[1992] | 1 | |
---|
[1403] | 2 | ! $Id: aaam_bud.f90 5268 2024-10-23 17:02:39Z aborella $ |
---|
[644] | 3 | |
---|
[1992] | 4 | SUBROUTINE aaam_bud(iam, nlon, nlev, rjour, rsec, rea, rg, ome, plat, plon, & |
---|
| 5 | phis, dragu, liftu, phyu, dragv, liftv, phyv, p, u, v, aam, torsfc) |
---|
[644] | 6 | |
---|
[1992] | 7 | USE dimphy |
---|
[2350] | 8 | USE mod_grid_phy_lmdz, ONLY: nbp_lon, nbp_lat, klon_glo |
---|
[1992] | 9 | IMPLICIT NONE |
---|
| 10 | ! ====================================================================== |
---|
| 11 | ! Auteur(s): F.Lott (LMD/CNRS) date: 20031020 |
---|
| 12 | ! Object: Compute different terms of the axial AAAM Budget. |
---|
| 13 | ! No outputs, every AAM quantities are written on the IAM |
---|
| 14 | ! File. |
---|
[1403] | 15 | |
---|
[1992] | 16 | ! Modif : I.Musat (LMD/CNRS) date : 20041020 |
---|
| 17 | ! Outputs : axial components of wind AAM "aam" and total surface torque |
---|
| 18 | ! "torsfc", |
---|
| 19 | ! but no write in the iam file. |
---|
[1403] | 20 | |
---|
[1992] | 21 | ! WARNING: Only valid for regular rectangular grids. |
---|
| 22 | ! REMARK: CALL DANS PHYSIQ AFTER lift_noro: |
---|
| 23 | ! CALL aaam_bud (27,klon,klev,rjourvrai,gmtime, |
---|
| 24 | ! C ra,rg,romega, |
---|
| 25 | ! C rlat,rlon,pphis, |
---|
| 26 | ! C zustrdr,zustrli,zustrph, |
---|
| 27 | ! C zvstrdr,zvstrli,zvstrph, |
---|
| 28 | ! C paprs,u,v) |
---|
[1403] | 29 | |
---|
[1992] | 30 | ! ====================================================================== |
---|
| 31 | ! Explicit Arguments: |
---|
| 32 | ! ================== |
---|
| 33 | ! iam-----input-I-File number where AAMs and torques are written |
---|
| 34 | ! It is a formatted file that has been opened |
---|
| 35 | ! in physiq.F |
---|
| 36 | ! nlon----input-I-Total number of horizontal points that get into physics |
---|
| 37 | ! nlev----input-I-Number of vertical levels |
---|
| 38 | ! rjour -R-Jour compte depuis le debut de la simu (run.def) |
---|
| 39 | ! rsec -R-Seconde de la journee |
---|
| 40 | ! rea -R-Earth radius |
---|
| 41 | ! rg -R-gravity constant |
---|
| 42 | ! ome -R-Earth rotation rate |
---|
| 43 | ! plat ---input-R-Latitude en degres |
---|
| 44 | ! plon ---input-R-Longitude en degres |
---|
| 45 | ! phis ---input-R-Geopotential at the ground |
---|
| 46 | ! dragu---input-R-orodrag stress (zonal) |
---|
| 47 | ! liftu---input-R-orolift stress (zonal) |
---|
| 48 | ! phyu----input-R-Stress total de la physique (zonal) |
---|
| 49 | ! dragv---input-R-orodrag stress (Meridional) |
---|
| 50 | ! liftv---input-R-orolift stress (Meridional) |
---|
| 51 | ! phyv----input-R-Stress total de la physique (Meridional) |
---|
