1 | MODULE climb_hq_mod |
---|
2 | ! |
---|
3 | ! Module to solve the verctical diffusion of "q" and "H"; |
---|
4 | ! specific humidity and potential energi. |
---|
5 | ! |
---|
6 | USE dimphy |
---|
7 | USE compbl_mod_h |
---|
8 | IMPLICIT NONE |
---|
9 | PRIVATE |
---|
10 | PUBLIC :: climb_hq_down, climb_hq_up, d_h_col_vdf, f_h_bnd |
---|
11 | |
---|
12 | REAL, DIMENSION(:,:), ALLOCATABLE :: gamaq, gamah |
---|
13 | !$OMP THREADPRIVATE(gamaq,gamah) |
---|
14 | REAL, DIMENSION(:,:), ALLOCATABLE :: Ccoef_Q, Dcoef_Q |
---|
15 | !$OMP THREADPRIVATE(Ccoef_Q, Dcoef_Q) |
---|
16 | REAL, DIMENSION(:,:), ALLOCATABLE :: Ccoef_H, Dcoef_H |
---|
17 | !$OMP THREADPRIVATE(Ccoef_H, Dcoef_H) |
---|
18 | REAL, DIMENSION(:), ALLOCATABLE :: Acoef_Q, Bcoef_Q |
---|
19 | !$OMP THREADPRIVATE(Acoef_Q, Bcoef_Q) |
---|
20 | REAL, DIMENSION(:), ALLOCATABLE :: Acoef_H, Bcoef_H |
---|
21 | !$OMP THREADPRIVATE(Acoef_H, Bcoef_H) |
---|
22 | REAL, DIMENSION(:,:), ALLOCATABLE :: Kcoefhq |
---|
23 | !$OMP THREADPRIVATE(Kcoefhq) |
---|
24 | REAL, SAVE, DIMENSION(:,:), ALLOCATABLE :: h_old ! for diagnostics, h before solving diffusion |
---|
25 | !$OMP THREADPRIVATE(h_old) |
---|
26 | REAL, SAVE, DIMENSION(:), ALLOCATABLE :: d_h_col_vdf ! for diagnostics, vertical integral of enthalpy change |
---|
27 | !$OMP THREADPRIVATE(d_h_col_vdf) |
---|
28 | REAL, SAVE, DIMENSION(:), ALLOCATABLE :: f_h_bnd ! for diagnostics, enthalpy flux at surface |
---|
29 | !$OMP THREADPRIVATE(f_h_bnd) |
---|
30 | |
---|
31 | CONTAINS |
---|
32 | ! |
---|
33 | !**************************************************************************************** |
---|
34 | ! |
---|
35 | SUBROUTINE climb_hq_down(knon, coefhq, paprs, pplay, & |
---|
36 | delp, temp, q, dtime, & |
---|
37 | !!! nrlmd le 02/05/2011 |
---|
38 | Ccoef_H_out, Ccoef_Q_out, Dcoef_H_out, Dcoef_Q_out, & |
---|
39 | Kcoef_hq_out, gama_q_out, gama_h_out, & |
---|
40 | !!! |
---|
41 | Acoef_H_out, Acoef_Q_out, Bcoef_H_out, Bcoef_Q_out) |
---|
42 | |
---|
43 | ! This routine calculates recursivly the coefficients C and D |
---|
44 | ! for the quantity X=[Q,H] in equation X(k) = C(k) + D(k)*X(k-1), where k is |
---|
45 | ! the index of the vertical layer. |
---|
46 | USE yomcst_mod_h |
---|
47 | ! Input arguments |
---|
48 | !**************************************************************************************** |
---|
49 | INTEGER, INTENT(IN) :: knon |
---|
50 | REAL, DIMENSION(klon,klev), INTENT(IN) :: coefhq |
---|
51 | REAL, DIMENSION(klon,klev), INTENT(IN) :: pplay |
---|
52 | REAL, DIMENSION(klon,klev+1), INTENT(IN) :: paprs |
---|
53 | REAL, DIMENSION(klon,klev), INTENT(IN) :: temp, delp ! temperature |
---|
54 | REAL, DIMENSION(klon,klev), INTENT(IN) :: q |
---|
55 | REAL, INTENT(IN) :: dtime |
---|
56 | |
---|
57 | ! Output arguments |
---|
58 | !**************************************************************************************** |
---|
59 | REAL, DIMENSION(klon), INTENT(OUT) :: Acoef_H_out |
---|
60 | REAL, DIMENSION(klon), INTENT(OUT) :: Acoef_Q_out |
---|
61 | REAL, DIMENSION(klon), INTENT(OUT) :: Bcoef_H_out |
---|
