source: LMDZ6/trunk/libf/phylmd/acama_gwd_rando_m.f90 @ 5279

Last change on this file since 5279 was 5274, checked in by abarral, 9 months ago

Replace yomcst.h by existing module

  • Property svn:keywords set to Id
File size: 19.6 KB
Line 
1!
2! $Id: acama_gwd_rando_m.f90 5274 2024-10-25 13:41:23Z abarral $
3!
4module ACAMA_GWD_rando_m
5
6  implicit none
7
8contains
9
10  SUBROUTINE ACAMA_GWD_rando(DTIME, pp, plat, tt, uu, vv, rot, &
11       zustr, zvstr, d_u, d_v,east_gwstress,west_gwstress)
12
13    ! Parametrization of the momentum flux deposition due to a discrete
14    ! number of gravity waves.
15    ! Author: F. Lott, A. de la Camara
16    ! July, 24th, 2014
17    ! Gaussian distribution of the source, source is vorticity squared
18    ! Reference: de la Camara and Lott (GRL, 2015, vol 42, 2071-2078 )
19    ! Lott et al (JAS, 2010, vol 67, page 157-170)
20    ! Lott et al (JAS, 2012, vol 69, page 2134-2151)
21
22!  ONLINE:
23    USE yomcst_mod_h, ONLY: RPI, RCLUM, RHPLA, RKBOL, RNAVO                   &
24          , RDAY, REA, REPSM, RSIYEA, RSIDAY, ROMEGA                  &
25          , R_ecc, R_peri, R_incl                                      &
26          , RA, RG, R1SA                                         &
27          , RSIGMA                                                     &
28          , R, RMD, RMV, RD, RV, RCPD                    &
29          , RMO3, RMCO2, RMC, RMCH4, RMN2O, RMCFC11, RMCFC12        &
30          , RCPV, RCVD, RCVV, RKAPPA, RETV, eps_w                    &
31          , RCW, RCS                                                 &
32          , RLVTT, RLSTT, RLMLT, RTT, RATM                           &
33          , RESTT, RALPW, RBETW, RGAMW, RALPS, RBETS, RGAMS            &
34          , RALPD, RBETD, RGAMD
35use dimphy, only: klon, klev
36    use assert_m, only: assert
37    USE ioipsl_getin_p_mod, ONLY : getin_p
38    USE vertical_layers_mod, ONLY : presnivs
39
40
41    include "clesphys.h"
42!  OFFLINE:
43!   include "dimensions_mod.f90"
44!   include "dimphy.h"
45!END DIFFERENCE
46    include "YOEGWD.h"
47
48    ! 0. DECLARATIONS:
