source: LMDZ6/trunk/libf/phylmd/acama_gwd_rando_m.f90 @ 5523

Last change on this file since 5523 was 5512, checked in by yann meurdesoif, 8 days ago

Implement GPU automatic port for :

  • Thermics
  • acama_gwd_rando
  • flott_gwd_rando

YM

  • Property svn:keywords set to Id
File size: 19.2 KB
Line 
1!
2! $Id: acama_gwd_rando_m.f90 5512 2025-01-28 18:07:51Z fhourdin $
3!
4module ACAMA_GWD_rando_m
5
6  USE clesphys_mod_h
7  IMPLICIT NONE
8  LOGICAL, SAVE :: gwd_reproductibilite_mpiomp=.true.
9  LOGICAL, SAVE :: firstcall = .TRUE.
10  !$OMP THREADPRIVATE(firstcall,gwd_reproductibilite_mpiomp)
11 
12  INTEGER, PARAMETER:: NK = 2, NP = 2, NO = 2, NW = NK * NP * NO
13  INTEGER, PARAMETER:: NA = 5  !number of realizations to get the phase speed
14
15
16contains
17 
18  SUBROUTINE ACAMA_GWD_rando_first
19  use dimphy, only: klev
20  USE ioipsl_getin_p_mod, ONLY : getin_p
21  IMPLICIT NONE
22    CHARACTER (LEN=20),PARAMETER :: modname='acama_gwd_rando_m'
23    CHARACTER (LEN=80) :: abort_message
24 
25    IF (firstcall) THEN
26    ! Cle introduite pour resoudre un probleme de non reproductibilite
27    ! Le but est de pouvoir tester de revenir a la version precedenete
28    ! A eliminer rapidement
29    CALL getin_p('gwd_reproductibilite_mpiomp',gwd_reproductibilite_mpiomp)
30    IF (NW+4*(NA-1)+NA>=KLEV) THEN
31       abort_message = 'NW+3*NA>=KLEV Probleme pour generation des ondes'
32       CALL abort_physic (modname,abort_message,1)
33    ENDIF
34    firstcall=.false.
35!    CALL iophys_ini(dtime)
36    ENDIF
37  END SUBROUTINE ACAMA_GWD_rando_first
38
39  SUBROUTINE ACAMA_GWD_rando(DTIME, pp, plat, tt, uu, vv, rot, &
40       zustr, zvstr, d_u, d_v,east_gwstress,west_gwstress)
41
42    ! Parametrization of the momentum flux deposition due to a discrete
43    ! number of gravity waves.
44    ! Author: F. Lott, A. de la Camara
45    ! July, 24th, 2014
46    ! Gaussian distribution of the source, source is vorticity squared
47    ! Reference: de la Camara and Lott (GRL, 2015, vol 42, 2071-2078 )
48    ! Lott et al (JAS, 2010, vol 67, page 157-170)
49    ! Lott et al (JAS, 2012, vol 69, page 2134-2151)
50
51!  ONLINE:
52USE yoegwd_mod_h
53        USE yomcst_mod_h
54use dimphy, only: klon, klev
55    use assert_m, only: assert
56    USE vertical_layers_mod, ONLY : presnivs
57    USE lmdz_fake_call, ONLY : fake_call
58
59!  OFFLINE:
60!   include "dimensions_mod.f90"
61!   include "dimphy.h"
62!END DIFFERENCE
63
64    ! 0. DECLARATIONS:
65
66    ! 0.1 INPUTS
67    REAL, intent(in)::DTIME ! Time step of the Physics
68    REAL, intent(in):: PP(KLON, KLEV) ! (KLON, KLEV) Pressure at full levels
69    REAL, intent(in):: ROT(KLON,KLEV) ! Relative vorticity             
70    REAL, intent(in):: TT(KLON, KLEV) ! (KLON, KLEV) Temp at full levels
71    REAL, intent(in):: UU(KLON, KLEV) ! (KLON, KLEV) Zonal wind at full levels
72    REAL, intent(in):: VV(KLON, KLEV) ! (KLON, KLEV) Merid wind at full levels
73    REAL, intent(in):: PLAT(KLON) ! (KLON) LATITUDE                   
74
75    ! 0.2 OUTPUTS
76    REAL, intent(out):: zustr(KLON), zvstr(KLON) ! (KLON) Surface Stresses
77
78    REAL, intent(inout):: d_u(KLON, KLEV), d_v(KLON, KLEV)
79    REAL, intent(inout):: east_gwstress(KLON, KLEV) !  Profile of eastward stress
80    REAL, intent(inout):: west_gwstress(KLON, KLEV) !  Profile of westward stress
81    ! (KLON, KLEV) tendencies on winds
82
83    ! O.3 INTERNAL ARRAYS
84    REAL BVLOW(klon)  !  LOW LEVEL BV FREQUENCY
85    REAL ROTBA(KLON),CORIO(KLON)  !  BAROTROPIC REL. VORTICITY AND PLANETARY
86    REAL UZ(KLON, KLEV + 1)
87
88    INTEGER II, JJ, LL
89
90    ! 0.3.0 TIME SCALE OF THE LIFE CYCLE OF THE WAVES PARAMETERIZED
91
92    REAL DELTAT
93
94    ! 0.3.1 GRAVITY-WAVES SPECIFICATIONS
95
96    INTEGER JK, JP, JO, JW
97    REAL KMIN, KMAX ! Min and Max horizontal wavenumbers
98    REAL CMIN, CMAX ! Min and Max absolute ph. vel.
99    REAL CPHA ! absolute PHASE VELOCITY frequency
100    REAL ZK(KLON, NW) ! Horizontal wavenumber amplitude
101    REAL ZP(KLON, NW) ! Horizontal wavenumber angle
102    REAL ZO(KLON,NW) ! Absolute frequency !
103
104    ! Waves Intr. freq. at the 1/2 lev surrounding the full level
105    REAL ZOM(KLON, NW), ZOP(KLON, NW)
106
107    ! Wave EP-fluxes at the 2 semi levels surrounding the full level
108    REAL WWM(KLON, NW), WWP(KLON, NW)
109
110    REAL RUW0(KLON, NW) ! Fluxes at launching level
111
112    REAL RUWP(KLON, NW), RVWP(KLON, NW)
113    ! Fluxes X and Y for each waves at 1/2 Levels
114
115    INTEGER LAUNCH, LTROP ! Launching altitude and tropo altitude
116
117    REAL XLAUNCH ! Controle the launching altitude
118    REAL XTROP ! SORT of Tropopause altitude
119    REAL RUW(KLON, KLEV + 1) ! Flux x at semi levels
120    REAL RVW(KLON, KLEV + 1) ! Flux y at semi levels
121
122    REAL PRMAX ! Maximum value of PREC, and for which our linear formula
123    ! for GWs parameterisation apply
124
125    ! 0.3.2 PARAMETERS OF WAVES DISSIPATIONS
126
127    REAL RDISS, ZOISEC ! COEFF DE DISSIPATION, SECURITY FOR INTRINSIC FREQ
128    REAL CORSEC ! SECURITY FOR INTRINSIC CORIOLIS
129    REAL RUWFRT,SATFRT
130
131    ! 0.3.3 BACKGROUND FLOW AT 1/2 LEVELS AND VERTICAL COORDINATE
132
133    REAL H0 ! Characteristic Height of the atmosphere
134    REAL DZ ! Characteristic depth of the source!
135    REAL PR, TR ! Reference Pressure and Temperature
136
137    REAL ZH(KLON, KLEV + 1) ! Log-pressure altitude
138
139    REAL UH(KLON, KLEV + 1), VH(KLON, KLEV + 1) ! Winds at 1/2 levels
140    REAL PH(KLON, KLEV + 1) ! Pressure at 1/2 levels
141    REAL PSEC ! Security to avoid division by 0 pressure
142    REAL PHM1(KLON, KLEV + 1) ! 1/Press at 1/2 levels
143    REAL BV(KLON, KLEV + 1) ! Brunt Vaisala freq. (BVF) at 1/2 levels
144    REAL BVSEC ! Security to avoid negative BVF
145
146    REAL, DIMENSION(klev+1) ::HREF
