[2686] | 1 | MODULE cloudth_mod |
---|
| 2 | |
---|
| 3 | IMPLICIT NONE |
---|
| 4 | |
---|
| 5 | CONTAINS |
---|
| 6 | |
---|
| 7 | SUBROUTINE cloudth(ngrid,klev,ind2, & |
---|
| 8 | & ztv,po,zqta,fraca, & |
---|
[3493] | 9 | & qcloud,ctot,zpspsk,paprs,pplay,ztla,zthl, & |
---|
[2686] | 10 | & ratqs,zqs,t) |
---|
| 11 | |
---|
| 12 | |
---|
| 13 | IMPLICIT NONE |
---|
| 14 | |
---|
| 15 | |
---|
| 16 | !=========================================================================== |
---|
| 17 | ! Auteur : Arnaud Octavio Jam (LMD/CNRS) |
---|
| 18 | ! Date : 25 Mai 2010 |
---|
| 19 | ! Objet : calcule les valeurs de qc et rneb dans les thermiques |
---|
| 20 | !=========================================================================== |
---|
| 21 | |
---|
| 22 | |
---|
| 23 | #include "YOMCST.h" |
---|
| 24 | #include "YOETHF.h" |
---|
| 25 | #include "FCTTRE.h" |
---|
| 26 | #include "thermcell.h" |
---|
| 27 | #include "nuage.h" |
---|
| 28 | |
---|
| 29 | INTEGER itap,ind1,ind2 |
---|
| 30 | INTEGER ngrid,klev,klon,l,ig |
---|
| 31 | |
---|
| 32 | REAL ztv(ngrid,klev) |
---|
| 33 | REAL po(ngrid) |
---|
| 34 | REAL zqenv(ngrid) |
---|
| 35 | REAL zqta(ngrid,klev) |
---|
| 36 | |
---|
| 37 | REAL fraca(ngrid,klev+1) |
---|
| 38 | REAL zpspsk(ngrid,klev) |
---|
| 39 | REAL paprs(ngrid,klev+1) |
---|
[3493] | 40 | REAL pplay(ngrid,klev) |
---|
[2686] | 41 | REAL ztla(ngrid,klev) |
---|
| 42 | REAL zthl(ngrid,klev) |
---|
| 43 | |
---|
| 44 | REAL zqsatth(ngrid,klev) |
---|
| 45 | REAL zqsatenv(ngrid,klev) |
---|
| 46 | |
---|
| 47 | |
---|
| 48 | REAL sigma1(ngrid,klev) |
---|
| 49 | REAL sigma2(ngrid,klev) |
---|
| 50 | REAL qlth(ngrid,klev) |
---|
| 51 | REAL qlenv(ngrid,klev) |
---|
| 52 | REAL qltot(ngrid,klev) |
---|
| 53 | REAL cth(ngrid,klev) |
---|
| 54 | REAL cenv(ngrid,klev) |
---|
| 55 | REAL ctot(ngrid,klev) |
---|
| 56 | REAL rneb(ngrid,klev) |
---|
| 57 | REAL t(ngrid,klev) |
---|
| 58 | REAL qsatmmussig1,qsatmmussig2,sqrt2pi,pi |
---|
| 59 | REAL rdd,cppd,Lv |
---|
| 60 | REAL alth,alenv,ath,aenv |
---|
| 61 | REAL sth,senv,sigma1s,sigma2s,xth,xenv |
---|
| 62 | REAL Tbef,zdelta,qsatbef,zcor |
---|
| 63 | REAL qlbef |
---|
| 64 | REAL ratqs(ngrid,klev) ! determine la largeur de distribution de vapeur |
---|
| 65 | |
---|
| 66 | REAL zpdf_sig(ngrid),zpdf_k(ngrid),zpdf_delta(ngrid) |
---|
| 67 | REAL zpdf_a(ngrid),zpdf_b(ngrid),zpdf_e1(ngrid),zpdf_e2(ngrid) |
---|
| 68 | REAL zqs(ngrid), qcloud(ngrid) |
---|
| 69 | REAL erf |
---|
| 70 | |
---|
| 71 | |
---|
| 72 | |
---|
| 73 | |
---|
| 74 | !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! |
---|
| 75 | ! Gestion de deux versions de cloudth |
---|
| 76 | !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! |
---|
| 77 | |
---|
| 78 | IF (iflag_cloudth_vert.GE.1) THEN |
---|
| 79 | CALL cloudth_vert(ngrid,klev,ind2, & |
---|
| 80 | & ztv,po,zqta,fraca, & |
---|
[3493] | 81 | & qcloud,ctot,zpspsk,paprs,pplay,ztla,zthl, & |
---|
[2686] | 82 | & ratqs,zqs,t) |
---|
| 83 | RETURN |
---|
| 84 | ENDIF |
---|
| 85 | !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! |
---|
| 86 | |
---|
| 87 | |
---|
| 88 | !------------------------------------------------------------------------------- |
---|
| 89 | ! Initialisation des variables r?elles |
---|
| 90 | !------------------------------------------------------------------------------- |
---|
| 91 | sigma1(:,:)=0. |
---|
| 92 | sigma2(:,:)=0. |
---|
| 93 | qlth(:,:)=0. |
---|
| 94 | qlenv(:,:)=0. |
---|
| 95 | qltot(:,:)=0. |
---|
| 96 | rneb(:,:)=0. |
---|
| 97 | qcloud(:)=0. |
---|
| 98 | cth(:,:)=0. |
---|
| 99 | cenv(:,:)=0. |
---|
| 100 | ctot(:,:)=0. |
---|
| 101 | qsatmmussig1=0. |
---|
| 102 | qsatmmussig2=0. |
---|
| 103 | rdd=287.04 |
---|
| 104 | cppd=1005.7 |
---|
| 105 | pi=3.14159 |
---|
| 106 | Lv=2.5e6 |
---|
| 107 | sqrt2pi=sqrt(2.*pi) |
---|
| 108 | |
---|
| 109 | |
---|
| 110 | |
---|
| 111 | !------------------------------------------------------------------------------- |
---|
| 112 | ! Calcul de la fraction du thermique et des ?cart-types des distributions |
---|
| 113 | !------------------------------------------------------------------------------- |
---|
| 114 | do ind1=1,ngrid |
---|
| 115 | |
---|
| 116 | if ((ztv(ind1,1).gt.ztv(ind1,2)).and.(fraca(ind1,ind2).gt.1.e-10)) then |
---|
| 117 | |
---|
| 118 | zqenv(ind1)=(po(ind1)-fraca(ind1,ind2)*zqta(ind1,ind2))/(1.-fraca(ind1,ind2)) |
---|
| 119 | |
---|
| 120 | |
---|
| 121 | ! zqenv(ind1)=po(ind1) |
---|
| 122 | Tbef=zthl(ind1,ind2)*zpspsk(ind1,ind2) |
---|
| 123 | zdelta=MAX(0.,SIGN(1.,RTT-Tbef)) |
---|
| 124 | qsatbef= R2ES * FOEEW(Tbef,zdelta)/paprs(ind1,ind2) |
---|
| 125 | qsatbef=MIN(0.5,qsatbef) |
---|
| 126 | zcor=1./(1.-retv*qsatbef) |
---|
| 127 | qsatbef=qsatbef*zcor |
---|
| 128 | zqsatenv(ind1,ind2)=qsatbef |
---|
| 129 | |
---|
| 130 | |
---|
| 131 | |
---|
| 132 | |
---|
| 133 | alenv=(0.622*Lv*zqsatenv(ind1,ind2))/(rdd*zthl(ind1,ind2)**2) |
---|
| 134 | aenv=1./(1.+(alenv*Lv/cppd)) |
---|
| 135 | senv=aenv*(po(ind1)-zqsatenv(ind1,ind2)) |
---|
| 136 | |
---|
| 137 | |
---|
| 138 | |
---|
| 139 | |
---|
| 140 | Tbef=ztla(ind1,ind2)*zpspsk(ind1,ind2) |
---|
| 141 | zdelta=MAX(0.,SIGN(1.,RTT-Tbef)) |
---|
| 142 | qsatbef= R2ES * FOEEW(Tbef,zdelta)/paprs(ind1,ind2) |
---|
| 143 | qsatbef=MIN(0.5,qsatbef) |
---|
| 144 | zcor=1./(1.-retv*qsatbef) |
---|
| 145 | qsatbef=qsatbef*zcor |
---|
| 146 | zqsatth(ind1,ind2)=qsatbef |
---|
| 147 | |
---|
| 148 | alth=(0.622*Lv*zqsatth(ind1,ind2))/(rdd*ztla(ind1,ind2)**2) |
---|
| 149 | ath=1./(1.+(alth*Lv/cppd)) |
---|
| 150 | sth=ath*(zqta(ind1,ind2)-zqsatth(ind1,ind2)) |
---|
| 151 | |
---|
| 152 | |
---|
| 153 | |
---|
| 154 | !------------------------------------------------------------------------------ |
---|
| 155 | ! Calcul des ?cart-types pour s |
---|
| 156 | !------------------------------------------------------------------------------ |
---|
| 157 | |
---|
| 158 | ! sigma1s=(1.1**0.5)*(fraca(ind1,ind2)**0.6)/(1-fraca(ind1,ind2))*((sth-senv)**2)**0.5+ratqs(ind1,ind2)*po(ind1) |
---|
| 159 | ! sigma2s=0.11*((sth-senv)**2)**0.5/(fraca(ind1,ind2)+0.02)**0.4+0.002*zqta(ind1,ind2) |
---|
| 160 | ! if (paprs(ind1,ind2).gt.90000) then |
---|
| 161 | ! ratqs(ind1,ind2)=0.002 |
---|
| 162 | ! else |
---|
| 163 | ! ratqs(ind1,ind2)=0.002+0.0*(90000-paprs(ind1,ind2))/20000 |
---|
| 164 | ! endif |
---|
| 165 | sigma1s=(1.1**0.5)*(fraca(ind1,ind2)**0.6)/(1-fraca(ind1,ind2))*((sth-senv)**2)**0.5+0.002*po(ind1) |
---|
| 166 | sigma2s=0.11*((sth-senv)**2)**0.5/(fraca(ind1,ind2)+0.01)**0.4+0.002*zqta(ind1,ind2) |
---|
| 167 | ! sigma1s=ratqs(ind1,ind2)*po(ind1) |
---|
| 168 | ! sigma2s=0.11*((sth-senv)**2)**0.5/(fraca(ind1,ind2)+0.02)**0.4+0.00003 |
---|
| 169 | |
---|
| 170 | !------------------------------------------------------------------------------ |
---|
| 171 | ! Calcul de l'eau condens?e et de la couverture nuageuse |
---|
| 172 | !------------------------------------------------------------------------------ |
---|
| 173 | sqrt2pi=sqrt(2.*pi) |
---|
| 174 | xth=sth/(sqrt(2.)*sigma2s) |
---|
| 175 | xenv=senv/(sqrt(2.)*sigma1s) |
---|
| 176 | cth(ind1,ind2)=0.5*(1.+1.*erf(xth)) |
---|
| 177 | cenv(ind1,ind2)=0.5*(1.+1.*erf(xenv)) |
---|
| 178 | ctot(ind1,ind2)=fraca(ind1,ind2)*cth(ind1,ind2)+(1.-1.*fraca(ind1,ind2))*cenv(ind1,ind2) |
---|
| 179 | |
---|
| 180 | qlth(ind1,ind2)=sigma2s*((exp(-1.*xth**2)/sqrt2pi)+xth*sqrt(2.)*cth(ind1,ind2)) |
---|
| 181 | qlenv(ind1,ind2)=sigma1s*((exp(-1.*xenv**2)/sqrt2pi)+xenv*sqrt(2.)*cenv(ind1,ind2)) |
---|
| 182 | qltot(ind1,ind2)=fraca(ind1,ind2)*qlth(ind1,ind2)+(1.-1.*fraca(ind1,ind2))*qlenv(ind1,ind2) |
---|
| 183 | |
---|
| 184 | !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! |
---|
| 185 | if (ctot(ind1,ind2).lt.1.e-10) then |
---|
| 186 | ctot(ind1,ind2)=0. |
---|
| 187 | qcloud(ind1)=zqsatenv(ind1,ind2) |
---|
| 188 | |
---|
| 189 | else |
---|
| 190 | |
---|
| 191 | ctot(ind1,ind2)=ctot(ind1,ind2) |
---|
| 192 | qcloud(ind1)=qltot(ind1,ind2)/ctot(ind1,ind2)+zqs(ind1) |
---|
| 193 | |
---|
| 194 | endif |
---|
| 195 | |
---|
| 196 | |
---|
| 197 | ! print*,sth,sigma2s,qlth(ind1,ind2),ctot(ind1,ind2),qltot(ind1,ind2),'verif' |
---|
| 198 | |
---|
| 199 | |
---|
| 200 | else ! gaussienne environnement seule |
---|
| 201 | |
---|
| 202 | zqenv(ind1)=po(ind1) |
---|
| 203 | Tbef=t(ind1,ind2) |
---|
| 204 | zdelta=MAX(0.,SIGN(1.,RTT-Tbef)) |
---|
| 205 | qsatbef= R2ES * FOEEW(Tbef,zdelta)/paprs(ind1,ind2) |
---|
| 206 | qsatbef=MIN(0.5,qsatbef) |
---|
| 207 | zcor=1./(1.-retv*qsatbef) |
---|
| 208 | qsatbef=qsatbef*zcor |
---|
| 209 | zqsatenv(ind1,ind2)=qsatbef |
---|
| 210 | |
---|
| 211 | |
---|
| 212 | ! qlbef=Max(po(ind1)-zqsatenv(ind1,ind2),0.) |
---|
| 213 | zthl(ind1,ind2)=t(ind1,ind2)*(101325/paprs(ind1,ind2))**(rdd/cppd) |
---|
| 214 | alenv=(0.622*Lv*zqsatenv(ind1,ind2))/(rdd*zthl(ind1,ind2)**2) |
---|
| 215 | aenv=1./(1.+(alenv*Lv/cppd)) |
---|
| 216 | senv=aenv*(po(ind1)-zqsatenv(ind1,ind2)) |
---|
| 217 | |
---|
| 218 | |
---|
| 219 | sigma1s=ratqs(ind1,ind2)*zqenv(ind1) |
---|
| 220 | |
---|
| 221 | sqrt2pi=sqrt(2.*pi) |
---|
| 222 | xenv=senv/(sqrt(2.)*sigma1s) |
---|
| 223 | ctot(ind1,ind2)=0.5*(1.+1.*erf(xenv)) |
---|
