1 | MODULE sulfate_aer_mod |
---|
2 | |
---|
3 | ! microphysical routines based on UPMC aerosol model by Slimane Bekki |
---|
4 | ! adapted for stratospheric sulfate aerosol in LMDZ by Christoph Kleinschmitt |
---|
5 | |
---|
6 | CONTAINS |
---|
7 | |
---|
8 | !******************************************************************* |
---|
9 | SUBROUTINE STRACOMP_KELVIN(sh,t_seri,pplay) |
---|
10 | ! |
---|
11 | ! Aerosol H2SO4 weight fraction as a function of PH2O and temperature |
---|
12 | ! INPUT: |
---|
13 | ! sh: MMR of H2O |
---|
14 | ! t_seri: temperature (K) |
---|
15 | ! pplay: middle layer pression (Pa) |
---|
16 | ! |
---|
17 | ! Modified in modules: |
---|
18 | ! R2SO4: aerosol H2SO4 weight fraction (percent) |
---|
19 | ! R2SO4B: aerosol H2SO4 weight fraction (percent) for each aerosol bin |
---|
20 | ! DENSO4: aerosol density (gr/cm3) |
---|
21 | ! DENSO4B: aerosol density (gr/cm3)for each aerosol bin |
---|
22 | ! f_r_wet: factor for converting dry to wet radius |
---|
23 | ! assuming 'flat surface' composition (does not depend on aerosol size) |
---|
24 | ! f_r_wetB: factor for converting dry to wet radius |
---|
25 | ! assuming 'curved surface' composition (depends on aerosol size) |
---|
26 | |
---|
27 | USE dimphy, ONLY : klon,klev ! nb of longitude and altitude bands |
---|
28 | USE infotrac_phy, ONLY : nbtr_bin |
---|
29 | USE aerophys |
---|
30 | USE phys_local_var_mod, ONLY: R2SO4, R2SO4B, DENSO4, DENSO4B, f_r_wet, f_r_wetB |
---|
31 | USE strataer_local_var_mod, ONLY: RRSI |
---|
32 | ! WARNING: in phys_local_var_mod R2SO4B, DENSO4B, f_r_wetB (klon,klev,nbtr_bin) |
---|
33 | ! and dens_aer_dry must be declared somewhere |
---|
34 | |
---|
35 | IMPLICIT NONE |
---|
36 | |
---|
37 | REAL,DIMENSION(klon,klev),INTENT(IN) :: t_seri ! Temperature |
---|
38 | REAL,DIMENSION(klon,klev),INTENT(IN) :: pplay ! pression in the middle of each layer (Pa) |
---|
39 | REAL,DIMENSION(klon,klev),INTENT(IN) :: sh ! specific humidity (kg h2o/kg air) |
---|
40 | |
---|
41 | ! local variables |
---|
42 | integer :: ilon,ilev,ik |
---|
43 | real, parameter :: rath2oair = mAIRmol/mH2Omol |
---|
44 | real, parameter :: third = 1./3. |
---|
45 | real :: pph2ogas(klon,klev) |
---|
46 | real :: temp, wpp, xa, surtens, mvh2o, radwet, fkelvin, pph2okel, r2so4ik, denso4ik |
---|
47 | !---------------------------------------- |
---|
48 | |
---|
49 | ! gas-phase h2o partial pressure (Pa) |
---|
50 | ! vmr=sh*rath2oair |
---|
51 | pph2ogas(:,:) = pplay(:,:)*sh(:,:)*rath2oair |
---|
52 | |
---|
53 | DO ilon=1,klon |
---|
54 | DO ilev=1,klev |
---|
55 | |
---|
56 | temp = max(t_seri(ilon,ilev),190.) |
---|
57 | temp = min(temp,300.) |
---|
58 | |
---|
59 | ! *** H2SO4-H2O flat surface *** |
---|
60 | !! equilibrium H2O pressure over pure flat liquid water (Pa) |
---|
61 | !! pflath2o=psh2o(temp) |
---|
62 | ! h2so4 weight percent(%) = f(P_h2o(Pa),T) |
---|
63 | R2SO4(ilon,ilev)=wph2so4(pph2ogas(ilon,ilev),temp) |
---|
64 | ! h2so4 mass fraction (0<wpp<1) |
---|
65 | wpp=R2SO4(ilon,ilev)*1.e-2 |
---|
66 | ! mole fraction |
---|
67 | xa=18.*wpp/(18.*wpp+98.*(1.-wpp)) |
---|
68 | |
---|
69 | ! CHECK:compare h2so4 sat/ pressure (see Marti et al., 97 & reef. therein) |
---|
70 | ! R2SO4(ilon,ilev)=70. temp=298.15 |
---|
71 | ! equilibrium h2so4 number density over H2SO4/H2O solution (molec/cm3) |
---|
72 | ! include conversion from molec/cm3 to Pa |
---|
73 | ! ph2so4=solh2so4(temp,xa)*(1.38065e-16*temp)/10. |
---|
74 | ! print*,' ph2so4=',ph2so4,temp,R2SO4(ilon,ilev) |
---|
75 | ! good match with Martin, et Ayers, not with Gmitro (the famous 0.086) |
---|
76 | |
---|
77 | ! surface tension (mN/m=1.e-3.kg/s2) = f(T,h2so4 mole fraction) |
---|
78 | surtens=surftension(temp,xa) |
---|
79 | ! molar volume of pure h2o (cm3.mol-1 =1.e-6.m3.mol-1) |
---|
80 | mvh2o= rmvh2o(temp) |
---|
81 | ! aerosol density (gr/cm3) = f(T,h2so4 mass fraction) |
---|
82 | DENSO4(ilon,ilev)=density(temp,wpp) |
---|
83 | ! ->x1000., to have it in kg/m3 |
---|
84 | ! factor for converting dry to wet radius |
---|
85 | f_r_wet(ilon,ilev) = (dens_aer_dry/(DENSO4(ilon,ilev)*1.e3)/ & |
---|
86 | & (R2SO4(ilon,ilev)*1.e-2))**third |
---|
87 | ! *** End of H2SO4-H2O flat surface *** |
---|
88 | |
---|
89 | |
---|
90 | ! Loop on bin radius (RRSI in cm) |
---|
91 | DO IK=1,nbtr_bin |
---|
92 | |
---|
93 | ! *** H2SO4-H2O curved surface - Kelvin effect factor *** |
---|
94 | ! wet radius (m) (RRSI(IK) in [cm]) |
---|
95 | if (f_r_wetB(ilon,ilev,IK) .gt. 1.0) then |
---|
96 | radwet = 1.e-2*RRSI(IK)*f_r_wetB(ilon,ilev,IK) |
---|
97 | else |
---|
98 | ! H2SO4-H2O flat surface, only on the first timestep |
---|
99 | radwet = 1.e-2*RRSI(IK)*f_r_wet(ilon,ilev) |
---|
100 | endif |
---|
101 | ! Kelvin factor: |
---|
102 | ! surface tension (mN/m=1.e-3.kg/s2) |
---|
103 | ! molar volume of pure h2o (cm3.mol-1 =1.e-6.m3.mol-1) |
---|
104 | fkelvin=exp( 2.*1.e-3*surtens*1.e-6*mvh2o/ (radwet*rgas*temp) ) |
---|
