv_vol(ngrid,klev) |
---|
867 | REAL ctot_vol(ngrid,klev) |
---|
868 | REAL rneb(ngrid,klev) |
---|
869 | REAL t(ngrid,klev) |
---|
870 | REAL qsatmmussig1,qsatmmussig2,sqrtpi,sqrt2,sqrt2pi,pi |
---|
871 | REAL rdd,cppd,Lv |
---|
872 | REAL alth,alenv,ath,aenv |
---|
873 | REAL sth,senv,sigma1s,sigma2s,sigma1s_fraca,sigma1s_ratqs |
---|
874 | REAL inverse_rho,beta,a_Brooks,b_Brooks,A_Maj_Brooks,Dx_Brooks,f_Brooks |
---|
875 | REAL xth,xenv,exp_xenv1,exp_xenv2,exp_xth1,exp_xth2 |
---|
876 | REAL xth1,xth2,xenv1,xenv2,deltasth, deltasenv |
---|
877 | REAL IntJ,IntI1,IntI2,IntI3,IntJ_CF,IntI1_CF,IntI3_CF,coeffqlenv,coeffqlth |
---|
878 | REAL Tbef,zdelta,qsatbef,zcor |
---|
879 | REAL qlbef |
---|
880 | REAL ratqs(ngrid,klev) ! determine la largeur de distribution de vapeur |
---|
881 | ! Change the width of the PDF used for vertical subgrid scale heterogeneity |
---|
882 | ! (J Jouhaud, JL Dufresne, JB Madeleine) |
---|
883 | REAL,SAVE :: vert_alpha, vert_alpha_th |
---|
884 | !$OMP THREADPRIVATE(vert_alpha, vert_alpha_th) |
---|
885 | REAL,SAVE :: sigma1s_factor=1.1 |
---|
886 | REAL,SAVE :: sigma1s_power=0.6 |
---|
887 | REAL,SAVE :: cloudth_ratqsmin=-1. |
---|
888 | !$OMP THREADPRIVATE(sigma1s_factor,sigma1s_power,cloudth_ratqsmin) |
---|
889 | INTEGER, SAVE :: iflag_cloudth_vert_noratqs=0 |
---|
890 | !$OMP THREADPRIVATE(iflag_cloudth_vert_noratqs) |
---|
891 | |
---|
892 | LOGICAL, SAVE :: firstcall = .TRUE. |
---|
893 | !$OMP THREADPRIVATE(firstcall) |
---|
894 | |
---|
895 | REAL zpdf_sig(ngrid),zpdf_k(ngrid),zpdf_delta(ngrid) |
---|
896 | REAL zpdf_a(ngrid),zpdf_b(ngrid),zpdf_e1(ngrid),zpdf_e2(ngrid) |
---|
897 | REAL zqs(ngrid), qcloud(ngrid) |
---|
898 | REAL erf |
---|
899 | |
---|
900 | REAL rhodz(ngrid,klev) |
---|
901 | REAL zrho(ngrid,klev) |
---|
902 | REAL dz(ngrid,klev) |
---|
903 | |
---|
904 | DO ind1 = 1, ngrid |
---|
905 | !Layer calculation |
---|
906 | rhodz(ind1,ind2) = (paprs(ind1,ind2)-paprs(ind1,ind2+1))/rg !kg/m2 |
---|
907 | zrho(ind1,ind2) = pplay(ind1,ind2)/t(ind1,ind2)/rd !kg/m3 |
---|
908 | dz(ind1,ind2) = rhodz(ind1,ind2)/zrho(ind1,ind2) !m : epaisseur de la couche en metre |
---|
909 | END DO |
---|
910 | |
---|
911 | |
---|
912 | !------------------------------------------------------------------------------ |
---|
913 | ! Initialize |
---|
914 | !------------------------------------------------------------------------------ |
---|
915 | sigma1(:,:)=0. |
---|
916 | sigma2(:,:)=0. |
---|
917 | qlth(:,:)=0. |
---|
918 | qlenv(:,:)=0. |
---|
919 | qltot(:,:)=0. |
---|
920 | rneb(:,:)=0. |
---|
921 | qcloud(:)=0. |
---|
922 | cth(:,:)=0. |
---|
923 | cenv(:,:)=0. |
---|
924 | ctot(:,:)=0. |
---|
925 | cth_vol(:,:)=0. |
---|
926 | cenv_vol(:,:)=0. |
---|
927 | ctot_vol(:,:)=0. |
---|
928 | qsatmmussig1=0. |
---|
929 | qsatmmussig2=0. |
---|
930 | rdd=287.04 |
---|
931 | cppd=1005.7 |
---|
932 | pi=3.14159 |
---|
933 | Lv=2.5e6 |
---|
934 | sqrt2pi=sqrt(2.*pi) |
---|
935 | sqrt2=sqrt(2.) |
---|
936 | sqrtpi=sqrt(pi) |
---|
937 | |
---|
938 | IF (firstcall) THEN |
---|
939 | vert_alpha=0.5 |
---|
940 | CALL getin_p('cloudth_vert_alpha',vert_alpha) |
---|
941 | WRITE(*,*) 'cloudth_vert_alpha = ', vert_alpha |
---|
942 | ! The factor used for the thermal is equal to that of the environment |
---|
943 | ! if nothing is explicitly specified in the def file |
---|
944 | vert_alpha_th=vert_alpha |
---|
945 | CALL getin_p('cloudth_vert_alpha_th',vert_alpha_th) |
---|
946 | WRITE(*,*) 'cloudth_vert_alpha_th = ', vert_alpha_th |
---|
947 | ! Factor used in the calculation of sigma1s |
---|
948 | CALL getin_p('cloudth_sigma1s_factor',sigma1s_factor) |
---|
949 | WRITE(*,*) 'cloudth_sigma1s_factor = ', sigma1s_factor |
---|
950 | ! Power used in the calculation of sigma1s |
---|
951 | CALL getin_p('cloudth_sigma1s_power',sigma1s_power) |
---|
952 | WRITE(*,*) 'cloudth_sigma1s_power = ', sigma1s_power |
---|
953 | ! Minimum value for the environmental air subgrid water distrib |
---|
954 | CALL getin_p('cloudth_ratqsmin',cloudth_ratqsmin) |
---|
955 | WRITE(*,*) 'cloudth_ratqsmin = ', cloudth_ratqsmin |
---|
956 | ! Remove the dependency to ratqs from the variance of the vertical PDF |