49
50    ! 0.1 INPUTS
51    REAL, intent(in)::DTIME ! Time step of the Physics
52    REAL, intent(in):: PP(:, :) ! (KLON, KLEV) Pressure at full levels
53    REAL, intent(in):: ROT(:,:) ! Relative vorticity             
54    REAL, intent(in):: TT(:, :) ! (KLON, KLEV) Temp at full levels
55    REAL, intent(in):: UU(:, :) ! (KLON, KLEV) Zonal wind at full levels
56    REAL, intent(in):: VV(:, :) ! (KLON, KLEV) Merid wind at full levels
57    REAL, intent(in):: PLAT(:) ! (KLON) LATITUDE                   
58
59    ! 0.2 OUTPUTS
60    REAL, intent(out):: zustr(:), zvstr(:) ! (KLON) Surface Stresses
61
62    REAL, intent(inout):: d_u(:, :), d_v(:, :)
63    REAL, intent(inout):: east_gwstress(:, :) !  Profile of eastward stress
64    REAL, intent(inout):: west_gwstress(:, :) !  Profile of westward stress
65    ! (KLON, KLEV) tendencies on winds
66
67    ! O.3 INTERNAL ARRAYS
68    REAL BVLOW(klon)  !  LOW LEVEL BV FREQUENCY
69    REAL ROTBA(KLON),CORIO(KLON)  !  BAROTROPIC REL. VORTICITY AND PLANETARY
70    REAL UZ(KLON, KLEV + 1)
71
72    INTEGER II, JJ, LL
73
74    ! 0.3.0 TIME SCALE OF THE LIFE CYCLE OF THE WAVES PARAMETERIZED
75
76    REAL DELTAT
77
78    ! 0.3.1 GRAVITY-WAVES SPECIFICATIONS
79
80    INTEGER, PARAMETER:: NK = 2, NP = 2, NO = 2, NW = NK * NP * NO
81    INTEGER JK, JP, JO, JW
82    INTEGER, PARAMETER:: NA = 5  !number of realizations to get the phase speed
83    REAL KMIN, KMAX ! Min and Max horizontal wavenumbers
84    REAL CMIN, CMAX ! Min and Max absolute ph. vel.
85    REAL CPHA ! absolute PHASE VELOCITY frequency
86    REAL ZK(NW, KLON) ! Horizontal wavenumber amplitude
87    REAL ZP(NW, KLON) ! Horizontal wavenumber angle
88    REAL ZO(NW, KLON) ! Absolute frequency !
89
90    ! Waves Intr. freq. at the 1/2 lev surrounding the full level
91    REAL ZOM(NW, KLON), ZOP(NW, KLON)
92
93    ! Wave EP-fluxes at the 2 semi levels surrounding the full level
94    REAL WWM(NW, KLON), WWP(NW, KLON)
95
96    REAL RUW0(NW, KLON) ! Fluxes at launching level
97
98    REAL RUWP(NW, KLON), RVWP(NW, KLON)
99    ! Fluxes X and Y for each waves at 1/2 Levels
100
101    INTEGER LAUNCH, LTROP ! Launching altitude and tropo altitude
102
103    REAL XLAUNCH ! Controle the launching altitude
104    REAL XTROP ! SORT of Tropopause altitude
105    REAL RUW(KLON, KLEV + 1) ! Flux x at semi levels
106    REAL RVW(KLON, KLEV + 1) ! Flux y at semi levels
107
108    REAL PRMAX ! Maximum value of PREC, and for which our linear formula
109    ! for GWs parameterisation apply
110
111    ! 0.3.2 PARAMETERS OF WAVES DISSIPATIONS
112
113    REAL RDISS, ZOISEC ! COEFF DE DISSIPATION, SECURITY FOR INTRINSIC FREQ
114    REAL CORSEC ! SECURITY FOR INTRINSIC CORIOLIS
115    REAL RUWFRT,SATFRT
116
117    ! 0.3.3 BACKGROUND FLOW AT 1/2 LEVELS AND VERTICAL COORDINATE
118
119    REAL H0 ! Characteristic Height of the atmosphere
120    REAL DZ ! Characteristic depth of the source!
121    REAL PR, TR ! Reference Pressure and Temperature
122
123    REAL ZH(KLON, KLEV + 1) ! Log-pressure altitude
124
125    REAL UH(KLON, KLEV + 1), VH(KLON, KLEV + 1) ! Winds at 1/2 levels
126    REAL PH(KLON, KLEV + 1) ! Pressure at 1/2 levels
127    REAL PSEC ! Security to avoid division by 0 pressure
128    REAL PHM1(KLON, KLEV + 1) ! 1/Press at 1/2 levels
129    REAL BV(KLON, KLEV + 1) ! Brunt Vaisala freq. (BVF) at 1/2 levels
130    REAL BVSEC ! Security to avoid negative BVF
131
132    REAL, DIMENSION(klev+1) ::HREF
133    LOGICAL, SAVE :: gwd_reproductibilite_mpiomp=.true.
134    LOGICAL, SAVE :: firstcall = .TRUE.
135  !$OMP THREADPRIVATE(firstcall,gwd_reproductibilite_mpiomp)
136
137    CHARACTER (LEN=20) :: modname='acama_gwd_rando_m'
138    CHARACTER (LEN=80) :: abort_message
139
140
141
142  IF (firstcall) THEN
143    ! Cle introduite pour resoudre un probleme de non reproductibilite
144    ! Le but est de pouvoir tester de revenir a la version precedenete
145    ! A eliminer rapidement
146    CALL getin_p('gwd_reproductibilite_mpiomp',gwd_reproductibilite_mpiomp)
147    IF (NW+4*(NA-1)+NA>=KLEV) THEN
148       abort_message = 'NW+3*NA>=KLEV Probleme pour generation des ondes'
149       CALL abort_physic (modname,abort_message,1)
150    ENDIF
151    firstcall=.false.
152!    CALL iophys_ini(dtime)
153  ENDIF
154
155    !-----------------------------------------------------------------
156
157    ! 1. INITIALISATIONS
158
159    ! 1.1 Basic parameter
160
161    ! Are provided from elsewhere (latent heat of vaporization, dry
162    ! gaz constant for air, gravity constant, heat capacity of dry air
163    ! at constant pressure, earth rotation rate, pi).