105 | ! equilibrium: pph2o(gas) = pph2o(liq) = pph2o(liq_flat) * fkelvin |
---|
106 | ! equilibrium: pph2o(liq_flat) = pph2o(gas) / fkelvin |
---|
107 | ! h2o liquid partial pressure before Kelvin effect (Pa) |
---|
108 | pph2okel = pph2ogas(ilon,ilev) / fkelvin |
---|
109 | ! h2so4 weight percent(%) = f(P_h2o(Pa),temp) |
---|
110 | r2so4ik=wph2so4(pph2okel,temp) |
---|
111 | ! h2so4 mass fraction (0<wpp<1) |
---|
112 | wpp=r2so4ik*1.e-2 |
---|
113 | ! mole fraction |
---|
114 | xa=18.*wpp/(18.*wpp+98.*(1.-wpp)) |
---|
115 | ! aerosol density (gr/cm3) = f(T,h2so4 mass fraction) |
---|
116 | denso4ik=density(temp,wpp) |
---|
117 | ! |
---|
118 | ! recalculate Kelvin factor with surface tension and radwet |
---|
119 | ! with new R2SO4B and DENSO4B |
---|
120 | surtens=surftension(temp,xa) |
---|
121 | ! wet radius (m) |
---|
122 | radwet = 1.e-2*RRSI(IK)*(dens_aer_dry/(denso4ik*1.e3)/ & |
---|
123 | & (r2so4ik*1.e-2))**third |
---|
124 | fkelvin=exp( 2.*1.e-3*surtens*1.e-6*mvh2o / (radwet*rgas*temp) ) |
---|
125 | pph2okel=pph2ogas(ilon,ilev) / fkelvin |
---|
126 | ! h2so4 weight percent(%) = f(P_h2o(Pa),temp) |
---|
127 | R2SO4B(ilon,ilev,IK)=wph2so4(pph2okel,temp) |
---|
128 | ! h2so4 mass fraction (0<wpp<1) |
---|
129 | wpp=R2SO4B(ilon,ilev,IK)*1.e-2 |
---|
130 | xa=18.*wpp/(18.*wpp+98.*(1.-wpp)) |
---|
131 | ! aerosol density (gr/cm3) = f(T,h2so4 mass fraction) |
---|
132 | DENSO4B(ilon,ilev,IK)=density(temp,wpp) |
---|
133 | ! factor for converting dry to wet radius |
---|
134 | f_r_wetB(ilon,ilev,IK) = (dens_aer_dry/(DENSO4B(ilon,ilev,IK)*1.e3)/ & |
---|
135 | & (R2SO4B(ilon,ilev,IK)*1.e-2))**third |
---|
136 | ! |
---|
137 | ! print*,'R,Rwet(m),kelvin,h2so4(%),ro=',RRSI(ik),radwet,fkelvin, & |
---|
138 | ! & R2SO4B(ilon,ilev,IK),DENSO4B(ilon,ilev,IK) |
---|
139 | ! print*,' equil.h2so4(molec/cm3), & |
---|
140 | ! & sigma',solh2so4(temp,xa),surftension(temp,xa) |
---|
141 | |
---|
142 | ENDDO |
---|
143 | |
---|
144 | ENDDO |
---|
145 | ENDDO |
---|
146 | |
---|
147 | RETURN |
---|
148 | |
---|
149 | END SUBROUTINE STRACOMP_KELVIN |
---|
150 | !******************************************************************** |
---|
151 | SUBROUTINE STRACOMP(sh,t_seri,pplay) |
---|
152 | |
---|
153 | ! AEROSOL H2SO4 WEIGHT FRACTION AS A FUNCTION OF PH2O AND TEMPERATURE |
---|
154 | ! ---------------------------------------------------------------- |
---|
155 | ! INPUT: |
---|
156 | ! H2O: VMR of H2O |
---|
157 | ! t_seri: temperature (K) |
---|
158 | ! PMB: pressure (mb) |
---|
159 | ! klon: number of latitude bands in the model domain |
---|
160 | ! klev: number of altitude bands in the model domain |
---|
161 | ! for IFS: perhaps add another dimension for longitude |
---|
162 | ! |
---|
163 | ! OUTPUT: |
---|
164 | ! R2SO4: aerosol H2SO4 weight fraction (percent) |
---|
165 | |
---|
166 | USE dimphy, ONLY : klon,klev |
---|
167 | USE aerophys |
---|
168 | USE phys_local_var_mod, ONLY: R2SO4 |
---|
169 | |
---|
170 | IMPLICIT NONE |
---|
171 | |
---|
172 | REAL,DIMENSION(klon,klev),INTENT(IN) :: t_seri ! Temperature |
---|
173 | REAL,DIMENSION(klon,klev),INTENT(IN) :: pplay ! pression pour le mileu de chaque couche (en Pa) |
---|
174 | REAL,DIMENSION(klon,klev),INTENT(IN) :: sh ! humidite specifique |
---|
175 | |
---|
176 | REAL PMB(klon,klev), H2O(klon,klev) |
---|
177 | ! |
---|
178 | ! working variables |
---|
179 | INTEGER I,J,K |
---|
180 | REAL TP, PH2O, VAL, A, B |
---|
181 | ! local variables to be saved on exit |
---|
182 | INTEGER INSTEP |
---|
183 | INTEGER, PARAMETER :: N=16, M=28 |
---|
184 | DATA INSTEP/0/ |
---|
185 | REAL F(N,M) |
---|
186 | REAL XC(N) |
---|
187 | REAL YC(M) |
---|
188 | REAL XC1, XC16, YC1, YC28 |
---|
189 | ! |
---|
190 | SAVE INSTEP,F,XC,YC,XC1,XC16,YC1,YC28 |
---|
191 | !$OMP THREADPRIVATE(INSTEP,F,XC,YC,XC1,XC16,YC1,YC28) |
---|
192 | |
---|
193 | ! convert pplay (in Pa) to PMB (in mb) |
---|
194 | PMB(:,:)=pplay(:,:)/100.0 |
---|
195 | |
---|
196 | ! convert specific humidity sh (in kg/kg) to VMR H2O |
---|
197 | H2O(:,:)=sh(:,:)*mAIRmol/mH2Omol |
---|
198 | |
---|
199 | IF(INSTEP.EQ.0) THEN |
---|
200 | |
---|
201 | INSTEP=1 |
---|
202 | XC(1)=0.01 |
---|
203 | XC(2)=0.1 |
---|
204 | XC(3)=0.5 |
---|
205 | XC(4)=1.0 |
---|
206 | XC(5)=1.5 |
---|
207 | XC(6)=2.0 |
---|
208 | XC(7)=3.0 |
---|
209 | XC(8)=5.0 |
---|
210 | XC(9)=6.0 |
---|
211 | XC(10)=8.0 |
---|
212 | XC(11)=10.0 |
---|
213 | XC(12)=12.0 |
---|
214 | XC(13)=15.0 |
---|
215 | XC(14)=20.0 |
---|
216 | XC(15)=30.0 |
---|
217 | XC(16)=100.0 |
---|
218 | ! |
---|
219 | YC(1)=175.0 |
---|
220 | DO I=2,28 |
---|
221 | YC(I)=YC(I-1)+5.0 |
---|
222 | ENDDO |
---|
223 | |
---|
224 | ! CONVERSION mb IN 1.0E-4mB |
---|
225 | DO I=1,16 |
---|
226 | XC(I)=XC(I)*1.0E-4 |
---|
227 | ENDDO |
---|
228 | ! |
---|
229 | XC1=XC(1)+1.E-10 |
---|
230 | XC16=XC(16)-1.E-8 |
---|
231 | YC1=YC(1)+1.E-5 |
---|
232 | YC28=YC(28)-1.E-5 |
---|
233 | |
---|
234 | F(6,4)=43.45 |