147
148    CHARACTER (LEN=20),PARAMETER :: modname='acama_gwd_rando_m'
149    CHARACTER (LEN=80) :: abort_message
150
151
152    !-----------------------------------------------------------------
153
154    ! 1. INITIALISATIONS
155
156    ! 1.1 Basic parameter
157
158    ! Are provided from elsewhere (latent heat of vaporization, dry
159    ! gaz constant for air, gravity constant, heat capacity of dry air
160    ! at constant pressure, earth rotation rate, pi).
161
162    ! 1.2 Tuning parameters of V14
163
164! Values for linear in rot (recommended):
165!   RUWFRT=0.005 ! As RUWMAX but for frontal waves
166!   SATFRT=1.00  ! As SAT    but for frontal waves
167! Values when rot^2 is used                         
168!    RUWFRT=0.02  ! As RUWMAX but for frontal waves
169!    SATFRT=1.00  ! As SAT    but for frontal waves
170!    CMAX = 30.   ! Characteristic phase speed
171! Values when rot^2*EXP(-pi*sqrt(J)) is used                         
172!   RUWFRT=2.5   ! As RUWMAX but for frontal waves ~ N0*F0/4*DZ
173!   SATFRT=0.60   ! As SAT    but for frontal waves
174    RUWFRT=gwd_front_ruwmax 
175    SATFRT=gwd_front_sat
176    CMAX = 50.    ! Characteristic phase speed
177! Phase speed test
178!   RUWFRT=0.01
179!   CMAX = 50.   ! Characteristic phase speed (TEST)
180! Values when rot^2 and exp(-m^2*dz^2) are used     
181!   RUWFRT=0.03  ! As RUWMAX but for frontal waves
182!   SATFRT=1.00  ! As SAT    but for frontal waves
183! CRUCIAL PARAMETERS FOR THE WIND FILTERING
184    XLAUNCH=0.95 ! Parameter that control launching altitude
185    RDISS = 0.5  ! Diffusion parameter
186
187    ! maximum of rain for which our theory applies (in kg/m^2/s)
188
189    DZ = 1000. ! Characteristic depth of the source
190    XTROP=0.2 ! Parameter that control tropopause altitude
191    DELTAT=24.*3600. ! Time scale of the waves (first introduced in 9b)
192!   DELTAT=DTIME     ! No AR-1 Accumulation, OR OFFLINE             
193
194    KMIN = 2.E-5
195    ! minimum horizontal wavenumber (inverse of the subgrid scale resolution)
196
197    KMAX = 1.E-3  ! Max horizontal wavenumber
198    CMIN = 1.     ! Min phase velocity
199
200    TR = 240. ! Reference Temperature
201    PR = 101300. ! Reference pressure
202    H0 = RD * TR / RG ! Characteristic vertical scale height
203
204    BVSEC = 5.E-3 ! Security to avoid negative BVF
205    PSEC = 1.E-6 ! Security to avoid division by 0 pressure
206    ZOISEC = 1.E-6 ! Security FOR 0 INTRINSIC FREQ
207    CORSEC = ROMEGA*2.*SIN(2.*RPI/180.)! Security for CORIO
208
209!  ONLINE
210    call assert(klon == (/size(pp, 1), size(tt, 1), size(uu, 1), &
211         size(vv, 1), size(rot,1), size(zustr), size(zvstr), size(d_u, 1), &
212         size(d_v, 1), &
213        size(east_gwstress,1), size(west_gwstress,1) /), &
214        "ACAMA_GWD_RANDO klon")
215    call assert(klev == (/size(pp, 2), size(tt, 2), size(uu, 2), &
216         size(vv, 2), size(d_u, 2), size(d_v, 2), &
217         size(east_gwstress,2), size(west_gwstress,2) /), &
218         "ACAMA_GWD_RANDO klev")
219!  END ONLINE
220
221    CALL FAKE_CALL(BVLOW) ! to be suppress in future
222    CALL FAKE_CALL(CORIO) ! to be suppress in future
223    CALL FAKE_CALL(ROTBA) ! to be suppress in future
224   
225    IF(DELTAT < DTIME)THEN
226!       PRINT *, 'flott_gwd_rando: deltat < dtime!'