164
165    ! 1.2 Tuning parameters of V14
166
167! Values for linear in rot (recommended):
168!   RUWFRT=0.005 ! As RUWMAX but for frontal waves
169!   SATFRT=1.00  ! As SAT    but for frontal waves
170! Values when rot^2 is used                         
171!    RUWFRT=0.02  ! As RUWMAX but for frontal waves
172!    SATFRT=1.00  ! As SAT    but for frontal waves
173!    CMAX = 30.   ! Characteristic phase speed
174! Values when rot^2*EXP(-pi*sqrt(J)) is used                         
175!   RUWFRT=2.5   ! As RUWMAX but for frontal waves ~ N0*F0/4*DZ
176!   SATFRT=0.60   ! As SAT    but for frontal waves
177    RUWFRT=gwd_front_ruwmax 
178    SATFRT=gwd_front_sat
179    CMAX = 50.    ! Characteristic phase speed
180! Phase speed test
181!   RUWFRT=0.01
182!   CMAX = 50.   ! Characteristic phase speed (TEST)
183! Values when rot^2 and exp(-m^2*dz^2) are used     
184!   RUWFRT=0.03  ! As RUWMAX but for frontal waves
185!   SATFRT=1.00  ! As SAT    but for frontal waves
186! CRUCIAL PARAMETERS FOR THE WIND FILTERING
187    XLAUNCH=0.95 ! Parameter that control launching altitude
188    RDISS = 0.5  ! Diffusion parameter
189
190    ! maximum of rain for which our theory applies (in kg/m^2/s)
191
192    DZ = 1000. ! Characteristic depth of the source
193    XTROP=0.2 ! Parameter that control tropopause altitude
194    DELTAT=24.*3600. ! Time scale of the waves (first introduced in 9b)
195!   DELTAT=DTIME     ! No AR-1 Accumulation, OR OFFLINE             
196
197    KMIN = 2.E-5
198    ! minimum horizontal wavenumber (inverse of the subgrid scale resolution)
199
200    KMAX = 1.E-3  ! Max horizontal wavenumber
201    CMIN = 1.     ! Min phase velocity
202
203    TR = 240. ! Reference Temperature
204    PR = 101300. ! Reference pressure
205    H0 = RD * TR / RG ! Characteristic vertical scale height
206
207    BVSEC = 5.E-3 ! Security to avoid negative BVF
208    PSEC = 1.E-6 ! Security to avoid division by 0 pressure
209    ZOISEC = 1.E-6 ! Security FOR 0 INTRINSIC FREQ
210    CORSEC = ROMEGA*2.*SIN(2.*RPI/180.)! Security for CORIO
211
212!  ONLINE
213    call assert(klon == (/size(pp, 1), size(tt, 1), size(uu, 1), &
214         size(vv, 1), size(rot,1), size(zustr), size(zvstr), size(d_u, 1), &
215         size(d_v, 1), &
216        size(east_gwstress,1), size(west_gwstress,1) /), &
217        "ACAMA_GWD_RANDO klon")
218    call assert(klev == (/size(pp, 2), size(tt, 2), size(uu, 2), &
219         size(vv, 2), size(d_u, 2), size(d_v, 2), &
220         size(east_gwstress,2), size(west_gwstress,2) /), &
221         "ACAMA_GWD_RANDO klev")
222!  END ONLINE
223
224    IF(DELTAT < DTIME)THEN
225!       PRINT *, 'flott_gwd_rando: deltat < dtime!'
226!       STOP 1
227       abort_message=' deltat < dtime! '
228       CALL abort_physic(modname,abort_message,1)
229    ENDIF
230
231    IF (KLEV < NW) THEN
232!       PRINT *, 'flott_gwd_rando: you will have problem with random numbers'
233!       STOP 1
234       abort_message=' you will have problem with random numbers'