---|
235 | F(6,5)=53.96 |
---|
236 | F(6,6)=60.62 |
---|
237 | F(6,7)=65.57 |
---|
238 | F(6,8)=69.42 |
---|
239 | F(6,9)=72.56 |
---|
240 | F(6,10)=75.17 |
---|
241 | F(6,11)=77.38 |
---|
242 | F(6,12)=79.3 |
---|
243 | F(6,13)=80.99 |
---|
244 | F(6,14)=82.5 |
---|
245 | F(6,15)=83.92 |
---|
246 | F(6,16)=85.32 |
---|
247 | F(6,17)=86.79 |
---|
248 | F(6,18)=88.32 |
---|
249 | ! |
---|
250 | ! ADD FACTOR BECAUSE THE SLOP IS TOO IMPORTANT |
---|
251 | ! NOT FOR THIS ONE BUT THE REST |
---|
252 | ! LOG DOESN'T WORK |
---|
253 | A=(F(6,5)-F(6,4))/( (YC(5)-YC(4))*2.0) |
---|
254 | B=-A*YC(4) + F(6,4) |
---|
255 | F(6,1)=A*YC(1) + B |
---|
256 | F(6,2)=A*YC(2) + B |
---|
257 | F(6,3)=A*YC(3) + B |
---|
258 | ! |
---|
259 | F(7,4)=37.02 |
---|
260 | F(7,5)=49.46 |
---|
261 | F(7,6)=57.51 |
---|
262 | F(7,7)=63.12 |
---|
263 | F(7,8)=67.42 |
---|
264 | F(7,9)=70.85 |
---|
265 | F(7,10)=73.70 |
---|
266 | F(7,11)=76.09 |
---|
267 | F(7,12)=78.15 |
---|
268 | F(7,13)=79.96 |
---|
269 | F(7,14)=81.56 |
---|
270 | F(7,15)=83.02 |
---|
271 | F(7,16)=84.43 |
---|
272 | F(7,17)=85.85 |
---|
273 | F(7,18)=87.33 |
---|
274 | ! |
---|
275 | A=(F(7,5)-F(7,4))/( (YC(5)-YC(4))*2.0) |
---|
276 | B=-A*YC(4) + F(7,4) |
---|
277 | F(7,1)=A*YC(1) + B |
---|
278 | F(7,2)=A*YC(2) + B |
---|
279 | F(7,3)=A*YC(3) + B |
---|
280 | ! |
---|
281 | F(8,4)=25.85 |
---|
282 | F(8,5)=42.26 |
---|
283 | F(8,6)=52.78 |
---|
284 | F(8,7)=59.55 |
---|
285 | F(8,8)=64.55 |
---|
286 | F(8,9)=68.45 |
---|
287 | F(8,10)=71.63 |
---|
288 | F(8,11)=74.29 |
---|
289 | F(8,12)=76.56 |
---|
290 | F(8,13)=78.53 |
---|
291 | F(8,14)=80.27 |
---|
292 | F(8,15)=81.83 |
---|
293 | F(8,16)=83.27 |
---|
294 | F(8,17)=84.67 |
---|
295 | F(8,18)=86.10 |
---|
296 | ! |
---|
297 | A=(F(8,5)-F(8,4))/( (YC(5)-YC(4))*2.5 ) |
---|
298 | B=-A*YC(4) + F(8,4) |
---|
299 | F(8,1)=A*YC(1) + B |
---|
300 | F(8,2)=A*YC(2) + B |
---|
301 | F(8,3)=A*YC(3) + B |
---|
302 | ! |
---|
303 | F(9,4)=15.38 |
---|
304 | F(9,5)=39.35 |
---|
305 | F(9,6)=50.73 |
---|
306 | F(9,7)=58.11 |
---|
307 | F(9,8)=63.41 |
---|
308 | F(9,9)=67.52 |
---|
309 | F(9,10)=70.83 |
---|
310 | F(9,11)=73.6 |
---|
311 | F(9,12)=75.95 |
---|
312 | F(9,13)=77.98 |
---|
313 | F(9,14)=79.77 |
---|
314 | F(9,15)=81.38 |
---|
315 | F(9,16)=82.84 |
---|
316 | F(9,17)=84.25 |
---|
317 | F(9,18)=85.66 |
---|
318 | ! |
---|
319 | A=(F(9,5)-F(9,4))/( (YC(5)-YC(4))*7.0) |
---|
320 | B=-A*YC(4) + F(9,4) |
---|
321 | F(9,1)=A*YC(1) + B |
---|
322 | F(9,2)=A*YC(2) + B |
---|
323 | F(9,3)=A*YC(3) + B |
---|
324 | ! |
---|
325 | F(10,4)=0.0 |
---|
326 | F(10,5)=34.02 |
---|
327 | F(10,6)=46.93 |
---|
328 | F(10,7)=55.61 |
---|
329 | F(10,8)=61.47 |
---|
330 | F(10,9)=65.94 |
---|
331 | F(10,10)=69.49 |
---|
332 | F(10,11)=72.44 |
---|
333 | F(10,12)=74.93 |
---|
334 | F(10,13)=77.08 |
---|
335 | F(10,14)=78.96 |
---|
336 | F(10,15)=80.63 |
---|
337 | F(10,16)=82.15 |
---|
338 | F(10,17)=83.57 |
---|
339 | F(10,18)=84.97 |
---|
340 | ! |
---|
341 | A=(F(10,6)-F(10,5))/( (YC(6)-YC(5))*1.5) |
---|
342 | B=-A*YC(5) + F(10,5) |
---|
343 | F(10,1)=A*YC(1) + B |
---|
344 | F(10,2)=A*YC(2) + B |
---|
345 | F(10,3)=A*YC(3) + B |
---|
346 | F(10,4)=A*YC(4) + B |
---|
347 | ! |
---|
348 | F(11,4)=0.0 |
---|
349 | F(11,5)=29.02 |
---|
350 | F(11,6)=43.69 |
---|
351 | F(11,7)=53.44 |
---|
352 | F(11,8)=59.83 |
---|
353 | F(11,9)=64.62 |
---|
354 | F(11,10)=68.39 |
---|
355 | F(11,11)=71.48 |
---|
356 | F(11,12)=74.10 |
---|
357 | F(11,13)=76.33 |
---|
358 | F(11,14)=78.29 |
---|
359 | F(11,15)=80.02 |
---|
360 | F(11,16)=81.58 |
---|
361 | F(11,17)=83.03 |
---|
362 | F(11,18)=84.44 |
---|
363 | ! |
---|
364 | A=(F(11,6)-F(11,5))/( (YC(6)-YC(5))*2.5 ) |
---|
365 | B=-A*YC(5) + F(11,5) |
---|
366 | F(11,1)=A*YC(1) + B |
---|
367 | F(11,2)=A*YC(2) + B |
---|
368 | F(11,3)=A*YC(3) + B |
---|
369 | F(11,4)=A*YC(4) + B |
---|
370 | ! |
---|
371 | F(12,4)=0.0 |
---|
372 | F(12,5)=23.13 |
---|
373 | F(12,6)=40.86 |
---|
374 | F(12,7)=51.44 |
---|
375 | F(12,8)=58.38 |
---|
376 | F(12,9)=63.47 |
---|
377 | F(12,10)=67.43 |
---|
378 | F(12,11)=70.66 |
---|
379 | F(12,12)=73.38 |
---|
380 | F(12,13)=75.70 |
---|
381 | F(12,14)=77.72 |
---|
382 | F(12,15)=79.51 |
---|
383 | F(12,16)=81.11 |
---|
384 | F(12,17)=82.58 |
---|
385 | F(12,18)=83.99 |
---|
386 | ! |
---|
387 | A=(F(12,6)-F(12,5))/( (YC(6)-YC(5))*3.5 ) |
---|
388 | B=-A*YC(5) + F(12,5) |
---|
389 | F(12,1)=A*YC(1) + B |
---|
390 | F(12,2)=A*YC(2) + B |
---|
391 | F(12,3)=A*YC(3) + B |
---|
392 | F(12,4)=A*YC(4) + B |
---|
393 | ! |
---|
394 | F(13,4)=0.0 |
---|
395 | F(13,5)=0.0 |
---|
396 | F(13,6)=36.89 |
---|
397 | F(13,7)=48.63 |
---|
398 | F(13,8)=56.46 |
---|
399 | F(13,9)=61.96 |
---|
400 | F(13,10)=66.19 |
---|
401 | F(13,11)=69.6 |
---|
402 | F(13,12)=72.45 |
---|
403 | F(13,13)=74.89 |
---|
404 | F(13,14)=76.99 |
---|
405 | F(13,15)=78.85 |
---|
406 | F(13,16)=80.50 |
---|
407 | F(13,17)=82.02 |
---|
408 | F(13,18)=83.44 |
