[3526] | 1 | ! |
---|
| 2 | ! $Id: traccoag_mod.F90 3528 2019-05-30 14:13:37Z fhourdin $ |
---|
| 3 | ! |
---|
[2690] | 4 | MODULE traccoag_mod |
---|
| 5 | ! |
---|
| 6 | ! This module calculates the concentration of aerosol particles in certain size bins |
---|
| 7 | ! considering coagulation and sedimentation. |
---|
| 8 | ! |
---|
| 9 | CONTAINS |
---|
| 10 | |
---|
| 11 | SUBROUTINE traccoag(pdtphys, gmtime, debutphy, julien, & |
---|
| 12 | presnivs, xlat, xlon, pphis, pphi, & |
---|
[2752] | 13 | t_seri, pplay, paprs, sh, rh, tr_seri) |
---|
[2690] | 14 | |
---|
[2752] | 15 | USE phys_local_var_mod, ONLY: mdw, R2SO4, DENSO4, f_r_wet, surf_PM25_sulf, & |
---|
| 16 | & budg_emi_ocs, budg_emi_so2, budg_emi_h2so4, budg_emi_part |
---|
[2690] | 17 | |
---|
| 18 | USE dimphy |
---|
| 19 | USE infotrac |
---|
| 20 | USE aerophys |
---|
[3526] | 21 | USE geometry_mod, ONLY : cell_area, boundslat |
---|
[2690] | 22 | USE mod_grid_phy_lmdz |
---|
| 23 | USE mod_phys_lmdz_mpi_data, ONLY : is_mpi_root |
---|
| 24 | USE mod_phys_lmdz_para, only: gather, scatter |
---|
| 25 | USE phys_cal_mod |
---|
| 26 | USE sulfate_aer_mod |
---|
| 27 | USE phys_local_var_mod, ONLY: stratomask |
---|
| 28 | USE YOMCST |
---|
[3526] | 29 | USE print_control_mod, ONLY: lunout |
---|
| 30 | USE strataer_mod |
---|
| 31 | USE phys_cal_mod, ONLY : year_len |
---|
[2690] | 32 | |
---|
| 33 | IMPLICIT NONE |
---|
| 34 | |
---|
| 35 | ! Input argument |
---|
| 36 | !--------------- |
---|
| 37 | REAL,INTENT(IN) :: pdtphys ! Pas d'integration pour la physique (seconde) |
---|
| 38 | REAL,INTENT(IN) :: gmtime ! Heure courante |
---|
| 39 | LOGICAL,INTENT(IN) :: debutphy ! le flag de l'initialisation de la physique |
---|
| 40 | INTEGER,INTENT(IN) :: julien ! Jour julien |
---|
| 41 | |
---|
| 42 | REAL,DIMENSION(klev),INTENT(IN) :: presnivs! pressions approximat. des milieux couches (en PA) |
---|
| 43 | REAL,DIMENSION(klon),INTENT(IN) :: xlat ! latitudes pour chaque point |
---|
| 44 | REAL,DIMENSION(klon),INTENT(IN) :: xlon ! longitudes pour chaque point |
---|
| 45 | REAL,DIMENSION(klon),INTENT(IN) :: pphis ! geopotentiel du sol |
---|
| 46 | REAL,DIMENSION(klon,klev),INTENT(IN) :: pphi ! geopotentiel de chaque couche |
---|
| 47 | |
---|
| 48 | REAL,DIMENSION(klon,klev),INTENT(IN) :: t_seri ! Temperature |
---|
| 49 | REAL,DIMENSION(klon,klev),INTENT(IN) :: pplay ! pression pour le mileu de chaque couche (en Pa) |
---|
| 50 | REAL,DIMENSION(klon,klev+1),INTENT(IN) :: paprs ! pression pour chaque inter-couche (en Pa) |
---|
| 51 | REAL,DIMENSION(klon,klev),INTENT(IN) :: sh ! humidite specifique |
---|
| 52 | REAL,DIMENSION(klon,klev),INTENT(IN) :: rh ! humidite relative |
---|
| 53 | |
---|
| 54 | ! Output argument |
---|
| 55 | !---------------- |