235       CALL abort_physic(modname,abort_message,1)
236    ENDIF
237
238    ! 2. EVALUATION OF THE BACKGROUND FLOW AT SEMI-LEVELS
239
240    ! Pressure and Inv of pressure
241    DO LL = 2, KLEV
242       PH(:, LL) = EXP((LOG(PP(:, LL)) + LOG(PP(:, LL - 1))) / 2.)
243       PHM1(:, LL) = 1. / PH(:, LL)
244    end DO
245
246    PH(:, KLEV + 1) = 0.
247    PHM1(:, KLEV + 1) = 1. / PSEC
248    PH(:, 1) = 2. * PP(:, 1) - PH(:, 2)
249
250    ! Launching altitude
251
252    IF (gwd_reproductibilite_mpiomp) THEN
253       ! Reprend la formule qui calcule PH en fonction de PP=play
254       DO LL = 2, KLEV
255          HREF(LL) = EXP((LOG(presnivs(LL)) + LOG(presnivs(LL - 1))) / 2.)
256       end DO
257       HREF(KLEV + 1) = 0.
258       HREF(1) = 2. * presnivs(1) - HREF(2)
259    ELSE
260       HREF(1:KLEV)=PH(KLON/2,1:KLEV)
261    ENDIF
262
263    LAUNCH=0
264    LTROP =0
265    DO LL = 1, KLEV
266       IF (HREF(LL) / HREF(1) > XLAUNCH) LAUNCH = LL
267    ENDDO
268    DO LL = 1, KLEV
269       IF (HREF(LL) / HREF(1) > XTROP) LTROP = LL
270    ENDDO
271    !LAUNCH=22 ; LTROP=33
272!   print*,'LAUNCH=',LAUNCH,'LTROP=',LTROP
273
274
275!   PRINT *,'LAUNCH IN ACAMARA:',LAUNCH
276
277    ! Log pressure vert. coordinate
278    DO LL = 1, KLEV + 1
279       ZH(:, LL) = H0 * LOG(PR / (PH(:, LL) + PSEC))
280    end DO
281
282    ! BV frequency
283    DO LL = 2, KLEV
284       ! BVSEC: BV Frequency (UH USED IS AS A TEMPORARY ARRAY DOWN TO WINDS)
285       UH(:, LL) = 0.5 * (TT(:, LL) + TT(:, LL - 1)) &
286            * RD**2 / RCPD / H0**2 + (TT(:, LL) &
287            - TT(:, LL - 1)) / (ZH(:, LL) - ZH(:, LL - 1)) * RD / H0
288    end DO
289    BVLOW = 0.5 * (TT(:, LTROP )+ TT(:, LAUNCH)) &
290         * RD**2 / RCPD / H0**2 + (TT(:, LTROP ) &
291         - TT(:, LAUNCH))/(ZH(:, LTROP )- ZH(:, LAUNCH)) * RD / H0
292
293    UH(:, 1) = UH(:, 2)
294    UH(:, KLEV + 1) = UH(:, KLEV)
295    BV(:, 1) = UH(:, 2)
296    BV(:, KLEV + 1) = UH(:, KLEV)
297    ! SMOOTHING THE BV HELPS
298    DO LL = 2, KLEV
299       BV(:, LL)=(UH(:, LL+1)+2.*UH(:, LL)+UH(:, LL-1))/4.
300    end DO
301
302    BV=MAX(SQRT(MAX(BV, 0.)), BVSEC)
303    BVLOW=MAX(SQRT(MAX(BVLOW, 0.)), BVSEC)
304
305    ! WINDS
306    DO LL = 2, KLEV
307       UH(:, LL) = 0.5 * (UU(:, LL) + UU(:, LL - 1)) ! Zonal wind
308       VH(:, LL) = 0.5 * (VV(:, LL) + VV(:, LL - 1)) ! Meridional wind
309       UZ(:, LL) = ABS((SQRT(UU(:, LL)**2+VV(:, LL)**2) &
310          - SQRT(UU(:,LL-1)**2+VV(:, LL-1)**2)) &
311          /(ZH(:, LL)-ZH(:, LL-1)) )