227!       STOP 1
228       abort_message=' deltat < dtime! '
229       CALL abort_physic(modname,abort_message,1)
230    ENDIF
231
232    IF (KLEV < NW) THEN
233!       PRINT *, 'flott_gwd_rando: you will have problem with random numbers'
234!       STOP 1
235       abort_message=' you will have problem with random numbers'
236       CALL abort_physic(modname,abort_message,1)
237    ENDIF
238
239    ! 2. EVALUATION OF THE BACKGROUND FLOW AT SEMI-LEVELS
240
241    ! Pressure and Inv of pressure
242    DO LL = 2, KLEV
243       PH(:, LL) = EXP((LOG(PP(:, LL)) + LOG(PP(:, LL - 1))) / 2.)
244       PHM1(:, LL) = 1. / PH(:, LL)
245    end DO
246
247    PH(:, KLEV + 1) = 0.
248    PHM1(:, KLEV + 1) = 1. / PSEC
249    PH(:, 1) = 2. * PP(:, 1) - PH(:, 2)
250
251    ! Launching altitude
252
253    IF (gwd_reproductibilite_mpiomp) THEN
254       ! Reprend la formule qui calcule PH en fonction de PP=play
255       DO LL = 2, KLEV
256          HREF(LL) = EXP((LOG(presnivs(LL)) + LOG(presnivs(LL - 1))) / 2.)
257       end DO
258       HREF(KLEV + 1) = 0.
259       HREF(1) = 2. * presnivs(1) - HREF(2)
260    ELSE
261       HREF(1:KLEV)=PH(KLON/2,1:KLEV)
262    ENDIF
263
264    LAUNCH=0
265    LTROP =0
266    DO LL = 1, KLEV
267       IF (HREF(LL) / HREF(1) > XLAUNCH) LAUNCH = LL
268    ENDDO
269    DO LL = 1, KLEV
270       IF (HREF(LL) / HREF(1) > XTROP) LTROP = LL
271    ENDDO
272    !LAUNCH=22 ; LTROP=33
273!   print*,'LAUNCH=',LAUNCH,'LTROP=',LTROP
274
275
276!   PRINT *,'LAUNCH IN ACAMARA:',LAUNCH
277
278    ! Log pressure vert. coordinate
279    DO LL = 1, KLEV + 1
280       ZH(:, LL) = H0 * LOG(PR / (PH(:, LL) + PSEC))
281    end DO
282
283    ! BV frequency
284    DO LL = 2, KLEV
285       ! BVSEC: BV Frequency (UH USED IS AS A TEMPORARY ARRAY DOWN TO WINDS)