| 52 | ! p-------input-R-Pressure (Pa) at model half levels |
---|
| 53 | ! u-------input-R-Horizontal wind (m/s) |
---|
| 54 | ! v-------input-R-Meridional wind (m/s) |
---|
| 55 | ! aam-----output-R-Axial Wind AAM (=raam(3)) |
---|
| 56 | ! torsfc--output-R-Total surface torque (=tmou(3)+tsso(3)+tbls(3)) |
---|
[644] | 57 | |
---|
[1992] | 58 | ! Implicit Arguments: |
---|
| 59 | ! =================== |
---|
[644] | 60 | |
---|
[2346] | 61 | ! nbp_lon--common-I: Number of longitude intervals |
---|
| 62 | ! (nbp_lat-1)--common-I: Number of latitude intervals |
---|
[1992] | 63 | ! klon-common-I: Number of points seen by the physics |
---|
[2346] | 64 | ! nbp_lon*(nbp_lat-2)+2 for instance |
---|
[1992] | 65 | ! klev-common-I: Number of vertical layers |
---|
| 66 | ! ====================================================================== |
---|
| 67 | ! Local Variables: |
---|
| 68 | ! ================ |
---|
| 69 | ! dlat-----R: Latitude increment (Radians) |
---|
| 70 | ! dlon-----R: Longitude increment (Radians) |
---|
| 71 | ! raam ---R: Wind AAM (3 Components, 1 & 2 Equatoriales; 3 Axiale) |
---|
| 72 | ! oaam ---R: Mass AAM (3 Components, 1 & 2 Equatoriales; 3 Axiale) |
---|
| 73 | ! tmou-----R: Resolved Mountain torque (3 components) |
---|
| 74 | ! tsso-----R: Parameterised Moutain drag torque (3 components) |
---|
| 75 | ! tbls-----R: Parameterised Boundary layer torque (3 components) |
---|
[644] | 76 | |
---|
[1992] | 77 | ! LOCAL ARRAY: |
---|
| 78 | ! =========== |
---|
| 79 | ! zs ---R: Topographic height |
---|
| 80 | ! ps ---R: Surface Pressure |
---|
| 81 | ! ub ---R: Barotropic wind zonal |
---|
| 82 | ! vb ---R: Barotropic wind meridional |
---|
| 83 | ! zlat ---R: Latitude in radians |
---|
| 84 | ! zlon ---R: Longitude in radians |
---|
| 85 | ! ====================================================================== |
---|
[644] | 86 | |
---|
[1992] | 87 | ! ARGUMENTS |
---|
[644] | 88 | |
---|
[1992] | 89 | INTEGER iam, nlon, nlev |
---|
| 90 | REAL, INTENT (IN) :: rjour, rsec, rea, rg, ome |
---|
| 91 | REAL plat(nlon), plon(nlon), phis(nlon) |
---|
| 92 | REAL dragu(nlon), liftu(nlon), phyu(nlon) |
---|
| 93 | REAL dragv(nlon), liftv(nlon), phyv(nlon) |
---|
| 94 | REAL p(nlon, nlev+1), u(nlon, nlev), v(nlon, nlev) |
---|
[644] | 95 | |
---|
[1992] | 96 | ! Variables locales: |
---|
[644] | 97 | |
---|
[1992] | 98 | INTEGER i, j, k, l |
---|
| 99 | REAL xpi, hadley, hadday |
---|
| 100 | REAL dlat, dlon |
---|
| 101 | REAL raam(3), oaam(3), tmou(3), tsso(3), tbls(3) |
---|
| 102 | INTEGER iax |
---|
| 103 | ! IM ajout aam, torsfc |
---|
| 104 | ! aam = composante axiale du Wind AAM raam |
---|
| 105 | ! torsfc = composante axiale de (tmou+tsso+tbls) |