312    end DO
313    UH(:, 1) = 0.
314    VH(:, 1) = 0.
315    UH(:, KLEV + 1) = UU(:, KLEV)
316    VH(:, KLEV + 1) = VV(:, KLEV)
317
318    UZ(:, 1) = UZ(:, 2)
319    UZ(:, KLEV + 1) = UZ(:, KLEV)
320    UZ(:, :) = MAX(UZ(:,:), PSEC)
321
322   ! BAROTROPIC VORTICITY AND INTEGRATED CORIOLIS PARAMETER
323   
324    CORIO(:) = MAX(ROMEGA*2.*ABS(SIN(PLAT(:)*RPI/180.)),CORSEC)
325    ROTBA(:)=0.
326    DO LL = 1,KLEV-1
327        !ROTBA(:) = ROTBA(:) + (ROT(:,LL)+ROT(:,LL+1))/2./RG*(PP(:,LL)-PP(:,LL+1))
328        ! Introducing the complete formula (exp of Richardson number):
329        ROTBA(:) = ROTBA(:) + &
330                !((ROT(:,LL)+ROT(:,LL+1))/2.)**2 &
331                (CORIO(:)*TANH(ABS(ROT(:,LL)+ROT(:,LL+1))/2./CORIO(:)))**2 &
332                /RG*(PP(:,LL)-PP(:,LL+1)) &
333                * EXP(-RPI*BV(:,LL+1)/UZ(:,LL+1)) &
334!               * DZ*BV(:,LL+1)/4./ABS(CORIO(:))
335                * DZ*BV(:,LL+1)/4./1.E-4           !  Changes after 1991
336!ARRET
337    ENDDO
338    !   PRINT *,'MAX ROTBA:',MAXVAL(ROTBA)
339    !   ROTBA(:)=(1.*ROTBA(:)  & ! Testing zone
340    !           +0.15*CORIO(:)**2                &
341    !           /(COS(PLAT(:)*RPI/180.)+0.02)  &
342    !           )*DZ*0.01/0.0001/4. ! & ! Testing zone
343    !   MODIF GWD4 AFTER 1985
344    !            *(1.25+SIN(PLAT(:)*RPI/180.))/(1.05+SIN(PLAT(:)*RPI/180.))/1.25
345    !          *1./(COS(PLAT(:)*RPI/180.)+0.02)
346    !    CORIO(:) = MAX(ROMEGA*2.*ABS(SIN(PLAT(:)*RPI/180.)),ZOISEC)/RG*PP(:,1)
347
348    ! 3 WAVES CHARACTERISTICS CHOSEN RANDOMLY AT THE LAUNCH ALTITUDE
349
350    ! The mod functions of weird arguments are used to produce the
351    ! waves characteristics in an almost stochastic way
352
353    JW = 0
354    DO JW = 1, NW
355             ! Angle
356             DO II = 1, KLON
357                ! Angle (0 or PI so far)
358                ! ZP(JW, II) = (SIGN(1., 0.5 - MOD(TT(II, JW) * 10., 1.)) + 1.) &
359                !      * RPI / 2.
360                ! Angle between 0 and pi
361                  ZP(JW, II) = MOD(TT(II, JW) * 10., 1.) * RPI
362! TEST WITH POSITIVE WAVES ONLY (Part I/II)
363!               ZP(JW, II) = 0.
364                ! Horizontal wavenumber amplitude
365                ZK(JW, II) = KMIN + (KMAX - KMIN) * MOD(TT(II, JW) * 100., 1.)
366                ! Horizontal phase speed
367                CPHA = 0.
368                DO JJ = 1, NA
369                    CPHA = CPHA + &
370         CMAX*2.*(MOD(TT(II, JW+4*(JJ-1)+JJ)**2, 1.)-0.5)*SQRT(3.)/SQRT(NA*1.)
371                END DO
372                IF (CPHA.LT.0.)  THEN
373                   CPHA = -1.*CPHA
374                   ZP(JW,II) = ZP(JW,II) + RPI
375! TEST WITH POSITIVE WAVES ONLY (Part II/II)
376!               ZP(JW, II) = 0.
377                ENDIF
378                CPHA = CPHA + CMIN !we dont allow |c|<1m/s
379                ! Absolute frequency is imposed
380                ZO(JW, II) = CPHA * ZK(JW, II)
381                ! Intrinsic frequency is imposed
382                ZO(JW, II) = ZO(JW, II) &
383                     + ZK(JW, II) * COS(ZP(JW, II)) * UH(II, LAUNCH) &
384                     + ZK(JW, II) * SIN(ZP(JW, II)) * VH(II, LAUNCH)
385                ! Momentum flux at launch lev
386                ! LAUNCHED RANDOM WAVES WITH LOG-NORMAL AMPLITUDE
387                !  RIGHT IN THE SH (GWD4 after 1990)
388                  RUW0(JW, II) = 0.
389                 DO JJ = 1, NA
390                    RUW0(JW, II) = RUW0(JW,II) + &
391         2.*(MOD(TT(II, JW+4*(JJ-1)+JJ)**2, 1.)-0.5)*SQRT(3.)/SQRT(NA*1.)