286       UH(:, LL) = 0.5 * (TT(:, LL) + TT(:, LL - 1)) &
287            * RD**2 / RCPD / H0**2 + (TT(:, LL) &
288            - TT(:, LL - 1)) / (ZH(:, LL) - ZH(:, LL - 1)) * RD / H0
289    end DO
290    BVLOW(:) = 0.5 * (TT(:, LTROP )+ TT(:, LAUNCH)) &
291         * RD**2 / RCPD / H0**2 + (TT(:, LTROP ) &
292         - TT(:, LAUNCH))/(ZH(:, LTROP )- ZH(:, LAUNCH)) * RD / H0
293
294    UH(:, 1) = UH(:, 2)
295    UH(:, KLEV + 1) = UH(:, KLEV)
296    BV(:, 1) = UH(:, 2)
297    BV(:, KLEV + 1) = UH(:, KLEV)
298    ! SMOOTHING THE BV HELPS
299    DO LL = 2, KLEV
300       BV(:, LL)=(UH(:, LL+1)+2.*UH(:, LL)+UH(:, LL-1))/4.
301    end DO
302
303    BV=MAX(SQRT(MAX(BV, 0.)), BVSEC)
304    BVLOW=MAX(SQRT(MAX(BVLOW, 0.)), BVSEC)
305
306    ! WINDS
307    DO LL = 2, KLEV
308       UH(:, LL) = 0.5 * (UU(:, LL) + UU(:, LL - 1)) ! Zonal wind
309       VH(:, LL) = 0.5 * (VV(:, LL) + VV(:, LL - 1)) ! Meridional wind
310       UZ(:, LL) = ABS((SQRT(UU(:, LL)**2+VV(:, LL)**2) &
311          - SQRT(UU(:,LL-1)**2+VV(:, LL-1)**2)) &
312          /(ZH(:, LL)-ZH(:, LL-1)) )
313    end DO
314    UH(:, 1) = 0.
315    VH(:, 1) = 0.
316    UH(:, KLEV + 1) = UU(:, KLEV)
317    VH(:, KLEV + 1) = VV(:, KLEV)
318
319    UZ(:, 1) = UZ(:, 2)
320    UZ(:, KLEV + 1) = UZ(:, KLEV)
321    UZ(:, :) = MAX(UZ(:,:), PSEC)
322
323   ! BAROTROPIC VORTICITY AND INTEGRATED CORIOLIS PARAMETER
324   
325    CORIO(:) = MAX(ROMEGA*2.*ABS(SIN(PLAT(:)*RPI/180.)),CORSEC)
326    ROTBA(:)=0.
327    DO LL = 1,KLEV-1
328        !ROTBA(:) = ROTBA(:) + (ROT(:,LL)+ROT(:,LL+1))/2./RG*(PP(:,LL)-PP(:,LL+1))
329        ! Introducing the complete formula (exp of Richardson number):
330        ROTBA(:) = ROTBA(:) + &
331                !((ROT(:,LL)+ROT(:,LL+1))/2.)**2 &
332                (CORIO(:)*TANH(ABS(ROT(:,LL)+ROT(:,LL+1))/2./CORIO(:)))**2 &
333                /RG*(PP(:,LL)-PP(:,LL+1)) &
334                * EXP(-RPI*BV(:,LL+1)/UZ(:,LL+1)) &
335!               * DZ*BV(:,LL+1)/4./ABS(CORIO(:))
336                * DZ*BV(:,LL+1)/4./1.E-4           !  Changes after 1991
337!ARRET
338    ENDDO
339    !   PRINT *,'MAX ROTBA:',MAXVAL(ROTBA)
340    !   ROTBA(:)=(1.*ROTBA(:)  & ! Testing zone
341    !           +0.15*CORIO(:)**2                &
342    !           /(COS(PLAT(:)*RPI/180.)+0.02)  &
343    !           )*DZ*0.01/0.0001/4. ! & ! Testing zone
344    !   MODIF GWD4 AFTER 1985
345    !            *(1.25+SIN(PLAT(:)*RPI/180.))/(1.05+SIN(PLAT(:)*RPI/180.))/1.25
346    !          *1./(COS(PLAT(:)*RPI/180.)+0.02)
347    !    CORIO(:) = MAX(ROMEGA*2.*ABS(SIN(PLAT(:)*RPI/180.)),ZOISEC)/RG*PP(:,1)
348
349    ! 3 WAVES CHARACTERISTICS CHOSEN RANDOMLY AT THE LAUNCH ALTITUDE
350
351    ! The mod functions of weird arguments are used to produce the
352    ! waves characteristics in an almost stochastic way
353
354    JW = 0
355    DO JW = 1, NW
356             ! Angle
357             DO II = 1, KLON
358                ! Angle (0 or PI so far)
359                ! ZP(II,JW) = (SIGN(1., 0.5 - MOD(TT(II, JW) * 10., 1.)) + 1.) &
360                !      * RPI / 2.