62 | REAL, DIMENSION(klon), INTENT(OUT) :: Bcoef_Q_out |
---|
63 | |
---|
64 | !!! nrlmd le 02/05/2011 |
---|
65 | REAL, DIMENSION(klon,klev), INTENT(OUT) :: Ccoef_H_out |
---|
66 | REAL, DIMENSION(klon,klev), INTENT(OUT) :: Ccoef_Q_out |
---|
67 | REAL, DIMENSION(klon,klev), INTENT(OUT) :: Dcoef_H_out |
---|
68 | REAL, DIMENSION(klon,klev), INTENT(OUT) :: Dcoef_Q_out |
---|
69 | REAL, DIMENSION(klon,klev), INTENT(OUT) :: Kcoef_hq_out |
---|
70 | REAL, DIMENSION(klon,klev), INTENT(OUT) :: gama_q_out |
---|
71 | REAL, DIMENSION(klon,klev), INTENT(OUT) :: gama_h_out |
---|
72 | !!! |
---|
73 | |
---|
74 | ! Local variables |
---|
75 | !**************************************************************************************** |
---|
76 | LOGICAL, SAVE :: first=.TRUE. |
---|
77 | !$OMP THREADPRIVATE(first) |
---|
78 | ! JLD now renamed h_old and declared in module |
---|
79 | ! REAL, DIMENSION(klon,klev) :: local_H |
---|
80 | REAL, DIMENSION(klon) :: psref |
---|
81 | REAL :: delz, pkh |
---|
82 | INTEGER :: k, i, ierr |
---|
83 | |
---|
84 | !**************************************************************************************** |
---|
85 | ! 1) |
---|
86 | ! Allocation at first time step only |
---|
87 | ! |
---|
88 | !**************************************************************************************** |
---|
89 | |
---|
90 | IF (first) THEN |
---|
91 | first=.FALSE. |
---|
92 | ALLOCATE(Ccoef_Q(klon,klev), STAT=ierr) |
---|
93 | IF ( ierr /= 0 ) PRINT*,' pb in allloc Ccoef_Q, ierr=', ierr |
---|
94 | |
---|
95 | ALLOCATE(Dcoef_Q(klon,klev), STAT=ierr) |
---|
96 | IF ( ierr /= 0 ) PRINT*,' pb in allloc Dcoef_Q, ierr=', ierr |
---|
97 | |
---|
98 | ALLOCATE(Ccoef_H(klon,klev), STAT=ierr) |
---|
99 | IF ( ierr /= 0 ) PRINT*,' pb in allloc Ccoef_H, ierr=', ierr |
---|
100 | |
---|
101 | ALLOCATE(Dcoef_H(klon,klev), STAT=ierr) |
---|
102 | IF ( ierr /= 0 ) PRINT*,' pb in allloc Dcoef_H, ierr=', ierr |
---|
103 | |
---|
104 | ALLOCATE(Acoef_Q(klon), Bcoef_Q(klon), Acoef_H(klon), Bcoef_H(klon), STAT=ierr) |
---|
105 | IF ( ierr /= 0 ) PRINT*,' pb in allloc Acoef_X and Bcoef_X, ierr=', ierr |
---|
106 | |
---|
107 | ALLOCATE(Kcoefhq(klon,klev), STAT=ierr) |
---|
108 | IF ( ierr /= 0 ) PRINT*,' pb in allloc Kcoefhq, ierr=', ierr |
---|
109 | |
---|
110 | ALLOCATE(gamaq(1:klon,2:klev), STAT=ierr) |
---|
111 | IF ( ierr /= 0 ) PRINT*,' pb in allloc gamaq, ierr=', ierr |
---|
112 | |
---|
113 | ALLOCATE(gamah(1:klon,2:klev), STAT=ierr) |
---|
114 | IF ( ierr /= 0 ) PRINT*,' pb in allloc gamah, ierr=', ierr |
---|
115 | |
---|
116 | ALLOCATE(h_old(klon,klev), STAT=ierr) |
---|
117 | IF ( ierr /= 0 ) PRINT*,' pb in allloc h_old, ierr=', ierr |
---|
118 | |
---|
119 | ALLOCATE(d_h_col_vdf(klon), STAT=ierr) |
---|
120 | IF ( ierr /= 0 ) PRINT*,' pb in allloc d_h_col_vdf, ierr=', ierr |
---|
121 | |
---|
122 | ALLOCATE(f_h_bnd(klon), STAT=ierr) |
---|
123 | IF ( ierr /= 0 ) PRINT*,' pb in allloc f_h_bnd, ierr=', ierr |
---|
124 | END IF |
---|
125 | |
---|
126 | !**************************************************************************************** |
---|
127 | ! 2) |