| 224 | qltot(ind1,ind2)=sigma1s*((exp(-1.*xenv**2)/sqrt2pi)+xenv*sqrt(2.)*cenv(ind1,ind2)) |
---|
| 225 | |
---|
| 226 | if (ctot(ind1,ind2).lt.1.e-3) then |
---|
| 227 | ctot(ind1,ind2)=0. |
---|
| 228 | qcloud(ind1)=zqsatenv(ind1,ind2) |
---|
| 229 | |
---|
| 230 | else |
---|
| 231 | |
---|
| 232 | ctot(ind1,ind2)=ctot(ind1,ind2) |
---|
| 233 | qcloud(ind1)=qltot(ind1,ind2)/ctot(ind1,ind2)+zqsatenv(ind1,ind2) |
---|
| 234 | |
---|
| 235 | endif |
---|
| 236 | |
---|
| 237 | |
---|
| 238 | |
---|
| 239 | |
---|
| 240 | |
---|
| 241 | |
---|
| 242 | endif |
---|
| 243 | enddo |
---|
| 244 | |
---|
| 245 | return |
---|
| 246 | ! end |
---|
| 247 | END SUBROUTINE cloudth |
---|
| 248 | |
---|
| 249 | |
---|
| 250 | |
---|
| 251 | !=========================================================================== |
---|
| 252 | SUBROUTINE cloudth_vert(ngrid,klev,ind2, & |
---|
| 253 | & ztv,po,zqta,fraca, & |
---|
[3493] | 254 | & qcloud,ctot,zpspsk,paprs,pplay,ztla,zthl, & |
---|
[2686] | 255 | & ratqs,zqs,t) |
---|
| 256 | |
---|
| 257 | !=========================================================================== |
---|
| 258 | ! Auteur : Arnaud Octavio Jam (LMD/CNRS) |
---|
| 259 | ! Date : 25 Mai 2010 |
---|
| 260 | ! Objet : calcule les valeurs de qc et rneb dans les thermiques |
---|
| 261 | !=========================================================================== |
---|
| 262 | |
---|
| 263 | |
---|
| 264 | USE ioipsl_getin_p_mod, ONLY : getin_p |
---|
| 265 | |
---|
| 266 | IMPLICIT NONE |
---|
| 267 | |
---|
| 268 | #include "YOMCST.h" |
---|
| 269 | #include "YOETHF.h" |
---|
| 270 | #include "FCTTRE.h" |
---|
| 271 | #include "thermcell.h" |
---|
| 272 | #include "nuage.h" |
---|
| 273 | |
---|
| 274 | INTEGER itap,ind1,ind2 |
---|
| 275 | INTEGER ngrid,klev,klon,l,ig |
---|
| 276 | |
---|
| 277 | REAL ztv(ngrid,klev) |
---|
| 278 | REAL po(ngrid) |
---|
| 279 | REAL zqenv(ngrid) |
---|
| 280 | REAL zqta(ngrid,klev) |
---|
| 281 | |
---|
| 282 | REAL fraca(ngrid,klev+1) |
---|
| 283 | REAL zpspsk(ngrid,klev) |
---|
| 284 | REAL paprs(ngrid,klev+1) |
---|
[3493] | 285 | REAL pplay(ngrid,klev) |
---|
[2686] | 286 | REAL ztla(ngrid,klev) |
---|
| 287 | REAL zthl(ngrid,klev) |
---|
| 288 | |
---|
| 289 | REAL zqsatth(ngrid,klev) |
---|
| 290 | REAL zqsatenv(ngrid,klev) |
---|
| 291 | |
---|
| 292 | |
---|
| 293 | REAL sigma1(ngrid,klev) |
---|
| 294 | REAL sigma2(ngrid,klev) |
---|
| 295 | REAL qlth(ngrid,klev) |
---|
| 296 | REAL qlenv(ngrid,klev) |
---|
| 297 | REAL qltot(ngrid,klev) |
---|
| 298 | REAL cth(ngrid,klev) |
---|
| 299 | REAL cenv(ngrid,klev) |
---|
| 300 | REAL ctot(ngrid,klev) |
---|
| 301 | REAL rneb(ngrid,klev) |
---|
| 302 | REAL t(ngrid,klev) |
---|
| 303 | REAL qsatmmussig1,qsatmmussig2,sqrt2pi,pi |
---|
| 304 | REAL rdd,cppd,Lv,sqrt2,sqrtpi |
---|
| 305 | REAL alth,alenv,ath,aenv |
---|
| 306 | REAL sth,senv,sigma1s,sigma2s,xth,xenv |
---|
| 307 | REAL xth1,xth2,xenv1,xenv2,deltasth, deltasenv |
---|
| 308 | REAL IntJ,IntI1,IntI2,IntI3,coeffqlenv,coeffqlth |
---|
| 309 | REAL Tbef,zdelta,qsatbef,zcor |
---|
| 310 | REAL qlbef |
---|
| 311 | REAL ratqs(ngrid,klev) ! determine la largeur de distribution de vapeur |
---|
| 312 | ! Change the width of the PDF used for vertical subgrid scale heterogeneity |
---|
| 313 | ! (J Jouhaud, JL Dufresne, JB Madeleine) |
---|
| 314 | REAL,SAVE :: vert_alpha |
---|
[2909] | 315 | !$OMP THREADPRIVATE(vert_alpha) |
---|
[2686] | 316 | LOGICAL, SAVE :: firstcall = .TRUE. |
---|
[2909] | 317 | !$OMP THREADPRIVATE(firstcall) |
---|
[2686] | 318 | |
---|
| 319 | REAL zpdf_sig(ngrid),zpdf_k(ngrid),zpdf_delta(ngrid) |
---|
| 320 | REAL zpdf_a(ngrid),zpdf_b(ngrid),zpdf_e1(ngrid),zpdf_e2(ngrid) |
---|
| 321 | REAL zqs(ngrid), qcloud(ngrid) |
---|
| 322 | REAL erf |
---|
| 323 | |
---|
| 324 | !------------------------------------------------------------------------------ |
---|
| 325 | ! Initialisation des variables r?elles |
---|
| 326 | !------------------------------------------------------------------------------ |
---|
| 327 | sigma1(:,:)=0. |
---|
| 328 | sigma2(:,:)=0. |
---|
| 329 | qlth(:,:)=0. |
---|
| 330 | qlenv(:,:)=0. |
---|
| 331 | qltot(:,:)=0. |
---|
| 332 | rneb(:,:)=0. |
---|
| 333 | qcloud(:)=0. |
---|
| 334 | cth(:,:)=0. |
---|
| 335 | cenv(:,:)=0. |
---|
| 336 | ctot(:,:)=0. |
---|
| 337 | qsatmmussig1=0. |
---|
| 338 | qsatmmussig2=0. |
---|
| 339 | rdd=287.04 |
---|
| 340 | cppd=1005.7 |
---|
| 341 | pi=3.14159 |
---|
| 342 | Lv=2.5e6 |
---|
| 343 | sqrt2pi=sqrt(2.*pi) |
---|
| 344 | sqrt2=sqrt(2.) |
---|
| 345 | sqrtpi=sqrt(pi) |
---|
| 346 | |
---|
| 347 | IF (firstcall) THEN |
---|
| 348 | vert_alpha=0.5 |
---|
| 349 | CALL getin_p('cloudth_vert_alpha',vert_alpha) |
---|
| 350 | WRITE(*,*) 'cloudth_vert_alpha = ', vert_alpha |
---|
| 351 | firstcall=.FALSE. |
---|
| 352 | ENDIF |
---|
| 353 | |
---|
| 354 | !------------------------------------------------------------------------------- |
---|
| 355 | ! Calcul de la fraction du thermique et des ?cart-types des distributions |
---|
| 356 | !------------------------------------------------------------------------------- |
---|
| 357 | do ind1=1,ngrid |
---|
| 358 | |
---|
| 359 | if ((ztv(ind1,1).gt.ztv(ind1,2)).and.(fraca(ind1,ind2).gt.1.e-10)) then |
---|
| 360 | |
---|
| 361 | zqenv(ind1)=(po(ind1)-fraca(ind1,ind2)*zqta(ind1,ind2))/(1.-fraca(ind1,ind2)) |
---|
| 362 | |
---|
| 363 | |
---|
| 364 | ! zqenv(ind1)=po(ind1) |
---|
| 365 | Tbef=zthl(ind1,ind2)*zpspsk(ind1,ind2) |
---|
| 366 | zdelta=MAX(0.,SIGN(1.,RTT-Tbef)) |
---|
| 367 | qsatbef= R2ES * FOEEW(Tbef,zdelta)/paprs(ind1,ind2) |
---|
| 368 | qsatbef=MIN(0.5,qsatbef) |
---|
| 369 | zcor=1./(1.-retv*qsatbef) |
---|
| 370 | qsatbef=qsatbef*zcor |
---|
| 371 | zqsatenv(ind1,ind2)=qsatbef |
---|
| 372 | |
---|
| 373 | |
---|
| 374 | |
---|
| 375 | |
---|
| 376 | alenv=(0.622*Lv*zqsatenv(ind1,ind2))/(rdd*zthl(ind1,ind2)**2) |
---|
| 377 | aenv=1./(1.+(alenv*Lv/cppd)) |
---|
| 378 | senv=aenv*(po(ind1)-zqsatenv(ind1,ind2)) |
---|
| 379 | |
---|
| 380 | |
---|
| 381 | |
---|
| 382 | |
---|
| 383 | Tbef=ztla(ind1,ind2)*zpspsk(ind1,ind2) |
---|
| 384 | zdelta=MAX(0.,SIGN(1.,RTT-Tbef)) |
---|
| 385 | qsatbef= R2ES * FOEEW(Tbef,zdelta)/paprs(ind1,ind2) |
---|
| 386 | qsatbef=MIN(0.5,qsatbef) |
---|
| 387 | zcor=1./(1.-retv*qsatbef) |
---|
| 388 | qsatbef=qsatbef*zcor |
---|
| 389 | zqsatth(ind1,ind2)=qsatbef |
---|
| 390 | |
---|
| 391 | alth=(0.622*Lv*zqsatth(ind1,ind2))/(rdd*ztla(ind1,ind2)**2) |
---|
| 392 | ath=1./(1.+(alth*Lv/cppd)) |
---|
| 393 | sth=ath*(zqta(ind1,ind2)-zqsatth(ind1,ind2)) |
---|
| 394 | |
---|
| 395 | |
---|
| 396 | |
---|
| 397 | !------------------------------------------------------------------------------ |
---|
| 398 | ! Calcul des ?cart-types pour s |
---|
| 399 | !------------------------------------------------------------------------------ |
---|
| 400 | |
---|
| 401 | sigma1s=(0.92**0.5)*(fraca(ind1,ind2)**0.5)/(1-fraca(ind1,ind2))*((sth-senv)**2)**0.5+ratqs(ind1,ind2)*po(ind1) |
---|
| 402 | sigma2s=0.09*((sth-senv)**2)**0.5/(fraca(ind1,ind2)+0.02)**0.5+0.002*zqta(ind1,ind2) |
---|
| 403 | ! if (paprs(ind1,ind2).gt.90000) then |
---|
| 404 | ! ratqs(ind1,ind2)=0.002 |
---|
| 405 | ! else |
---|
| 406 | ! ratqs(ind1,ind2)=0.002+0.0*(90000-paprs(ind1,ind2))/20000 |
---|
| 407 | ! endif |
---|
| 408 | ! sigma1s=(1.1**0.5)*(fraca(ind1,ind2)**0.6)/(1-fraca(ind1,ind2))*((sth-senv)**2)**0.5+0.002*po(ind1) |
---|
| 409 | ! sigma2s=0.11*((sth-senv)**2)**0.5/(fraca(ind1,ind2)+0.01)**0.4+0.002*zqta(ind1,ind2) |
---|
| 410 | ! sigma1s=ratqs(ind1,ind2)*po(ind1) |
---|
| 411 | ! sigma2s=0.11*((sth-senv)**2)**0.5/(fraca(ind1,ind2)+0.02)**0.4+0.00003 |
---|
| 412 | |
---|
| 413 | !------------------------------------------------------------------------------ |
---|
| 414 | ! Calcul de l'eau condens?e et de la couverture nuageuse |
---|
| 415 | !------------------------------------------------------------------------------ |
---|
| 416 | sqrt2pi=sqrt(2.*pi) |
---|
| 417 | xth=sth/(sqrt(2.)*sigma2s) |
---|
| 418 | xenv=senv/(sqrt(2.)*sigma1s) |
---|
| 419 | cth(ind1,ind2)=0.5*(1.+1.*erf(xth)) |
---|
| 420 | cenv(ind1,ind2)=0.5*(1.+1.*erf(xenv)) |
---|
| 421 | ctot(ind1,ind2)=fraca(ind1,ind2)*cth(ind1,ind2)+(1.-1.*fraca(ind1,ind2))*cenv(ind1,ind2) |
---|
| 422 | |
---|
| 423 | qlth(ind1,ind2)=sigma2s*((exp(-1.*xth**2)/sqrt2pi)+xth*sqrt(2.)*cth(ind1,ind2)) |
---|
| 424 | qlenv(ind1,ind2)=sigma1s*((exp(-1.*xenv**2)/sqrt2pi)+xenv*sqrt(2.)*cenv(ind1,ind2)) |
---|
| 425 | qltot(ind1,ind2)=fraca(ind1,ind2)*qlth(ind1,ind2)+(1.-1.*fraca(ind1,ind2))*qlenv(ind1,ind2) |
---|
| 426 | |
---|
| 427 | IF (iflag_cloudth_vert == 1) THEN |
---|
| 428 | !------------------------------------------------------------------------------- |
---|
| 429 | ! Version 2: Modification selon J.-Louis. On condense ?? partir de qsat-ratqs |
---|
| 430 | !------------------------------------------------------------------------------- |
---|
| 431 | ! deltasenv=aenv*ratqs(ind1,ind2)*po(ind1) |
---|
| 432 | ! deltasth=ath*ratqs(ind1,ind2)*zqta(ind1,ind2) |
---|
| 433 | deltasenv=aenv*ratqs(ind1,ind2)*zqsatenv(ind1,ind2) |
---|
| 434 | deltasth=ath*ratqs(ind1,ind2)*zqsatth(ind1,ind2) |
---|
| 435 | ! deltasenv=aenv*0.01*po(ind1) |