361                ! Angle between 0 and pi
362                  ZP(II,JW) = MOD(TT(II, JW) * 10., 1.) * RPI
363! TEST WITH POSITIVE WAVES ONLY (Part I/II)
364!               ZP(II,JW) = 0.
365                ! Horizontal wavenumber amplitude
366                ZK(II,JW) = KMIN + (KMAX - KMIN) * MOD(TT(II, JW) * 100., 1.)
367                ! Horizontal phase speed
368                CPHA = 0.
369                DO JJ = 1, NA
370                    CPHA = CPHA + &
371         CMAX*2.*(MOD(TT(II, JW+4*(JJ-1)+JJ)**2, 1.)-0.5)*SQRT(3.)/SQRT(NA*1.)
372                END DO
373                IF (CPHA.LT.0.)  THEN
374                   CPHA = -1.*CPHA
375                   ZP(II,JW) = ZP(II,JW) + RPI
376! TEST WITH POSITIVE WAVES ONLY (Part II/II)
377!               ZP(II,JW) = 0.
378                ENDIF
379                CPHA = CPHA + CMIN !we dont allow |c|<1m/s
380                ! Absolute frequency is imposed
381                ZO(II, JW) = CPHA * ZK(II,JW)
382                ! Intrinsic frequency is imposed
383                ZO(II, JW) = ZO(II, JW) &
384                     + ZK(II,JW) * COS(ZP(II,JW)) * UH(II, LAUNCH) &
385                     + ZK(II,JW) * SIN(ZP(II,JW)) * VH(II, LAUNCH)
386                ! Momentum flux at launch lev
387                ! LAUNCHED RANDOM WAVES WITH LOG-NORMAL AMPLITUDE
388                !  RIGHT IN THE SH (GWD4 after 1990)
389                  RUW0(II, JW) = 0.
390                 DO JJ = 1, NA
391                    RUW0(II, JW) = RUW0(II, JW) + &
392         2.*(MOD(TT(II, JW+4*(JJ-1)+JJ)**2, 1.)-0.5)*SQRT(3.)/SQRT(NA*1.)
393                END DO
394                RUW0(II,JW) = RUWFRT &
395                          * EXP(RUW0(II,JW))/1250. &  ! 2 mpa at south pole
396       *((1.05+SIN(PLAT(II)*RPI/180.))/(1.01+SIN(PLAT(II)*RPI/180.))-2.05/2.01)
397                ! RUW0(II,JW) = RUWFRT
398             ENDDO
399    end DO
400
401    ! 4. COMPUTE THE FLUXES
402
403    ! 4.0
404
405    ! 4.1 Vertical velocity at launching altitude to ensure
406    ! the correct value to the imposed fluxes.
407
408    DO JW = 1, NW
409
410       ! Evaluate intrinsic frequency at launching altitude:
411       ZOP(:, JW) = ZO(:, JW) &
412            - ZK(:,JW) * COS(ZP(:,JW)) * UH(:, LAUNCH) &
413            - ZK(:,JW) * SIN(ZP(:,JW)) * VH(:, LAUNCH)
414
415       ! VERSION WITH FRONTAL SOURCES
416
417       ! Momentum flux at launch level imposed by vorticity sources
418
419       ! tanh limitation for values above CORIO (inertial instability).