---|
| 56 | REAL,DIMENSION(klon,klev,nbtr),INTENT(INOUT) :: tr_seri ! Concentration Traceur [U/KgA] |
---|
| 57 | |
---|
| 58 | ! Local variables |
---|
| 59 | !---------------- |
---|
[3526] | 60 | REAL :: m_aer_emiss_vol_daily ! daily injection mass emission |
---|
| 61 | INTEGER :: it, k, i, ilon, ilev, itime, i_int, ieru |
---|
[2690] | 62 | LOGICAL,DIMENSION(klon,klev) :: is_strato ! true = above tropopause, false = below |
---|
| 63 | REAL,DIMENSION(klon,klev) :: m_air_gridbox ! mass of air in every grid box [kg] |
---|
| 64 | REAL,DIMENSION(klon_glo,klev,nbtr) :: tr_seri_glo ! Concentration Traceur [U/KgA] |
---|
| 65 | REAL,DIMENSION(klev+1) :: altLMDz ! altitude of layer interfaces in m |
---|
| 66 | REAL,DIMENSION(klev) :: f_lay_emiss ! fraction of emission for every vertical layer |
---|
| 67 | REAL :: f_lay_sum ! sum of layer emission fractions |
---|
[2699] | 68 | REAL :: alt ! altitude for integral calculation |
---|
[2690] | 69 | INTEGER,PARAMETER :: n_int_alt=10 ! number of subintervals for integration over Gaussian emission profile |
---|
| 70 | REAL,DIMENSION(nbtr_bin) :: r_bin ! particle radius in size bin [m] |
---|
| 71 | REAL,DIMENSION(nbtr_bin) :: r_lower ! particle radius at lower bin boundary [m] |
---|
| 72 | REAL,DIMENSION(nbtr_bin) :: r_upper ! particle radius at upper bin boundary [m] |
---|
| 73 | REAL,DIMENSION(nbtr_bin) :: m_part_dry ! mass of one dry particle in size bin [kg] |
---|
| 74 | REAL :: zrho ! Density of air [kg/m3] |
---|
| 75 | REAL :: zdz ! thickness of atm. model layer in m |
---|
[2752] | 76 | REAL,DIMENSION(klev) :: zdm ! mass of atm. model layer in kg |
---|
[2690] | 77 | REAL,DIMENSION(klon,klev) :: dens_aer ! density of aerosol particles [kg/m3 aerosol] with default H2SO4 mass fraction |
---|
[2752] | 78 | REAL :: emission ! emission |
---|
[3526] | 79 | REAL :: theta_min, theta_max ! for SAI computation between two latitudes |
---|
| 80 | REAL :: dlat_loc |
---|
[2690] | 81 | |
---|
| 82 | IF (is_mpi_root) THEN |
---|
[3526] | 83 | WRITE(lunout,*) 'in traccoag: date from phys_cal_mod =',year_cur,'-',mth_cur,'-',day_cur,'-',hour |
---|
| 84 | WRITE(lunout,*) 'IN traccoag flag_sulf_emit: ',flag_sulf_emit |
---|
[2690] | 85 | ENDIF |
---|
[3526] | 86 | |
---|
[2690] | 87 | DO it=1, nbtr_bin |
---|
| 88 | r_bin(it)=mdw(it)/2. |
---|
| 89 | ENDDO |
---|
| 90 | |
---|
| 91 | !--set boundaries of size bins |
---|
| 92 | DO it=1, nbtr_bin |
---|
| 93 | IF (it.EQ.1) THEN |
---|
| 94 | r_upper(it)=sqrt(r_bin(it+1)*r_bin(it)) |
---|
| 95 | r_lower(it)=r_bin(it)**2./r_upper(it) |
---|
| 96 | ELSEIF (it.EQ.nbtr_bin) THEN |
---|
| 97 | r_lower(it)=sqrt(r_bin(it)*r_bin(it-1)) |
---|
| 98 | r_upper(it)=r_bin(it)**2./r_lower(it) |
---|
| 99 | ELSE |
---|