---|
409 | ! |
---|
410 | A=(F(13,7)-F(13,6))/( (YC(7)-YC(6))*2.0) |
---|
411 | B=-A*YC(6) + F(13,6) |
---|
412 | F(13,1)=A*YC(1) + B |
---|
413 | F(13,2)=A*YC(2) + B |
---|
414 | F(13,3)=A*YC(3) + B |
---|
415 | F(13,4)=A*YC(4) + B |
---|
416 | F(13,5)=A*YC(5) + B |
---|
417 | ! |
---|
418 | F(14,4)=0.0 |
---|
419 | F(14,5)=0.0 |
---|
420 | F(14,6)=30.82 |
---|
421 | F(14,7)=44.49 |
---|
422 | F(14,8)=53.69 |
---|
423 | F(14,9)=59.83 |
---|
424 | F(14,10)=64.47 |
---|
425 | F(14,11)=68.15 |
---|
426 | F(14,12)=71.19 |
---|
427 | F(14,13)=73.77 |
---|
428 | F(14,14)=76.0 |
---|
429 | F(14,15)=77.95 |
---|
430 | F(14,16)=79.69 |
---|
431 | F(14,17)=81.26 |
---|
432 | F(14,18)=82.72 |
---|
433 | ! |
---|
434 | A=(F(14,7)-F(14,6))/( (YC(7)-YC(6))*2.5 ) |
---|
435 | B=-A*YC(6) + F(14,6) |
---|
436 | F(14,1)=A*YC(1) + B |
---|
437 | F(14,2)=A*YC(2) + B |
---|
438 | F(14,3)=A*YC(3) + B |
---|
439 | F(14,4)=A*YC(4) + B |
---|
440 | F(14,5)=A*YC(5) + B |
---|
441 | ! |
---|
442 | F(15,4)=0.0 |
---|
443 | F(15,5)=0.0 |
---|
444 | F(15,6)=0.0 |
---|
445 | F(15,7)=37.71 |
---|
446 | F(15,8)=48.49 |
---|
447 | F(15,9)=56.40 |
---|
448 | F(15,10)=61.75 |
---|
449 | F(15,11)=65.89 |
---|
450 | F(15,12)=69.25 |
---|
451 | F(15,13)=72.07 |
---|
452 | F(15,14)=74.49 |
---|
453 | F(15,15)=76.59 |
---|
454 | F(15,16)=78.45 |
---|
455 | F(15,17)=80.12 |
---|
456 | F(15,18)=81.64 |
---|
457 | ! |
---|
458 | A=(F(15,8)-F(15,7))/( (YC(8)-YC(7))*1.5) |
---|
459 | B=-A*YC(7) + F(15,7) |
---|
460 | F(15,1)=A*YC(1) + B |
---|
461 | F(15,2)=A*YC(2) + B |
---|
462 | F(15,3)=A*YC(3) + B |
---|
463 | F(15,4)=A*YC(4) + B |
---|
464 | F(15,5)=A*YC(5) + B |
---|
465 | F(15,6)=A*YC(6) + B |
---|
466 | |
---|
467 | ! SUPPOSE THAT AT GIVEN AND PH2O<2mB, |
---|
468 | ! %H2SO4 = A *LOG(PH2O) +B |
---|
469 | ! XC(1-5) :EXTENSION LEFT (LOW H2O) |
---|
470 | DO J=1,18 |
---|
471 | A=(F(6,J)-F(7,J))/(LOG(XC(6))-LOG(XC(7))) |
---|
472 | B=-A*LOG(XC(6)) + F(6,J) |
---|
473 | DO K=1,5 |
---|
474 | F(K,J)=A*LOG(XC(K)) + B |
---|
475 | ENDDO |
---|
476 | ENDDO |
---|
477 | |
---|
478 | ! XC(16) :EXTENSION RIGHT (HIGH H2O) |
---|
479 | DO J=1,18 |
---|
480 | A=(F(15,J)-F(14,J))/(XC(15)-XC(14)) |
---|
481 | B=-A*XC(15) + F(15,J) |
---|
482 | F(16,J)=A*XC(16) + B |
---|
483 | ! F(16,2)=1.0 |
---|
484 | ENDDO |
---|
485 | |
---|
486 | ! YC(16-25) :EXTENSION DOWN (HIGH T) |
---|
487 | DO I=1,16 |
---|
488 | A=(F(I,18)-F(I,17))/(YC(18)-YC(17)) |
---|
489 | B=-A*YC(18) + F(I,18) |
---|
490 | DO K=19,28 |
---|
491 | F(I,K)=A*YC(K) + B |
---|
492 | ENDDO |
---|
493 | ENDDO |
---|
494 | |
---|
495 | ! MANUAL CORRECTIONS |
---|
496 | DO J=1,10 |
---|
497 | F(1,J)=94.0 |
---|
498 | ENDDO |
---|
499 | |
---|
500 | DO J=1,6 |
---|
501 | F(2,J)=77.0 +REAL(J) |
---|
502 | ENDDO |
---|
503 | |
---|
504 | DO J=1,7 |
---|
505 | F(16,J)=9.0 |
---|
506 | ENDDO |
---|
507 | |
---|
508 | DO I=1,16 |
---|
509 | DO J=1,28 |
---|
510 | IF (F(I,J).LT.9.0) F(I,J)=30.0 |
---|
511 | IF (F(I,J).GT.99.99) F(I,J)=99.99 |
---|
512 | ENDDO |
---|
513 | ENDDO |
---|
514 | |
---|
515 | ENDIF |
---|
516 | |
---|
517 | DO I=1,klon |
---|
518 | DO J=1,klev |
---|
519 | TP=t_seri(I,J) |
---|
520 | IF (TP.LT.175.1) TP=175.1 |
---|
521 | ! Partial pressure of H2O (mb) |
---|
522 | PH2O =PMB(I,J)*H2O(I,J) |
---|
523 | IF (PH2O.LT.XC1) THEN |
---|
524 | R2SO4(I,J)=99.99 |
---|
525 | ! PH2O=XC(1)+1.0E-10 |
---|
526 | ELSE |
---|
527 | IF (PH2O.GT.XC16) PH2O=XC16 |
---|
528 | ! SIMPLE LINEAR INTERPOLATIONS |
---|
529 | CALL FIND(PH2O,TP,XC,YC,F,VAL,N,M) |
---|
530 | IF (PMB(I,J).GE.10.0.AND.VAL.LT.60.0) VAL=60.0 |
---|
531 | R2SO4(I,J)=VAL |
---|
532 | ENDIF |
---|
533 | ENDDO |
---|
534 | ENDDO |
---|
535 | |
---|
536 | END SUBROUTINE |
---|
537 | |
---|
538 | !**************************************************************** |
---|
539 | SUBROUTINE STRAACT(ACTSO4) |
---|
540 | |
---|
541 | ! H2SO4 ACTIVITY (GIAUQUE) AS A FUNCTION OF H2SO4 WP |
---|
542 | ! ---------------------------------------- |
---|
543 | ! INPUT: |
---|
544 | ! H2SO4: VMR of H2SO4 |
---|
545 | ! klon: number of latitude bands in the model domain |
---|
546 | ! klev: number of altitude bands in the model domain |
---|
547 | ! for IFS: perhaps add another dimension for longitude |
---|
548 | ! |
---|
549 | ! OUTPUT: |
---|
550 | ! ACTSO4: H2SO4 activity (percent) |
---|
551 | |
---|
552 | USE dimphy, ONLY : klon,klev |
---|
553 | USE phys_local_var_mod, ONLY: R2SO4 |
---|
554 | |
---|
555 | IMPLICIT NONE |
---|
556 | |
---|
557 | REAL ACTSO4(klon,klev) |
---|
558 | |
---|
559 | ! Working variables |
---|
560 | INTEGER NN,I,J,JX,JX1 |
---|
561 | REAL TC,TB,TA,XT |
---|
562 | PARAMETER (NN=109) |
---|
563 | REAL XC(NN), X(NN) |
---|
564 | |
---|
565 | ! H2SO4 activity |
---|
566 | DATA X/ & |
---|
567 | & 0.0,0.25,0.78,1.437,2.19,3.07,4.03,5.04,6.08 & |
---|
568 | & ,7.13,8.18,14.33,18.59,28.59,39.17,49.49 & |
---|
569 | & ,102.4,157.8,215.7,276.9,341.6,409.8,481.5,556.6 & |