---|
| 436 | ! deltasth=ath*0.01*zqta(ind1,ind2) |
---|
| 437 | xenv1=(senv-deltasenv)/(sqrt(2.)*sigma1s) |
---|
| 438 | xenv2=(senv+deltasenv)/(sqrt(2.)*sigma1s) |
---|
| 439 | xth1=(sth-deltasth)/(sqrt(2.)*sigma2s) |
---|
| 440 | xth2=(sth+deltasth)/(sqrt(2.)*sigma2s) |
---|
| 441 | coeffqlenv=(sigma1s)**2/(2*sqrtpi*deltasenv) |
---|
| 442 | coeffqlth=(sigma2s)**2/(2*sqrtpi*deltasth) |
---|
| 443 | |
---|
| 444 | cth(ind1,ind2)=0.5*(1.+1.*erf(xth2)) |
---|
| 445 | cenv(ind1,ind2)=0.5*(1.+1.*erf(xenv2)) |
---|
| 446 | ctot(ind1,ind2)=fraca(ind1,ind2)*cth(ind1,ind2)+(1.-1.*fraca(ind1,ind2))*cenv(ind1,ind2) |
---|
| 447 | |
---|
| 448 | IntJ=sigma1s*(exp(-1.*xenv1**2)/sqrt2pi)+0.5*senv*(1+erf(xenv1)) |
---|
| 449 | IntI1=coeffqlenv*0.5*(0.5*sqrtpi*(erf(xenv2)-erf(xenv1))+xenv1*exp(-1.*xenv1**2)-xenv2*exp(-1.*xenv2**2)) |
---|
| 450 | IntI2=coeffqlenv*xenv2*(exp(-1.*xenv2**2)-exp(-1.*xenv1**2)) |
---|
| 451 | IntI3=coeffqlenv*0.5*sqrtpi*xenv2**2*(erf(xenv2)-erf(xenv1)) |
---|
| 452 | |
---|
| 453 | qlenv(ind1,ind2)=IntJ+IntI1+IntI2+IntI3 |
---|
| 454 | ! qlenv(ind1,ind2)=IntJ |
---|
| 455 | ! print*, qlenv(ind1,ind2),'VERIF EAU' |
---|
| 456 | |
---|
| 457 | |
---|
| 458 | IntJ=sigma2s*(exp(-1.*xth1**2)/sqrt2pi)+0.5*sth*(1+erf(xth1)) |
---|
| 459 | ! IntI1=coeffqlth*((0.5*xth1-xth2)*exp(-1.*xth1**2)+0.5*xth2*exp(-1.*xth2**2)) |
---|
| 460 | ! IntI2=coeffqlth*0.5*sqrtpi*(0.5+xth2**2)*(erf(xth2)-erf(xth1)) |
---|
| 461 | IntI1=coeffqlth*0.5*(0.5*sqrtpi*(erf(xth2)-erf(xth1))+xth1*exp(-1.*xth1**2)-xth2*exp(-1.*xth2**2)) |
---|
| 462 | IntI2=coeffqlth*xth2*(exp(-1.*xth2**2)-exp(-1.*xth1**2)) |
---|
| 463 | IntI3=coeffqlth*0.5*sqrtpi*xth2**2*(erf(xth2)-erf(xth1)) |
---|
| 464 | qlth(ind1,ind2)=IntJ+IntI1+IntI2+IntI3 |
---|
| 465 | ! qlth(ind1,ind2)=IntJ |
---|
| 466 | ! print*, IntJ,IntI1,IntI2,IntI3,qlth(ind1,ind2),'VERIF EAU2' |
---|
| 467 | qltot(ind1,ind2)=fraca(ind1,ind2)*qlth(ind1,ind2)+(1.-1.*fraca(ind1,ind2))*qlenv(ind1,ind2) |
---|
| 468 | |
---|
| 469 | ELSE IF (iflag_cloudth_vert == 2) THEN |
---|
| 470 | |
---|
| 471 | !------------------------------------------------------------------------------- |
---|
| 472 | ! Version 3: Modification Jean Jouhaud. On condense a partir de -delta s |
---|
| 473 | !------------------------------------------------------------------------------- |
---|
| 474 | ! deltasenv=aenv*ratqs(ind1,ind2)*po(ind1) |
---|
| 475 | ! deltasth=ath*ratqs(ind1,ind2)*zqta(ind1,ind2) |
---|
| 476 | ! deltasenv=aenv*ratqs(ind1,ind2)*zqsatenv(ind1,ind2) |
---|
| 477 | ! deltasth=ath*ratqs(ind1,ind2)*zqsatth(ind1,ind2) |
---|
| 478 | deltasenv=aenv*vert_alpha*sigma1s |
---|
| 479 | deltasth=ath*vert_alpha*sigma2s |
---|
| 480 | |
---|
| 481 | xenv1=-(senv+deltasenv)/(sqrt(2.)*sigma1s) |
---|
| 482 | xenv2=-(senv-deltasenv)/(sqrt(2.)*sigma1s) |
---|
| 483 | xth1=-(sth+deltasth)/(sqrt(2.)*sigma2s) |
---|
| 484 | xth2=-(sth-deltasth)/(sqrt(2.)*sigma2s) |
---|
| 485 | ! coeffqlenv=(sigma1s)**2/(2*sqrtpi*deltasenv) |
---|
| 486 | ! coeffqlth=(sigma2s)**2/(2*sqrtpi*deltasth) |
---|
| 487 | |
---|
| 488 | cth(ind1,ind2)=0.5*(1.-1.*erf(xth1)) |
---|
| 489 | cenv(ind1,ind2)=0.5*(1.-1.*erf(xenv1)) |
---|
| 490 | ctot(ind1,ind2)=fraca(ind1,ind2)*cth(ind1,ind2)+(1.-1.*fraca(ind1,ind2))*cenv(ind1,ind2) |
---|
| 491 | |
---|
| 492 | IntJ=0.5*senv*(1-erf(xenv2))+(sigma1s/sqrt2pi)*exp(-1.*xenv2**2) |
---|
| 493 | IntI1=(((senv+deltasenv)**2+(sigma1s)**2)/(8*deltasenv))*(erf(xenv2)-erf(xenv1)) |
---|
| 494 | IntI2=(sigma1s**2/(4*deltasenv*sqrtpi))*(xenv1*exp(-1.*xenv1**2)-xenv2*exp(-1.*xenv2**2)) |
---|
| 495 | IntI3=((sqrt2*sigma1s*(senv+deltasenv))/(4*sqrtpi*deltasenv))*(exp(-1.*xenv1**2)-exp(-1.*xenv2**2)) |
---|
| 496 | |
---|
| 497 | ! IntI1=0.5*(0.5*sqrtpi*(erf(xenv2)-erf(xenv1))+xenv1*exp(-1.*xenv1**2)-xenv2*exp(-1.*xenv2**2)) |
---|
| 498 | ! IntI2=xenv2*(exp(-1.*xenv2**2)-exp(-1.*xenv1**2)) |
---|
| 499 | ! IntI3=0.5*sqrtpi*xenv2**2*(erf(xenv2)-erf(xenv1)) |
---|
| 500 | |
---|
| 501 | qlenv(ind1,ind2)=IntJ+IntI1+IntI2+IntI3 |
---|
| 502 | ! qlenv(ind1,ind2)=IntJ |
---|
| 503 | ! print*, qlenv(ind1,ind2),'VERIF EAU' |
---|
| 504 | |
---|
| 505 | IntJ=0.5*sth*(1-erf(xth2))+(sigma2s/sqrt2pi)*exp(-1.*xth2**2) |
---|
| 506 | IntI1=(((sth+deltasth)**2+(sigma2s)**2)/(8*deltasth))*(erf(xth2)-erf(xth1)) |
---|
| 507 | IntI2=(sigma2s**2/(4*deltasth*sqrtpi))*(xth1*exp(-1.*xth1**2)-xth2*exp(-1.*xth2**2)) |
---|
| 508 | IntI3=((sqrt2*sigma2s*(sth+deltasth))/(4*sqrtpi*deltasth))*(exp(-1.*xth1**2)-exp(-1.*xth2**2)) |
---|
| 509 | |
---|
| 510 | qlth(ind1,ind2)=IntJ+IntI1+IntI2+IntI3 |
---|
| 511 | ! qlth(ind1,ind2)=IntJ |
---|
| 512 | ! print*, IntJ,IntI1,IntI2,IntI3,qlth(ind1,ind2),'VERIF EAU2' |
---|
| 513 | qltot(ind1,ind2)=fraca(ind1,ind2)*qlth(ind1,ind2)+(1.-1.*fraca(ind1,ind2))*qlenv(ind1,ind2) |
---|
| 514 | |
---|
| 515 | |
---|
| 516 | |
---|
| 517 | |
---|
| 518 | ENDIF ! of if (iflag_cloudth_vert==1 or 2) |
---|
| 519 | |
---|
| 520 | !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! |
---|
| 521 | |
---|
| 522 | if (cenv(ind1,ind2).lt.1.e-10.or.cth(ind1,ind2).lt.1.e-10) then |
---|
| 523 | ctot(ind1,ind2)=0. |
---|
| 524 | qcloud(ind1)=zqsatenv(ind1,ind2) |
---|
| 525 | |
---|
| 526 | else |
---|
| 527 | |
---|
| 528 | ctot(ind1,ind2)=ctot(ind1,ind2) |
---|
| 529 | qcloud(ind1)=qltot(ind1,ind2)/ctot(ind1,ind2)+zqs(ind1) |
---|
| 530 | ! qcloud(ind1)=fraca(ind1,ind2)*qlth(ind1,ind2)/cth(ind1,ind2) & |
---|
| 531 | ! & +(1.-1.*fraca(ind1,ind2))*qlenv(ind1,ind2)/cenv(ind1,ind2)+zqs(ind1) |
---|
| 532 | |
---|
| 533 | endif |
---|
| 534 | |
---|
| 535 | |
---|
| 536 | |
---|
| 537 | ! print*,sth,sigma2s,qlth(ind1,ind2),ctot(ind1,ind2),qltot(ind1,ind2),'verif' |
---|
| 538 | |
---|
| 539 | |
---|
| 540 | else ! gaussienne environnement seule |
---|
| 541 | |
---|
| 542 | zqenv(ind1)=po(ind1) |
---|
| 543 | Tbef=t(ind1,ind2) |
---|
| 544 | zdelta=MAX(0.,SIGN(1.,RTT-Tbef)) |
---|
| 545 | qsatbef= R2ES * FOEEW(Tbef,zdelta)/paprs(ind1,ind2) |
---|
| 546 | qsatbef=MIN(0.5,qsatbef) |
---|
| 547 | zcor=1./(1.-retv*qsatbef) |
---|
| 548 | qsatbef=qsatbef*zcor |
---|
| 549 | zqsatenv(ind1,ind2)=qsatbef |
---|
| 550 | |
---|
| 551 | |
---|
| 552 | ! qlbef=Max(po(ind1)-zqsatenv(ind1,ind2),0.) |
---|
| 553 | zthl(ind1,ind2)=t(ind1,ind2)*(101325/paprs(ind1,ind2))**(rdd/cppd) |
---|
| 554 | alenv=(0.622*Lv*zqsatenv(ind1,ind2))/(rdd*zthl(ind1,ind2)**2) |
---|
| 555 | aenv=1./(1.+(alenv*Lv/cppd)) |
---|
| 556 | senv=aenv*(po(ind1)-zqsatenv(ind1,ind2)) |
---|
| 557 | |
---|
| 558 | |
---|
| 559 | sigma1s=ratqs(ind1,ind2)*zqenv(ind1) |
---|
| 560 | |
---|
| 561 | sqrt2pi=sqrt(2.*pi) |
---|
| 562 | xenv=senv/(sqrt(2.)*sigma1s) |
---|
| 563 | ctot(ind1,ind2)=0.5*(1.+1.*erf(xenv)) |
---|
| 564 | qltot(ind1,ind2)=sigma1s*((exp(-1.*xenv**2)/sqrt2pi)+xenv*sqrt(2.)*cenv(ind1,ind2)) |
---|
| 565 | |
---|
| 566 | if (ctot(ind1,ind2).lt.1.e-3) then |
---|
| 567 | ctot(ind1,ind2)=0. |
---|
| 568 | qcloud(ind1)=zqsatenv(ind1,ind2) |
---|
| 569 | |
---|
| 570 | else |
---|
| 571 | |
---|
| 572 | ctot(ind1,ind2)=ctot(ind1,ind2) |
---|
| 573 | qcloud(ind1)=qltot(ind1,ind2)/ctot(ind1,ind2)+zqsatenv(ind1,ind2) |
---|
| 574 | |
---|
| 575 | endif |
---|
| 576 | |
---|
| 577 | |
---|
| 578 | |
---|
| 579 | |
---|
| 580 | |
---|
| 581 | |
---|
| 582 | endif |
---|
| 583 | enddo |
---|
| 584 | |
---|
| 585 | return |
---|
| 586 | ! end |
---|
| 587 | END SUBROUTINE cloudth_vert |
---|
| 588 | |
---|
[3493] | 589 | |
---|
| 590 | |
---|
| 591 | |
---|
[2686] | 592 | SUBROUTINE cloudth_v3(ngrid,klev,ind2, & |
---|
| 593 | & ztv,po,zqta,fraca, & |
---|
[3493] | 594 | & qcloud,ctot,ctot_vol,zpspsk,paprs,pplay,ztla,zthl, & |
---|
[2686] | 595 | & ratqs,zqs,t) |
---|
| 596 | |
---|
| 597 | |
---|
| 598 | IMPLICIT NONE |
---|
| 599 | |
---|
| 600 | |
---|
| 601 | !=========================================================================== |
---|
| 602 | ! Author : Arnaud Octavio Jam (LMD/CNRS) |
---|
| 603 | ! Date : 25 Mai 2010 |
---|
| 604 | ! Objet : calcule les valeurs de qc et rneb dans les thermiques |
---|
| 605 | !=========================================================================== |
---|
| 606 | |
---|
| 607 | |
---|
| 608 | #include "YOMCST.h" |
---|
| 609 | #include "YOETHF.h" |
---|
| 610 | #include "FCTTRE.h" |
---|
| 611 | #include "thermcell.h" |
---|
| 612 | #include "nuage.h" |
---|
| 613 | |
---|
| 614 | INTEGER itap,ind1,ind2 |
---|
| 615 | INTEGER ngrid,klev,klon,l,ig |
---|
| 616 | |
---|
| 617 | REAL ztv(ngrid,klev) |
---|
| 618 | REAL po(ngrid) |
---|
| 619 | REAL zqenv(ngrid) |
---|
| 620 | REAL zqta(ngrid,klev) |
---|
| 621 | |
---|
| 622 | REAL fraca(ngrid,klev+1) |
---|
| 623 | REAL zpspsk(ngrid,klev) |
---|
| 624 | REAL paprs(ngrid,klev+1) |
---|
[3493] | 625 | REAL pplay(ngrid,klev) |
---|
[2686] | 626 | REAL ztla(ngrid,klev) |
---|
| 627 | REAL zthl(ngrid,klev) |
---|
| 628 | |
---|
| 629 | REAL zqsatth(ngrid,klev) |
---|
| 630 | REAL zqsatenv(ngrid,klev) |
---|
| 631 | |
---|
[2945] | 632 | REAL sigma1(ngrid,klev) |
---|
[2686] | 633 | REAL sigma2(ngrid,klev) |
---|
| 634 | REAL qlth(ngrid,klev) |
---|
| 635 | REAL qlenv(ngrid,klev) |
---|
| 636 | REAL qltot(ngrid,klev) |
---|
[2945] | 637 | REAL cth(ngrid,klev) |
---|
[2686] | 638 | REAL cenv(ngrid,klev) |