420       ! WWP(:,JW) = RUW0(:,JW) &
421       WWP(:,JW) = RUWFRT      &
422       !     * (CORIO(:)*TANH(ROTBA(:)/CORIO(:)))**2 &
423       !    * ABS((CORIO(:)*TANH(ROTBA(:)/CORIO(:)))*CORIO(:)) &
424       !  CONSTANT FLUX
425       !    * (CORIO(:)*CORIO(:)) &
426       ! MODERATION BY THE DEPTH OF THE SOURCE (DZ HERE)
427       !      *EXP(-BVLOW(:)**2/MAX(ABS(ZOP(:,JW)),ZOISEC)**2 &
428       !      *ZK(:,JW)**2*DZ**2) &
429       ! COMPLETE FORMULA:
430            !* CORIO(:)**2*TANH(ROTBA(:)/CORIO(:)**2) &
431            * ROTBA(:) &
432       !  RESTORE DIMENSION OF A FLUX
433       !     *RD*TR/PR
434       !     *1. + RUW0(:,JW)
435             *1.
436
437       ! Factor related to the characteristics of the waves: NONE
438
439       ! Moderation by the depth of the source (dz here): NONE
440
441       ! Put the stress in the right direction:
442
443        RUWP(:,JW) = SIGN(1., ZOP(:,JW))*COS(ZP(:,JW)) * WWP(:,JW)
444        RVWP(:,JW) = SIGN(1., ZOP(:,JW))*SIN(ZP(:,JW)) * WWP(:,JW)
445
446    end DO
447
448    ! 4.2 Uniform values below the launching altitude
449
450    DO LL = 1, LAUNCH
451       RUW(:, LL) = 0
452       RVW(:, LL) = 0
453       DO JW = 1, NW
454          RUW(:, LL) = RUW(:, LL) + RUWP(:,JW)
455          RVW(:, LL) = RVW(:, LL) + RVWP(:,JW)
456       end DO
457    end DO
458
459    ! 4.3 Loop over altitudes, with passage from one level to the next
460    ! done by i) conserving the EP flux, ii) dissipating a little,
461    ! iii) testing critical levels, and vi) testing the breaking.
462
463    DO LL = LAUNCH, KLEV - 1
464       ! Warning: all the physics is here (passage from one level
465       ! to the next)
466       DO JW = 1, NW
467          ZOM(:, JW) = ZOP(:,JW)
468          WWM(:,JW) = WWP(:,JW)
469          ! Intrinsic Frequency
470          ZOP(:,JW) = ZO(:, JW) - ZK(:,JW) * COS(ZP(:,JW)) * UH(:, LL + 1) &
471               - ZK(:,JW) * SIN(ZP(:,JW)) * VH(:, LL + 1)
472
473          ! No breaking (Eq.6)
474          ! Dissipation (Eq. 8)
475          WWP(:,JW) = WWM(:,JW) * EXP(- 4. * RDISS * PR / (PH(:, LL + 1) &
476               + PH(:, LL)) * ((BV(:, LL + 1) + BV(:, LL)) / 2.)**3 &
477               / MAX(ABS(ZOP(:,JW) + ZOM(:, JW)) / 2., ZOISEC)**4 &
478               * ZK(:,JW)**3 * (ZH(:, LL + 1) - ZH(:, LL)))
479
480          ! Critical levels (forced to zero if intrinsic frequency changes sign)
481          ! Saturation (Eq. 12)
482          WWP(:,JW) = min(WWP(:,JW), MAX(0., &
483               SIGN(1., ZOP(:,JW) * ZOM(:, JW))) * ABS(ZOP(:,JW))**3 &
484          !    / BV(:, LL + 1) * EXP(- ZH(:, LL + 1) / H0) * SATFRT**2 * KMIN**2 &
485               / BV(:, LL + 1) * EXP(- ZH(:, LL + 1) / H0) * KMIN**2 &
486!              *(SATFRT*(2.5+1.5*TANH((ZH(:,LL+1)/H0-8.)/2.)))**2 &
487               *SATFRT**2       &
488               / ZK(:,JW)**4)