---|
570 | & ,635.5,719.,808.,902.,1000.,1103.,1211.,1322.,1437.,1555. & |
---|
571 | & ,1677.,1800.,1926.,2054.,2183.,2312.,2442.,2572.,2701.,2829. & |
---|
572 | & ,2955.,3080.,3203.,3325.,3446.,3564.,3681.,3796.,3910.,4022. & |
---|
573 | & ,4134.,4351.,4564.,4771.,4974.,5171.,5364.,5551.,5732.,5908. & |
---|
574 | & ,6079.,6244.,6404.,6559.,6709.,6854.,6994.,7131.,7264.,7393. & |
---|
575 | & ,7520.,7821.,8105.,8373.,8627.,8867.,9093.,9308.,9511.,9703. & |
---|
576 | & ,9885.,10060.,10225.,10535.,10819.,11079.,11318.,11537. & |
---|
577 | & ,11740.,12097.,12407.,12676.,12915.,13126.,13564.,13910. & |
---|
578 | & ,14191.,14423.,14617.,14786.,10568.,15299.,15491.,15654. & |
---|
579 | & ,15811./ |
---|
580 | ! H2SO4 weight fraction (percent) |
---|
581 | DATA XC/ & |
---|
582 | & 100.0,99.982,99.963,99.945,99.927,99.908,99.890,99.872 & |
---|
583 | & ,99.853,99.835,99.817,99.725,99.634,99.452,99.270 & |
---|
584 | & ,99.090,98.196,97.319,96.457,95.610,94.777,93.959,93.156 & |
---|
585 | & ,92.365,91.588,90.824,90.073,89.334,88.607,87.892,87.188 & |
---|
586 | & ,86.495,85.814,85.143,84.482,83.832,83.191,82.560,81.939 & |
---|
587 | & ,81.327,80.724,80.130,79.545,78.968,78.399,77.839,77.286 & |
---|
588 | & ,76.741,76.204,75.675,75.152,74.637,74.129,73.628,73.133 & |
---|
589 | & ,72.164,71.220,70.300,69.404,68.530,67.678,66.847,66.037 & |
---|
590 | & ,65.245,64.472,63.718,62.981,62.261,61.557,60.868,60.195 & |
---|
591 | & ,59.537,58.893,58.263,57.646,56.159,54.747,53.405,52.126 & |
---|
592 | & ,50.908,49.745,48.634,47.572,46.555,45.580,44.646,43.749 & |
---|
593 | & ,42.059,40.495,39.043,37.691,36.430,35.251,33.107,31.209 & |
---|
594 | & ,29.517,27.999,26.629,23.728,21.397,19.482,17.882,16.525 & |
---|
595 | & ,15.360,13.461,11.980,10.792,9.819,8.932/ |
---|
596 | |
---|
597 | DO I=1,klon |
---|
598 | DO J=1,klev |
---|
599 | ! HERE LINEAR INTERPOLATIONS |
---|
600 | XT=R2SO4(I,J) |
---|
601 | CALL POSACT(XT,XC,NN,JX) |
---|
602 | JX1=JX+1 |
---|
603 | IF(JX.EQ.0) THEN |
---|
604 | ACTSO4(I,J)=0.0 |
---|
605 | ELSE IF(JX.GE.NN) THEN |
---|
606 | ACTSO4(I,J)=15811.0 |
---|
607 | ELSE |
---|
608 | TC=XT -XC(JX) |
---|
609 | TB=X(JX1) -X(JX) |
---|
610 | TA=XC(JX1) -XC(JX) |
---|
611 | TA=TB/TA |
---|
612 | ACTSO4(I,J)=X(JX) + TA*TC |
---|
613 | ENDIF |
---|
614 | ENDDO |
---|
615 | ENDDO |
---|
616 | |
---|
617 | END SUBROUTINE |
---|
618 | |
---|
619 | !**************************************************************** |
---|
620 | SUBROUTINE DENH2SA(t_seri) |
---|
621 | |
---|
622 | ! AERSOL DENSITY AS A FUNCTION OF H2SO4 WEIGHT PERCENT AND T |
---|
623 | ! --------------------------------------------- |
---|
624 | ! VERY ROUGH APPROXIMATION (SEE FOR WATER IN HANDBOOK |
---|
625 | ! LINEAR 2% FOR 30 DEGREES with RESPECT TO WATER) |
---|
626 | ! |
---|
627 | ! INPUT: |
---|
628 | ! R2SO4: aerosol H2SO4 weight fraction (percent) |
---|
629 | ! t_seri: temperature (K) |
---|
630 | ! klon: number of latitude bands in the model domain |
---|
631 | ! klev: number of altitude bands in the model domain |
---|
632 | ! for IFS: perhaps add another dimension for longitude |
---|
633 | ! |
---|
634 | ! OUTPUT: |
---|
635 | ! DENSO4: aerosol mass density (gr/cm3 = aerosol mass/aerosol volume) |
---|
636 | ! |
---|
637 | USE dimphy, ONLY : klon,klev |
---|
638 | USE phys_local_var_mod, ONLY: R2SO4, DENSO4 |
---|
639 | |
---|
640 | IMPLICIT NONE |
---|
641 | |
---|
642 | REAL,DIMENSION(klon,klev),INTENT(IN) :: t_seri ! Temperature |
---|
643 | |
---|
644 | INTEGER I,J |
---|
645 | |
---|
646 | ! Loop on model domain (2 dimension for UPMC model; 3 for IFS) |
---|
647 | DO I=1,klon |
---|
648 | DO J=1,klev |
---|
649 | ! RO AT 20C |
---|
650 | DENSO4(I,J)=0.78681252E-5*R2SO4(I,J)*R2SO4(I,J)+ 0.82185978E-2*R2SO4(I,J)+0.97968381 |
---|
651 | DENSO4(I,J)=DENSO4(I,J)* ( 1.0 - (t_seri(I,J)-293.0)*0.02/30.0 ) |
---|
652 | ENDDO |
---|
653 | ENDDO |
---|
654 | |
---|
655 | END SUBROUTINE |
---|
656 | |
---|
657 | !*********************************************************** |
---|
658 | SUBROUTINE FIND(X,Y,XC,YC,F,VAL,N,M) |
---|
659 | ! |
---|
660 | ! BI-LINEAR INTERPOLATION |
---|
661 | |
---|
662 | ! INPUT: |
---|
663 | ! X: Partial pressure of H2O (mb) |
---|
664 | ! Y: temperature (K) |
---|
665 | ! XC: Table partial pressure of H2O (mb) |
---|
666 | ! YC: Table temperature (K) |
---|
667 | ! F: Table aerosol H2SO4 weight fraction=f(XC,YC) (percent) |
---|
668 | ! |
---|
669 | ! OUTPUT: |
---|
670 | ! VAL: aerosol H2SO4 weight fraction (percent) |
---|
671 | |
---|
672 | IMPLICIT NONE |
---|
673 | |
---|
674 | INTEGER N,M |
---|
675 | REAL X,Y,XC(N),YC(M),F(N,M),VAL |
---|
676 | ! |
---|
677 | ! working variables |
---|
678 | INTEGER IERX,IERY,JX,JY,JXP1,JYP1 |
---|
679 | REAL SXY,SX1Y,SX1Y1,SXY1,TA,TB,T,UA,UB,U |
---|
680 | |
---|
681 | IERX=0 |
---|
682 | IERY=0 |
---|
683 | CALL POSITION(XC,X,N,JX,IERX) |
---|
684 | CALL POSITION(YC,Y,M,JY,IERY) |