---|
957 | CALL getin_p('iflag_cloudth_vert_noratqs',iflag_cloudth_vert_noratqs) |
---|
958 | WRITE(*,*) 'iflag_cloudth_vert_noratqs = ', iflag_cloudth_vert_noratqs |
---|
959 | |
---|
960 | firstcall=.FALSE. |
---|
961 | ENDIF |
---|
962 | |
---|
963 | !------------------------------------------------------------------------------- |
---|
964 | ! Calcul de la fraction du thermique et des ecart-types des distributions |
---|
965 | !------------------------------------------------------------------------------- |
---|
966 | do ind1=1,ngrid |
---|
967 | |
---|
968 | if ((ztv(ind1,1).gt.ztv(ind1,2)).and.(fraca(ind1,ind2).gt.1.e-10)) then !Thermal and environnement |
---|
969 | |
---|
970 | zqenv(ind1)=(po(ind1)-fraca(ind1,ind2)*zqta(ind1,ind2))/(1.-fraca(ind1,ind2)) !qt = a*qtth + (1-a)*qtenv |
---|
971 | |
---|
972 | |
---|
973 | Tbef=zthl(ind1,ind2)*zpspsk(ind1,ind2) |
---|
974 | zdelta=MAX(0.,SIGN(1.,RTT-Tbef)) |
---|
975 | qsatbef= R2ES*FOEEW(Tbef,zdelta)/paprs(ind1,ind2) |
---|
976 | qsatbef=MIN(0.5,qsatbef) |
---|
977 | zcor=1./(1.-retv*qsatbef) |
---|
978 | qsatbef=qsatbef*zcor |
---|
979 | zqsatenv(ind1,ind2)=qsatbef |
---|
980 | |
---|
981 | |
---|
982 | alenv=(0.622*Lv*zqsatenv(ind1,ind2))/(rdd*zthl(ind1,ind2)**2) !qsl, p84 |
---|
983 | aenv=1./(1.+(alenv*Lv/cppd)) !al, p84 |
---|
984 | senv=aenv*(po(ind1)-zqsatenv(ind1,ind2)) !s, p84 |
---|
985 | |
---|
986 | !zqenv = qt environnement |
---|
987 | !zqsatenv = qsat environnement |
---|
988 | !zthl = Tl environnement |
---|
989 | |
---|
990 | |
---|
991 | Tbef=ztla(ind1,ind2)*zpspsk(ind1,ind2) |
---|
992 | zdelta=MAX(0.,SIGN(1.,RTT-Tbef)) |
---|
993 | qsatbef= R2ES * FOEEW(Tbef,zdelta)/paprs(ind1,ind2) |
---|
994 | qsatbef=MIN(0.5,qsatbef) |
---|
995 | zcor=1./(1.-retv*qsatbef) |
---|
996 | qsatbef=qsatbef*zcor |
---|
997 | zqsatth(ind1,ind2)=qsatbef |
---|
998 | |
---|
999 | alth=(0.622*Lv*zqsatth(ind1,ind2))/(rdd*ztla(ind1,ind2)**2) !qsl, p84 |
---|
1000 | ath=1./(1.+(alth*Lv/cppd)) !al, p84 |
---|
1001 | sth=ath*(zqta(ind1,ind2)-zqsatth(ind1,ind2)) !s, p84 |
---|
1002 | |
---|
1003 | |
---|
1004 | !zqta = qt thermals |
---|
1005 | !zqsatth = qsat thermals |
---|
1006 | !ztla = Tl thermals |
---|
1007 | |
---|
1008 | !------------------------------------------------------------------------------ |
---|
1009 | ! s standard deviation |
---|
1010 | !------------------------------------------------------------------------------ |
---|
1011 | |
---|
1012 | sigma1s_fraca = (sigma1s_factor**0.5)*(fraca(ind1,ind2)**sigma1s_power) / & |
---|
1013 | & (1-fraca(ind1,ind2))*((sth-senv)**2)**0.5 |
---|
1014 | ! sigma1s_fraca = (1.1**0.5)*(fraca(ind1,ind2)**0.6)/(1-fraca(ind1,ind2))*((sth-senv)**2)**0.5 |
---|
1015 | IF (cloudth_ratqsmin>0.) THEN |
---|
1016 | sigma1s_ratqs = cloudth_ratqsmin*po(ind1) |
---|
1017 | ELSE |
---|
1018 | sigma1s_ratqs = ratqs(ind1,ind2)*po(ind1) |
---|
1019 | ENDIF |
---|
1020 | sigma1s = sigma1s_fraca + sigma1s_ratqs |
---|
1021 | sigma2s=(0.09*(((sth-senv)**2)**0.5)/((fraca(ind1,ind2)+0.02)**0.5))+0.002*zqta(ind1,ind2) |
---|
1022 | ! tests |
---|
1023 | ! sigma1s=(0.92**0.5)*(fraca(ind1,ind2)**0.5)/(1-fraca(ind1,ind2))*((sth-senv)**2)**0.5+ratqs(ind1,ind2)*po(ind1) |
---|
1024 | ! sigma1s=(0.92*(fraca(ind1,ind2)**0.5)/(1-fraca(ind1,ind2))*(((sth-senv)**2)**0.5))+0.002*zqenv(ind1) |
---|
1025 | ! sigma2s=0.09*((sth-senv)**2)**0.5/(fraca(ind1,ind2)+0.02)**0.5+0.002*zqta(ind1,ind2) |
---|
1026 | ! sigma2s=(0.09*(((sth-senv)**2)**0.5)/((fraca(ind1,ind2)+0.02)**0.5))+ratqs(ind1,ind2)*zqta(ind1,ind2) |
---|
1027 | ! if (paprs(ind1,ind2).gt.90000) then |
---|
1028 | ! ratqs(ind1,ind2)=0.002 |
---|
1029 | ! else |
---|
1030 | ! ratqs(ind1,ind2)=0.002+0.0*(90000-paprs(ind1,ind2))/20000 |
---|
1031 | ! endif |
---|
1032 | ! sigma1s=(1.1**0.5)*(fraca(ind1,ind2)**0.6)/(1-fraca(ind1,ind2))*((sth-senv)**2)**0.5+0.002*po(ind1) |
---|
1033 | ! sigma2s=0.11*((sth-senv)**2)**0.5/(fraca(ind1,ind2)+0.01)**0.4+0.002*zqta(ind1,ind2) |
---|
1034 | ! sigma1s=ratqs(ind1,ind2)*po(ind1) |
---|
1035 | ! sigma2s=0.11*((sth-senv)**2)**0.5/(fraca(ind1,ind2)+0.02)**0.4+0.00003 |
---|
1036 | |
---|