| 100 | r_lower(it)=sqrt(r_bin(it)*r_bin(it-1)) |
---|
| 101 | r_upper(it)=sqrt(r_bin(it+1)*r_bin(it)) |
---|
| 102 | ENDIF |
---|
| 103 | ENDDO |
---|
| 104 | |
---|
| 105 | IF (debutphy .and. is_mpi_root) THEN |
---|
| 106 | DO it=1, nbtr_bin |
---|
[3526] | 107 | WRITE(lunout,*) 'radius bin', it, ':', r_bin(it), '(from', r_lower(it), 'to', r_upper(it), ')' |
---|
[2690] | 108 | ENDDO |
---|
| 109 | ENDIF |
---|
| 110 | |
---|
| 111 | !--initialising logical is_strato from stratomask |
---|
| 112 | is_strato(:,:)=.FALSE. |
---|
[2695] | 113 | WHERE (stratomask.GT.0.5) is_strato=.TRUE. |
---|
[2690] | 114 | |
---|
| 115 | ! STRACOMP (H2O, P, t_seri -> aerosol composition (R2SO4)) |
---|
| 116 | ! H2SO4 mass fraction in aerosol (%) |
---|
| 117 | CALL stracomp(sh,t_seri,pplay) |
---|
| 118 | |
---|
| 119 | ! aerosol density (gr/cm3) |
---|
| 120 | CALL denh2sa(t_seri) |
---|
| 121 | |
---|
| 122 | ! compute factor for converting dry to wet radius (for every grid box) |
---|
| 123 | f_r_wet(:,:) = (dens_aer_dry/(DENSO4(:,:)*1000.)/(R2SO4(:,:)/100.))**(1./3.) |
---|
| 124 | |
---|
| 125 | !--calculate mass of air in every grid box |
---|
| 126 | DO ilon=1, klon |
---|
| 127 | DO ilev=1, klev |
---|
[2752] | 128 | m_air_gridbox(ilon,ilev)=(paprs(ilon,ilev)-paprs(ilon,ilev+1))/RG*cell_area(ilon) |
---|
[2690] | 129 | ENDDO |
---|
| 130 | ENDDO |
---|
| 131 | |
---|
[2752] | 132 | ! IF (debutphy) THEN |
---|
| 133 | ! CALL gather(tr_seri, tr_seri_glo) |
---|
| 134 | ! IF (MAXVAL(tr_seri_glo).LT.1.e-30) THEN |
---|
[2690] | 135 | !--initialising tracer concentrations to zero |
---|
[2752] | 136 | ! DO it=1, nbtr |
---|
| 137 | ! tr_seri(:,:,it)=0.0 |
---|
| 138 | ! ENDDO |
---|
| 139 | ! ENDIF |
---|
| 140 | ! ENDIF |
---|
[2690] | 141 | |
---|
[2752] | 142 | !--initialise emission diagnostics |
---|
| 143 | budg_emi_ocs(:)=0.0 |
---|
| 144 | budg_emi_so2(:)=0.0 |
---|
| 145 | budg_emi_h2so4(:)=0.0 |
---|
| 146 | budg_emi_part(:)=0.0 |
---|
| 147 | |
---|
[2690] | 148 | !--sulfur emission, depending on chosen scenario (flag_sulf_emit) |
---|
| 149 | SELECT CASE(flag_sulf_emit) |
---|
| 150 | |
---|
| 151 | CASE(0) ! background aerosol |
---|
| 152 | ! do nothing (no emission) |
---|
| 153 | |
---|
| 154 | CASE(1) ! volcanic eruption |
---|
| 155 | !--only emit on day of eruption |
---|
| 156 | ! stretch emission over one day of Pinatubo eruption |
---|
[3526] | 157 | DO ieru=1, nErupt |
---|
| 158 | IF (year_cur==year_emit_vol(ieru).AND.mth_cur==mth_emit_vol(ieru).AND.& |
---|
| 159 | day_cur>=day_emit_vol(ieru).AND.day_cur<(day_emit_vol(ieru)+injdur)) THEN |
---|
| 160 | ! |
---|
| 161 | ! daily injection mass emission - NL |
---|
| 162 | m_aer_emiss_vol_daily = m_aer_emiss_vol(ieru)/(REAL(injdur)*REAL(ponde_lonlat_vol(ieru))) |