---|
685 | |
---|
686 | IF(JX.EQ.0.OR.IERY.EQ.1) THEN |
---|
687 | VAL=99.99 |
---|
688 | RETURN |
---|
689 | ENDIF |
---|
690 | |
---|
691 | IF(JY.EQ.0.OR.IERX.EQ.1) THEN |
---|
692 | VAL=9.0 |
---|
693 | RETURN |
---|
694 | ENDIF |
---|
695 | |
---|
696 | JXP1=JX+1 |
---|
697 | JYP1=JY+1 |
---|
698 | SXY=F(JX, JY ) |
---|
699 | SX1Y=F(JXP1,JY ) |
---|
700 | SX1Y1=F(JXP1,JYP1) |
---|
701 | SXY1=F(JX, JYP1) |
---|
702 | |
---|
703 | ! x-slope. |
---|
704 | TA=X -XC(JX) |
---|
705 | TB=XC(JXP1)-XC(JX) |
---|
706 | T=TA/TB |
---|
707 | |
---|
708 | ! y-slope. |
---|
709 | UA=Y -YC(JY) |
---|
710 | UB=YC(JYP1)-YC(JY) |
---|
711 | U=UA/UB |
---|
712 | |
---|
713 | ! Use bilinear interpolation to determine function at point X,Y. |
---|
714 | VAL=(1.-T)*(1.-U)*SXY + T*(1.0-U)*SX1Y + T*U*SX1Y1 + (1.0-T)*U*SXY1 |
---|
715 | |
---|
716 | IF(VAL.LT.9.0) VAL=9.0 |
---|
717 | IF(VAL.GT.99.99) VAL=99.99 |
---|
718 | |
---|
719 | RETURN |
---|
720 | END SUBROUTINE |
---|
721 | !**************************************************************** |
---|
722 | SUBROUTINE POSITION(XC,X,N,JX,IER) |
---|
723 | |
---|
724 | IMPLICIT NONE |
---|
725 | |
---|
726 | INTEGER N,JX,IER,I |
---|
727 | REAL X,XC(N) |
---|
728 | |
---|
729 | IER=0 |
---|
730 | IF(X.LT.XC(1)) THEN |
---|
731 | JX=0 |
---|
732 | ELSE |
---|
733 | DO 10 I=1,N |
---|
734 | IF (X.LT.XC(I)) GO TO 20 |
---|
735 | 10 CONTINUE |
---|
736 | IER=1 |
---|
737 | 20 JX=I-1 |
---|
738 | ENDIF |
---|
739 | |
---|
740 | RETURN |
---|
741 | END SUBROUTINE |
---|
742 | !******************************************************************** |
---|
743 | SUBROUTINE POSACT(XT,X,N,JX) |
---|
744 | |
---|
745 | ! POSITION OF XT IN THE ARRAY X |
---|
746 | ! ----------------------------------------------- |
---|
747 | |
---|
748 | IMPLICIT NONE |
---|
749 | |
---|
750 | INTEGER N |
---|
751 | REAL XT,X(N) |
---|
752 | ! Working variables |
---|
753 | INTEGER JX,I |
---|
754 | |
---|
755 | IF(XT.GT.X(1)) THEN |
---|
756 | JX=0 |
---|
757 | ELSE |
---|
758 | DO 10 I=1,N |
---|
759 | IF (XT.GT.X(I)) GO TO 20 |
---|
760 | 10 CONTINUE |
---|
761 | 20 JX=I |
---|
762 | ENDIF |
---|
763 | |
---|
764 | RETURN |
---|
765 | END SUBROUTINE |
---|
766 | !******************************************************************** |
---|
767 | !----------------------------------------------------------------------- |
---|
768 | real function psh2so4(T) result(psh2so4_out) |
---|
769 | ! equilibrium H2SO4 pressure over pure H2SO4 solution (Pa) |
---|
770 | ! |
---|
771 | !---->Ayers et.al. (1980), GRL (7) pp 433-436 |
---|
772 | ! plus corrections for lower temperatures by Kulmala and Laaksonen (1990) |
---|
773 | ! and Noppel et al. (1990) |
---|
774 | |
---|
775 | implicit none |
---|
776 | real, intent(in) :: T |
---|
777 | real, parameter :: & |
---|
778 | & b1=1.01325e5, & |
---|
779 | & b2=11.5, & |
---|
780 | & b3=1.0156e4, & |
---|
781 | & b4=0.38/545., & |
---|
782 | & tref=360.15 |
---|
783 | |
---|
784 | ! saturation vapor pressure ( N/m2 = Pa = kg/(m.s2) ) |
---|
785 | psh2so4_out=b1*exp( -b2 +b3*( 1./tref-1./T & |
---|
786 | & +b4*(1.+log(tref/T)-tref/T) ) ) |
---|
787 | |
---|
788 | return |
---|
789 | end function psh2so4 |
---|
790 | !----------------------------------------------------------------------- |
---|
791 | real function ndsh2so4(T) result(ndsh2so4_out) |
---|
792 | ! equilibrium H2SO4 number density over pure H2SO4 (molec/cm3) |
---|
793 | |
---|
794 | implicit none |
---|
795 | real, intent(in) :: T |
---|
796 | real :: presat |
---|
797 | |
---|
798 | ! Boltzmann constant ( 1.38065e-23 J/K = m2⋅kg/(s2⋅K) ) |
---|
799 | ! akb idem in cm2⋅g/(s2⋅K) |
---|
800 | real, parameter :: akb=1.38065e-16 |
---|
801 | |
---|
802 | ! pure h2so4 saturation vapor pressure (Pa) |
---|
803 | presat=psh2so4(T) |
---|
804 | ! saturation number density (1/cm3) - (molec/cm3) |
---|
805 | ndsh2so4_out=presat*10./(akb*T) |
---|
806 | |
---|
807 | return |
---|
808 | end function ndsh2so4 |
---|
809 | !----------------------------------------------------------------------- |
---|
810 | real function psh2o(T) result(psh2o_out) |
---|
811 | ! equilibrium H2O pressure over pure liquid water (Pa) |
---|
812 | ! |
---|
813 | implicit none |
---|
814 | real, intent(in) :: T |
---|
815 | |
---|
816 | if(T.gt.229.) then |
---|
817 | ! Preining et al., 1981 (from Kulmala et al., 1998) |
---|
818 | ! saturation vapor pressure (N/m2 = 1 Pa = 1 kg/(m·s2)) |
---|
819 | psh2o_out=exp( 77.34491296 -7235.424651/T & |
---|
820 | & -8.2*log(T) + 5.7133e-3*T ) |
---|
821 | else |
---|
822 | ! Tabazadeh et al., 1997, parameterization for 185<T<260 |
---|
823 | ! saturation water vapor partial pressure (mb = hPa =1.E2 kg/(m·s2)) |
---|
824 | ! or from Clegg and Brimblecombe , J. Chem. Eng., p43, 1995. |
---|
825 | ; |
---|
826 | psh2o_out=18.452406985 -3505.1578807/T & |
---|
827 | & -330918.55082/(T*T) & |
---|
828 | & +12725068.262/(T*T*T) |
---|