1037 | IF (iflag_cloudth_vert == 1) THEN |
---|
1038 | !------------------------------------------------------------------------------- |
---|
1039 | ! Version 2: Modification from Arnaud Jam according to JL Dufrense. Condensate from qsat-ratqs |
---|
1040 | !------------------------------------------------------------------------------- |
---|
1041 | |
---|
1042 | deltasenv=aenv*ratqs(ind1,ind2)*zqsatenv(ind1,ind2) |
---|
1043 | deltasth=ath*ratqs(ind1,ind2)*zqsatth(ind1,ind2) |
---|
1044 | |
---|
1045 | xenv1=(senv-deltasenv)/(sqrt(2.)*sigma1s) |
---|
1046 | xenv2=(senv+deltasenv)/(sqrt(2.)*sigma1s) |
---|
1047 | xth1=(sth-deltasth)/(sqrt(2.)*sigma2s) |
---|
1048 | xth2=(sth+deltasth)/(sqrt(2.)*sigma2s) |
---|
1049 | coeffqlenv=(sigma1s)**2/(2*sqrtpi*deltasenv) |
---|
1050 | coeffqlth=(sigma2s)**2/(2*sqrtpi*deltasth) |
---|
1051 | |
---|
1052 | cth(ind1,ind2)=0.5*(1.+1.*erf(xth2)) |
---|
1053 | cenv(ind1,ind2)=0.5*(1.+1.*erf(xenv2)) |
---|
1054 | ctot(ind1,ind2)=fraca(ind1,ind2)*cth(ind1,ind2)+(1.-1.*fraca(ind1,ind2))*cenv(ind1,ind2) |
---|
1055 | |
---|
1056 | ! Environment |
---|
1057 | IntJ=sigma1s*(exp(-1.*xenv1**2)/sqrt2pi)+0.5*senv*(1+erf(xenv1)) |
---|
1058 | IntI1=coeffqlenv*0.5*(0.5*sqrtpi*(erf(xenv2)-erf(xenv1))+xenv1*exp(-1.*xenv1**2)-xenv2*exp(-1.*xenv2**2)) |
---|
1059 | IntI2=coeffqlenv*xenv2*(exp(-1.*xenv2**2)-exp(-1.*xenv1**2)) |
---|
1060 | IntI3=coeffqlenv*0.5*sqrtpi*xenv2**2*(erf(xenv2)-erf(xenv1)) |
---|
1061 | |
---|
1062 | qlenv(ind1,ind2)=IntJ+IntI1+IntI2+IntI3 |
---|
1063 | |
---|
1064 | ! Thermal |
---|
1065 | IntJ=sigma2s*(exp(-1.*xth1**2)/sqrt2pi)+0.5*sth*(1+erf(xth1)) |
---|
1066 | IntI1=coeffqlth*0.5*(0.5*sqrtpi*(erf(xth2)-erf(xth1))+xth1*exp(-1.*xth1**2)-xth2*exp(-1.*xth2**2)) |
---|
1067 | IntI2=coeffqlth*xth2*(exp(-1.*xth2**2)-exp(-1.*xth1**2)) |
---|
1068 | IntI3=coeffqlth*0.5*sqrtpi*xth2**2*(erf(xth2)-erf(xth1)) |
---|
1069 | qlth(ind1,ind2)=IntJ+IntI1+IntI2+IntI3 |
---|
1070 | qltot(ind1,ind2)=fraca(ind1,ind2)*qlth(ind1,ind2)+(1.-1.*fraca(ind1,ind2))*qlenv(ind1,ind2) |
---|
1071 | |
---|
1072 | ELSE IF (iflag_cloudth_vert >= 3) THEN |
---|
1073 | IF (iflag_cloudth_vert < 5) THEN |
---|
1074 | !------------------------------------------------------------------------------- |
---|
1075 | ! Version 3: Changes by J. Jouhaud; condensation for q > -delta s |
---|
1076 | !------------------------------------------------------------------------------- |
---|
1077 | ! deltasenv=aenv*ratqs(ind1,ind2)*po(ind1) |
---|
1078 | ! deltasth=ath*ratqs(ind1,ind2)*zqta(ind1,ind2) |
---|
1079 | ! deltasenv=aenv*ratqs(ind1,ind2)*zqsatenv(ind1,ind2) |
---|
1080 | ! deltasth=ath*ratqs(ind1,ind2)*zqsatth(ind1,ind2) |
---|
1081 | IF (iflag_cloudth_vert == 3) THEN |
---|
1082 | deltasenv=aenv*vert_alpha*sigma1s |
---|
1083 | deltasth=ath*vert_alpha_th*sigma2s |
---|
1084 | ELSE IF (iflag_cloudth_vert == 4) THEN |
---|
1085 | IF (iflag_cloudth_vert_noratqs == 1) THEN |
---|
1086 | deltasenv=vert_alpha*max(sigma1s_fraca,1e-10) |
---|
1087 | deltasth=vert_alpha_th*sigma2s |
---|
1088 | ELSE |
---|
1089 | deltasenv=vert_alpha*sigma1s |
---|
1090 | deltasth=vert_alpha_th*sigma2s |
---|
1091 | ENDIF |
---|
1092 | ENDIF |
---|
1093 | |
---|
1094 | xenv1=-(senv+deltasenv)/(sqrt(2.)*sigma1s) |
---|
1095 | xenv2=-(senv-deltasenv)/(sqrt(2.)*sigma1s) |
---|
1096 | exp_xenv1 = exp(-1.*xenv1**2) |
---|
1097 | exp_xenv2 = exp(-1.*xenv2**2) |
---|
1098 | xth1=-(sth+deltasth)/(sqrt(2.)*sigma2s) |
---|
1099 | xth2=-(sth-deltasth)/(sqrt(2.)*sigma2s) |
---|
1100 | exp_xth1 = exp(-1.*xth1**2) |
---|
1101 | exp_xth2 = exp(-1.*xth2**2) |
---|
1102 | |
---|
1103 | !CF_surfacique |
---|
1104 | cth(ind1,ind2)=0.5*(1.-1.*erf(xth1)) |
---|
1105 | cenv(ind1,ind2)=0.5*(1.-1.*erf(xenv1)) |
---|
1106 | ctot(ind1,ind2)=fraca(ind1,ind2)*cth(ind1,ind2)+(1.-1.*fraca(ind1,ind2))*cenv(ind1,ind2) |
---|
1107 | |
---|
1108 | |
---|
1109 | !CF_volumique & eau condense |
---|
1110 | !environnement |
---|
1111 | IntJ=0.5*senv*(1-erf(xenv2))+(sigma1s/sqrt2pi)*exp_xenv2 |
---|
1112 | IntJ_CF=0.5*(1.-1.*erf(xenv2)) |
---|
1113 | if (deltasenv .lt. 1.e-10) then |
---|
1114 | qlenv(ind1,ind2)=IntJ |
---|
1115 | cenv_vol(ind1,ind2)=IntJ_CF |