---|
| 106 | REAL aam, torsfc |
---|
[644] | 107 | |
---|
[1992] | 108 | REAL zs(801, 401), ps(801, 401) |
---|
| 109 | REAL ub(801, 401), vb(801, 401) |
---|
| 110 | REAL ssou(801, 401), ssov(801, 401) |
---|
| 111 | REAL blsu(801, 401), blsv(801, 401) |
---|
| 112 | REAL zlon(801), zlat(401) |
---|
[644] | 113 | |
---|
[1992] | 114 | CHARACTER (LEN=20) :: modname = 'aaam_bud' |
---|
| 115 | CHARACTER (LEN=80) :: abort_message |
---|
[644] | 116 | |
---|
| 117 | |
---|
| 118 | |
---|
[1992] | 119 | ! PUT AAM QUANTITIES AT ZERO: |
---|
[644] | 120 | |
---|
[2346] | 121 | IF (nbp_lon+1>801 .OR. nbp_lat>401) THEN |
---|
[1992] | 122 | abort_message = 'Pb de dimension dans aaam_bud' |
---|
[2311] | 123 | CALL abort_physic(modname, abort_message, 1) |
---|
[1992] | 124 | END IF |
---|
[644] | 125 | |
---|
[1992] | 126 | xpi = acos(-1.) |
---|
| 127 | hadley = 1.E18 |
---|
| 128 | hadday = 1.E18*24.*3600. |
---|
[2350] | 129 | IF(klon_glo.EQ.1) THEN |
---|
| 130 | dlat = xpi |
---|
| 131 | ELSE |
---|
| 132 | dlat = xpi/real(nbp_lat-1) |
---|
| 133 | ENDIF |
---|
[2346] | 134 | dlon = 2.*xpi/real(nbp_lon) |
---|
[644] | 135 | |
---|
[1992] | 136 | DO iax = 1, 3 |
---|
| 137 | oaam(iax) = 0. |
---|
| 138 | raam(iax) = 0. |
---|
| 139 | tmou(iax) = 0. |
---|
| 140 | tsso(iax) = 0. |
---|
| 141 | tbls(iax) = 0. |
---|
| 142 | END DO |
---|
[644] | 143 | |
---|
[1992] | 144 | ! MOUNTAIN HEIGHT, PRESSURE AND BAROTROPIC WIND: |
---|
[644] | 145 | |
---|
[1992] | 146 | ! North pole values (j=1): |
---|
[644] | 147 | |
---|
[1992] | 148 | l = 1 |
---|
[644] | 149 | |
---|
[1992] | 150 | ub(1, 1) = 0. |
---|
| 151 | vb(1, 1) = 0. |
---|
| 152 | DO k = 1, nlev |
---|
| 153 | ub(1, 1) = ub(1, 1) + u(l, k)*(p(l,k)-p(l,k+1))/rg |
---|
| 154 | vb(1, 1) = vb(1, 1) + v(l, k)*(p(l,k)-p(l,k+1))/rg |
---|
| 155 | END DO |
---|
[644] | 156 | |
---|
[1992] | 157 | zlat(1) = plat(l)*xpi/180. |
---|
[644] | 158 | |
---|
[2346] | 159 | DO i = 1, nbp_lon + 1 |
---|
[644] | 160 | |
---|
[1992] | 161 | zs(i, 1) = phis(l)/rg |
---|
| 162 | ps(i, 1) = p(l, 1) |
---|
| 163 | ub(i, 1) = ub(1, 1) |
---|
| 164 | vb(i, 1) = vb(1, 1) |
---|
| 165 | ssou(i, 1) = dragu(l) + liftu(l) |
---|
| 166 | ssov(i, 1) = dragv(l) + liftv(l) |
---|
| 167 | blsu(i, 1) = phyu(l) - dragu(l) - liftu(l) |
---|
| 168 | blsv(i, 1) = phyv(l) - dragv(l) - liftv(l) |
---|
[644] | 169 | |
---|
[1992] | 170 | END DO |
---|
[644] | 171 | |
---|
| 172 | |
---|
[2346] | 173 | DO j = 2, nbp_lat-1 |
---|
[644] | 174 | |
---|
[1992] | 175 | ! Values at Greenwich (Periodicity) |
---|
[644] | 176 | |
---|
[2346] | 177 | zs(nbp_lon+1, j) = phis(l+1)/rg |
---|
| 178 | ps(nbp_lon+1, j) = p(l+1, 1) |
---|