---|
| 639 | REAL ctot(ngrid,klev) |
---|
[2945] | 640 | REAL cth_vol(ngrid,klev) |
---|
| 641 | REAL cenv_vol(ngrid,klev) |
---|
| 642 | REAL ctot_vol(ngrid,klev) |
---|
| 643 | REAL rneb(ngrid,klev) |
---|
[2686] | 644 | REAL t(ngrid,klev) |
---|
| 645 | REAL qsatmmussig1,qsatmmussig2,sqrt2pi,sqrt2,sqrtpi,pi |
---|
| 646 | REAL rdd,cppd,Lv |
---|
| 647 | REAL alth,alenv,ath,aenv |
---|
| 648 | REAL sth,senv,sigma1s,sigma2s,xth,xenv, exp_xenv1, exp_xenv2,exp_xth1,exp_xth2 |
---|
[3493] | 649 | REAL inverse_rho,beta,a_Brooks,b_Brooks,A_Maj_Brooks,Dx_Brooks,f_Brooks |
---|
[2686] | 650 | REAL Tbef,zdelta,qsatbef,zcor |
---|
| 651 | REAL qlbef |
---|
| 652 | REAL ratqs(ngrid,klev) ! Determine the width of the vapour distribution |
---|
| 653 | REAL zpdf_sig(ngrid),zpdf_k(ngrid),zpdf_delta(ngrid) |
---|
| 654 | REAL zpdf_a(ngrid),zpdf_b(ngrid),zpdf_e1(ngrid),zpdf_e2(ngrid) |
---|
| 655 | REAL zqs(ngrid), qcloud(ngrid) |
---|
| 656 | REAL erf |
---|
| 657 | |
---|
| 658 | |
---|
| 659 | |
---|
| 660 | IF (iflag_cloudth_vert.GE.1) THEN |
---|
| 661 | CALL cloudth_vert_v3(ngrid,klev,ind2, & |
---|
| 662 | & ztv,po,zqta,fraca, & |
---|
[3493] | 663 | & qcloud,ctot,ctot_vol,zpspsk,paprs,pplay,ztla,zthl, & |
---|
[2686] | 664 | & ratqs,zqs,t) |
---|
| 665 | RETURN |
---|
| 666 | ENDIF |
---|
| 667 | !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! |
---|
| 668 | |
---|
| 669 | |
---|
| 670 | !------------------------------------------------------------------------------- |
---|
| 671 | ! Initialisation des variables r?elles |
---|
| 672 | !------------------------------------------------------------------------------- |
---|
| 673 | sigma1(:,:)=0. |
---|
| 674 | sigma2(:,:)=0. |
---|
| 675 | qlth(:,:)=0. |
---|
| 676 | qlenv(:,:)=0. |
---|
| 677 | qltot(:,:)=0. |
---|
| 678 | rneb(:,:)=0. |
---|
| 679 | qcloud(:)=0. |
---|
| 680 | cth(:,:)=0. |
---|
| 681 | cenv(:,:)=0. |
---|
| 682 | ctot(:,:)=0. |
---|
[2945] | 683 | cth_vol(:,:)=0. |
---|
| 684 | cenv_vol(:,:)=0. |
---|
| 685 | ctot_vol(:,:)=0. |
---|
[2686] | 686 | qsatmmussig1=0. |
---|
| 687 | qsatmmussig2=0. |
---|
| 688 | rdd=287.04 |
---|
| 689 | cppd=1005.7 |
---|
| 690 | pi=3.14159 |
---|
| 691 | Lv=2.5e6 |
---|
| 692 | sqrt2pi=sqrt(2.*pi) |
---|
| 693 | sqrt2=sqrt(2.) |
---|
| 694 | sqrtpi=sqrt(pi) |
---|
| 695 | |
---|
| 696 | |
---|
| 697 | !------------------------------------------------------------------------------- |
---|
| 698 | ! Cloud fraction in the thermals and standard deviation of the PDFs |
---|
| 699 | !------------------------------------------------------------------------------- |
---|
| 700 | do ind1=1,ngrid |
---|
| 701 | |
---|
| 702 | if ((ztv(ind1,1).gt.ztv(ind1,2)).and.(fraca(ind1,ind2).gt.1.e-10)) then |
---|
| 703 | |
---|
| 704 | zqenv(ind1)=(po(ind1)-fraca(ind1,ind2)*zqta(ind1,ind2))/(1.-fraca(ind1,ind2)) |
---|
| 705 | |
---|
| 706 | Tbef=zthl(ind1,ind2)*zpspsk(ind1,ind2) |
---|
| 707 | zdelta=MAX(0.,SIGN(1.,RTT-Tbef)) |
---|
| 708 | qsatbef= R2ES*FOEEW(Tbef,zdelta)/paprs(ind1,ind2) |
---|
| 709 | qsatbef=MIN(0.5,qsatbef) |
---|
| 710 | zcor=1./(1.-retv*qsatbef) |
---|
| 711 | qsatbef=qsatbef*zcor |
---|
| 712 | zqsatenv(ind1,ind2)=qsatbef |
---|
| 713 | |
---|
| 714 | |
---|
| 715 | alenv=(0.622*Lv*zqsatenv(ind1,ind2))/(rdd*zthl(ind1,ind2)**2) !qsl, p84 |
---|
| 716 | aenv=1./(1.+(alenv*Lv/cppd)) !al, p84 |
---|
| 717 | senv=aenv*(po(ind1)-zqsatenv(ind1,ind2)) !s, p84 |
---|
| 718 | |
---|
| 719 | !po = qt de l'environnement ET des thermique |
---|
| 720 | !zqenv = qt environnement |
---|
| 721 | !zqsatenv = qsat environnement |
---|
| 722 | !zthl = Tl environnement |
---|
| 723 | |
---|
| 724 | |
---|
| 725 | Tbef=ztla(ind1,ind2)*zpspsk(ind1,ind2) |
---|
| 726 | zdelta=MAX(0.,SIGN(1.,RTT-Tbef)) |
---|
| 727 | qsatbef= R2ES * FOEEW(Tbef,zdelta)/paprs(ind1,ind2) |
---|
| 728 | qsatbef=MIN(0.5,qsatbef) |
---|
| 729 | zcor=1./(1.-retv*qsatbef) |
---|
| 730 | qsatbef=qsatbef*zcor |
---|
| 731 | zqsatth(ind1,ind2)=qsatbef |
---|
| 732 | |
---|
| 733 | alth=(0.622*Lv*zqsatth(ind1,ind2))/(rdd*ztla(ind1,ind2)**2) !qsl, p84 |
---|
| 734 | ath=1./(1.+(alth*Lv/cppd)) !al, p84 |
---|
| 735 | sth=ath*(zqta(ind1,ind2)-zqsatth(ind1,ind2)) !s, p84 |
---|
| 736 | |
---|
| 737 | !zqta = qt thermals |
---|
| 738 | !zqsatth = qsat thermals |
---|
| 739 | !ztla = Tl thermals |
---|
| 740 | |
---|
| 741 | !------------------------------------------------------------------------------ |
---|
| 742 | ! s standard deviations |
---|
| 743 | !------------------------------------------------------------------------------ |
---|
| 744 | |
---|
| 745 | ! tests |
---|
| 746 | ! sigma1s=(1.1**0.5)*(fraca(ind1,ind2)**0.6)/(1-fraca(ind1,ind2))*((sth-senv)**2)**0.5+0.002*po(ind1) |
---|
| 747 | ! sigma1s=(0.92*(fraca(ind1,ind2)**0.5)/(1-fraca(ind1,ind2))*(((sth-senv)**2)**0.5))+ratqs(ind1,ind2)*po(ind1) |
---|
| 748 | ! sigma2s=(0.09*(((sth-senv)**2)**0.5)/((fraca(ind1,ind2)+0.02)**0.5))+0.002*zqta(ind1,ind2) |
---|
| 749 | ! final option |
---|
| 750 | sigma1s=(1.1**0.5)*(fraca(ind1,ind2)**0.6)/(1-fraca(ind1,ind2))*((sth-senv)**2)**0.5+ratqs(ind1,ind2)*po(ind1) |
---|
| 751 | sigma2s=0.11*((sth-senv)**2)**0.5/(fraca(ind1,ind2)+0.01)**0.4+0.002*zqta(ind1,ind2) |
---|
| 752 | |
---|
| 753 | !------------------------------------------------------------------------------ |
---|
| 754 | ! Condensed water and cloud cover |
---|
| 755 | !------------------------------------------------------------------------------ |
---|
| 756 | xth=sth/(sqrt2*sigma2s) |
---|
| 757 | xenv=senv/(sqrt2*sigma1s) |
---|
| 758 | cth(ind1,ind2)=0.5*(1.+1.*erf(xth)) !4.18 p 111, l.7 p115 & 4.20 p 119 thesis Arnaud Jam |
---|
| 759 | cenv(ind1,ind2)=0.5*(1.+1.*erf(xenv)) !4.18 p 111, l.7 p115 & 4.20 p 119 thesis Arnaud Jam |
---|
| 760 | ctot(ind1,ind2)=fraca(ind1,ind2)*cth(ind1,ind2)+(1.-1.*fraca(ind1,ind2))*cenv(ind1,ind2) |
---|
[2945] | 761 | ctot_vol(ind1,ind2)=ctot(ind1,ind2) |
---|
[2686] | 762 | |
---|
| 763 | qlth(ind1,ind2)=sigma2s*((exp(-1.*xth**2)/sqrt2pi)+xth*sqrt2*cth(ind1,ind2)) |
---|
| 764 | qlenv(ind1,ind2)=sigma1s*((exp(-1.*xenv**2)/sqrt2pi)+xenv*sqrt2*cenv(ind1,ind2)) |
---|
| 765 | qltot(ind1,ind2)=fraca(ind1,ind2)*qlth(ind1,ind2)+(1.-1.*fraca(ind1,ind2))*qlenv(ind1,ind2) |
---|
| 766 | |
---|
| 767 | if (ctot(ind1,ind2).lt.1.e-10) then |
---|
| 768 | ctot(ind1,ind2)=0. |
---|
| 769 | qcloud(ind1)=zqsatenv(ind1,ind2) |
---|
| 770 | else |
---|
| 771 | qcloud(ind1)=qltot(ind1,ind2)/ctot(ind1,ind2)+zqs(ind1) |
---|
| 772 | endif |
---|
| 773 | |
---|
| 774 | else ! Environnement only, follow the if l.110 |
---|
| 775 | |
---|
| 776 | zqenv(ind1)=po(ind1) |
---|
| 777 | Tbef=t(ind1,ind2) |
---|
| 778 | zdelta=MAX(0.,SIGN(1.,RTT-Tbef)) |
---|
| 779 | qsatbef= R2ES * FOEEW(Tbef,zdelta)/paprs(ind1,ind2) |
---|
| 780 | qsatbef=MIN(0.5,qsatbef) |
---|
| 781 | zcor=1./(1.-retv*qsatbef) |
---|
| 782 | qsatbef=qsatbef*zcor |
---|
| 783 | zqsatenv(ind1,ind2)=qsatbef |
---|
| 784 | |
---|
| 785 | ! qlbef=Max(po(ind1)-zqsatenv(ind1,ind2),0.) |
---|
| 786 | zthl(ind1,ind2)=t(ind1,ind2)*(101325/paprs(ind1,ind2))**(rdd/cppd) |
---|
| 787 | alenv=(0.622*Lv*zqsatenv(ind1,ind2))/(rdd*zthl(ind1,ind2)**2) |
---|
| 788 | aenv=1./(1.+(alenv*Lv/cppd)) |
---|
| 789 | senv=aenv*(po(ind1)-zqsatenv(ind1,ind2)) |
---|
| 790 | |
---|
| 791 | sigma1s=ratqs(ind1,ind2)*zqenv(ind1) |
---|
| 792 | |
---|
| 793 | xenv=senv/(sqrt2*sigma1s) |
---|
| 794 | ctot(ind1,ind2)=0.5*(1.+1.*erf(xenv)) |
---|
[2945] | 795 | ctot_vol(ind1,ind2)=ctot(ind1,ind2) |
---|
[2686] | 796 | qltot(ind1,ind2)=sigma1s*((exp(-1.*xenv**2)/sqrt2pi)+xenv*sqrt2*cenv(ind1,ind2)) |
---|
| 797 | |
---|
| 798 | if (ctot(ind1,ind2).lt.1.e-3) then |
---|
| 799 | ctot(ind1,ind2)=0. |
---|
| 800 | qcloud(ind1)=zqsatenv(ind1,ind2) |
---|
| 801 | else |
---|
| 802 | qcloud(ind1)=qltot(ind1,ind2)/ctot(ind1,ind2)+zqsatenv(ind1,ind2) |
---|
| 803 | endif |
---|
| 804 | |
---|
| 805 | |
---|
| 806 | endif ! From the separation (thermal/envrionnement) et (environnement) only, l.110 et l.183 |
---|
| 807 | enddo ! from the loop on ngrid l.108 |
---|
| 808 | return |
---|
| 809 | ! end |
---|
| 810 | END SUBROUTINE cloudth_v3 |
---|
| 811 | |
---|
| 812 | |
---|
| 813 | |
---|
| 814 | !=========================================================================== |
---|
| 815 | SUBROUTINE cloudth_vert_v3(ngrid,klev,ind2, & |
---|
| 816 | & ztv,po,zqta,fraca, & |
---|
[3493] | 817 | & qcloud,ctot,ctot_vol,zpspsk,paprs,pplay,ztla,zthl, & |
---|
[2686] | 818 | & ratqs,zqs,t) |
---|
| 819 | |
---|
| 820 | !=========================================================================== |
---|
| 821 | ! Auteur : Arnaud Octavio Jam (LMD/CNRS) |
---|
| 822 | ! Date : 25 Mai 2010 |
---|
| 823 | ! Objet : calcule les valeurs de qc et rneb dans les thermiques |
---|
| 824 | !=========================================================================== |
---|
| 825 | |
---|
| 826 | |
---|
| 827 | USE ioipsl_getin_p_mod, ONLY : getin_p |
---|
[2958] | 828 | USE phys_output_var_mod, ONLY : cloudth_sth,cloudth_senv, & |
---|
| 829 | & cloudth_sigmath,cloudth_sigmaenv |
---|
[2686] | 830 | |
---|
| 831 | IMPLICIT NONE |
---|
| 832 | |
---|
| 833 | #include "YOMCST.h" |
---|
| 834 | #include "YOETHF.h" |
---|