---|
1116 | else |
---|
1117 | IntI1=(((senv+deltasenv)**2+(sigma1s)**2)/(8*deltasenv))*(erf(xenv2)-erf(xenv1)) |
---|
1118 | IntI2=(sigma1s**2/(4*deltasenv*sqrtpi))*(xenv1*exp_xenv1-xenv2*exp_xenv2) |
---|
1119 | IntI3=((sqrt2*sigma1s*(senv+deltasenv))/(4*sqrtpi*deltasenv))*(exp_xenv1-exp_xenv2) |
---|
1120 | IntI1_CF=((senv+deltasenv)*(erf(xenv2)-erf(xenv1)))/(4*deltasenv) |
---|
1121 | IntI3_CF=(sqrt2*sigma1s*(exp_xenv1-exp_xenv2))/(4*sqrtpi*deltasenv) |
---|
1122 | qlenv(ind1,ind2)=IntJ+IntI1+IntI2+IntI3 |
---|
1123 | cenv_vol(ind1,ind2)=IntJ_CF+IntI1_CF+IntI3_CF |
---|
1124 | endif |
---|
1125 | |
---|
1126 | !thermique |
---|
1127 | IntJ=0.5*sth*(1-erf(xth2))+(sigma2s/sqrt2pi)*exp_xth2 |
---|
1128 | IntJ_CF=0.5*(1.-1.*erf(xth2)) |
---|
1129 | if (deltasth .lt. 1.e-10) then |
---|
1130 | qlth(ind1,ind2)=IntJ |
---|
1131 | cth_vol(ind1,ind2)=IntJ_CF |
---|
1132 | else |
---|
1133 | IntI1=(((sth+deltasth)**2+(sigma2s)**2)/(8*deltasth))*(erf(xth2)-erf(xth1)) |
---|
1134 | IntI2=(sigma2s**2/(4*deltasth*sqrtpi))*(xth1*exp_xth1-xth2*exp_xth2) |
---|
1135 | IntI3=((sqrt2*sigma2s*(sth+deltasth))/(4*sqrtpi*deltasth))*(exp_xth1-exp_xth2) |
---|
1136 | IntI1_CF=((sth+deltasth)*(erf(xth2)-erf(xth1)))/(4*deltasth) |
---|
1137 | IntI3_CF=(sqrt2*sigma2s*(exp_xth1-exp_xth2))/(4*sqrtpi*deltasth) |
---|
1138 | qlth(ind1,ind2)=IntJ+IntI1+IntI2+IntI3 |
---|
1139 | cth_vol(ind1,ind2)=IntJ_CF+IntI1_CF+IntI3_CF |
---|
1140 | endif |
---|
1141 | |
---|
1142 | qltot(ind1,ind2)=fraca(ind1,ind2)*qlth(ind1,ind2)+(1.-1.*fraca(ind1,ind2))*qlenv(ind1,ind2) |
---|
1143 | ctot_vol(ind1,ind2)=fraca(ind1,ind2)*cth_vol(ind1,ind2)+(1.-1.*fraca(ind1,ind2))*cenv_vol(ind1,ind2) |
---|
1144 | |
---|
1145 | ELSE IF (iflag_cloudth_vert == 5) THEN |
---|
1146 | sigma1s=(0.71794+0.000498239*dz(ind1,ind2))*(fraca(ind1,ind2)**0.5)/(1-fraca(ind1,ind2))*(((sth-senv)**2)**0.5)+ratqs(ind1,ind2)*po(ind1) !Environment |
---|
1147 | sigma2s=(0.03218+0.000092655*dz(ind1,ind2))/((fraca(ind1,ind2)+0.02)**0.5)*(((sth-senv)**2)**0.5)+0.002*zqta(ind1,ind2) !Thermals |
---|
1148 | !sigma1s=(1.1**0.5)*(fraca(ind1,ind2)**0.6)/(1-fraca(ind1,ind2))*((sth-senv)**2)**0.5+0.002*po(ind1) |
---|
1149 | !sigma2s=0.11*((sth-senv)**2)**0.5/(fraca(ind1,ind2)+0.01)**0.4+0.002*zqta(ind1,ind2) |
---|
1150 | xth=sth/(sqrt(2.)*sigma2s) |
---|
1151 | xenv=senv/(sqrt(2.)*sigma1s) |
---|
1152 | |
---|
1153 | !Volumique |
---|
1154 | cth_vol(ind1,ind2)=0.5*(1.+1.*erf(xth)) |
---|
1155 | cenv_vol(ind1,ind2)=0.5*(1.+1.*erf(xenv)) |
---|
1156 | ctot_vol(ind1,ind2)=fraca(ind1,ind2)*cth_vol(ind1,ind2)+(1.-1.*fraca(ind1,ind2))*cenv_vol(ind1,ind2) |
---|
1157 | !print *,'jeanjean_CV=',ctot_vol(ind1,ind2) |
---|
1158 | |
---|
1159 | qlth(ind1,ind2)=sigma2s*((exp(-1.*xth**2)/sqrt2pi)+xth*sqrt(2.)*cth_vol(ind1,ind2)) |
---|
1160 | qlenv(ind1,ind2)=sigma1s*((exp(-1.*xenv**2)/sqrt2pi)+xenv*sqrt(2.)*cenv_vol(ind1,ind2)) |
---|
1161 | qltot(ind1,ind2)=fraca(ind1,ind2)*qlth(ind1,ind2)+(1.-1.*fraca(ind1,ind2))*qlenv(ind1,ind2) |
---|
1162 | |
---|
1163 | !Surfacique |
---|
1164 | !Neggers |
---|
1165 | !beta=0.0044 |
---|
1166 | !inverse_rho=1.+beta*dz(ind1,ind2) |
---|
1167 | !print *,'jeanjean : beta=',beta |
---|
1168 | !cth(ind1,ind2)=cth_vol(ind1,ind2)*inverse_rho |
---|
1169 | !cenv(ind1,ind2)=cenv_vol(ind1,ind2)*inverse_rho |
---|
1170 | !ctot(ind1,ind2)=fraca(ind1,ind2)*cth(ind1,ind2)+(1.-1.*fraca(ind1,ind2))*cenv(ind1,ind2) |
---|
1171 | |
---|
1172 | !Brooks |
---|
1173 | a_Brooks=0.6694 |
---|
1174 | b_Brooks=0.1882 |
---|
1175 | A_Maj_Brooks=0.1635 !-- sans shear |
---|
1176 | !A_Maj_Brooks=0.17 !-- ARM LES |
---|
1177 | !A_Maj_Brooks=0.18 !-- RICO LES |
---|
1178 | !A_Maj_Brooks=0.19 !-- BOMEX LES |
---|
1179 | Dx_Brooks=200000. |
---|
1180 | f_Brooks=A_Maj_Brooks*(dz(ind1,ind2)**(a_Brooks))*(Dx_Brooks**(-b_Brooks)) |
---|
1181 | !print *,'jeanjean_f=',f_Brooks |
---|
1182 | |
---|
1183 | cth(ind1,ind2)=1./(1.+exp(-1.*f_Brooks)*((1./max(1.e-15,min(cth_vol(ind1,ind2),1.)))- 1.)) |
---|
1184 | cenv(ind1,ind2)=1./(1.+exp(-1.*f_Brooks)*((1./max(1.e-15,min(cenv_vol(ind1,ind2),1.)))- 1.)) |
---|
1185 | ctot(ind1,ind2)=1./(1.+exp(-1.*f_Brooks)*((1./max(1.e-15,min(ctot_vol(ind1,ind2),1.)))- 1.)) |