---|
128 | ! Definition of the coeficient K |
---|
129 | ! |
---|
130 | !**************************************************************************************** |
---|
131 | Kcoefhq(:,:) = 0.0 |
---|
132 | DO k = 2, klev |
---|
133 | DO i = 1, knon |
---|
134 | Kcoefhq(i,k) = & |
---|
135 | coefhq(i,k)*RG*RG*dtime /(pplay(i,k-1)-pplay(i,k)) & |
---|
136 | *(paprs(i,k)*2/(temp(i,k)+temp(i,k-1))/RD)**2 |
---|
137 | ENDDO |
---|
138 | ENDDO |
---|
139 | |
---|
140 | !**************************************************************************************** |
---|
141 | ! 3) |
---|
142 | ! Calculation of gama for "Q" and "H" |
---|
143 | ! |
---|
144 | !**************************************************************************************** |
---|
145 | ! surface pressure is used as reference |
---|
146 | psref(:) = paprs(:,1) |
---|
147 | |
---|
148 | ! definition of gama |
---|
149 | IF (iflag_pbl == 1) THEN |
---|
150 | gamaq(:,:) = 0.0 |
---|
151 | gamah(:,:) = -1.0e-03 |
---|
152 | gamah(:,2) = -2.5e-03 |
---|
153 | |
---|
154 | ! conversion de gama |
---|
155 | DO k = 2, klev |
---|
156 | DO i = 1, knon |
---|
157 | delz = RD * (temp(i,k-1)+temp(i,k)) / & |
---|
158 | 2.0 / RG / paprs(i,k) * (pplay(i,k-1)-pplay(i,k)) |
---|
159 | pkh = (psref(i)/paprs(i,k))**RKAPPA |
---|
160 | |
---|
161 | ! convertie gradient verticale d'humidite specifique en difference d'humidite specifique entre centre de couches |
---|
162 | gamaq(i,k) = gamaq(i,k) * delz |
---|
163 | ! convertie gradient verticale de temperature en difference de temperature potentielle entre centre de couches |
---|
164 | gamah(i,k) = gamah(i,k) * delz * RCPD * pkh |
---|
165 | ENDDO |
---|
166 | ENDDO |
---|
167 | |
---|
168 | ELSE |
---|
169 | gamaq(:,:) = 0.0 |
---|
170 | gamah(:,:) = 0.0 |
---|
171 | ENDIF |
---|
172 | |
---|
173 | |
---|
174 | !**************************************************************************************** |
---|
175 | ! 4) |
---|
176 | ! Calculte the coefficients C and D for specific humidity, q |
---|
177 | ! |
---|
178 | !**************************************************************************************** |
---|
179 | |
---|
180 | CALL calc_coef(knon, Kcoefhq(:,:), gamaq(:,:), delp(:,:), q(:,:), & |
---|
181 | Ccoef_Q(:,:), Dcoef_Q(:,:), Acoef_Q, Bcoef_Q) |
---|
182 | |
---|
183 | !**************************************************************************************** |
---|
184 | ! 5) |
---|
185 | ! Calculte the coefficients C and D for potentiel entalpie, H |
---|
186 | ! |
---|
187 | !**************************************************************************************** |
---|
188 | h_old(:,:) = 0.0 |
---|
189 | |
---|
190 | DO k=1,klev |
---|
191 | DO i = 1, knon |
---|
192 | ! convertie la temperature en entalpie potentielle |
---|
193 | h_old(i,k) = RCPD * temp(i,k) * & |
---|
194 | (psref(i)/pplay(i,k))**RKAPPA |
---|
195 | ENDDO |
---|
196 | ENDDO |
---|
197 | |
---|
198 | CALL calc_coef(knon, Kcoefhq(:,:), gamah(:,:), delp(:,:), h_old(:,:), & |
---|
199 | Ccoef_H(:,:), Dcoef_H(:,:), Acoef_H, Bcoef_H) |
---|
200 | |
---|