| 835 | #include "FCTTRE.h" |
---|
| 836 | #include "thermcell.h" |
---|
| 837 | #include "nuage.h" |
---|
| 838 | |
---|
| 839 | INTEGER itap,ind1,ind2 |
---|
| 840 | INTEGER ngrid,klev,klon,l,ig |
---|
| 841 | |
---|
| 842 | REAL ztv(ngrid,klev) |
---|
| 843 | REAL po(ngrid) |
---|
| 844 | REAL zqenv(ngrid) |
---|
| 845 | REAL zqta(ngrid,klev) |
---|
| 846 | |
---|
| 847 | REAL fraca(ngrid,klev+1) |
---|
| 848 | REAL zpspsk(ngrid,klev) |
---|
| 849 | REAL paprs(ngrid,klev+1) |
---|
[3493] | 850 | REAL pplay(ngrid,klev) |
---|
[2686] | 851 | REAL ztla(ngrid,klev) |
---|
| 852 | REAL zthl(ngrid,klev) |
---|
| 853 | |
---|
| 854 | REAL zqsatth(ngrid,klev) |
---|
| 855 | REAL zqsatenv(ngrid,klev) |
---|
| 856 | |
---|
| 857 | REAL sigma1(ngrid,klev) |
---|
| 858 | REAL sigma2(ngrid,klev) |
---|
| 859 | REAL qlth(ngrid,klev) |
---|
| 860 | REAL qlenv(ngrid,klev) |
---|
| 861 | REAL qltot(ngrid,klev) |
---|
[2945] | 862 | REAL cth(ngrid,klev) |
---|
[2686] | 863 | REAL cenv(ngrid,klev) |
---|
| 864 | REAL ctot(ngrid,klev) |
---|
[2945] | 865 | REAL cth_vol(ngrid,klev) |
---|
| 866 | REAL cenv_vol(ngrid,klev) |
---|
| 867 | REAL ctot_vol(ngrid,klev) |
---|
[2686] | 868 | REAL rneb(ngrid,klev) |
---|
| 869 | REAL t(ngrid,klev) |
---|
| 870 | REAL qsatmmussig1,qsatmmussig2,sqrtpi,sqrt2,sqrt2pi,pi |
---|
| 871 | REAL rdd,cppd,Lv |
---|
| 872 | REAL alth,alenv,ath,aenv |
---|
[2957] | 873 | REAL sth,senv,sigma1s,sigma2s,sigma1s_fraca,sigma1s_ratqs |
---|
[3493] | 874 | REAL inverse_rho,beta,a_Brooks,b_Brooks,A_Maj_Brooks,Dx_Brooks,f_Brooks |
---|
[2957] | 875 | REAL xth,xenv,exp_xenv1,exp_xenv2,exp_xth1,exp_xth2 |
---|
[2686] | 876 | REAL xth1,xth2,xenv1,xenv2,deltasth, deltasenv |
---|
[2945] | 877 | REAL IntJ,IntI1,IntI2,IntI3,IntJ_CF,IntI1_CF,IntI3_CF,coeffqlenv,coeffqlth |
---|
[2686] | 878 | REAL Tbef,zdelta,qsatbef,zcor |
---|
| 879 | REAL qlbef |
---|
| 880 | REAL ratqs(ngrid,klev) ! determine la largeur de distribution de vapeur |
---|
| 881 | ! Change the width of the PDF used for vertical subgrid scale heterogeneity |
---|
| 882 | ! (J Jouhaud, JL Dufresne, JB Madeleine) |
---|
[2911] | 883 | REAL,SAVE :: vert_alpha, vert_alpha_th |
---|
| 884 | !$OMP THREADPRIVATE(vert_alpha, vert_alpha_th) |
---|
[2957] | 885 | REAL,SAVE :: sigma1s_factor=1.1 |
---|
| 886 | REAL,SAVE :: sigma1s_power=0.6 |
---|
[3570] | 887 | REAL,SAVE :: sigma2s_factor=0.09 |
---|
| 888 | REAL,SAVE :: sigma2s_power=0.5 |
---|
[2960] | 889 | REAL,SAVE :: cloudth_ratqsmin=-1. |
---|
[3570] | 890 | !$OMP THREADPRIVATE(sigma1s_factor,sigma1s_power,sigma2s_factor,sigma2s_power,cloudth_ratqsmin) |
---|
[2957] | 891 | INTEGER, SAVE :: iflag_cloudth_vert_noratqs=0 |
---|
| 892 | !$OMP THREADPRIVATE(iflag_cloudth_vert_noratqs) |
---|
| 893 | |
---|
[2686] | 894 | LOGICAL, SAVE :: firstcall = .TRUE. |
---|
[2910] | 895 | !$OMP THREADPRIVATE(firstcall) |
---|
[2686] | 896 | |
---|
| 897 | REAL zpdf_sig(ngrid),zpdf_k(ngrid),zpdf_delta(ngrid) |
---|
| 898 | REAL zpdf_a(ngrid),zpdf_b(ngrid),zpdf_e1(ngrid),zpdf_e2(ngrid) |
---|
| 899 | REAL zqs(ngrid), qcloud(ngrid) |
---|
| 900 | REAL erf |
---|
| 901 | |
---|
[3493] | 902 | REAL rhodz(ngrid,klev) |
---|
| 903 | REAL zrho(ngrid,klev) |
---|
| 904 | REAL dz(ngrid,klev) |
---|
| 905 | |
---|
| 906 | DO ind1 = 1, ngrid |
---|
| 907 | !Layer calculation |
---|
| 908 | rhodz(ind1,ind2) = (paprs(ind1,ind2)-paprs(ind1,ind2+1))/rg !kg/m2 |
---|
| 909 | zrho(ind1,ind2) = pplay(ind1,ind2)/t(ind1,ind2)/rd !kg/m3 |
---|
| 910 | dz(ind1,ind2) = rhodz(ind1,ind2)/zrho(ind1,ind2) !m : epaisseur de la couche en metre |
---|
| 911 | END DO |
---|
| 912 | |
---|
| 913 | |
---|
[2686] | 914 | !------------------------------------------------------------------------------ |
---|
| 915 | ! Initialize |
---|
| 916 | !------------------------------------------------------------------------------ |
---|
| 917 | sigma1(:,:)=0. |
---|
| 918 | sigma2(:,:)=0. |
---|
| 919 | qlth(:,:)=0. |
---|
| 920 | qlenv(:,:)=0. |
---|
| 921 | qltot(:,:)=0. |
---|
| 922 | rneb(:,:)=0. |
---|
| 923 | qcloud(:)=0. |
---|
| 924 | cth(:,:)=0. |
---|
| 925 | cenv(:,:)=0. |
---|
| 926 | ctot(:,:)=0. |
---|
[2945] | 927 | cth_vol(:,:)=0. |
---|
| 928 | cenv_vol(:,:)=0. |
---|
| 929 | ctot_vol(:,:)=0. |
---|
[2686] | 930 | qsatmmussig1=0. |
---|
| 931 | qsatmmussig2=0. |
---|
| 932 | rdd=287.04 |
---|
| 933 | cppd=1005.7 |
---|
| 934 | pi=3.14159 |
---|
| 935 | Lv=2.5e6 |
---|
| 936 | sqrt2pi=sqrt(2.*pi) |
---|
| 937 | sqrt2=sqrt(2.) |
---|
| 938 | sqrtpi=sqrt(pi) |
---|
| 939 | |
---|
| 940 | IF (firstcall) THEN |
---|
| 941 | vert_alpha=0.5 |
---|
| 942 | CALL getin_p('cloudth_vert_alpha',vert_alpha) |
---|
| 943 | WRITE(*,*) 'cloudth_vert_alpha = ', vert_alpha |
---|
[2911] | 944 | ! The factor used for the thermal is equal to that of the environment |
---|
| 945 | ! if nothing is explicitly specified in the def file |
---|
| 946 | vert_alpha_th=vert_alpha |
---|
| 947 | CALL getin_p('cloudth_vert_alpha_th',vert_alpha_th) |
---|
| 948 | WRITE(*,*) 'cloudth_vert_alpha_th = ', vert_alpha_th |
---|
[2957] | 949 | ! Factor used in the calculation of sigma1s |
---|
| 950 | CALL getin_p('cloudth_sigma1s_factor',sigma1s_factor) |
---|
| 951 | WRITE(*,*) 'cloudth_sigma1s_factor = ', sigma1s_factor |
---|
| 952 | ! Power used in the calculation of sigma1s |
---|
| 953 | CALL getin_p('cloudth_sigma1s_power',sigma1s_power) |
---|
| 954 | WRITE(*,*) 'cloudth_sigma1s_power = ', sigma1s_power |
---|
[3570] | 955 | ! Factor used in the calculation of sigma2s |
---|
| 956 | CALL getin_p('cloudth_sigma2s_factor',sigma2s_factor) |
---|
| 957 | WRITE(*,*) 'cloudth_sigma2s_factor = ', sigma2s_factor |
---|
| 958 | ! Power used in the calculation of sigma2s |
---|
| 959 | CALL getin_p('cloudth_sigma2s_power',sigma2s_power) |
---|
| 960 | WRITE(*,*) 'cloudth_sigma2s_power = ', sigma2s_power |
---|
[2960] | 961 | ! Minimum value for the environmental air subgrid water distrib |
---|
| 962 | CALL getin_p('cloudth_ratqsmin',cloudth_ratqsmin) |
---|
| 963 | WRITE(*,*) 'cloudth_ratqsmin = ', cloudth_ratqsmin |
---|
[2957] | 964 | ! Remove the dependency to ratqs from the variance of the vertical PDF |
---|
| 965 | CALL getin_p('iflag_cloudth_vert_noratqs',iflag_cloudth_vert_noratqs) |
---|
| 966 | WRITE(*,*) 'iflag_cloudth_vert_noratqs = ', iflag_cloudth_vert_noratqs |
---|
| 967 | |
---|
[2686] | 968 | firstcall=.FALSE. |
---|
| 969 | ENDIF |
---|
| 970 | |
---|
| 971 | !------------------------------------------------------------------------------- |
---|
| 972 | ! Calcul de la fraction du thermique et des ecart-types des distributions |
---|
| 973 | !------------------------------------------------------------------------------- |
---|
| 974 | do ind1=1,ngrid |
---|
| 975 | |
---|
| 976 | if ((ztv(ind1,1).gt.ztv(ind1,2)).and.(fraca(ind1,ind2).gt.1.e-10)) then !Thermal and environnement |
---|
| 977 | |
---|
| 978 | zqenv(ind1)=(po(ind1)-fraca(ind1,ind2)*zqta(ind1,ind2))/(1.-fraca(ind1,ind2)) !qt = a*qtth + (1-a)*qtenv |
---|
| 979 | |
---|
| 980 | |
---|
| 981 | Tbef=zthl(ind1,ind2)*zpspsk(ind1,ind2) |
---|
| 982 | zdelta=MAX(0.,SIGN(1.,RTT-Tbef)) |
---|
| 983 | qsatbef= R2ES*FOEEW(Tbef,zdelta)/paprs(ind1,ind2) |
---|
| 984 | qsatbef=MIN(0.5,qsatbef) |
---|
| 985 | zcor=1./(1.-retv*qsatbef) |
---|
| 986 | qsatbef=qsatbef*zcor |
---|
| 987 | zqsatenv(ind1,ind2)=qsatbef |
---|
| 988 | |
---|
| 989 | |
---|
| 990 | alenv=(0.622*Lv*zqsatenv(ind1,ind2))/(rdd*zthl(ind1,ind2)**2) !qsl, p84 |
---|
| 991 | aenv=1./(1.+(alenv*Lv/cppd)) !al, p84 |
---|
| 992 | senv=aenv*(po(ind1)-zqsatenv(ind1,ind2)) !s, p84 |
---|
| 993 | |
---|
| 994 | !zqenv = qt environnement |
---|
| 995 | !zqsatenv = qsat environnement |
---|
| 996 | !zthl = Tl environnement |
---|
| 997 | |
---|
| 998 | |
---|
| 999 | Tbef=ztla(ind1,ind2)*zpspsk(ind1,ind2) |
---|
| 1000 | zdelta=MAX(0.,SIGN(1.,RTT-Tbef)) |
---|
| 1001 | qsatbef= R2ES * FOEEW(Tbef,zdelta)/paprs(ind1,ind2) |
---|
| 1002 | qsatbef=MIN(0.5,qsatbef) |
---|
| 1003 | zcor=1./(1.-retv*qsatbef) |
---|
| 1004 | qsatbef=qsatbef*zcor |
---|
| 1005 | zqsatth(ind1,ind2)=qsatbef |
---|
| 1006 | |
---|
| 1007 | alth=(0.622*Lv*zqsatth(ind1,ind2))/(rdd*ztla(ind1,ind2)**2) !qsl, p84 |
---|
| 1008 | ath=1./(1.+(alth*Lv/cppd)) !al, p84 |
---|
| 1009 | sth=ath*(zqta(ind1,ind2)-zqsatth(ind1,ind2)) !s, p84 |
---|
| 1010 | |
---|
| 1011 | |
---|
| 1012 | !zqta = qt thermals |
---|
| 1013 | !zqsatth = qsat thermals |
---|
| 1014 | !ztla = Tl thermals |
---|
| 1015 | |
---|
| 1016 | !------------------------------------------------------------------------------ |
---|
| 1017 | ! s standard deviation |
---|
| 1018 | !------------------------------------------------------------------------------ |
---|
| 1019 | |
---|
[2957] | 1020 | sigma1s_fraca = (sigma1s_factor**0.5)*(fraca(ind1,ind2)**sigma1s_power) / & |
---|
| 1021 | & (1-fraca(ind1,ind2))*((sth-senv)**2)**0.5 |
---|
| 1022 | ! sigma1s_fraca = (1.1**0.5)*(fraca(ind1,ind2)**0.6)/(1-fraca(ind1,ind2))*((sth-senv)**2)**0.5 |
---|
[2960] | 1023 | IF (cloudth_ratqsmin>0.) THEN |
---|
| 1024 | sigma1s_ratqs = cloudth_ratqsmin*po(ind1) |
---|
| 1025 | ELSE |
---|
| 1026 | sigma1s_ratqs = ratqs(ind1,ind2)*po(ind1) |
---|
| 1027 | ENDIF |
---|
[2957] | 1028 | sigma1s = sigma1s_fraca + sigma1s_ratqs |