---|
| 163 | WRITE(lunout,*) 'IN traccoag DD m_aer_emiss_vol(ieru)=',m_aer_emiss_vol(ieru), & |
---|
| 164 | 'ponde_lonlat_vol(ieru)=',ponde_lonlat_vol(ieru),'(injdur*ponde_lonlat_vol(ieru))', & |
---|
| 165 | (injdur*ponde_lonlat_vol(ieru)),'m_aer_emiss_vol_daily=',m_aer_emiss_vol_daily,'ieru=',ieru |
---|
| 166 | WRITE(lunout,*) 'IN traccoag, dlon=',dlon |
---|
| 167 | DO i=1,klon |
---|
| 168 | !Pinatubo eruption at 15.14N, 120.35E |
---|
| 169 | dlat_loc=180./RPI/2.*(boundslat(i,1)-boundslat(i,3)) ! dlat = half difference of boundary latitudes |
---|
| 170 | WRITE(lunout,*) 'IN traccoag, dlat=',dlat_loc |
---|
| 171 | IF ( xlat(i).GE.xlat_min_vol(ieru)-dlat_loc .AND. xlat(i).LT.xlat_max_vol(ieru)+dlat_loc .AND. & |
---|
| 172 | xlon(i).GE.xlon_min_vol(ieru)-dlon .AND. xlon(i).LT.xlon_max_vol(ieru)+dlon ) THEN |
---|
| 173 | ! |
---|
| 174 | WRITE(lunout,*) 'coordinates of volcanic injection point=',xlat(i),xlon(i),day_cur,mth_cur,year_cur |
---|
| 175 | WRITE(lunout,*) 'DD m_aer_emiss_vol_daily=',m_aer_emiss_vol_daily |
---|
| 176 | ! compute altLMDz |
---|
| 177 | altLMDz(:)=0.0 |
---|
| 178 | DO k=1, klev |
---|
| 179 | zrho=pplay(i,k)/t_seri(i,k)/RD !air density in kg/m3 |
---|
| 180 | zdm(k)=(paprs(i,k)-paprs(i,k+1))/RG !mass of layer in kg |
---|
| 181 | zdz=zdm(k)/zrho !thickness of layer in m |
---|
| 182 | altLMDz(k+1)=altLMDz(k)+zdz !altitude of interface |
---|
| 183 | ENDDO |
---|
[2690] | 184 | |
---|
[3526] | 185 | SELECT CASE(flag_sulf_emit_distrib) |
---|
| 186 | |
---|
| 187 | CASE(0) ! Gaussian distribution |
---|
| 188 | !compute distribution of emission to vertical model layers (based on Gaussian peak in altitude) |
---|
| 189 | f_lay_sum=0.0 |
---|
| 190 | DO k=1, klev |
---|
| 191 | f_lay_emiss(k)=0.0 |
---|
| 192 | DO i_int=1, n_int_alt |
---|
| 193 | alt=altLMDz(k)+float(i_int)*(altLMDz(k+1)-altLMDz(k))/float(n_int_alt) |
---|
| 194 | f_lay_emiss(k)=f_lay_emiss(k)+1./(sqrt(2.*RPI)*sigma_alt_vol(ieru))* & |
---|
| 195 | & exp(-0.5*((alt-altemiss_vol(ieru))/sigma_alt_vol(ieru))**2.)* & |
---|
| 196 | & (altLMDz(k+1)-altLMDz(k))/float(n_int_alt) |
---|
| 197 | ENDDO |
---|
| 198 | f_lay_sum=f_lay_sum+f_lay_emiss(k) |
---|
| 199 | ENDDO |
---|
| 200 | |
---|
| 201 | CASE(1) ! Uniform distribution |
---|
| 202 | ! In this case, parameter sigma_alt_vol(ieru) is considered to be half the |
---|
| 203 | ! height of the injection, centered around altemiss_vol(ieru) |
---|
| 204 | DO k=1, klev |
---|
| 205 | f_lay_emiss(k)=max(min(altemiss_vol(ieru)+sigma_alt_vol(ieru),altLMDz(k+1))- & |
---|
| 206 | & max(altemiss_vol(ieru)-sigma_alt_vol(ieru),altLMDz(k)),0.)/(2.*sigma_alt_vol(ieru)) |
---|
| 207 | f_lay_sum=f_lay_sum+f_lay_emiss(k) |
---|
| 208 | ENDDO |
---|
| 209 | |
---|