| 179 | ssou(nbp_lon+1, j) = dragu(l+1) + liftu(l+1) |
---|
| 180 | ssov(nbp_lon+1, j) = dragv(l+1) + liftv(l+1) |
---|
| 181 | blsu(nbp_lon+1, j) = phyu(l+1) - dragu(l+1) - liftu(l+1) |
---|
| 182 | blsv(nbp_lon+1, j) = phyv(l+1) - dragv(l+1) - liftv(l+1) |
---|
| 183 | zlon(nbp_lon+1) = -plon(l+1)*xpi/180. |
---|
[1992] | 184 | zlat(j) = plat(l+1)*xpi/180. |
---|
[644] | 185 | |
---|
[2346] | 186 | ub(nbp_lon+1, j) = 0. |
---|
| 187 | vb(nbp_lon+1, j) = 0. |
---|
[1992] | 188 | DO k = 1, nlev |
---|
[2346] | 189 | ub(nbp_lon+1, j) = ub(nbp_lon+1, j) + u(l+1, k)*(p(l+1,k)-p(l+1,k+1))/rg |
---|
| 190 | vb(nbp_lon+1, j) = vb(nbp_lon+1, j) + v(l+1, k)*(p(l+1,k)-p(l+1,k+1))/rg |
---|
[1992] | 191 | END DO |
---|
[644] | 192 | |
---|
| 193 | |
---|
[2346] | 194 | DO i = 1, nbp_lon |
---|
[644] | 195 | |
---|
[1992] | 196 | l = l + 1 |
---|
| 197 | zs(i, j) = phis(l)/rg |
---|
| 198 | ps(i, j) = p(l, 1) |
---|
| 199 | ssou(i, j) = dragu(l) + liftu(l) |
---|
| 200 | ssov(i, j) = dragv(l) + liftv(l) |
---|
| 201 | blsu(i, j) = phyu(l) - dragu(l) - liftu(l) |
---|
| 202 | blsv(i, j) = phyv(l) - dragv(l) - liftv(l) |
---|
| 203 | zlon(i) = plon(l)*xpi/180. |
---|
[644] | 204 | |
---|
[1992] | 205 | ub(i, j) = 0. |
---|
| 206 | vb(i, j) = 0. |
---|
| 207 | DO k = 1, nlev |
---|
| 208 | ub(i, j) = ub(i, j) + u(l, k)*(p(l,k)-p(l,k+1))/rg |
---|
| 209 | vb(i, j) = vb(i, j) + v(l, k)*(p(l,k)-p(l,k+1))/rg |
---|
| 210 | END DO |
---|
[644] | 211 | |
---|
[1992] | 212 | END DO |
---|
[644] | 213 | |
---|
[1992] | 214 | END DO |
---|
[644] | 215 | |
---|
| 216 | |
---|
[1992] | 217 | ! South Pole |
---|
[644] | 218 | |
---|
[2346] | 219 | IF (nbp_lat-1>1) THEN |
---|
[1992] | 220 | l = l + 1 |
---|
[2346] | 221 | ub(1, nbp_lat) = 0. |
---|
| 222 | vb(1, nbp_lat) = 0. |
---|
[1992] | 223 | DO k = 1, nlev |
---|
[2346] | 224 | ub(1, nbp_lat) = ub(1, nbp_lat) + u(l, k)*(p(l,k)-p(l,k+1))/rg |
---|
| 225 | vb(1, nbp_lat) = vb(1, nbp_lat) + v(l, k)*(p(l,k)-p(l,k+1))/rg |
---|
[1992] | 226 | END DO |
---|
[2346] | 227 | zlat(nbp_lat) = plat(l)*xpi/180. |
---|
[644] | 228 | |
---|
[2346] | 229 | DO i = 1, nbp_lon + 1 |
---|
| 230 | zs(i, nbp_lat) = phis(l)/rg |
---|
| 231 | ps(i, nbp_lat) = p(l, 1) |
---|
| 232 | ssou(i, nbp_lat) = dragu(l) + liftu(l) |
---|
| 233 | ssov(i, nbp_lat) = dragv(l) + liftv(l) |
---|
| 234 | blsu(i, nbp_lat) = phyu(l) - dragu(l) - liftu(l) |
---|
| 235 | blsv(i, nbp_lat) = phyv(l) - dragv(l) - liftv(l) |
---|
| 236 | ub(i, nbp_lat) = ub(1, nbp_lat) |
---|
| 237 | vb(i, nbp_lat) = vb(1, nbp_lat) |
---|
[1992] | 238 | END DO |
---|
| 239 | END IF |
---|
[644] | 240 | |
---|
| 241 | |
---|
[1992] | 242 | ! MOMENT ANGULAIRE |
---|
[644] | 243 | |
---|