829 | ! in Pa |
---|
830 | psh2o_out=100.*exp(psh2o_out) |
---|
831 | end if |
---|
832 | ! print*,psh2o_out |
---|
833 | |
---|
834 | return |
---|
835 | end function psh2o |
---|
836 | !----------------------------------------------------------------------- |
---|
837 | real function density(T,so4mfrac) result(density_out) |
---|
838 | ! calculation of particle density (gr/cm3) |
---|
839 | |
---|
840 | ! requires Temperature (T) and acid mass fraction (so4mfrac) |
---|
841 | !---->Vehkamaeki et al. (2002) |
---|
842 | |
---|
843 | implicit none |
---|
844 | real, intent(in) :: T, so4mfrac |
---|
845 | real, parameter :: & |
---|
846 | & a1= 0.7681724,& |
---|
847 | & a2= 2.184714, & |
---|
848 | & a3= 7.163002, & |
---|
849 | & a4=-44.31447, & |
---|
850 | & a5= 88.74606, & |
---|
851 | & a6=-75.73729, & |
---|
852 | & a7= 23.43228 |
---|
853 | real, parameter :: & |
---|
854 | & b1= 1.808225e-3, & |
---|
855 | & b2=-9.294656e-3, & |
---|
856 | & b3=-3.742148e-2, & |
---|
857 | & b4= 2.565321e-1, & |
---|
858 | & b5=-5.362872e-1, & |
---|
859 | & b6= 4.857736e-1, & |
---|
860 | & b7=-1.629592e-1 |
---|
861 | real, parameter :: & |
---|
862 | & c1=-3.478524e-6, & |
---|
863 | & c2= 1.335867e-5, & |
---|
864 | & c3= 5.195706e-5, & |
---|
865 | & c4=-3.717636e-4, & |
---|
866 | & c5= 7.990811e-4, & |
---|
867 | & c6=-7.458060e-4, & |
---|
868 | & c7= 2.581390e-4 |
---|
869 | real :: a,b,c,so4m2,so4m3,so4m4,so4m5,so4m6 |
---|
870 | |
---|
871 | so4m2=so4mfrac*so4mfrac |
---|
872 | so4m3=so4mfrac*so4m2 |
---|
873 | so4m4=so4mfrac*so4m3 |
---|
874 | so4m5=so4mfrac*so4m4 |
---|
875 | so4m6=so4mfrac*so4m5 |
---|
876 | |
---|
877 | a=+a1+a2*so4mfrac+a3*so4m2+a4*so4m3 & |
---|
878 | & +a5*so4m4+a6*so4m5+a7*so4m6 |
---|
879 | b=+b1+b2*so4mfrac+b3*so4m2+b4*so4m3 & |
---|
880 | & +b5*so4m4+b6*so4m5+b7*so4m6 |
---|
881 | c=+c1+c2*so4mfrac+c3*so4m2+c4*so4m3 & |
---|
882 | & +c5*so4m4+c6*so4m5+c7*so4m6 |
---|
883 | density_out=(a+b*T+c*T*T) ! units are gm/cm**3 |
---|
884 | |
---|
885 | return |
---|
886 | end function density |
---|
887 | !----------------------------------------------------------------------- |
---|
888 | real function surftension(T,so4frac) result(surftension_out) |
---|
889 | ! calculation of surface tension (mN/meter) |
---|
890 | ! requires Temperature (T) and acid mole fraction (so4frac) |
---|
891 | !---->Vehkamaeki et al. (2002) |
---|
892 | |
---|
893 | implicit none |
---|
894 | real,intent(in) :: T, so4frac |
---|
895 | real :: a,b,so4mfrac,so4m2,so4m3,so4m4,so4m5,so4sig |
---|
896 | real, parameter :: & |
---|
897 | & a1= 0.11864, & |
---|
898 | & a2=-0.11651, & |
---|
899 | & a3= 0.76852, & |
---|
900 | & a4=-2.40909, & |
---|
901 | & a5= 2.95434, & |
---|
902 | & a6=-1.25852 |
---|
903 | real, parameter :: & |
---|
904 | & b1=-1.5709e-4, & |
---|
905 | & b2= 4.0102e-4, & |
---|
906 | & b3=-2.3995e-3, & |
---|
907 | & b4= 7.611235e-3, & |
---|
908 | & b5=-9.37386e-3, & |
---|
909 | & b6= 3.89722e-3 |
---|
910 | real, parameter :: convfac=1.e3 ! convert from newton/m to dyne/cm |
---|
911 | real, parameter :: Mw=18.01528, Ma=98.079 |
---|
912 | |
---|
913 | ! so4 mass fraction |
---|
914 | so4mfrac=Ma*so4frac/( Ma*so4frac+Mw*(1.-so4frac) ) |
---|
915 | so4m2=so4mfrac*so4mfrac |
---|
916 | so4m3=so4mfrac*so4m2 |
---|
917 | so4m4=so4mfrac*so4m3 |
---|
918 | so4m5=so4mfrac*so4m4 |
---|
919 | |
---|
920 | a=+a1+a2*so4mfrac+a3*so4m2+a4*so4m3+a5*so4m4+a6*so4m5 |
---|
921 | b=+b1+b2*so4mfrac+b3*so4m2+b4*so4m3+b5*so4m4+b6*so4m5 |
---|
922 | so4sig=a+b*T |
---|
923 | surftension_out=so4sig*convfac |
---|
924 | |
---|
925 | return |
---|
926 | end function surftension |
---|
927 | !----------------------------------------------------------------------- |
---|
928 | real function wph2so4(pph2o,T) result(wph2so4_out) |
---|
929 | ! Calculates the equilibrium composition of h2so4 aerosols |
---|
930 | ! as a function of temperature and H2O pressure, using |
---|
931 | ! the parameterization of Tabazadeh et al., GRL, p1931, 1997. |
---|
932 | ! |
---|
933 | ! Parameters |
---|
934 | ! |
---|
935 | ! input: |
---|
936 | ! T.....temperature (K) |
---|
937 | ! pph2o..... amhbiant 2o pressure (Pa) |
---|
938 | ! |
---|
939 | ! output: |
---|
940 | ! wph2so4......sulfuric acid composition (weight percent wt % h2so4) |
---|
941 | ! = h2so4 mass fraction*100. |
---|
942 | ! |
---|
943 | implicit none |
---|
944 | real, intent(in) :: pph2o, T |
---|
945 | |
---|
946 | real :: aw, rh, y1, y2, sulfmolal |
---|
947 | |
---|
948 | ! psh2o(T): equilibrium H2O pressure over pure liquid water (Pa) |
---|
949 | ! relative humidity |
---|
950 | rh=pph2o/psh2o(T) |
---|
951 | ! water activity |
---|
952 | ! aw=min( 0.999,max(1.e-3,rh) ) |
---|
953 | aw=min( 0.999999999,max(1.e-8,rh) ) |
---|
954 | |
---|
955 | ! composition |
---|
956 | ! calculation of h2so4 molality |
---|
957 | if(aw .le. 0.05 .and. aw .gt. 0.) then |
---|
958 | y1=12.372089320*aw**(-0.16125516114) & |