392                END DO
393                RUW0(JW, II) = RUWFRT &
394                          * EXP(RUW0(JW,II))/1250. &  ! 2 mpa at south pole
395       *((1.05+SIN(PLAT(II)*RPI/180.))/(1.01+SIN(PLAT(II)*RPI/180.))-2.05/2.01)
396                ! RUW0(JW, II) = RUWFRT
397             ENDDO
398    end DO
399
400    ! 4. COMPUTE THE FLUXES
401
402    ! 4.0
403
404    ! 4.1 Vertical velocity at launching altitude to ensure
405    ! the correct value to the imposed fluxes.
406
407    DO JW = 1, NW
408
409       ! Evaluate intrinsic frequency at launching altitude:
410       ZOP(JW, :) = ZO(JW, :) &
411            - ZK(JW, :) * COS(ZP(JW, :)) * UH(:, LAUNCH) &
412            - ZK(JW, :) * SIN(ZP(JW, :)) * VH(:, LAUNCH)
413
414       ! VERSION WITH FRONTAL SOURCES
415
416       ! Momentum flux at launch level imposed by vorticity sources
417
418       ! tanh limitation for values above CORIO (inertial instability).
419       ! WWP(JW, :) = RUW0(JW, :) &
420       WWP(JW, :) = RUWFRT      &
421       !     * (CORIO(:)*TANH(ROTBA(:)/CORIO(:)))**2 &
422       !    * ABS((CORIO(:)*TANH(ROTBA(:)/CORIO(:)))*CORIO(:)) &
423       !  CONSTANT FLUX
424       !    * (CORIO(:)*CORIO(:)) &
425       ! MODERATION BY THE DEPTH OF THE SOURCE (DZ HERE)
426       !      *EXP(-BVLOW(:)**2/MAX(ABS(ZOP(JW, :)),ZOISEC)**2 &
427       !      *ZK(JW, :)**2*DZ**2) &
428       ! COMPLETE FORMULA:
429            !* CORIO(:)**2*TANH(ROTBA(:)/CORIO(:)**2) &
430            * ROTBA(:) &
431       !  RESTORE DIMENSION OF A FLUX
432       !     *RD*TR/PR
433       !     *1. + RUW0(JW, :)
434             *1.
435
436       ! Factor related to the characteristics of the waves: NONE
437
438       ! Moderation by the depth of the source (dz here): NONE
439
440       ! Put the stress in the right direction:
441
442        RUWP(JW, :) = SIGN(1., ZOP(JW, :))*COS(ZP(JW, :)) * WWP(JW, :)
443        RVWP(JW, :) = SIGN(1., ZOP(JW, :))*SIN(ZP(JW, :)) * WWP(JW, :)
444
445    end DO
446
447    ! 4.2 Uniform values below the launching altitude
448
449    DO LL = 1, LAUNCH
450       RUW(:, LL) = 0
451       RVW(:, LL) = 0
452       DO JW = 1, NW
453          RUW(:, LL) = RUW(:, LL) + RUWP(JW, :)
454          RVW(:, LL) = RVW(:, LL) + RVWP(JW, :)
455       end DO
456    end DO
457
458    ! 4.3 Loop over altitudes, with passage from one level to the next
459    ! done by i) conserving the EP flux, ii) dissipating a little,
460    ! iii) testing critical levels, and vi) testing the breaking.