[2346] | 244 | DO j = 1, nbp_lat-1 |
---|
| 245 | DO i = 1, nbp_lon |
---|
[1992] | 246 | |
---|
| 247 | raam(1) = raam(1) - rea**3*dlon*dlat*0.5*(cos(zlon(i))*sin(zlat(j))*cos & |
---|
| 248 | (zlat(j))*ub(i,j)+cos(zlon(i))*sin(zlat(j+1))*cos(zlat(j+ & |
---|
| 249 | 1))*ub(i,j+1)) + rea**3*dlon*dlat*0.5*(sin(zlon(i))*cos(zlat(j))*vb(i & |
---|
| 250 | ,j)+sin(zlon(i))*cos(zlat(j+1))*vb(i,j+1)) |
---|
| 251 | |
---|
| 252 | oaam(1) = oaam(1) - ome*rea**4*dlon*dlat/rg*0.5*(cos(zlon(i))*cos(zlat( & |
---|
| 253 | j))**2*sin(zlat(j))*ps(i,j)+cos(zlon(i))*cos(zlat(j+ & |
---|
| 254 | 1))**2*sin(zlat(j+1))*ps(i,j+1)) |
---|
| 255 | |
---|
| 256 | raam(2) = raam(2) - rea**3*dlon*dlat*0.5*(sin(zlon(i))*sin(zlat(j))*cos & |
---|
| 257 | (zlat(j))*ub(i,j)+sin(zlon(i))*sin(zlat(j+1))*cos(zlat(j+ & |
---|
| 258 | 1))*ub(i,j+1)) - rea**3*dlon*dlat*0.5*(cos(zlon(i))*cos(zlat(j))*vb(i & |
---|
| 259 | ,j)+cos(zlon(i))*cos(zlat(j+1))*vb(i,j+1)) |
---|
| 260 | |
---|
| 261 | oaam(2) = oaam(2) - ome*rea**4*dlon*dlat/rg*0.5*(sin(zlon(i))*cos(zlat( & |
---|
| 262 | j))**2*sin(zlat(j))*ps(i,j)+sin(zlon(i))*cos(zlat(j+ & |
---|
| 263 | 1))**2*sin(zlat(j+1))*ps(i,j+1)) |
---|
| 264 | |
---|
| 265 | raam(3) = raam(3) + rea**3*dlon*dlat*0.5*(cos(zlat(j))**2*ub(i,j)+cos( & |
---|
| 266 | zlat(j+1))**2*ub(i,j+1)) |
---|
| 267 | |
---|
| 268 | oaam(3) = oaam(3) + ome*rea**4*dlon*dlat/rg*0.5*(cos(zlat(j))**3*ps(i,j & |
---|
| 269 | )+cos(zlat(j+1))**3*ps(i,j+1)) |
---|
| 270 | |
---|
| 271 | END DO |
---|
| 272 | END DO |
---|
| 273 | |
---|
| 274 | |
---|
| 275 | ! COUPLE DES MONTAGNES: |
---|
| 276 | |
---|
| 277 | |
---|
[2346] | 278 | DO j = 1, nbp_lat-1 |
---|
| 279 | DO i = 1, nbp_lon |
---|
[1992] | 280 | tmou(1) = tmou(1) - rea**2*dlon*0.5*sin(zlon(i))*(zs(i,j)-zs(i,j+1))*( & |
---|
| 281 | cos(zlat(j+1))*ps(i,j+1)+cos(zlat(j))*ps(i,j)) |
---|
| 282 | tmou(2) = tmou(2) + rea**2*dlon*0.5*cos(zlon(i))*(zs(i,j)-zs(i,j+1))*( & |
---|
| 283 | cos(zlat(j+1))*ps(i,j+1)+cos(zlat(j))*ps(i,j)) |
---|
| 284 | END DO |
---|
| 285 | END DO |
---|
| 286 | |
---|
[2346] | 287 | DO j = 2, nbp_lat-1 |
---|
| 288 | DO i = 1, nbp_lon |
---|
[1992] | 289 | tmou(1) = tmou(1) + rea**2*dlat*0.5*sin(zlat(j))*(zs(i+1,j)-zs(i,j))*( & |
---|
| 290 | cos(zlon(i+1))*ps(i+1,j)+cos(zlon(i))*ps(i,j)) |
---|
| 291 | tmou(2) = tmou(2) + rea**2*dlat*0.5*sin(zlat(j))*(zs(i+1,j)-zs(i,j))*( & |
---|
| 292 | sin(zlon(i+1))*ps(i+1,j)+sin(zlon(i))*ps(i,j)) |
---|
| 293 | tmou(3) = tmou(3) - rea**2*dlat*0.5*cos(zlat(j))*(zs(i+1,j)-zs(i,j))*( & |
---|
| 294 | ps(i+1,j)+ps(i,j)) |
---|
| 295 | END DO |
---|
| 296 | END DO |
---|
| 297 | |
---|
| 298 | |
---|
| 299 | ! COUPLES DES DIFFERENTES FRICTION AU SOL: |
---|
| 300 | |