201 | !**************************************************************************************** |
---|
202 | ! 6) |
---|
203 | ! Return the first layer in output variables |
---|
204 | ! |
---|
205 | !**************************************************************************************** |
---|
206 | Acoef_H_out = Acoef_H |
---|
207 | Bcoef_H_out = Bcoef_H |
---|
208 | Acoef_Q_out = Acoef_Q |
---|
209 | Bcoef_Q_out = Bcoef_Q |
---|
210 | |
---|
211 | !**************************************************************************************** |
---|
212 | ! 7) |
---|
213 | ! If Pbl is split, return also the other layers in output variables |
---|
214 | ! |
---|
215 | !**************************************************************************************** |
---|
216 | !!! jyg le 07/02/2012 |
---|
217 | !!jyg IF (mod(iflag_pbl_split,2) .eq.1) THEN |
---|
218 | IF (mod(iflag_pbl_split,10) .ge.1) THEN |
---|
219 | !!! nrlmd le 02/05/2011 |
---|
220 | DO k= 1, klev |
---|
221 | DO i= 1, klon |
---|
222 | Ccoef_H_out(i,k) = Ccoef_H(i,k) |
---|
223 | Dcoef_H_out(i,k) = Dcoef_H(i,k) |
---|
224 | Ccoef_Q_out(i,k) = Ccoef_Q(i,k) |
---|
225 | Dcoef_Q_out(i,k) = Dcoef_Q(i,k) |
---|
226 | Kcoef_hq_out(i,k) = Kcoefhq(i,k) |
---|
227 | IF (k.eq.1) THEN |
---|
228 | gama_h_out(i,k) = 0. |
---|
229 | gama_q_out(i,k) = 0. |
---|
230 | ELSE |
---|
231 | gama_h_out(i,k) = gamah(i,k) |
---|
232 | gama_q_out(i,k) = gamaq(i,k) |
---|
233 | ENDIF |
---|
234 | ENDDO |
---|
235 | ENDDO |
---|
236 | !!! |
---|
237 | ENDIF ! (mod(iflag_pbl_split,2) .ge.1) |
---|
238 | !!! |
---|
239 | |
---|
240 | END SUBROUTINE climb_hq_down |
---|
241 | ! |
---|
242 | !**************************************************************************************** |
---|
243 | ! |
---|
244 | SUBROUTINE calc_coef(knon, Kcoef, gama, delp, X, Ccoef, Dcoef, Acoef, Bcoef) |
---|
245 | ! |
---|
246 | ! Calculate the coefficients C and D in : X(k) = C(k) + D(k)*X(k-1) |
---|
247 | ! where X is H or Q, and k the vertical level k=1,klev |
---|
248 | ! |
---|
249 | USE yomcst_mod_h! Input arguments |
---|
250 | !**************************************************************************************** |
---|
251 | INTEGER, INTENT(IN) :: knon |
---|
252 | REAL, DIMENSION(klon,klev), INTENT(IN) :: Kcoef, delp |
---|
253 | REAL, DIMENSION(klon,klev), INTENT(IN) :: X |
---|
254 | REAL, DIMENSION(klon,2:klev), INTENT(IN) :: gama |
---|
255 | |
---|
256 | ! Output arguments |
---|
257 | !**************************************************************************************** |
---|
258 | REAL, DIMENSION(klon), INTENT(OUT) :: Acoef, Bcoef |
---|
259 | REAL, DIMENSION(klon,klev), INTENT(OUT) :: Ccoef, Dcoef |
---|
260 | |
---|
261 | ! Local variables |
---|
262 | !**************************************************************************************** |
---|
263 | INTEGER :: k, i |
---|
264 | REAL :: buf |
---|
265 | |
---|
266 | !**************************************************************************************** |
---|
267 | ! Niveau au sommet, k=klev |
---|
268 | ! |
---|
269 | !**************************************************************************************** |