| 210 | END SELECT ! End CASE over flag_sulf_emit_distrib) |
---|
| 211 | |
---|
| 212 | WRITE(lunout,*) "IN traccoag m_aer_emiss_vol=",m_aer_emiss_vol(ieru) |
---|
| 213 | WRITE(lunout,*) "IN traccoag f_lay_emiss=",f_lay_emiss |
---|
| 214 | !correct for step integration error |
---|
| 215 | f_lay_emiss(:)=f_lay_emiss(:)/f_lay_sum |
---|
| 216 | !emission as SO2 gas (with m(SO2)=64/32*m_aer_emiss) |
---|
| 217 | !vertically distributed emission |
---|
| 218 | DO k=1, klev |
---|
| 219 | ! stretch emission over one day of Pinatubo eruption |
---|
| 220 | emission=m_aer_emiss_vol_daily*(mSO2mol/mSatom)/m_air_gridbox(i,k)*f_lay_emiss(k)/1./(86400.-pdtphys) |
---|
| 221 | tr_seri(i,k,id_SO2_strat)=tr_seri(i,k,id_SO2_strat)+emission*pdtphys |
---|
| 222 | budg_emi_so2(i)=budg_emi_so2(i)+emission*zdm(k)*mSatom/mSO2mol |
---|
| 223 | ENDDO |
---|
| 224 | ENDIF ! emission grid cell |
---|
| 225 | ENDDO ! klon loop |
---|
| 226 | WRITE(lunout,*) "IN traccoag (ieru=",ieru,") m_aer_emiss_vol_daily=",m_aer_emiss_vol_daily |
---|
| 227 | ENDIF ! emission period |
---|
| 228 | ENDDO ! eruption number |
---|
| 229 | |
---|
[2690] | 230 | CASE(2) ! stratospheric aerosol injections (SAI) |
---|
| 231 | ! |
---|
| 232 | DO i=1,klon |
---|
| 233 | ! SAI standard scenario with continuous emission from 1 grid point at the equator |
---|
| 234 | ! SAI emission on single month |
---|
| 235 | ! SAI continuous emission o |
---|
[3526] | 236 | dlat_loc=180./RPI/2.*(boundslat(i,1)-boundslat(i,3)) ! dlat = half difference of boundary latitudes |
---|
| 237 | IF ( xlat(i).GE.xlat_sai-dlat_loc .AND. xlat(i).LT.xlat_sai+dlat_loc .AND. & |
---|
[2704] | 238 | & xlon(i).GE.xlon_sai-dlon .AND. xlon(i).LT.xlon_sai+dlon ) THEN |
---|
[2752] | 239 | ! |
---|
[2690] | 240 | ! compute altLMDz |
---|
| 241 | altLMDz(:)=0.0 |
---|
| 242 | DO k=1, klev |
---|
[2752] | 243 | zrho=pplay(i,k)/t_seri(i,k)/RD !air density in kg/m3 |
---|
| 244 | zdm(k)=(paprs(i,k)-paprs(i,k+1))/RG !mass of layer in kg |
---|
| 245 | zdz=zdm(k)/zrho !thickness of layer in m |
---|
| 246 | altLMDz(k+1)=altLMDz(k)+zdz !altitude of interface |
---|
[2690] | 247 | ENDDO |
---|
[3526] | 248 | |
---|
| 249 | SELECT CASE(flag_sulf_emit_distrib) |
---|
| 250 | |
---|
| 251 | CASE(0) ! Gaussian distribution |
---|
[2690] | 252 | !compute distribution of emission to vertical model layers (based on Gaussian peak in altitude) |
---|
| 253 | f_lay_sum=0.0 |
---|
[3526] | 254 | DO k=1, klev |
---|
| 255 | f_lay_emiss(k)=0.0 |
---|
| 256 | DO i_int=1, n_int_alt |
---|
| 257 | alt=altLMDz(k)+float(i_int)*(altLMDz(k+1)-altLMDz(k))/float(n_int_alt) |
---|
| 258 | f_lay_emiss(k)=f_lay_emiss(k)+1./(sqrt(2.*RPI)*sigma_alt_sai)* & |
---|
| 259 | & exp(-0.5*((alt-altemiss_sai)/sigma_alt_sai)**2.)* & |
---|