---|
1186 | !print *,'JJ_ctot_1',ctot(ind1,ind2) |
---|
1187 | |
---|
1188 | |
---|
1189 | |
---|
1190 | |
---|
1191 | |
---|
1192 | ENDIF ! of if (iflag_cloudth_vert<5) |
---|
1193 | ENDIF ! of if (iflag_cloudth_vert==1 or 3 or 4) |
---|
1194 | |
---|
1195 | ! if (ctot(ind1,ind2).lt.1.e-10) then |
---|
1196 | if (cenv(ind1,ind2).lt.1.e-10.or.cth(ind1,ind2).lt.1.e-10) then |
---|
1197 | ctot(ind1,ind2)=0. |
---|
1198 | ctot_vol(ind1,ind2)=0. |
---|
1199 | qcloud(ind1)=zqsatenv(ind1,ind2) |
---|
1200 | |
---|
1201 | else |
---|
1202 | |
---|
1203 | qcloud(ind1)=qltot(ind1,ind2)/ctot(ind1,ind2)+zqs(ind1) |
---|
1204 | ! qcloud(ind1)=fraca(ind1,ind2)*qlth(ind1,ind2)/cth(ind1,ind2) & |
---|
1205 | ! & +(1.-1.*fraca(ind1,ind2))*qlenv(ind1,ind2)/cenv(ind1,ind2)+zqs(ind1) |
---|
1206 | |
---|
1207 | endif |
---|
1208 | |
---|
1209 | else ! gaussienne environnement seule |
---|
1210 | |
---|
1211 | zqenv(ind1)=po(ind1) |
---|
1212 | Tbef=t(ind1,ind2) |
---|
1213 | zdelta=MAX(0.,SIGN(1.,RTT-Tbef)) |
---|
1214 | qsatbef= R2ES * FOEEW(Tbef,zdelta)/paprs(ind1,ind2) |
---|
1215 | qsatbef=MIN(0.5,qsatbef) |
---|
1216 | zcor=1./(1.-retv*qsatbef) |
---|
1217 | qsatbef=qsatbef*zcor |
---|
1218 | zqsatenv(ind1,ind2)=qsatbef |
---|
1219 | |
---|
1220 | |
---|
1221 | ! qlbef=Max(po(ind1)-zqsatenv(ind1,ind2),0.) |
---|
1222 | zthl(ind1,ind2)=t(ind1,ind2)*(101325/paprs(ind1,ind2))**(rdd/cppd) |
---|
1223 | alenv=(0.622*Lv*zqsatenv(ind1,ind2))/(rdd*zthl(ind1,ind2)**2) |
---|
1224 | aenv=1./(1.+(alenv*Lv/cppd)) |
---|
1225 | senv=aenv*(po(ind1)-zqsatenv(ind1,ind2)) |
---|
1226 | sth=0. |
---|
1227 | |
---|
1228 | |
---|
1229 | sigma1s=ratqs(ind1,ind2)*zqenv(ind1) |
---|
1230 | sigma2s=0. |
---|
1231 | |
---|
1232 | sqrt2pi=sqrt(2.*pi) |
---|
1233 | xenv=senv/(sqrt(2.)*sigma1s) |
---|
1234 | ctot(ind1,ind2)=0.5*(1.+1.*erf(xenv)) |
---|
1235 | ctot_vol(ind1,ind2)=ctot(ind1,ind2) |
---|
1236 | qltot(ind1,ind2)=sigma1s*((exp(-1.*xenv**2)/sqrt2pi)+xenv*sqrt(2.)*cenv(ind1,ind2)) |
---|
1237 | |
---|
1238 | if (ctot(ind1,ind2).lt.1.e-3) then |
---|
1239 | ctot(ind1,ind2)=0. |
---|
1240 | qcloud(ind1)=zqsatenv(ind1,ind2) |
---|
1241 | |
---|
1242 | else |
---|
1243 | |
---|
1244 | ! ctot(ind1,ind2)=ctot(ind1,ind2) |
---|
1245 | qcloud(ind1)=qltot(ind1,ind2)/ctot(ind1,ind2)+zqsatenv(ind1,ind2) |
---|
1246 | |
---|
1247 | endif |
---|
1248 | |
---|
1249 | |
---|
1250 | |
---|
1251 | |
---|
1252 | endif ! From the separation (thermal/envrionnement) et (environnement) only, l.335 et l.492 |
---|
1253 | ! Outputs used to check the PDFs |
---|
1254 | cloudth_senv(ind1,ind2) = senv |
---|
1255 | cloudth_sth(ind1,ind2) = sth |
---|
1256 | cloudth_sigmaenv(ind1,ind2) = sigma1s |
---|
1257 | cloudth_sigmath(ind1,ind2) = sigma2s |
---|
1258 | |
---|
1259 | enddo ! from the loop on ngrid l.333 |
---|
1260 | return |
---|
1261 | ! end |
---|
1262 | END SUBROUTINE cloudth_vert_v3 |
---|
1263 | ! |
---|
1264 | |
---|
1265 | |
---|
1266 | |
---|
1267 | |
---|
1268 | |
---|
1269 | |
---|
1270 | |
---|
1271 | |
---|
1272 | |
---|
1273 | |
---|
1274 | |
---|
1275 | SUBROUTINE cloudth_v6(ngrid,klev,ind2, & |
---|
1276 | & ztv,po,zqta,fraca, & |
---|
1277 | & qcloud,ctot_surf,ctot_vol,zpspsk,paprs,pplay,ztla,zthl, & |
---|
1278 | & ratqs,zqs,T) |
---|
1279 | |
---|
1280 | |
---|
1281 | USE ioipsl_getin_p_mod, ONLY : getin_p |
---|
1282 | USE phys_output_var_mod, ONLY : cloudth_sth,cloudth_senv, & |
---|
1283 | & cloudth_sigmath,cloudth_sigmaenv |
---|
1284 | |
---|
1285 | IMPLICIT NONE |
---|
1286 | |
---|
1287 | #include "YOMCST.h" |
---|
1288 | #include "YOETHF.h" |
---|
1289 | #include "FCTTRE.h" |
---|
1290 | #include "thermcell.h" |
---|
1291 | #include "nuage.h" |
---|
1292 | |
---|
1293 | |
---|
1294 | !Domain variables |
---|
1295 | INTEGER ngrid !indice Max lat-lon |
---|
1296 | INTEGER klev !indice Max alt |
---|
1297 | INTEGER ind1 !indice in [1:ngrid] |
---|
1298 | INTEGER ind2 !indice in [1:klev] |
---|
1299 | !thermal plume fraction |
---|
1300 | REAL fraca(ngrid,klev+1) !thermal plumes fraction in the gridbox |
---|
1301 | !temperatures |
---|
1302 | REAL T(ngrid,klev) !temperature |