---|
270 | Ccoef(:,:) = 0.0 |
---|
271 | Dcoef(:,:) = 0.0 |
---|
272 | |
---|
273 | DO i = 1, knon |
---|
274 | buf = delp(i,klev) + Kcoef(i,klev) |
---|
275 | |
---|
276 | Ccoef(i,klev) = (X(i,klev)*delp(i,klev) - Kcoef(i,klev)*gama(i,klev))/buf |
---|
277 | Dcoef(i,klev) = Kcoef(i,klev)/buf |
---|
278 | END DO |
---|
279 | |
---|
280 | |
---|
281 | !**************************************************************************************** |
---|
282 | ! Niveau (klev-1) <= k <= 2 |
---|
283 | ! |
---|
284 | !**************************************************************************************** |
---|
285 | |
---|
286 | DO k=(klev-1),2,-1 |
---|
287 | DO i = 1, knon |
---|
288 | buf = delp(i,k) + Kcoef(i,k) + Kcoef(i,k+1)*(1.-Dcoef(i,k+1)) |
---|
289 | Ccoef(i,k) = (X(i,k)*delp(i,k) + Kcoef(i,k+1)*Ccoef(i,k+1) + & |
---|
290 | Kcoef(i,k+1)*gama(i,k+1) - Kcoef(i,k)*gama(i,k))/buf |
---|
291 | Dcoef(i,k) = Kcoef(i,k)/buf |
---|
292 | END DO |
---|
293 | END DO |
---|
294 | |
---|
295 | !**************************************************************************************** |
---|
296 | ! Niveau k=1 |
---|
297 | ! |
---|
298 | !**************************************************************************************** |
---|
299 | |
---|
300 | DO i = 1, knon |
---|
301 | buf = delp(i,1) + Kcoef(i,2)*(1.-Dcoef(i,2)) |
---|
302 | Acoef(i) = (X(i,1)*delp(i,1) + Kcoef(i,2)*(gama(i,2)+Ccoef(i,2)))/buf |
---|
303 | Bcoef(i) = -1. * RG / buf |
---|
304 | END DO |
---|
305 | |
---|
306 | END SUBROUTINE calc_coef |
---|
307 | ! |
---|
308 | !**************************************************************************************** |
---|
309 | ! |
---|
310 | SUBROUTINE climb_hq_up(knon, dtime, t_old, q_old, & |
---|
311 | flx_q1, flx_h1, paprs, pplay, & |
---|
312 | !!! nrlmd le 02/05/2011 |
---|
313 | Acoef_H_in, Acoef_Q_in, Bcoef_H_in, Bcoef_Q_in, & |
---|
314 | Ccoef_H_in, Ccoef_Q_in, Dcoef_H_in, Dcoef_Q_in, & |
---|
315 | Kcoef_hq_in, gama_q_in, gama_h_in, & |
---|
316 | !!! |
---|
317 | flux_q, flux_h, d_q, d_t) |
---|
318 | ! |
---|
319 | ! This routine calculates the flux and tendency of the specific humidity q and |
---|
320 | ! the potential engergi H. |
---|
321 | ! The quantities q and H are calculated according to |
---|
322 | ! X(k) = C(k) + D(k)*X(k-1) for X=[q,H], where the coefficients |
---|
323 | ! C and D are known from before and k is index of the vertical layer. |
---|
324 | ! |
---|
325 | USE yomcst_mod_h |
---|
326 | USE compbl_mod_h |
---|
327 | ! Input arguments |
---|
328 | !**************************************************************************************** |
---|
329 | INTEGER, INTENT(IN) :: knon |
---|
330 | REAL, INTENT(IN) :: dtime |
---|
331 | REAL, DIMENSION(klon,klev), INTENT(IN) :: t_old, q_old |
---|
332 | REAL, DIMENSION(klon), INTENT(IN) :: flx_q1, flx_h1 |
---|
333 | REAL, DIMENSION(klon,klev+1), INTENT(IN) :: paprs |
---|
334 | REAL, DIMENSION(klon,klev), INTENT(IN) :: pplay |
---|
335 | |
---|
336 | !!! nrlmd le 02/05/2011 |
---|
337 | REAL, DIMENSION(klon), INTENT(IN) :: Acoef_H_in,Acoef_Q_in, Bcoef_H_in, Bcoef_Q_in |