---|
[3570] | 1029 | sigma2s=(sigma2s_factor*(((sth-senv)**2)**0.5)/((fraca(ind1,ind2)+0.02)**sigma2s_power))+0.002*zqta(ind1,ind2) |
---|
[2686] | 1030 | ! tests |
---|
| 1031 | ! sigma1s=(0.92**0.5)*(fraca(ind1,ind2)**0.5)/(1-fraca(ind1,ind2))*((sth-senv)**2)**0.5+ratqs(ind1,ind2)*po(ind1) |
---|
| 1032 | ! sigma1s=(0.92*(fraca(ind1,ind2)**0.5)/(1-fraca(ind1,ind2))*(((sth-senv)**2)**0.5))+0.002*zqenv(ind1) |
---|
| 1033 | ! sigma2s=0.09*((sth-senv)**2)**0.5/(fraca(ind1,ind2)+0.02)**0.5+0.002*zqta(ind1,ind2) |
---|
| 1034 | ! sigma2s=(0.09*(((sth-senv)**2)**0.5)/((fraca(ind1,ind2)+0.02)**0.5))+ratqs(ind1,ind2)*zqta(ind1,ind2) |
---|
| 1035 | ! if (paprs(ind1,ind2).gt.90000) then |
---|
| 1036 | ! ratqs(ind1,ind2)=0.002 |
---|
| 1037 | ! else |
---|
| 1038 | ! ratqs(ind1,ind2)=0.002+0.0*(90000-paprs(ind1,ind2))/20000 |
---|
| 1039 | ! endif |
---|
| 1040 | ! sigma1s=(1.1**0.5)*(fraca(ind1,ind2)**0.6)/(1-fraca(ind1,ind2))*((sth-senv)**2)**0.5+0.002*po(ind1) |
---|
| 1041 | ! sigma2s=0.11*((sth-senv)**2)**0.5/(fraca(ind1,ind2)+0.01)**0.4+0.002*zqta(ind1,ind2) |
---|
| 1042 | ! sigma1s=ratqs(ind1,ind2)*po(ind1) |
---|
| 1043 | ! sigma2s=0.11*((sth-senv)**2)**0.5/(fraca(ind1,ind2)+0.02)**0.4+0.00003 |
---|
| 1044 | |
---|
| 1045 | IF (iflag_cloudth_vert == 1) THEN |
---|
| 1046 | !------------------------------------------------------------------------------- |
---|
| 1047 | ! Version 2: Modification from Arnaud Jam according to JL Dufrense. Condensate from qsat-ratqs |
---|
| 1048 | !------------------------------------------------------------------------------- |
---|
| 1049 | |
---|
| 1050 | deltasenv=aenv*ratqs(ind1,ind2)*zqsatenv(ind1,ind2) |
---|
| 1051 | deltasth=ath*ratqs(ind1,ind2)*zqsatth(ind1,ind2) |
---|
| 1052 | |
---|
| 1053 | xenv1=(senv-deltasenv)/(sqrt(2.)*sigma1s) |
---|
| 1054 | xenv2=(senv+deltasenv)/(sqrt(2.)*sigma1s) |
---|
| 1055 | xth1=(sth-deltasth)/(sqrt(2.)*sigma2s) |
---|
| 1056 | xth2=(sth+deltasth)/(sqrt(2.)*sigma2s) |
---|
| 1057 | coeffqlenv=(sigma1s)**2/(2*sqrtpi*deltasenv) |
---|
| 1058 | coeffqlth=(sigma2s)**2/(2*sqrtpi*deltasth) |
---|
| 1059 | |
---|
| 1060 | cth(ind1,ind2)=0.5*(1.+1.*erf(xth2)) |
---|
| 1061 | cenv(ind1,ind2)=0.5*(1.+1.*erf(xenv2)) |
---|
| 1062 | ctot(ind1,ind2)=fraca(ind1,ind2)*cth(ind1,ind2)+(1.-1.*fraca(ind1,ind2))*cenv(ind1,ind2) |
---|
| 1063 | |
---|
| 1064 | ! Environment |
---|
| 1065 | IntJ=sigma1s*(exp(-1.*xenv1**2)/sqrt2pi)+0.5*senv*(1+erf(xenv1)) |
---|
| 1066 | IntI1=coeffqlenv*0.5*(0.5*sqrtpi*(erf(xenv2)-erf(xenv1))+xenv1*exp(-1.*xenv1**2)-xenv2*exp(-1.*xenv2**2)) |
---|
| 1067 | IntI2=coeffqlenv*xenv2*(exp(-1.*xenv2**2)-exp(-1.*xenv1**2)) |
---|
| 1068 | IntI3=coeffqlenv*0.5*sqrtpi*xenv2**2*(erf(xenv2)-erf(xenv1)) |
---|
| 1069 | |
---|
| 1070 | qlenv(ind1,ind2)=IntJ+IntI1+IntI2+IntI3 |
---|
| 1071 | |
---|
| 1072 | ! Thermal |
---|
| 1073 | IntJ=sigma2s*(exp(-1.*xth1**2)/sqrt2pi)+0.5*sth*(1+erf(xth1)) |
---|
| 1074 | IntI1=coeffqlth*0.5*(0.5*sqrtpi*(erf(xth2)-erf(xth1))+xth1*exp(-1.*xth1**2)-xth2*exp(-1.*xth2**2)) |
---|
| 1075 | IntI2=coeffqlth*xth2*(exp(-1.*xth2**2)-exp(-1.*xth1**2)) |
---|
| 1076 | IntI3=coeffqlth*0.5*sqrtpi*xth2**2*(erf(xth2)-erf(xth1)) |
---|
| 1077 | qlth(ind1,ind2)=IntJ+IntI1+IntI2+IntI3 |
---|
| 1078 | qltot(ind1,ind2)=fraca(ind1,ind2)*qlth(ind1,ind2)+(1.-1.*fraca(ind1,ind2))*qlenv(ind1,ind2) |
---|
| 1079 | |
---|
[2911] | 1080 | ELSE IF (iflag_cloudth_vert >= 3) THEN |
---|
[3493] | 1081 | IF (iflag_cloudth_vert < 5) THEN |
---|
[2686] | 1082 | !------------------------------------------------------------------------------- |
---|
| 1083 | ! Version 3: Changes by J. Jouhaud; condensation for q > -delta s |
---|
| 1084 | !------------------------------------------------------------------------------- |
---|
| 1085 | ! deltasenv=aenv*ratqs(ind1,ind2)*po(ind1) |
---|
| 1086 | ! deltasth=ath*ratqs(ind1,ind2)*zqta(ind1,ind2) |
---|
| 1087 | ! deltasenv=aenv*ratqs(ind1,ind2)*zqsatenv(ind1,ind2) |
---|
| 1088 | ! deltasth=ath*ratqs(ind1,ind2)*zqsatth(ind1,ind2) |
---|
[2911] | 1089 | IF (iflag_cloudth_vert == 3) THEN |
---|
| 1090 | deltasenv=aenv*vert_alpha*sigma1s |
---|
| 1091 | deltasth=ath*vert_alpha_th*sigma2s |
---|
| 1092 | ELSE IF (iflag_cloudth_vert == 4) THEN |
---|
[2957] | 1093 | IF (iflag_cloudth_vert_noratqs == 1) THEN |
---|
[2959] | 1094 | deltasenv=vert_alpha*max(sigma1s_fraca,1e-10) |
---|
[2957] | 1095 | deltasth=vert_alpha_th*sigma2s |
---|
| 1096 | ELSE |
---|
| 1097 | deltasenv=vert_alpha*sigma1s |
---|
| 1098 | deltasth=vert_alpha_th*sigma2s |
---|
| 1099 | ENDIF |
---|
[2911] | 1100 | ENDIF |
---|
[2686] | 1101 | |
---|
| 1102 | xenv1=-(senv+deltasenv)/(sqrt(2.)*sigma1s) |
---|
| 1103 | xenv2=-(senv-deltasenv)/(sqrt(2.)*sigma1s) |
---|
| 1104 | exp_xenv1 = exp(-1.*xenv1**2) |
---|
| 1105 | exp_xenv2 = exp(-1.*xenv2**2) |
---|
| 1106 | xth1=-(sth+deltasth)/(sqrt(2.)*sigma2s) |
---|
| 1107 | xth2=-(sth-deltasth)/(sqrt(2.)*sigma2s) |
---|
| 1108 | exp_xth1 = exp(-1.*xth1**2) |
---|
| 1109 | exp_xth2 = exp(-1.*xth2**2) |
---|
| 1110 | |
---|
[2945] | 1111 | !CF_surfacique |
---|
[2686] | 1112 | cth(ind1,ind2)=0.5*(1.-1.*erf(xth1)) |
---|
| 1113 | cenv(ind1,ind2)=0.5*(1.-1.*erf(xenv1)) |
---|
[2945] | 1114 | ctot(ind1,ind2)=fraca(ind1,ind2)*cth(ind1,ind2)+(1.-1.*fraca(ind1,ind2))*cenv(ind1,ind2) |
---|
[2686] | 1115 | |
---|
[2945] | 1116 | |
---|
| 1117 | !CF_volumique & eau condense |
---|
[2686] | 1118 | !environnement |
---|
| 1119 | IntJ=0.5*senv*(1-erf(xenv2))+(sigma1s/sqrt2pi)*exp_xenv2 |
---|
[2945] | 1120 | IntJ_CF=0.5*(1.-1.*erf(xenv2)) |
---|
[2686] | 1121 | if (deltasenv .lt. 1.e-10) then |
---|
| 1122 | qlenv(ind1,ind2)=IntJ |
---|
[2945] | 1123 | cenv_vol(ind1,ind2)=IntJ_CF |
---|
[2686] | 1124 | else |
---|
| 1125 | IntI1=(((senv+deltasenv)**2+(sigma1s)**2)/(8*deltasenv))*(erf(xenv2)-erf(xenv1)) |
---|
| 1126 | IntI2=(sigma1s**2/(4*deltasenv*sqrtpi))*(xenv1*exp_xenv1-xenv2*exp_xenv2) |
---|
| 1127 | IntI3=((sqrt2*sigma1s*(senv+deltasenv))/(4*sqrtpi*deltasenv))*(exp_xenv1-exp_xenv2) |
---|
[2945] | 1128 | IntI1_CF=((senv+deltasenv)*(erf(xenv2)-erf(xenv1)))/(4*deltasenv) |
---|
| 1129 | IntI3_CF=(sqrt2*sigma1s*(exp_xenv1-exp_xenv2))/(4*sqrtpi*deltasenv) |
---|
[2686] | 1130 | qlenv(ind1,ind2)=IntJ+IntI1+IntI2+IntI3 |
---|
[2945] | 1131 | cenv_vol(ind1,ind2)=IntJ_CF+IntI1_CF+IntI3_CF |
---|
[2686] | 1132 | endif |
---|
| 1133 | |
---|
| 1134 | !thermique |
---|
| 1135 | IntJ=0.5*sth*(1-erf(xth2))+(sigma2s/sqrt2pi)*exp_xth2 |
---|
[2945] | 1136 | IntJ_CF=0.5*(1.-1.*erf(xth2)) |
---|
| 1137 | if (deltasth .lt. 1.e-10) then |
---|
[2686] | 1138 | qlth(ind1,ind2)=IntJ |
---|
[2945] | 1139 | cth_vol(ind1,ind2)=IntJ_CF |
---|
[2686] | 1140 | else |
---|
| 1141 | IntI1=(((sth+deltasth)**2+(sigma2s)**2)/(8*deltasth))*(erf(xth2)-erf(xth1)) |
---|
| 1142 | IntI2=(sigma2s**2/(4*deltasth*sqrtpi))*(xth1*exp_xth1-xth2*exp_xth2) |
---|
| 1143 | IntI3=((sqrt2*sigma2s*(sth+deltasth))/(4*sqrtpi*deltasth))*(exp_xth1-exp_xth2) |
---|
[2945] | 1144 | IntI1_CF=((sth+deltasth)*(erf(xth2)-erf(xth1)))/(4*deltasth) |
---|
| 1145 | IntI3_CF=(sqrt2*sigma2s*(exp_xth1-exp_xth2))/(4*sqrtpi*deltasth) |
---|
[2686] | 1146 | qlth(ind1,ind2)=IntJ+IntI1+IntI2+IntI3 |
---|
[2945] | 1147 | cth_vol(ind1,ind2)=IntJ_CF+IntI1_CF+IntI3_CF |
---|
[2686] | 1148 | endif |
---|
| 1149 | |
---|
| 1150 | qltot(ind1,ind2)=fraca(ind1,ind2)*qlth(ind1,ind2)+(1.-1.*fraca(ind1,ind2))*qlenv(ind1,ind2) |
---|
[2945] | 1151 | ctot_vol(ind1,ind2)=fraca(ind1,ind2)*cth_vol(ind1,ind2)+(1.-1.*fraca(ind1,ind2))*cenv_vol(ind1,ind2) |
---|
[2686] | 1152 | |
---|
[3493] | 1153 | ELSE IF (iflag_cloudth_vert == 5) THEN |
---|
| 1154 | sigma1s=(0.71794+0.000498239*dz(ind1,ind2))*(fraca(ind1,ind2)**0.5)/(1-fraca(ind1,ind2))*(((sth-senv)**2)**0.5)+ratqs(ind1,ind2)*po(ind1) !Environment |
---|
| 1155 | sigma2s=(0.03218+0.000092655*dz(ind1,ind2))/((fraca(ind1,ind2)+0.02)**0.5)*(((sth-senv)**2)**0.5)+0.002*zqta(ind1,ind2) !Thermals |
---|
| 1156 | !sigma1s=(1.1**0.5)*(fraca(ind1,ind2)**0.6)/(1-fraca(ind1,ind2))*((sth-senv)**2)**0.5+0.002*po(ind1) |
---|
| 1157 | !sigma2s=0.11*((sth-senv)**2)**0.5/(fraca(ind1,ind2)+0.01)**0.4+0.002*zqta(ind1,ind2) |
---|
| 1158 | xth=sth/(sqrt(2.)*sigma2s) |
---|
| 1159 | xenv=senv/(sqrt(2.)*sigma1s) |
---|
| 1160 | |
---|
| 1161 | !Volumique |
---|
| 1162 | cth_vol(ind1,ind2)=0.5*(1.+1.*erf(xth)) |
---|
| 1163 | cenv_vol(ind1,ind2)=0.5*(1.+1.*erf(xenv)) |
---|
| 1164 | ctot_vol(ind1,ind2)=fraca(ind1,ind2)*cth_vol(ind1,ind2)+(1.-1.*fraca(ind1,ind2))*cenv_vol(ind1,ind2) |
---|
| 1165 | !print *,'jeanjean_CV=',ctot_vol(ind1,ind2) |
---|
| 1166 | |
---|
| 1167 | qlth(ind1,ind2)=sigma2s*((exp(-1.*xth**2)/sqrt2pi)+xth*sqrt(2.)*cth_vol(ind1,ind2)) |
---|
| 1168 | qlenv(ind1,ind2)=sigma1s*((exp(-1.*xenv**2)/sqrt2pi)+xenv*sqrt(2.)*cenv_vol(ind1,ind2)) |
---|
| 1169 | qltot(ind1,ind2)=fraca(ind1,ind2)*qlth(ind1,ind2)+(1.-1.*fraca(ind1,ind2))*qlenv(ind1,ind2) |
---|
| 1170 | |
---|
| 1171 | !Surfacique |
---|
| 1172 | !Neggers |
---|
| 1173 | !beta=0.0044 |
---|
| 1174 | !inverse_rho=1.+beta*dz(ind1,ind2) |
---|
| 1175 | !print *,'jeanjean : beta=',beta |
---|
| 1176 | !cth(ind1,ind2)=cth_vol(ind1,ind2)*inverse_rho |
---|
| 1177 | !cenv(ind1,ind2)=cenv_vol(ind1,ind2)*inverse_rho |