---|
1303 | REAL zpspsk(ngrid,klev) !factor (p/p0)**kappa (used for potential variables) |
---|
1304 | REAL ztv(ngrid,klev) !potential temperature (voir thermcell_env.F90) |
---|
1305 | REAL ztla(ngrid,klev) !liquid temperature in the thermals (Tl_th) |
---|
1306 | REAL zthl(ngrid,klev) !liquid temperature in the environment (Tl_env) |
---|
1307 | !pressure |
---|
1308 | REAL paprs(ngrid,klev+1) !pressure at the interface of levels |
---|
1309 | REAL pplay(ngrid,klev) !pressure at the middle of the level |
---|
1310 | !humidity |
---|
1311 | REAL ratqs(ngrid,klev) !width of the total water subgrid-scale distribution |
---|
1312 | REAL po(ngrid) !total water (qt) |
---|
1313 | REAL zqenv(ngrid) !total water in the environment (qt_env) |
---|
1314 | REAL zqta(ngrid,klev) !total water in the thermals (qt_th) |
---|
1315 | REAL zqsatth(ngrid,klev) !water saturation level in the thermals (q_sat_th) |
---|
1316 | REAL zqsatenv(ngrid,klev) !water saturation level in the environment (q_sat_env) |
---|
1317 | REAL qlth(ngrid,klev) !condensed water in the thermals |
---|
1318 | REAL qlenv(ngrid,klev) !condensed water in the environment |
---|
1319 | REAL qltot(ngrid,klev) !condensed water in the gridbox |
---|
1320 | !cloud fractions |
---|
1321 | REAL cth_vol(ngrid,klev) !cloud fraction by volume in the thermals |
---|
1322 | REAL cenv_vol(ngrid,klev) !cloud fraction by volume in the environment |
---|
1323 | REAL ctot_vol(ngrid,klev) !cloud fraction by volume in the gridbox |
---|
1324 | REAL cth_surf(ngrid,klev) !cloud fraction by surface in the thermals |
---|
1325 | REAL cenv_surf(ngrid,klev) !cloud fraction by surface in the environment |
---|
1326 | REAL ctot_surf(ngrid,klev) !cloud fraction by surface in the gridbox |
---|
1327 | !PDF of saturation deficit variables |
---|
1328 | REAL rdd,cppd,Lv |
---|
1329 | REAL Tbef,zdelta,qsatbef,zcor |
---|
1330 | REAL alth,alenv,ath,aenv |
---|
1331 | REAL sth,senv !saturation deficits in the thermals and environment |
---|
1332 | REAL sigma_env,sigma_th !standard deviations of the biGaussian PDF |
---|
1333 | !cloud fraction variables |
---|
1334 | REAL xth,xenv |
---|
1335 | REAL inverse_rho,beta !Neggers et al. (2011) method |
---|
1336 | REAL a_Brooks,b_Brooks,A_Maj_Brooks,Dx_Brooks,f_Brooks !Brooks et al. (2005) method |
---|
1337 | !Incloud total water variables |
---|
1338 | REAL zqs(ngrid) !q_sat |
---|
1339 | REAL qcloud(ngrid) !eau totale dans le nuage |
---|
1340 | !Some arithmetic variables |
---|
1341 | REAL erf,pi,sqrt2,sqrt2pi |
---|
1342 | !Depth of the layer |
---|
1343 | REAL dz(ngrid,klev) !epaisseur de la couche en metre |
---|
1344 | REAL rhodz(ngrid,klev) |
---|
1345 | REAL zrho(ngrid,klev) |
---|
1346 | DO ind1 = 1, ngrid |
---|
1347 | rhodz(ind1,ind2) = (paprs(ind1,ind2)-paprs(ind1,ind2+1))/rg ![kg/m2] |
---|
1348 | zrho(ind1,ind2) = pplay(ind1,ind2)/T(ind1,ind2)/rd ![kg/m3] |
---|
1349 | dz(ind1,ind2) = rhodz(ind1,ind2)/zrho(ind1,ind2) ![m] |
---|
1350 | END DO |
---|
1351 | |
---|
1352 | !------------------------------------------------------------------------------ |
---|
1353 | ! Initialization |
---|
1354 | !------------------------------------------------------------------------------ |
---|
1355 | qlth(:,:)=0. |
---|
1356 | qlenv(:,:)=0. |
---|
1357 | qltot(:,:)=0. |
---|
1358 | cth_vol(:,:)=0. |
---|
1359 | cenv_vol(:,:)=0. |
---|
1360 | ctot_vol(:,:)=0. |
---|
1361 | cth_surf(:,:)=0. |
---|
1362 | cenv_surf(:,:)=0. |
---|
1363 | ctot_surf(:,:)=0. |
---|
1364 | qcloud(:)=0. |
---|
1365 | rdd=287.04 |
---|
1366 | cppd=1005.7 |
---|
1367 | pi=3.14159 |
---|
1368 | Lv=2.5e6 |
---|
1369 | sqrt2=sqrt(2.) |
---|
1370 | sqrt2pi=sqrt(2.*pi) |
---|
1371 | |
---|
1372 | |
---|
1373 | DO ind1=1,ngrid |
---|
1374 | !------------------------------------------------------------------------------- |
---|
1375 | !Both thermal and environment in the gridbox |
---|
1376 | !------------------------------------------------------------------------------- |
---|
1377 | IF ((ztv(ind1,1).gt.ztv(ind1,2)).and.(fraca(ind1,ind2).gt.1.e-10)) THEN |
---|
1378 | !-------------------------------------------- |
---|