---|
338 | REAL, DIMENSION(klon,klev), INTENT(IN) :: Ccoef_H_in, Ccoef_Q_in, Dcoef_H_in, Dcoef_Q_in |
---|
339 | REAL, DIMENSION(klon,klev), INTENT(IN) :: Kcoef_hq_in, gama_q_in, gama_h_in |
---|
340 | !!! |
---|
341 | |
---|
342 | ! Output arguments |
---|
343 | !**************************************************************************************** |
---|
344 | REAL, DIMENSION(klon,klev), INTENT(OUT) :: flux_q, flux_h, d_q, d_t |
---|
345 | |
---|
346 | ! Local variables |
---|
347 | !**************************************************************************************** |
---|
348 | LOGICAL, SAVE :: last=.FALSE. |
---|
349 | !$OMP THREADPRIVATE(last) |
---|
350 | REAL, DIMENSION(klon,klev) :: h_new, q_new |
---|
351 | REAL, DIMENSION(klon) :: psref |
---|
352 | INTEGER :: k, i, ierr |
---|
353 | !**************************************************************************************** |
---|
354 | ! 1) |
---|
355 | ! Definition of some variables |
---|
356 | REAL, DIMENSION(klon,klev) :: d_h, zairm |
---|
357 | ! |
---|
358 | !**************************************************************************************** |
---|
359 | flux_q(:,:) = 0.0 |
---|
360 | flux_h(:,:) = 0.0 |
---|
361 | d_q(:,:) = 0.0 |
---|
362 | d_t(:,:) = 0.0 |
---|
363 | d_h(:,:) = 0.0 |
---|
364 | f_h_bnd(:)= 0.0 |
---|
365 | |
---|
366 | psref(1:knon) = paprs(1:knon,1) |
---|
367 | |
---|
368 | !!! jyg le 07/02/2012 |
---|
369 | !!jyg IF (mod(iflag_pbl_split,2) .eq.1) THEN |
---|
370 | IF (mod(iflag_pbl_split,10) .ge.1) THEN |
---|
371 | !!! nrlmd le 02/05/2011 |
---|
372 | DO i = 1, knon |
---|
373 | Acoef_H(i)=Acoef_H_in(i) |
---|
374 | Acoef_Q(i)=Acoef_Q_in(i) |
---|
375 | Bcoef_H(i)=Bcoef_H_in(i) |
---|
376 | Bcoef_Q(i)=Bcoef_Q_in(i) |
---|
377 | ENDDO |
---|
378 | DO k = 1, klev |
---|
379 | DO i = 1, knon |
---|
380 | Ccoef_H(i,k)=Ccoef_H_in(i,k) |
---|
381 | Ccoef_Q(i,k)=Ccoef_Q_in(i,k) |
---|
382 | Dcoef_H(i,k)=Dcoef_H_in(i,k) |
---|
383 | Dcoef_Q(i,k)=Dcoef_Q_in(i,k) |
---|
384 | Kcoefhq(i,k)=Kcoef_hq_in(i,k) |
---|
385 | IF (k.gt.1) THEN |
---|
386 | gamah(i,k)=gama_h_in(i,k) |
---|
387 | gamaq(i,k)=gama_q_in(i,k) |
---|
388 | ENDIF |
---|
389 | ENDDO |
---|
390 | ENDDO |
---|
391 | !!! |
---|
392 | ENDIF ! (mod(iflag_pbl_split,2) .ge.1) |
---|
393 | !!! |
---|
394 | |
---|
395 | !**************************************************************************************** |
---|
396 | ! 2) |
---|
397 | ! Calculation of Q and H |
---|
398 | ! |
---|
399 | !**************************************************************************************** |
---|
400 | |
---|
401 | !- First layer |
---|
402 | q_new(1:knon,1) = Acoef_Q(1:knon) + Bcoef_Q(1:knon)*flx_q1(1:knon)*dtime |
---|
403 | h_new(1:knon,1) = Acoef_H(1:knon) + Bcoef_H(1:knon)*flx_h1(1:knon)*dtime |
---|
404 | f_h_bnd(1:knon) = flx_h1(1:knon) |
---|
405 | !- All the other layers |
---|
406 | DO k = 2, klev |
---|
407 | DO i = 1, knon |
---|
408 | q_new(i,k) = Ccoef_Q(i,k) + Dcoef_Q(i,k)*q_new(i,k-1) |
---|
409 | h_new(i,k) = Ccoef_H(i,k) + Dcoef_H(i,k)*h_new(i,k-1) |