---|
959 | & -30.490657554*aw -2.1133114241 |
---|
960 | y2=13.455394705*aw**(-0.19213122550) & |
---|
961 | & -34.285174607*aw -1.7620073078 |
---|
962 | else if(aw .le. 0.85 .and. aw .gt. 0.05) then |
---|
963 | y1=11.820654354*aw**(-0.20786404244) & |
---|
964 | & -4.8073063730*aw -5.1727540348 |
---|
965 | y2=12.891938068*aw**(-0.23233847708) & |
---|
966 | & -6.4261237757*aw -4.9005471319 |
---|
967 | else |
---|
968 | y1=-180.06541028*aw**(-0.38601102592) & |
---|
969 | & -93.317846778*aw +273.88132245 |
---|
970 | y2=-176.95814097*aw**(-0.36257048154) & |
---|
971 | & -90.469744201*aw +267.45509988 |
---|
972 | end if |
---|
973 | ! h2so4 molality (m=moles of h2so4 (solute)/ kg of h2o(solvent)) |
---|
974 | sulfmolal = y1+((T-190.)*(y2-y1)/70.) |
---|
975 | |
---|
976 | ! for a solution containing mh2so4 and mh2o: |
---|
977 | ! sulfmolal = (mh2so4(gr)/h2so4_molar_mass(gr/mole)) / (mh2o(gr)*1.e-3) |
---|
978 | ! mh2o=1.e3*(mh2so4/Mh2so4)/sulfmolal=1.e3*mh2so4/(Mh2so4*sulfmolal) |
---|
979 | ! h2so4_mass_fraction = mfh2so4 = mh2so4/(mh2o + mh2so4) |
---|
980 | ! mh2o=mh2so4*(1-mfh2so4)/mfh2so4 |
---|
981 | ! combining the 2 equations |
---|
982 | ! 1.e3*mh2so4/(Mh2so4*sulfmolal) = mh2so4*(1-mfh2so4)/mfh2so4 |
---|
983 | ! 1.e3/(Mh2so4*sulfmolal) = (1-mfh2so4)/mfh2so4 |
---|
984 | ! 1000*mfh2so4 = (1-mfh2so4)*Mh2so4*sulfmolal |
---|
985 | ! mfh2so4*(1000.+Mh2so4*sulfmolal) = Mh2so4*sulfmolal |
---|
986 | ! mfh2so4 = Mh2so4*sulfmolal / (1000.+Mh2so4*sulfmolal) |
---|
987 | ! wph2so4 (% mass fraction)= 100.*Mh2so4*sulfmolal / (1000.+Mh2so4*sulfmolal) |
---|
988 | ! recall activity of i = a_i = P_i/P_pure_i and |
---|
989 | ! activity coefficient of i = gamma_i = a_i/X_i (X_i: mole fraction of i) |
---|
990 | ! so P_i = gamma_i*X_i*P_pure_i |
---|
991 | ! if ideal solution, gamma_i=1, P_i = X_i*P_pure_i |
---|
992 | |
---|
993 | ! h2so4 weight precent |
---|
994 | wph2so4_out = 9800.*sulfmolal/(98.*sulfmolal+1000.) |
---|
995 | ! print*,rh,pph2o,psh2o(T),vpice(T) |
---|
996 | ! print*,T,aw,sulfmolal,wph2so4_out |
---|
997 | wph2so4_out = max(wph2so4_out,15.) |
---|
998 | wph2so4_out = min(wph2so4_out,99.999) |
---|
999 | |
---|
1000 | return |
---|
1001 | end function wph2so4 |
---|
1002 | !----------------------------------------------------------------------- |
---|
1003 | real function solh2so4(T,xa) result(solh2so4_out) |
---|
1004 | ! equilibrium h2so4 number density over H2SO4/H2O solution (molec/cm3) |
---|
1005 | |
---|
1006 | implicit none |
---|
1007 | real, intent(in) :: T, xa ! T(K) xa(H2SO4 mass fraction) |
---|
1008 | |
---|
1009 | real :: xw, a12,b12, cacta, presat |
---|
1010 | |
---|
1011 | xw=1.0-xa |
---|
1012 | |
---|
1013 | ! pure h2so4 saturation number density (molec/cm3) |
---|
1014 | presat=ndsh2so4(T) |
---|
1015 | ! compute activity of acid |
---|
1016 | a12=5.672E3 -4.074E6/T +4.421E8/(T*T) |
---|
1017 | b12=1./0.527 |
---|
1018 | cacta=10.**(a12*xw*xw/(xw+b12*xa)**2/T) |
---|
1019 | ! h2so4 saturation number density over H2SO4/H2O solution (molec/cm3) |
---|
1020 | solh2so4_out=cacta*xa*presat |
---|
1021 | |
---|
1022 | return |
---|
1023 | end function solh2so4 |
---|
1024 | !----------------------------------------------------------------------- |
---|
1025 | real function rpmvh2so4(T,ws) result(rpmvh2so4_out) |
---|
1026 | ! partial molar volume of h2so4 in h2so4/h2o solution (cm3/mole) |
---|
1027 | |
---|
1028 | implicit none |
---|
1029 | real, intent(in) :: T, ws |
---|
1030 | real, dimension(22),parameter :: x=(/ & |
---|
1031 | & 2.393284E-02,-4.359335E-05,7.961181E-08,0.0,-0.198716351, & |
---|
1032 | & 1.39564574E-03,-2.020633E-06,0.51684706,-3.0539E-03,4.505475E-06, & |
---|
1033 | & -0.30119511,1.840408E-03,-2.7221253742E-06,-0.11331674116, & |
---|
1034 | & 8.47763E-04,-1.22336185E-06,0.3455282,-2.2111E-03,3.503768245E-06, & |
---|
1035 | & -0.2315332,1.60074E-03,-2.5827835E-06/) |
---|
1036 | |
---|
1037 | real :: w |
---|
1038 | |
---|
1039 | w=ws*0.01 |
---|
1040 | rpmvh2so4_out=x(5)+x(6)*T+x(7)*T*T+(x(8)+x(9)*T+x(10)*T*T)*w & |
---|
1041 | +(x(11)+x(12)*T+x(13)*T*T)*w*w |
---|
1042 | ! h2so4 partial molar volume in h2so4/h2o solution (cm3/mole) |
---|
1043 | rpmvh2so4_out=rpmvh2so4_out*1000. |
---|
1044 | |
---|
1045 | return |
---|
1046 | end function rpmvh2so4 |
---|
1047 | !----------------------------------------------------------------------- |
---|
1048 | real function rmvh2o(T) result(rmvh2o_out) |
---|
1049 | ! molar volume of pure h2o (cm3/mole) |
---|
1050 | |
---|
1051 | implicit none |
---|
1052 | real, intent(in) :: T |
---|
1053 | real, parameter :: x1=2.393284E-02,x2=-4.359335E-05,x3=7.961181E-08 |
---|
1054 | |
---|
1055 | ! 1000: L/mole -> cm3/mole |
---|
1056 | ! pure h2o molar volume (cm3/mole) |
---|
1057 | rmvh2o_out=(x1+x2*T+x3*T*T)*1000. |
---|
1058 | |
---|
1059 | return |
---|
1060 | end function rmvh2o |
---|
1061 | ! |
---|
1062 | END MODULE sulfate_aer_mod |
---|