1379 | !calcul de qsat_env |
---|
1380 | !-------------------------------------------- |
---|
1381 | Tbef=zthl(ind1,ind2)*zpspsk(ind1,ind2) |
---|
1382 | zdelta=MAX(0.,SIGN(1.,RTT-Tbef)) |
---|
1383 | qsatbef= R2ES*FOEEW(Tbef,zdelta)/paprs(ind1,ind2) |
---|
1384 | qsatbef=MIN(0.5,qsatbef) |
---|
1385 | zcor=1./(1.-retv*qsatbef) |
---|
1386 | qsatbef=qsatbef*zcor |
---|
1387 | zqsatenv(ind1,ind2)=qsatbef |
---|
1388 | !-------------------------------------------- |
---|
1389 | !calcul de s_env |
---|
1390 | !-------------------------------------------- |
---|
1391 | alenv=(0.622*Lv*zqsatenv(ind1,ind2))/(rdd*zthl(ind1,ind2)**2) !qsl, p84 these Arnaud Jam |
---|
1392 | aenv=1./(1.+(alenv*Lv/cppd)) !al, p84 these Arnaud Jam |
---|
1393 | senv=aenv*(po(ind1)-zqsatenv(ind1,ind2)) !s, p84 these Arnaud Jam |
---|
1394 | !-------------------------------------------- |
---|
1395 | !calcul de qsat_th |
---|
1396 | !-------------------------------------------- |
---|
1397 | Tbef=ztla(ind1,ind2)*zpspsk(ind1,ind2) |
---|
1398 | zdelta=MAX(0.,SIGN(1.,RTT-Tbef)) |
---|
1399 | qsatbef= R2ES * FOEEW(Tbef,zdelta)/paprs(ind1,ind2) |
---|
1400 | qsatbef=MIN(0.5,qsatbef) |
---|
1401 | zcor=1./(1.-retv*qsatbef) |
---|
1402 | qsatbef=qsatbef*zcor |
---|
1403 | zqsatth(ind1,ind2)=qsatbef |
---|
1404 | !-------------------------------------------- |
---|
1405 | !calcul de s_th |
---|
1406 | !-------------------------------------------- |
---|
1407 | alth=(0.622*Lv*zqsatth(ind1,ind2))/(rdd*ztla(ind1,ind2)**2) !qsl, p84 these Arnaud Jam |
---|
1408 | ath=1./(1.+(alth*Lv/cppd)) !al, p84 these Arnaud Jam |
---|
1409 | sth=ath*(zqta(ind1,ind2)-zqsatth(ind1,ind2)) !s, p84 these Arnaud Jam |
---|
1410 | !-------------------------------------------- |
---|
1411 | !calcul standard deviations bi-Gaussian PDF |
---|
1412 | !-------------------------------------------- |
---|
1413 | sigma_th=(0.03218+0.000092655*dz(ind1,ind2))/((fraca(ind1,ind2)+0.01)**0.5)*(((sth-senv)**2)**0.5)+0.002*zqta(ind1,ind2) |
---|
1414 | sigma_env=(0.71794+0.000498239*dz(ind1,ind2))*(fraca(ind1,ind2)**0.5)/(1-fraca(ind1,ind2))*(((sth-senv)**2)**0.5)+ratqs(ind1,ind2)*po(ind1) |
---|
1415 | xth=sth/(sqrt2*sigma_th) |
---|
1416 | xenv=senv/(sqrt2*sigma_env) |
---|
1417 | !-------------------------------------------- |
---|
1418 | !Cloud fraction by volume CF_vol |
---|
1419 | !-------------------------------------------- |
---|
1420 | cth_vol(ind1,ind2)=0.5*(1.+1.*erf(xth)) |
---|
1421 | cenv_vol(ind1,ind2)=0.5*(1.+1.*erf(xenv)) |
---|
1422 | ctot_vol(ind1,ind2)=fraca(ind1,ind2)*cth_vol(ind1,ind2)+(1.-1.*fraca(ind1,ind2))*cenv_vol(ind1,ind2) |
---|
1423 | !-------------------------------------------- |
---|
1424 | !Condensed water qc |
---|
1425 | !-------------------------------------------- |
---|
1426 | qlth(ind1,ind2)=sigma_th*((exp(-1.*xth**2)/sqrt2pi)+xth*sqrt2*cth_vol(ind1,ind2)) |
---|
1427 | qlenv(ind1,ind2)=sigma_env*((exp(-1.*xenv**2)/sqrt2pi)+xenv*sqrt2*cenv_vol(ind1,ind2)) |
---|
1428 | qltot(ind1,ind2)=fraca(ind1,ind2)*qlth(ind1,ind2)+(1.-1.*fraca(ind1,ind2))*qlenv(ind1,ind2) |
---|
1429 | !-------------------------------------------- |
---|
1430 | !Cloud fraction by surface CF_surf |
---|
1431 | !-------------------------------------------- |
---|
1432 | !Method Neggers et al. (2011) : ok for cumulus clouds only |
---|
1433 | !beta=0.0044 (Jouhaud et al.2018) |
---|
1434 | !inverse_rho=1.+beta*dz(ind1,ind2) |
---|
1435 | !ctot_surf(ind1,ind2)=ctot_vol(ind1,ind2)*inverse_rho |
---|
1436 | !Method Brooks et al. (2005) : ok for all types of clouds |
---|
1437 | a_Brooks=0.6694 |
---|
1438 | b_Brooks=0.1882 |
---|
1439 | A_Maj_Brooks=0.1635 !-- sans dependence au cisaillement de vent |
---|
1440 | Dx_Brooks=200000. !-- si l'on considere des mailles de 200km de cote |
---|
1441 | f_Brooks=A_Maj_Brooks*(dz(ind1,ind2)**(a_Brooks))*(Dx_Brooks**(-b_Brooks)) |
---|
1442 | ctot_surf(ind1,ind2)=1./(1.+exp(-1.*f_Brooks)*((1./max(1.e-15,min(ctot_vol(ind1,ind2),1.)))- 1.)) |
---|
1443 | !-------------------------------------------- |
---|
1444 | !Incloud Condensed water qcloud |
---|
1445 | !-------------------------------------------- |
---|