---|
410 | END DO |
---|
411 | END DO |
---|
412 | !**************************************************************************************** |
---|
413 | ! 3) |
---|
414 | ! Calculation of the flux for Q and H |
---|
415 | ! |
---|
416 | !**************************************************************************************** |
---|
417 | |
---|
418 | !- The flux at first layer, k=1 |
---|
419 | flux_q(1:knon,1)=flx_q1(1:knon) |
---|
420 | flux_h(1:knon,1)=flx_h1(1:knon) |
---|
421 | |
---|
422 | !- The flux at all layers above surface |
---|
423 | DO k = 2, klev |
---|
424 | DO i = 1, knon |
---|
425 | flux_q(i,k) = (Kcoefhq(i,k)/RG/dtime) * & |
---|
426 | (q_new(i,k)-q_new(i,k-1)+gamaq(i,k)) |
---|
427 | |
---|
428 | flux_h(i,k) = (Kcoefhq(i,k)/RG/dtime) * & |
---|
429 | (h_new(i,k)-h_new(i,k-1)+gamah(i,k)) |
---|
430 | END DO |
---|
431 | END DO |
---|
432 | |
---|
433 | !**************************************************************************************** |
---|
434 | ! 4) |
---|
435 | ! Calculation of tendency for Q and H |
---|
436 | ! |
---|
437 | !**************************************************************************************** |
---|
438 | d_h_col_vdf(:) = 0.0 |
---|
439 | DO k = 1, klev |
---|
440 | DO i = 1, knon |
---|
441 | d_t(i,k) = h_new(i,k)/(psref(i)/pplay(i,k))**RKAPPA/RCPD - t_old(i,k) |
---|
442 | d_q(i,k) = q_new(i,k) - q_old(i,k) |
---|
443 | d_h(i,k) = h_new(i,k) - h_old(i,k) |
---|
444 | !JLD d_t(i,k) = d_h(i,k)/(psref(i)/pplay(i,k))**RKAPPA/RCPD !correction a venir |
---|
445 | ! layer air mass |
---|
446 | zairm(i, k) = (paprs(i,k)-paprs(i,k+1))/rg |
---|
447 | d_h_col_vdf(i) = d_h_col_vdf(i) + d_h(i,k)*zairm(i,k) |
---|
448 | END DO |
---|
449 | END DO |
---|
450 | |
---|
451 | !**************************************************************************************** |
---|
452 | ! Some deallocations |
---|
453 | ! |
---|
454 | !**************************************************************************************** |
---|
455 | IF (last) THEN |
---|
456 | DEALLOCATE(Ccoef_Q, Dcoef_Q, Ccoef_H, Dcoef_H,stat=ierr) |
---|
457 | IF ( ierr /= 0 ) PRINT*,' pb in dealllocate Ccoef_Q, Dcoef_Q, Ccoef_H, Dcoef_H, ierr=', ierr |
---|
458 | DEALLOCATE(Acoef_Q, Bcoef_Q, Acoef_H, Bcoef_H,stat=ierr) |
---|
459 | IF ( ierr /= 0 ) PRINT*,' pb in dealllocate Acoef_Q, Bcoef_Q, Acoef_H, Bcoef_H, ierr=', ierr |
---|
460 | DEALLOCATE(gamaq, gamah,stat=ierr) |
---|
461 | IF ( ierr /= 0 ) PRINT*,' pb in dealllocate gamaq, gamah, ierr=', ierr |
---|
462 | DEALLOCATE(Kcoefhq,stat=ierr) |
---|
463 | IF ( ierr /= 0 ) PRINT*,' pb in dealllocate Kcoefhq, ierr=', ierr |
---|
464 | DEALLOCATE(h_old, d_h_col_vdf, f_h_bnd, stat=ierr) |
---|
465 | IF ( ierr /= 0 ) PRINT*,' pb in dealllocate h_old, d_h_col_vdf, f_h_bnd, ierr=', ierr |
---|
466 | END IF |
---|
467 | END SUBROUTINE climb_hq_up |
---|
468 | ! |
---|
469 | !**************************************************************************************** |
---|
470 | ! |
---|
471 | END MODULE climb_hq_mod |
---|
472 | |
---|
473 | |
---|
474 | |
---|
475 | |
---|
476 | |
---|
477 | |
---|