| 260 | & (altLMDz(k+1)-altLMDz(k))/float(n_int_alt) |
---|
| 261 | ENDDO |
---|
| 262 | f_lay_sum=f_lay_sum+f_lay_emiss(k) |
---|
| 263 | ENDDO |
---|
| 264 | |
---|
| 265 | CASE(1) ! Uniform distribution |
---|
| 266 | f_lay_sum=0.0 |
---|
| 267 | ! In this case, parameter sigma_alt_vol(ieru) is considered to be half |
---|
| 268 | ! the height of the injection, centered around altemiss_sai |
---|
| 269 | DO k=1, klev |
---|
| 270 | f_lay_emiss(k)=max(min(altemiss_sai+sigma_alt_sai,altLMDz(k+1))- & |
---|
| 271 | & max(altemiss_sai-sigma_alt_sai,altLMDz(k)),0.)/(2.*sigma_alt_sai) |
---|
| 272 | f_lay_sum=f_lay_sum+f_lay_emiss(k) |
---|
| 273 | ENDDO |
---|
| 274 | |
---|
| 275 | END SELECT ! Gaussian or uniform distribution |
---|
| 276 | |
---|
| 277 | !correct for step integration error |
---|
| 278 | f_lay_emiss(:)=f_lay_emiss(:)/f_lay_sum |
---|
| 279 | !emission as SO2 gas (with m(SO2)=64/32*m_aer_emiss) |
---|
| 280 | !vertically distributed emission |
---|
[2690] | 281 | DO k=1, klev |
---|
[3526] | 282 | ! stretch emission over whole year (360d) |
---|
[3527] | 283 | emission=m_aer_emiss_sai*(mSO2mol/mSatom)/m_air_gridbox(i,k)*f_lay_emiss(k)/FLOAT(year_len)/86400. |
---|
[3526] | 284 | tr_seri(i,k,id_SO2_strat)=tr_seri(i,k,id_SO2_strat)+emission*pdtphys |
---|
| 285 | budg_emi_so2(i)=budg_emi_so2(i)+emission*zdm(k)*mSatom/mSO2mol |
---|
[2690] | 286 | ENDDO |
---|
[3526] | 287 | |
---|
| 288 | ! !emission as monodisperse particles with 0.1um dry radius (BIN21) |
---|
| 289 | ! !vertically distributed emission |
---|
| 290 | ! DO k=1, klev |
---|
| 291 | ! ! stretch emission over whole year (360d) |
---|
[3527] | 292 | ! emission=m_aer_emiss*(mH2SO4mol/mSatom)/m_part_dry(21)/m_air_gridbox(i,k)*f_lay_emiss(k)/FLOAT(year_len)/86400. |
---|
[3526] | 293 | ! tr_seri(i,k,id_BIN01_strat+20)=tr_seri(i,k,id_BIN01_strat+20)+emission*pdtphys |
---|
| 294 | ! budg_emi_part(i)=budg_emi_part(i)+emission*zdm(k)*mSatom/mH2SO4mol |
---|
| 295 | ! ENDDO |
---|
| 296 | ENDIF ! emission grid cell |
---|
| 297 | ENDDO ! klon loop |
---|
| 298 | |
---|
| 299 | CASE(3) ! --- SAI injection over a single band of longitude and between |
---|
| 300 | ! lat_min and lat_max |
---|
| 301 | |
---|
| 302 | DO i=1,klon |
---|
| 303 | ! SAI scenario with continuous emission |
---|
| 304 | dlat_loc=180./RPI/2.*(boundslat(i,1)-boundslat(i,3)) ! dlat = half difference of boundary latitudes |
---|
| 305 | theta_min = max(xlat(i)-dlat_loc,xlat_min_sai) |
---|
| 306 | theta_max = min(xlat(i)+dlat_loc,xlat_max_sai) |
---|
| 307 | IF ( xlat(i).GE.xlat_min_sai-dlat_loc .AND. xlat(i).LT.xlat_max_sai+dlat_loc .AND. & |
---|
| 308 | & xlon(i).GE.xlon_sai-dlon .AND. xlon(i).LT.xlon_sai+dlon ) THEN |
---|
| 309 | ! |
---|
| 310 | ! compute altLMDz |