489       end DO
490
491       ! Evaluate EP-flux from Eq. 7 and give the right orientation to
492       ! the stress
493
494       DO JW = 1, NW
495          RUWP(:,JW) = SIGN(1., ZOP(:,JW))*COS(ZP(:,JW)) * WWP(:,JW)
496          RVWP(:,JW) = SIGN(1., ZOP(:,JW))*SIN(ZP(:,JW)) * WWP(:,JW)
497       end DO
498
499       RUW(:, LL + 1) = 0.
500       RVW(:, LL + 1) = 0.
501
502       DO JW = 1, NW
503          RUW(:, LL + 1) = RUW(:, LL + 1) + RUWP(:,JW)
504          RVW(:, LL + 1) = RVW(:, LL + 1) + RVWP(:,JW)
505          EAST_GWSTRESS(:, LL)=EAST_GWSTRESS(:, LL)+MAX(0.,RUWP(:,JW))/REAL(NW)
506          WEST_GWSTRESS(:, LL)=WEST_GWSTRESS(:, LL)+MIN(0.,RUWP(:,JW))/REAL(NW)
507       end DO
508    end DO
509
510    ! 5 CALCUL DES TENDANCES:
511
512    ! 5.1 Rectification des flux au sommet et dans les basses couches
513
514    RUW(:, KLEV + 1) = 0.
515    RVW(:, KLEV + 1) = 0.
516    RUW(:, 1) = RUW(:, LAUNCH)
517    RVW(:, 1) = RVW(:, LAUNCH)
518    DO LL = 1, LAUNCH
519       RUW(:, LL) = RUW(:, LAUNCH+1)
520       RVW(:, LL) = RVW(:, LAUNCH+1)
521       EAST_GWSTRESS(:, LL)=EAST_GWSTRESS(:, LAUNCH)
522       WEST_GWSTRESS(:, LL)=WEST_GWSTRESS(:, LAUNCH)
523    end DO
524
525    ! AR-1 RECURSIVE FORMULA (13) IN VERSION 4
526    DO LL = 1, KLEV
527       D_U(:, LL) = (1.-DTIME/DELTAT) * D_U(:, LL) + DTIME/DELTAT/REAL(NW) * &
528            RG * (RUW(:, LL + 1) - RUW(:, LL)) &
529            / (PH(:, LL + 1) - PH(:, LL)) * DTIME
530!  NO AR1 FOR MERIDIONAL TENDENCIES
531!      D_V(:, LL) = (1.-DTIME/DELTAT) * D_V(:, LL) + DTIME/DELTAT/REAL(NW) * &
532       D_V(:, LL) =                                            1./REAL(NW) * &
533            RG * (RVW(:, LL + 1) - RVW(:, LL)) &
534            / (PH(:, LL + 1) - PH(:, LL)) * DTIME
535    ENDDO
536
537    ! Cosmetic: evaluation of the cumulated stress
538    ZUSTR = 0.
539    ZVSTR = 0.
540    DO LL = 1, KLEV
541       ZUSTR = ZUSTR + D_U(:, LL) / RG * (PH(:, LL + 1) - PH(:, LL))/DTIME
542!      ZVSTR = ZVSTR + D_V(:, LL) / RG * (PH(:, LL + 1) - PH(:, LL))/DTIME
543    ENDDO
544! COSMETICS TO VISUALIZE ROTBA
545    ZVSTR = ROTBA
546
547  END SUBROUTINE ACAMA_GWD_RANDO
548
549end module ACAMA_GWD_rando_m
Note: See TracBrowser for help on using the repository browser.