---|
| 1178 | !ctot(ind1,ind2)=fraca(ind1,ind2)*cth(ind1,ind2)+(1.-1.*fraca(ind1,ind2))*cenv(ind1,ind2) |
---|
| 1179 | |
---|
| 1180 | !Brooks |
---|
| 1181 | a_Brooks=0.6694 |
---|
| 1182 | b_Brooks=0.1882 |
---|
| 1183 | A_Maj_Brooks=0.1635 !-- sans shear |
---|
| 1184 | !A_Maj_Brooks=0.17 !-- ARM LES |
---|
| 1185 | !A_Maj_Brooks=0.18 !-- RICO LES |
---|
| 1186 | !A_Maj_Brooks=0.19 !-- BOMEX LES |
---|
| 1187 | Dx_Brooks=200000. |
---|
| 1188 | f_Brooks=A_Maj_Brooks*(dz(ind1,ind2)**(a_Brooks))*(Dx_Brooks**(-b_Brooks)) |
---|
| 1189 | !print *,'jeanjean_f=',f_Brooks |
---|
| 1190 | |
---|
| 1191 | cth(ind1,ind2)=1./(1.+exp(-1.*f_Brooks)*((1./max(1.e-15,min(cth_vol(ind1,ind2),1.)))- 1.)) |
---|
| 1192 | cenv(ind1,ind2)=1./(1.+exp(-1.*f_Brooks)*((1./max(1.e-15,min(cenv_vol(ind1,ind2),1.)))- 1.)) |
---|
| 1193 | ctot(ind1,ind2)=1./(1.+exp(-1.*f_Brooks)*((1./max(1.e-15,min(ctot_vol(ind1,ind2),1.)))- 1.)) |
---|
| 1194 | !print *,'JJ_ctot_1',ctot(ind1,ind2) |
---|
| 1195 | |
---|
| 1196 | |
---|
| 1197 | |
---|
| 1198 | |
---|
| 1199 | |
---|
| 1200 | ENDIF ! of if (iflag_cloudth_vert<5) |
---|
[2911] | 1201 | ENDIF ! of if (iflag_cloudth_vert==1 or 3 or 4) |
---|
[2686] | 1202 | |
---|
[3495] | 1203 | ! if (ctot(ind1,ind2).lt.1.e-10) then |
---|
| 1204 | if (cenv(ind1,ind2).lt.1.e-10.or.cth(ind1,ind2).lt.1.e-10) then |
---|
[2686] | 1205 | ctot(ind1,ind2)=0. |
---|
[2945] | 1206 | ctot_vol(ind1,ind2)=0. |
---|
[3493] | 1207 | qcloud(ind1)=zqsatenv(ind1,ind2) |
---|
[2686] | 1208 | |
---|
[3493] | 1209 | else |
---|
[2686] | 1210 | |
---|
| 1211 | qcloud(ind1)=qltot(ind1,ind2)/ctot(ind1,ind2)+zqs(ind1) |
---|
| 1212 | ! qcloud(ind1)=fraca(ind1,ind2)*qlth(ind1,ind2)/cth(ind1,ind2) & |
---|
| 1213 | ! & +(1.-1.*fraca(ind1,ind2))*qlenv(ind1,ind2)/cenv(ind1,ind2)+zqs(ind1) |
---|
| 1214 | |
---|
| 1215 | endif |
---|
| 1216 | |
---|
[3493] | 1217 | else ! gaussienne environnement seule |
---|
[2686] | 1218 | |
---|
| 1219 | zqenv(ind1)=po(ind1) |
---|
| 1220 | Tbef=t(ind1,ind2) |
---|
| 1221 | zdelta=MAX(0.,SIGN(1.,RTT-Tbef)) |
---|
| 1222 | qsatbef= R2ES * FOEEW(Tbef,zdelta)/paprs(ind1,ind2) |
---|
| 1223 | qsatbef=MIN(0.5,qsatbef) |
---|
| 1224 | zcor=1./(1.-retv*qsatbef) |
---|
| 1225 | qsatbef=qsatbef*zcor |
---|
| 1226 | zqsatenv(ind1,ind2)=qsatbef |
---|
| 1227 | |
---|
| 1228 | |
---|
[3493] | 1229 | ! qlbef=Max(po(ind1)-zqsatenv(ind1,ind2),0.) |
---|
[2686] | 1230 | zthl(ind1,ind2)=t(ind1,ind2)*(101325/paprs(ind1,ind2))**(rdd/cppd) |
---|
[3495] | 1231 | alenv=(0.622*Lv*zqsatenv(ind1,ind2))/(rdd*zthl(ind1,ind2)**2) |
---|
[2686] | 1232 | aenv=1./(1.+(alenv*Lv/cppd)) |
---|
[3495] | 1233 | senv=aenv*(po(ind1)-zqsatenv(ind1,ind2)) |
---|
| 1234 | sth=0. |
---|
[3493] | 1235 | |
---|
[2686] | 1236 | |
---|
| 1237 | sigma1s=ratqs(ind1,ind2)*zqenv(ind1) |
---|
[3495] | 1238 | sigma2s=0. |
---|
[2686] | 1239 | |
---|
[3493] | 1240 | sqrt2pi=sqrt(2.*pi) |
---|
| 1241 | xenv=senv/(sqrt(2.)*sigma1s) |
---|
[2686] | 1242 | ctot(ind1,ind2)=0.5*(1.+1.*erf(xenv)) |
---|
[3495] | 1243 | ctot_vol(ind1,ind2)=ctot(ind1,ind2) |
---|
[3493] | 1244 | qltot(ind1,ind2)=sigma1s*((exp(-1.*xenv**2)/sqrt2pi)+xenv*sqrt(2.)*cenv(ind1,ind2)) |
---|
[2686] | 1245 | |
---|
| 1246 | if (ctot(ind1,ind2).lt.1.e-3) then |
---|
| 1247 | ctot(ind1,ind2)=0. |
---|
[3495] | 1248 | qcloud(ind1)=zqsatenv(ind1,ind2) |
---|
[2686] | 1249 | |
---|
| 1250 | else |
---|
| 1251 | |
---|
[3495] | 1252 | ! ctot(ind1,ind2)=ctot(ind1,ind2) |
---|
[2686] | 1253 | qcloud(ind1)=qltot(ind1,ind2)/ctot(ind1,ind2)+zqsatenv(ind1,ind2) |
---|
| 1254 | |
---|
[3493] | 1255 | endif |
---|
[2686] | 1256 | |
---|
[3493] | 1257 | |
---|
| 1258 | |
---|
| 1259 | |
---|
[2686] | 1260 | endif ! From the separation (thermal/envrionnement) et (environnement) only, l.335 et l.492 |
---|
[2958] | 1261 | ! Outputs used to check the PDFs |
---|
| 1262 | cloudth_senv(ind1,ind2) = senv |
---|
| 1263 | cloudth_sth(ind1,ind2) = sth |
---|
| 1264 | cloudth_sigmaenv(ind1,ind2) = sigma1s |
---|
| 1265 | cloudth_sigmath(ind1,ind2) = sigma2s |
---|
| 1266 | |
---|
[2686] | 1267 | enddo ! from the loop on ngrid l.333 |
---|
| 1268 | return |
---|
| 1269 | ! end |
---|
| 1270 | END SUBROUTINE cloudth_vert_v3 |
---|
| 1271 | ! |
---|
[3493] | 1272 | |
---|
| 1273 | |
---|
| 1274 | |
---|
| 1275 | |
---|
| 1276 | |
---|
| 1277 | |
---|
| 1278 | |
---|
| 1279 | |
---|
| 1280 | |
---|
| 1281 | |
---|
| 1282 | |
---|
| 1283 | SUBROUTINE cloudth_v6(ngrid,klev,ind2, & |
---|
| 1284 | & ztv,po,zqta,fraca, & |
---|
| 1285 | & qcloud,ctot_surf,ctot_vol,zpspsk,paprs,pplay,ztla,zthl, & |
---|
| 1286 | & ratqs,zqs,T) |
---|
| 1287 | |
---|
| 1288 | |
---|
| 1289 | USE ioipsl_getin_p_mod, ONLY : getin_p |
---|
| 1290 | USE phys_output_var_mod, ONLY : cloudth_sth,cloudth_senv, & |
---|
| 1291 | & cloudth_sigmath,cloudth_sigmaenv |
---|
| 1292 | |
---|
| 1293 | IMPLICIT NONE |
---|
| 1294 | |
---|
| 1295 | #include "YOMCST.h" |
---|
| 1296 | #include "YOETHF.h" |
---|
| 1297 | #include "FCTTRE.h" |
---|
| 1298 | #include "thermcell.h" |
---|
| 1299 | #include "nuage.h" |
---|
| 1300 | |
---|
| 1301 | |
---|
| 1302 | !Domain variables |
---|
| 1303 | INTEGER ngrid !indice Max lat-lon |
---|
| 1304 | INTEGER klev !indice Max alt |
---|
| 1305 | INTEGER ind1 !indice in [1:ngrid] |
---|
| 1306 | INTEGER ind2 !indice in [1:klev] |
---|
| 1307 | !thermal plume fraction |
---|
| 1308 | REAL fraca(ngrid,klev+1) !thermal plumes fraction in the gridbox |
---|
| 1309 | !temperatures |
---|
| 1310 | REAL T(ngrid,klev) !temperature |
---|
| 1311 | REAL zpspsk(ngrid,klev) !factor (p/p0)**kappa (used for potential variables) |
---|
| 1312 | REAL ztv(ngrid,klev) !potential temperature (voir thermcell_env.F90) |
---|
| 1313 | REAL ztla(ngrid,klev) !liquid temperature in the thermals (Tl_th) |
---|
| 1314 | REAL zthl(ngrid,klev) !liquid temperature in the environment (Tl_env) |
---|
| 1315 | !pressure |
---|
| 1316 | REAL paprs(ngrid,klev+1) !pressure at the interface of levels |
---|
| 1317 | REAL pplay(ngrid,klev) !pressure at the middle of the level |
---|
| 1318 | !humidity |
---|
| 1319 | REAL ratqs(ngrid,klev) !width of the total water subgrid-scale distribution |
---|
| 1320 | REAL po(ngrid) !total water (qt) |
---|
| 1321 | REAL zqenv(ngrid) !total water in the environment (qt_env) |
---|
| 1322 | REAL zqta(ngrid,klev) !total water in the thermals (qt_th) |
---|
| 1323 | REAL zqsatth(ngrid,klev) !water saturation level in the thermals (q_sat_th) |
---|
| 1324 | REAL zqsatenv(ngrid,klev) !water saturation level in the environment (q_sat_env) |
---|
| 1325 | REAL qlth(ngrid,klev) !condensed water in the thermals |
---|
| 1326 | REAL qlenv(ngrid,klev) !condensed water in the environment |
---|
| 1327 | REAL qltot(ngrid,klev) !condensed water in the gridbox |
---|
| 1328 | !cloud fractions |
---|
| 1329 | REAL cth_vol(ngrid,klev) !cloud fraction by volume in the thermals |
---|
| 1330 | REAL cenv_vol(ngrid,klev) !cloud fraction by volume in the environment |
---|
| 1331 | REAL ctot_vol(ngrid,klev) !cloud fraction by volume in the gridbox |
---|
| 1332 | REAL cth_surf(ngrid,klev) !cloud fraction by surface in the thermals |
---|
| 1333 | REAL cenv_surf(ngrid,klev) !cloud fraction by surface in the environment |
---|
| 1334 | REAL ctot_surf(ngrid,klev) !cloud fraction by surface in the gridbox |
---|
| 1335 | !PDF of saturation deficit variables |
---|
| 1336 | REAL rdd,cppd,Lv |
---|
| 1337 | REAL Tbef,zdelta,qsatbef,zcor |
---|
| 1338 | REAL alth,alenv,ath,aenv |
---|
| 1339 | REAL sth,senv !saturation deficits in the thermals and environment |
---|
| 1340 | REAL sigma_env,sigma_th !standard deviations of the biGaussian PDF |
---|
| 1341 | !cloud fraction variables |
---|
| 1342 | REAL xth,xenv |
---|
| 1343 | REAL inverse_rho,beta !Neggers et al. (2011) method |
---|
| 1344 | REAL a_Brooks,b_Brooks,A_Maj_Brooks,Dx_Brooks,f_Brooks !Brooks et al. (2005) method |
---|
| 1345 | !Incloud total water variables |
---|
| 1346 | REAL zqs(ngrid) !q_sat |
---|
| 1347 | REAL qcloud(ngrid) !eau totale dans le nuage |
---|
| 1348 | !Some arithmetic variables |
---|
| 1349 | REAL erf,pi,sqrt2,sqrt2pi |
---|
| 1350 | !Depth of the layer |
---|
| 1351 | REAL dz(ngrid,klev) !epaisseur de la couche en metre |
---|
| 1352 | REAL rhodz(ngrid,klev) |
---|
| 1353 | REAL zrho(ngrid,klev) |
---|
| 1354 | DO ind1 = 1, ngrid |
---|
| 1355 | rhodz(ind1,ind2) = (paprs(ind1,ind2)-paprs(ind1,ind2+1))/rg ![kg/m2] |
---|
| 1356 | zrho(ind1,ind2) = pplay(ind1,ind2)/T(ind1,ind2)/rd ![kg/m3] |
---|
| 1357 | dz(ind1,ind2) = rhodz(ind1,ind2)/zrho(ind1,ind2) ![m] |
---|
| 1358 | END DO |
---|
| 1359 | |
---|
| 1360 | !------------------------------------------------------------------------------ |
---|
| 1361 | ! Initialization |
---|
| 1362 | !------------------------------------------------------------------------------ |
---|
| 1363 | qlth(:,:)=0. |
---|
| 1364 | qlenv(:,:)=0. |
---|
| 1365 | qltot(:,:)=0. |
---|
| 1366 | cth_vol(:,:)=0. |
---|
| 1367 | cenv_vol(:,:)=0. |
---|
| 1368 | ctot_vol(:,:)=0. |
---|
| 1369 | cth_surf(:,:)=0. |
---|
| 1370 | cenv_surf(:,:)=0. |
---|
| 1371 | ctot_surf(:,:)=0. |
---|
| 1372 | qcloud(:)=0. |
---|
| 1373 | rdd=287.04 |
---|
| 1374 | cppd=1005.7 |