---|
| 311 | altLMDz(:)=0.0 |
---|
| 312 | DO k=1, klev |
---|
| 313 | zrho=pplay(i,k)/t_seri(i,k)/RD !air density in kg/m3 |
---|
| 314 | zdm(k)=(paprs(i,k)-paprs(i,k+1))/RG !mass of layer in kg |
---|
| 315 | zdz=zdm(k)/zrho !thickness of layer in m |
---|
| 316 | altLMDz(k+1)=altLMDz(k)+zdz !altitude of interface |
---|
| 317 | ENDDO |
---|
| 318 | |
---|
| 319 | SELECT CASE(flag_sulf_emit_distrib) |
---|
| 320 | |
---|
| 321 | CASE(0) ! Gaussian distribution |
---|
| 322 | !compute distribution of emission to vertical model layers (based on |
---|
| 323 | !Gaussian peak in altitude) |
---|
| 324 | f_lay_sum=0.0 |
---|
| 325 | DO k=1, klev |
---|
| 326 | f_lay_emiss(k)=0.0 |
---|
| 327 | DO i_int=1, n_int_alt |
---|
| 328 | alt=altLMDz(k)+float(i_int)*(altLMDz(k+1)-altLMDz(k))/float(n_int_alt) |
---|
| 329 | f_lay_emiss(k)=f_lay_emiss(k)+1./(sqrt(2.*RPI)*sigma_alt_sai)* & |
---|
| 330 | & exp(-0.5*((alt-altemiss_sai)/sigma_alt_sai)**2.)* & |
---|
| 331 | & (altLMDz(k+1)-altLMDz(k))/float(n_int_alt) |
---|
| 332 | ENDDO |
---|
| 333 | f_lay_sum=f_lay_sum+f_lay_emiss(k) |
---|
| 334 | ENDDO |
---|
| 335 | |
---|
| 336 | CASE(1) ! Uniform distribution |
---|
| 337 | f_lay_sum=0.0 |
---|
| 338 | ! In this case, parameter sigma_alt_vol(ieru) is considered to be half |
---|
| 339 | ! the height of the injection, centered around altemiss_sai |
---|
| 340 | DO k=1, klev |
---|
| 341 | f_lay_emiss(k)=max(min(altemiss_sai+sigma_alt_sai,altLMDz(k+1))- & |
---|
| 342 | & max(altemiss_sai-sigma_alt_sai,altLMDz(k)),0.)/(2.*sigma_alt_sai) |
---|
| 343 | f_lay_sum=f_lay_sum+f_lay_emiss(k) |
---|
| 344 | ENDDO |
---|
| 345 | |
---|
| 346 | END SELECT ! Gaussian or uniform distribution |
---|
| 347 | |
---|
[2690] | 348 | !correct for step integration error |
---|
| 349 | f_lay_emiss(:)=f_lay_emiss(:)/f_lay_sum |
---|
| 350 | !emission as SO2 gas (with m(SO2)=64/32*m_aer_emiss) |
---|
| 351 | !vertically distributed emission |
---|
| 352 | DO k=1, klev |
---|
[2752] | 353 | ! stretch emission over whole year (360d) |
---|
[3526] | 354 | emission=m_aer_emiss_sai*(mSO2mol/mSatom)/m_air_gridbox(i,k)*f_lay_emiss(k)/ & |
---|
[3527] | 355 | & FLOAT(year_len)/86400.*(sin(theta_max/180.*RPI)-sin(theta_min/180.*RPI))/ & |
---|
[3526] | 356 | & (sin(xlat_max_sai/180.*RPI)-sin(xlat_min_sai/180.*RPI)) |
---|
[2752] | 357 | tr_seri(i,k,id_SO2_strat)=tr_seri(i,k,id_SO2_strat)+emission*pdtphys |
---|
| 358 | budg_emi_so2(i)=budg_emi_so2(i)+emission*zdm(k)*mSatom/mSO2mol |
---|
[2690] | 359 | ENDDO |
---|
[3526] | 360 | |
---|
[2690] | 361 | ! !emission as monodisperse particles with 0.1um dry radius (BIN21) |
---|
| 362 | ! !vertically distributed emission |
---|
| 363 | ! DO k=1, klev |
---|
[2752] | 364 | ! ! stretch emission over whole year (360d) |