1446 | if (ctot_surf(ind1,ind2) .lt. 1.e-10) then |
---|
1447 | ctot_vol(ind1,ind2)=0. |
---|
1448 | ctot_surf(ind1,ind2)=0. |
---|
1449 | qcloud(ind1)=zqsatenv(ind1,ind2) |
---|
1450 | else |
---|
1451 | qcloud(ind1)=qltot(ind1,ind2)/ctot_vol(ind1,ind2)+zqs(ind1) |
---|
1452 | endif |
---|
1453 | |
---|
1454 | |
---|
1455 | |
---|
1456 | !------------------------------------------------------------------------------- |
---|
1457 | !Environment only in the gridbox |
---|
1458 | !------------------------------------------------------------------------------- |
---|
1459 | ELSE |
---|
1460 | !-------------------------------------------- |
---|
1461 | !calcul de qsat_env |
---|
1462 | !-------------------------------------------- |
---|
1463 | Tbef=zthl(ind1,ind2)*zpspsk(ind1,ind2) |
---|
1464 | zdelta=MAX(0.,SIGN(1.,RTT-Tbef)) |
---|
1465 | qsatbef= R2ES * FOEEW(Tbef,zdelta)/paprs(ind1,ind2) |
---|
1466 | qsatbef=MIN(0.5,qsatbef) |
---|
1467 | zcor=1./(1.-retv*qsatbef) |
---|
1468 | qsatbef=qsatbef*zcor |
---|
1469 | zqsatenv(ind1,ind2)=qsatbef |
---|
1470 | !-------------------------------------------- |
---|
1471 | !calcul de s_env |
---|
1472 | !-------------------------------------------- |
---|
1473 | alenv=(0.622*Lv*zqsatenv(ind1,ind2))/(rdd*zthl(ind1,ind2)**2) !qsl, p84 these Arnaud Jam |
---|
1474 | aenv=1./(1.+(alenv*Lv/cppd)) !al, p84 these Arnaud Jam |
---|
1475 | senv=aenv*(po(ind1)-zqsatenv(ind1,ind2)) !s, p84 these Arnaud Jam |
---|
1476 | !-------------------------------------------- |
---|
1477 | !calcul standard deviations Gaussian PDF |
---|
1478 | !-------------------------------------------- |
---|
1479 | zqenv(ind1)=po(ind1) |
---|
1480 | sigma_env=ratqs(ind1,ind2)*zqenv(ind1) |
---|
1481 | xenv=senv/(sqrt2*sigma_env) |
---|
1482 | !-------------------------------------------- |
---|
1483 | !Cloud fraction by volume CF_vol |
---|
1484 | !-------------------------------------------- |
---|
1485 | ctot_vol(ind1,ind2)=0.5*(1.+1.*erf(xenv)) |
---|
1486 | !-------------------------------------------- |
---|
1487 | !Condensed water qc |
---|
1488 | !-------------------------------------------- |
---|
1489 | qltot(ind1,ind2)=sigma_env*((exp(-1.*xenv**2)/sqrt2pi)+xenv*sqrt2*ctot_vol(ind1,ind2)) |
---|
1490 | !-------------------------------------------- |
---|
1491 | !Cloud fraction by surface CF_surf |
---|
1492 | !-------------------------------------------- |
---|
1493 | !Method Neggers et al. (2011) : ok for cumulus clouds only |
---|
1494 | !beta=0.0044 (Jouhaud et al.2018) |
---|
1495 | !inverse_rho=1.+beta*dz(ind1,ind2) |
---|
1496 | !ctot_surf(ind1,ind2)=ctot_vol(ind1,ind2)*inverse_rho |
---|
1497 | !Method Brooks et al. (2005) : ok for all types of clouds |
---|
1498 | a_Brooks=0.6694 |
---|
1499 | b_Brooks=0.1882 |
---|
1500 | A_Maj_Brooks=0.1635 !-- sans dependence au shear |
---|
1501 | Dx_Brooks=200000. |
---|
1502 | f_Brooks=A_Maj_Brooks*(dz(ind1,ind2)**(a_Brooks))*(Dx_Brooks**(-b_Brooks)) |
---|
1503 | ctot_surf(ind1,ind2)=1./(1.+exp(-1.*f_Brooks)*((1./max(1.e-15,min(ctot_vol(ind1,ind2),1.)))- 1.)) |
---|
1504 | !-------------------------------------------- |
---|
1505 | !Incloud Condensed water qcloud |
---|
1506 | !-------------------------------------------- |
---|
1507 | if (ctot_surf(ind1,ind2) .lt. 1.e-8) then |
---|
1508 | ctot_vol(ind1,ind2)=0. |
---|
1509 | ctot_surf(ind1,ind2)=0. |
---|
1510 | qcloud(ind1)=zqsatenv(ind1,ind2) |
---|
1511 | else |
---|
1512 | qcloud(ind1)=qltot(ind1,ind2)/ctot_vol(ind1,ind2)+zqsatenv(ind1,ind2) |
---|
1513 | endif |
---|
1514 | |
---|
1515 | |
---|
1516 | END IF ! From the separation (thermal/envrionnement) et (environnement only) |
---|
1517 | |
---|
1518 | ! Outputs used to check the PDFs |
---|
1519 | cloudth_senv(ind1,ind2) = senv |
---|
1520 | cloudth_sth(ind1,ind2) = sth |
---|
1521 | cloudth_sigmaenv(ind1,ind2) = sigma_env |
---|
1522 | cloudth_sigmath(ind1,ind2) = sigma_th |
---|
1523 | |
---|
1524 | END DO ! From the loop on ngrid |
---|
1525 | return |
---|
1526 | |
---|
1527 | END SUBROUTINE cloudth_v6 |
---|
1528 | END MODULE cloudth_mod |
---|
1529 | |
---|
1530 | |
---|
1531 | |
---|
1532 | |
---|