---|
| 1375 | pi=3.14159 |
---|
| 1376 | Lv=2.5e6 |
---|
| 1377 | sqrt2=sqrt(2.) |
---|
| 1378 | sqrt2pi=sqrt(2.*pi) |
---|
| 1379 | |
---|
| 1380 | |
---|
| 1381 | DO ind1=1,ngrid |
---|
| 1382 | !------------------------------------------------------------------------------- |
---|
| 1383 | !Both thermal and environment in the gridbox |
---|
| 1384 | !------------------------------------------------------------------------------- |
---|
| 1385 | IF ((ztv(ind1,1).gt.ztv(ind1,2)).and.(fraca(ind1,ind2).gt.1.e-10)) THEN |
---|
| 1386 | !-------------------------------------------- |
---|
| 1387 | !calcul de qsat_env |
---|
| 1388 | !-------------------------------------------- |
---|
| 1389 | Tbef=zthl(ind1,ind2)*zpspsk(ind1,ind2) |
---|
| 1390 | zdelta=MAX(0.,SIGN(1.,RTT-Tbef)) |
---|
| 1391 | qsatbef= R2ES*FOEEW(Tbef,zdelta)/paprs(ind1,ind2) |
---|
| 1392 | qsatbef=MIN(0.5,qsatbef) |
---|
| 1393 | zcor=1./(1.-retv*qsatbef) |
---|
| 1394 | qsatbef=qsatbef*zcor |
---|
| 1395 | zqsatenv(ind1,ind2)=qsatbef |
---|
| 1396 | !-------------------------------------------- |
---|
| 1397 | !calcul de s_env |
---|
| 1398 | !-------------------------------------------- |
---|
| 1399 | alenv=(0.622*Lv*zqsatenv(ind1,ind2))/(rdd*zthl(ind1,ind2)**2) !qsl, p84 these Arnaud Jam |
---|
| 1400 | aenv=1./(1.+(alenv*Lv/cppd)) !al, p84 these Arnaud Jam |
---|
| 1401 | senv=aenv*(po(ind1)-zqsatenv(ind1,ind2)) !s, p84 these Arnaud Jam |
---|
| 1402 | !-------------------------------------------- |
---|
| 1403 | !calcul de qsat_th |
---|
| 1404 | !-------------------------------------------- |
---|
| 1405 | Tbef=ztla(ind1,ind2)*zpspsk(ind1,ind2) |
---|
| 1406 | zdelta=MAX(0.,SIGN(1.,RTT-Tbef)) |
---|
| 1407 | qsatbef= R2ES * FOEEW(Tbef,zdelta)/paprs(ind1,ind2) |
---|
| 1408 | qsatbef=MIN(0.5,qsatbef) |
---|
| 1409 | zcor=1./(1.-retv*qsatbef) |
---|
| 1410 | qsatbef=qsatbef*zcor |
---|
| 1411 | zqsatth(ind1,ind2)=qsatbef |
---|
| 1412 | !-------------------------------------------- |
---|
| 1413 | !calcul de s_th |
---|
| 1414 | !-------------------------------------------- |
---|
| 1415 | alth=(0.622*Lv*zqsatth(ind1,ind2))/(rdd*ztla(ind1,ind2)**2) !qsl, p84 these Arnaud Jam |
---|
| 1416 | ath=1./(1.+(alth*Lv/cppd)) !al, p84 these Arnaud Jam |
---|
| 1417 | sth=ath*(zqta(ind1,ind2)-zqsatth(ind1,ind2)) !s, p84 these Arnaud Jam |
---|
| 1418 | !-------------------------------------------- |
---|
| 1419 | !calcul standard deviations bi-Gaussian PDF |
---|
| 1420 | !-------------------------------------------- |
---|
| 1421 | sigma_th=(0.03218+0.000092655*dz(ind1,ind2))/((fraca(ind1,ind2)+0.01)**0.5)*(((sth-senv)**2)**0.5)+0.002*zqta(ind1,ind2) |
---|
| 1422 | sigma_env=(0.71794+0.000498239*dz(ind1,ind2))*(fraca(ind1,ind2)**0.5)/(1-fraca(ind1,ind2))*(((sth-senv)**2)**0.5)+ratqs(ind1,ind2)*po(ind1) |
---|
| 1423 | xth=sth/(sqrt2*sigma_th) |
---|
| 1424 | xenv=senv/(sqrt2*sigma_env) |
---|
| 1425 | !-------------------------------------------- |
---|
| 1426 | !Cloud fraction by volume CF_vol |
---|
| 1427 | !-------------------------------------------- |
---|
| 1428 | cth_vol(ind1,ind2)=0.5*(1.+1.*erf(xth)) |
---|
| 1429 | cenv_vol(ind1,ind2)=0.5*(1.+1.*erf(xenv)) |
---|
| 1430 | ctot_vol(ind1,ind2)=fraca(ind1,ind2)*cth_vol(ind1,ind2)+(1.-1.*fraca(ind1,ind2))*cenv_vol(ind1,ind2) |
---|
| 1431 | !-------------------------------------------- |
---|
| 1432 | !Condensed water qc |
---|
| 1433 | !-------------------------------------------- |
---|
| 1434 | qlth(ind1,ind2)=sigma_th*((exp(-1.*xth**2)/sqrt2pi)+xth*sqrt2*cth_vol(ind1,ind2)) |
---|
| 1435 | qlenv(ind1,ind2)=sigma_env*((exp(-1.*xenv**2)/sqrt2pi)+xenv*sqrt2*cenv_vol(ind1,ind2)) |
---|
| 1436 | qltot(ind1,ind2)=fraca(ind1,ind2)*qlth(ind1,ind2)+(1.-1.*fraca(ind1,ind2))*qlenv(ind1,ind2) |
---|
| 1437 | !-------------------------------------------- |
---|
| 1438 | !Cloud fraction by surface CF_surf |
---|
| 1439 | !-------------------------------------------- |
---|
| 1440 | !Method Neggers et al. (2011) : ok for cumulus clouds only |
---|
| 1441 | !beta=0.0044 (Jouhaud et al.2018) |
---|
| 1442 | !inverse_rho=1.+beta*dz(ind1,ind2) |
---|
| 1443 | !ctot_surf(ind1,ind2)=ctot_vol(ind1,ind2)*inverse_rho |
---|
| 1444 | !Method Brooks et al. (2005) : ok for all types of clouds |
---|
| 1445 | a_Brooks=0.6694 |
---|
| 1446 | b_Brooks=0.1882 |
---|
| 1447 | A_Maj_Brooks=0.1635 !-- sans dependence au cisaillement de vent |
---|
| 1448 | Dx_Brooks=200000. !-- si l'on considere des mailles de 200km de cote |
---|
| 1449 | f_Brooks=A_Maj_Brooks*(dz(ind1,ind2)**(a_Brooks))*(Dx_Brooks**(-b_Brooks)) |
---|
| 1450 | ctot_surf(ind1,ind2)=1./(1.+exp(-1.*f_Brooks)*((1./max(1.e-15,min(ctot_vol(ind1,ind2),1.)))- 1.)) |
---|
| 1451 | !-------------------------------------------- |
---|
| 1452 | !Incloud Condensed water qcloud |
---|
| 1453 | !-------------------------------------------- |
---|
| 1454 | if (ctot_surf(ind1,ind2) .lt. 1.e-10) then |
---|
| 1455 | ctot_vol(ind1,ind2)=0. |
---|
| 1456 | ctot_surf(ind1,ind2)=0. |
---|
| 1457 | qcloud(ind1)=zqsatenv(ind1,ind2) |
---|
| 1458 | else |
---|
| 1459 | qcloud(ind1)=qltot(ind1,ind2)/ctot_vol(ind1,ind2)+zqs(ind1) |
---|
| 1460 | endif |
---|
| 1461 | |
---|
| 1462 | |
---|
| 1463 | |
---|
| 1464 | !------------------------------------------------------------------------------- |
---|
| 1465 | !Environment only in the gridbox |
---|
| 1466 | !------------------------------------------------------------------------------- |
---|
| 1467 | ELSE |
---|
| 1468 | !-------------------------------------------- |
---|
| 1469 | !calcul de qsat_env |
---|
| 1470 | !-------------------------------------------- |
---|
| 1471 | Tbef=zthl(ind1,ind2)*zpspsk(ind1,ind2) |
---|
| 1472 | zdelta=MAX(0.,SIGN(1.,RTT-Tbef)) |
---|
| 1473 | qsatbef= R2ES * FOEEW(Tbef,zdelta)/paprs(ind1,ind2) |
---|
| 1474 | qsatbef=MIN(0.5,qsatbef) |
---|
| 1475 | zcor=1./(1.-retv*qsatbef) |
---|
| 1476 | qsatbef=qsatbef*zcor |
---|
| 1477 | zqsatenv(ind1,ind2)=qsatbef |
---|
| 1478 | !-------------------------------------------- |
---|
| 1479 | !calcul de s_env |
---|
| 1480 | !-------------------------------------------- |
---|
| 1481 | alenv=(0.622*Lv*zqsatenv(ind1,ind2))/(rdd*zthl(ind1,ind2)**2) !qsl, p84 these Arnaud Jam |
---|
| 1482 | aenv=1./(1.+(alenv*Lv/cppd)) !al, p84 these Arnaud Jam |
---|
| 1483 | senv=aenv*(po(ind1)-zqsatenv(ind1,ind2)) !s, p84 these Arnaud Jam |
---|
| 1484 | !-------------------------------------------- |
---|
| 1485 | !calcul standard deviations Gaussian PDF |
---|
| 1486 | !-------------------------------------------- |
---|
| 1487 | zqenv(ind1)=po(ind1) |
---|
| 1488 | sigma_env=ratqs(ind1,ind2)*zqenv(ind1) |
---|
| 1489 | xenv=senv/(sqrt2*sigma_env) |
---|
| 1490 | !-------------------------------------------- |
---|
| 1491 | !Cloud fraction by volume CF_vol |
---|
| 1492 | !-------------------------------------------- |
---|
| 1493 | ctot_vol(ind1,ind2)=0.5*(1.+1.*erf(xenv)) |
---|
| 1494 | !-------------------------------------------- |
---|
| 1495 | !Condensed water qc |
---|
| 1496 | !-------------------------------------------- |
---|
| 1497 | qltot(ind1,ind2)=sigma_env*((exp(-1.*xenv**2)/sqrt2pi)+xenv*sqrt2*ctot_vol(ind1,ind2)) |
---|
| 1498 | !-------------------------------------------- |
---|
| 1499 | !Cloud fraction by surface CF_surf |
---|
| 1500 | !-------------------------------------------- |
---|
| 1501 | !Method Neggers et al. (2011) : ok for cumulus clouds only |
---|
| 1502 | !beta=0.0044 (Jouhaud et al.2018) |
---|
| 1503 | !inverse_rho=1.+beta*dz(ind1,ind2) |
---|
| 1504 | !ctot_surf(ind1,ind2)=ctot_vol(ind1,ind2)*inverse_rho |
---|
| 1505 | !Method Brooks et al. (2005) : ok for all types of clouds |
---|
| 1506 | a_Brooks=0.6694 |
---|
| 1507 | b_Brooks=0.1882 |
---|
| 1508 | A_Maj_Brooks=0.1635 !-- sans dependence au shear |
---|
| 1509 | Dx_Brooks=200000. |
---|
| 1510 | f_Brooks=A_Maj_Brooks*(dz(ind1,ind2)**(a_Brooks))*(Dx_Brooks**(-b_Brooks)) |
---|
| 1511 | ctot_surf(ind1,ind2)=1./(1.+exp(-1.*f_Brooks)*((1./max(1.e-15,min(ctot_vol(ind1,ind2),1.)))- 1.)) |
---|
| 1512 | !-------------------------------------------- |
---|
| 1513 | !Incloud Condensed water qcloud |
---|
| 1514 | !-------------------------------------------- |
---|
| 1515 | if (ctot_surf(ind1,ind2) .lt. 1.e-8) then |
---|
| 1516 | ctot_vol(ind1,ind2)=0. |
---|
| 1517 | ctot_surf(ind1,ind2)=0. |
---|
| 1518 | qcloud(ind1)=zqsatenv(ind1,ind2) |
---|
| 1519 | else |
---|
| 1520 | qcloud(ind1)=qltot(ind1,ind2)/ctot_vol(ind1,ind2)+zqsatenv(ind1,ind2) |
---|
| 1521 | endif |
---|
| 1522 | |
---|
| 1523 | |
---|
| 1524 | END IF ! From the separation (thermal/envrionnement) et (environnement only) |
---|
| 1525 | |
---|
| 1526 | ! Outputs used to check the PDFs |
---|
| 1527 | cloudth_senv(ind1,ind2) = senv |
---|
| 1528 | cloudth_sth(ind1,ind2) = sth |
---|
| 1529 | cloudth_sigmaenv(ind1,ind2) = sigma_env |
---|
| 1530 | cloudth_sigmath(ind1,ind2) = sigma_th |
---|
| 1531 | |
---|
| 1532 | END DO ! From the loop on ngrid |
---|
| 1533 | return |
---|
| 1534 | |
---|
| 1535 | END SUBROUTINE cloudth_v6 |
---|
[2686] | 1536 | END MODULE cloudth_mod |
---|
[3493] | 1537 | |
---|
| 1538 | |
---|
| 1539 | |
---|
| 1540 | |
---|