---|
[3526] | 365 | ! emission=m_aer_emiss*(mH2SO4mol/mSatom)/m_part_dry(21)/m_air_gridbox(i,k)*f_lay_emiss(k)/year_len/86400 |
---|
[2752] | 366 | ! tr_seri(i,k,id_BIN01_strat+20)=tr_seri(i,k,id_BIN01_strat+20)+emission*pdtphys |
---|
| 367 | ! budg_emi_part(i)=budg_emi_part(i)+emission*zdm(k)*mSatom/mH2SO4mol |
---|
[2690] | 368 | ! ENDDO |
---|
| 369 | ENDIF ! emission grid cell |
---|
| 370 | ENDDO ! klon loop |
---|
| 371 | |
---|
| 372 | END SELECT ! emission scenario (flag_sulf_emit) |
---|
| 373 | |
---|
| 374 | !--read background concentrations of OCS and SO2 and lifetimes from input file |
---|
[2695] | 375 | !--update the variables defined in phys_local_var_mod |
---|
| 376 | CALL interp_sulf_input(debutphy,pdtphys,paprs,tr_seri) |
---|
[2690] | 377 | |
---|
| 378 | !--convert OCS to SO2 in the stratosphere |
---|
[2752] | 379 | CALL ocs_to_so2(pdtphys,tr_seri,t_seri,pplay,paprs,is_strato) |
---|
[2690] | 380 | |
---|
| 381 | !--convert SO2 to H2SO4 |
---|
[2752] | 382 | CALL so2_to_h2so4(pdtphys,tr_seri,t_seri,pplay,paprs,is_strato) |
---|
[2690] | 383 | |
---|
| 384 | !--common routine for nucleation and condensation/evaporation with adaptive timestep |
---|
| 385 | CALL micphy_tstep(pdtphys,tr_seri,t_seri,pplay,paprs,rh,is_strato) |
---|
| 386 | |
---|
| 387 | !--call coagulation routine |
---|
| 388 | CALL coagulate(pdtphys,mdw,tr_seri,t_seri,pplay,dens_aer,is_strato) |
---|
| 389 | |
---|
| 390 | !--call sedimentation routine |
---|
| 391 | CALL aer_sedimnt(pdtphys, t_seri, pplay, paprs, tr_seri, dens_aer) |
---|
| 392 | |
---|
| 393 | !--compute mass concentration of PM2.5 sulfate particles (wet diameter and mass) at the surface for health studies |
---|
| 394 | surf_PM25_sulf(:)=0.0 |
---|
| 395 | DO i=1,klon |
---|
| 396 | DO it=1, nbtr_bin |
---|
| 397 | IF (mdw(it) .LT. 2.5e-6) THEN |
---|
| 398 | !surf_PM25_sulf(i)=surf_PM25_sulf(i)+tr_seri(i,1,it+nbtr_sulgas)*m_part(i,1,it) & |
---|
[3526] | 399 | !assume that particles consist of ammonium sulfate at the surface (132g/mol) |
---|
| 400 | !and are dry at T = 20 deg. C and 50 perc. humidity |
---|
[2690] | 401 | surf_PM25_sulf(i)=surf_PM25_sulf(i)+tr_seri(i,1,it+nbtr_sulgas) & |
---|
| 402 | & *132./98.*dens_aer_dry*4./3.*RPI*(mdw(it)/2.)**3 & |
---|
[2752] | 403 | & *pplay(i,1)/t_seri(i,1)/RD*1.e9 |
---|
[2690] | 404 | ENDIF |
---|
| 405 | ENDDO |
---|
| 406 | ENDDO |
---|
| 407 | |
---|
[2695] | 408 | ! CALL minmaxsimple(tr_seri(:,:,id_SO2_strat),0.0,0.0,'fin SO2') |
---|
| 409 | ! DO it=1, nbtr_bin |
---|
| 410 | ! CALL minmaxsimple(tr_seri(:,:,nbtr_sulgas+it),0.0,0.0,'fin bin ') |
---|
| 411 | ! ENDDO |
---|
| 412 | |
---|
[2690] | 413 | END SUBROUTINE traccoag |
---|
| 414 | |
---|
| 415 | END MODULE traccoag_mod |
---|