---|
| 301 | l = 1 |
---|
[2346] | 302 | DO j = 2, nbp_lat-1 |
---|
| 303 | DO i = 1, nbp_lon |
---|
[1992] | 304 | l = l + 1 |
---|
| 305 | tsso(1) = tsso(1) - rea**3*cos(zlat(j))*dlon*dlat*ssou(i, j)*sin(zlat(j & |
---|
| 306 | ))*cos(zlon(i)) + rea**3*cos(zlat(j))*dlon*dlat*ssov(i, j)*sin(zlon(i & |
---|
| 307 | )) |
---|
| 308 | |
---|
| 309 | tsso(2) = tsso(2) - rea**3*cos(zlat(j))*dlon*dlat*ssou(i, j)*sin(zlat(j & |
---|
| 310 | ))*sin(zlon(i)) - rea**3*cos(zlat(j))*dlon*dlat*ssov(i, j)*cos(zlon(i & |
---|
| 311 | )) |
---|
| 312 | |
---|
| 313 | tsso(3) = tsso(3) + rea**3*cos(zlat(j))*dlon*dlat*ssou(i, j)*cos(zlat(j & |
---|
| 314 | )) |
---|
| 315 | |
---|
| 316 | tbls(1) = tbls(1) - rea**3*cos(zlat(j))*dlon*dlat*blsu(i, j)*sin(zlat(j & |
---|
| 317 | ))*cos(zlon(i)) + rea**3*cos(zlat(j))*dlon*dlat*blsv(i, j)*sin(zlon(i & |
---|
| 318 | )) |
---|
| 319 | |
---|
| 320 | tbls(2) = tbls(2) - rea**3*cos(zlat(j))*dlon*dlat*blsu(i, j)*sin(zlat(j & |
---|
| 321 | ))*sin(zlon(i)) - rea**3*cos(zlat(j))*dlon*dlat*blsv(i, j)*cos(zlon(i & |
---|
| 322 | )) |
---|
| 323 | |
---|
| 324 | tbls(3) = tbls(3) + rea**3*cos(zlat(j))*dlon*dlat*blsu(i, j)*cos(zlat(j & |
---|
| 325 | )) |
---|
| 326 | |
---|
| 327 | END DO |
---|
| 328 | END DO |
---|
| 329 | |
---|
| 330 | |
---|
| 331 | ! write(*,*) 'AAM',rsec, |
---|
| 332 | ! write(*,*) 'AAM',rjour+rsec/86400., |
---|
| 333 | ! c raam(3)/hadday,oaam(3)/hadday, |
---|
| 334 | ! c tmou(3)/hadley,tsso(3)/hadley,tbls(3)/hadley |
---|
| 335 | |
---|
| 336 | ! write(iam,100)rjour+rsec/86400., |
---|
| 337 | ! c raam(1)/hadday,oaam(1)/hadday, |
---|
| 338 | ! c tmou(1)/hadley,tsso(1)/hadley,tbls(1)/hadley, |
---|
| 339 | ! c raam(2)/hadday,oaam(2)/hadday, |
---|
| 340 | ! c tmou(2)/hadley,tsso(2)/hadley,tbls(2)/hadley, |
---|
| 341 | ! c raam(3)/hadday,oaam(3)/hadday, |
---|
| 342 | ! c tmou(3)/hadley,tsso(3)/hadley,tbls(3)/hadley |
---|
| 343 | 100 FORMAT (F12.5, 15(1X,F12.5)) |
---|
| 344 | |
---|
[2346] | 345 | ! write(iam+1,*)((zs(i,j),i=1,nbp_lon),j=1,nbp_lat) |
---|
| 346 | ! write(iam+1,*)((ps(i,j),i=1,nbp_lon),j=1,nbp_lat) |
---|
| 347 | ! write(iam+1,*)((ub(i,j),i=1,nbp_lon),j=1,nbp_lat) |
---|
| 348 | ! write(iam+1,*)((vb(i,j),i=1,nbp_lon),j=1,nbp_lat) |
---|
| 349 | ! write(iam+1,*)((ssou(i,j),i=1,nbp_lon),j=1,nbp_lat) |
---|
| 350 | ! write(iam+1,*)((ssov(i,j),i=1,nbp_lon),j=1,nbp_lat) |
---|
| 351 | ! write(iam+1,*)((blsu(i,j),i=1,nbp_lon),j=1,nbp_lat) |
---|
| 352 | ! write(iam+1,*)((blsv(i,j),i=1,nbp_lon),j=1,nbp_lat) |
---|
[1992] | 353 | |
---|
| 354 | aam = raam(3) |
---|
| 355 | torsfc = tmou(3) + tsso(3) + tbls(3) |
---|
| 356 | |
---|
| 357 | RETURN |
---|
| 358 | END SUBROUTINE aaam_bud |
---|