461
462    DO LL = LAUNCH, KLEV - 1
463       ! Warning: all the physics is here (passage from one level
464       ! to the next)
465       DO JW = 1, NW
466          ZOM(JW, :) = ZOP(JW, :)
467          WWM(JW, :) = WWP(JW, :)
468          ! Intrinsic Frequency
469          ZOP(JW, :) = ZO(JW, :) - ZK(JW, :) * COS(ZP(JW, :)) * UH(:, LL + 1) &
470               - ZK(JW, :) * SIN(ZP(JW, :)) * VH(:, LL + 1)
471
472          ! No breaking (Eq.6)
473          ! Dissipation (Eq. 8)
474          WWP(JW, :) = WWM(JW, :) * EXP(- 4. * RDISS * PR / (PH(:, LL + 1) &
475               + PH(:, LL)) * ((BV(:, LL + 1) + BV(:, LL)) / 2.)**3 &
476               / MAX(ABS(ZOP(JW, :) + ZOM(JW, :)) / 2., ZOISEC)**4 &
477               * ZK(JW, :)**3 * (ZH(:, LL + 1) - ZH(:, LL)))
478
479          ! Critical levels (forced to zero if intrinsic frequency changes sign)
480          ! Saturation (Eq. 12)
481          WWP(JW, :) = min(WWP(JW, :), MAX(0., &
482               SIGN(1., ZOP(JW, :) * ZOM(JW, :))) * ABS(ZOP(JW, :))**3 &
483          !    / BV(:, LL + 1) * EXP(- ZH(:, LL + 1) / H0) * SATFRT**2 * KMIN**2 &
484               / BV(:, LL + 1) * EXP(- ZH(:, LL + 1) / H0) * KMIN**2 &
485!              *(SATFRT*(2.5+1.5*TANH((ZH(:,LL+1)/H0-8.)/2.)))**2 &
486               *SATFRT**2       &
487               / ZK(JW, :)**4)
488       end DO
489
490       ! Evaluate EP-flux from Eq. 7 and give the right orientation to
491       ! the stress
492
493       DO JW = 1, NW
494          RUWP(JW, :) = SIGN(1., ZOP(JW, :))*COS(ZP(JW, :)) * WWP(JW, :)
495          RVWP(JW, :) = SIGN(1., ZOP(JW, :))*SIN(ZP(JW, :)) * WWP(JW, :)
496       end DO
497
498       RUW(:, LL + 1) = 0.
499       RVW(:, LL + 1) = 0.
500
501       DO JW = 1, NW
502          RUW(:, LL + 1) = RUW(:, LL + 1) + RUWP(JW, :)
503          RVW(:, LL + 1) = RVW(:, LL + 1) + RVWP(JW, :)
504          EAST_GWSTRESS(:, LL)=EAST_GWSTRESS(:, LL)+MAX(0.,RUWP(JW,:))/FLOAT(NW)
505          WEST_GWSTRESS(:, LL)=WEST_GWSTRESS(:, LL)+MIN(0.,RUWP(JW,:))/FLOAT(NW)
506       end DO
507    end DO
508
509    ! 5 CALCUL DES TENDANCES:
510
511    ! 5.1 Rectification des flux au sommet et dans les basses couches
512
513    RUW(:, KLEV + 1) = 0.
514    RVW(:, KLEV + 1) = 0.
515    RUW(:, 1) = RUW(:, LAUNCH)
516    RVW(:, 1) = RVW(:, LAUNCH)
517    DO LL = 1, LAUNCH
518       RUW(:, LL) = RUW(:, LAUNCH+1)
519       RVW(:, LL) = RVW(:, LAUNCH+1)
520       EAST_GWSTRESS(:, LL)=EAST_GWSTRESS(:, LAUNCH)
521       WEST_GWSTRESS(:, LL)=WEST_GWSTRESS(:, LAUNCH)
522    end DO
523
524    ! AR-1 RECURSIVE FORMULA (13) IN VERSION 4
525    DO LL = 1, KLEV
526       D_U(:, LL) = (1.-DTIME/DELTAT) * D_U(:, LL) + DTIME/DELTAT/REAL(NW) * &
527            RG * (RUW(:, LL + 1) - RUW(:, LL)) &
528            / (PH(:, LL + 1) - PH(:, LL)) * DTIME
529!  NO AR1 FOR MERIDIONAL TENDENCIES
530!      D_V(:, LL) = (1.-DTIME/DELTAT) * D_V(:, LL) + DTIME/DELTAT/REAL(NW) * &
531       D_V(:, LL) =                                            1./REAL(NW) * &
532            RG * (RVW(:, LL + 1) - RVW(:, LL)) &
533            / (PH(:, LL + 1) - PH(:, LL)) * DTIME
534    ENDDO
535
536    ! Cosmetic: evaluation of the cumulated stress
537    ZUSTR = 0.
538    ZVSTR = 0.
539    DO LL = 1, KLEV
540       ZUSTR = ZUSTR + D_U(:, LL) / RG * (PH(:, LL + 1) - PH(:, LL))/DTIME
541!      ZVSTR = ZVSTR + D_V(:, LL) / RG * (PH(:, LL + 1) - PH(:, LL))/DTIME
542    ENDDO
543! COSMETICS TO VISUALIZE ROTBA
544    ZVSTR = ROTBA
545
546  END SUBROUTINE ACAMA_GWD_RANDO
547
548end module ACAMA_GWD_rando_m
Note: See TracBrowser for help on using the repository browser.