source: LMDZ6/trunk/libf/phylmd/StratAer/miecalc_aer.F90 @ 3634

Last change on this file since 3634 was 3526, checked in by Laurent Fairhead, 5 years ago

Olivier's modifications + addition of Id keyword

  • Property svn:keywords set to Id
File size: 22.9 KB
Line 
1!
2! $Id: miecalc_aer.F90 3526 2019-05-28 13:00:44Z jyg $
3!
4SUBROUTINE MIECALC_AER(tau_strat, piz_strat, cg_strat, tau_strat_wave, tau_lw_abs_rrtm, paprs, debut)
5
6!-------Mie computations for a size distribution
7!       of homogeneous spheres.
8!
9!==========================================================
10!--Ref : Toon and Ackerman, Applied Optics, 1981
11!        Stephens, CSIRO, 1979
12! Attention : surdimensionement des tableaux
13! to be compiled with double precision option (-r8 on Sun)
14! AUTHOR: Olivier Boucher, Christoph Kleinschmitt
15!-------SIZE distribution properties----------------
16!--sigma_g : geometric standard deviation
17!--r_0     : geometric number mean radius (um)/modal radius
18!--Ntot    : total concentration in m-3
19
20  USE phys_local_var_mod, ONLY: tr_seri, mdw, alpha_bin, piz_bin, cg_bin
21  USE aerophys
22  USE aero_mod
23  USE infotrac, ONLY : nbtr, nbtr_bin, nbtr_sulgas, id_SO2_strat
24  USE dimphy
25  USE YOMCST  , ONLY : RG, RPI
26  USE mod_phys_lmdz_para, only: gather, scatter, bcast
27  USE mod_grid_phy_lmdz, ONLY : klon_glo
28  USE mod_phys_lmdz_mpi_data, ONLY :  is_mpi_root
29  USE print_control_mod, ONLY: prt_level, lunout
30
31  IMPLICIT NONE
32
33! Variable input
34  LOGICAL,INTENT(IN) :: debut   ! le flag de l'initialisation de la physique
35  REAL,DIMENSION(klon,klev+1),INTENT(IN) :: paprs   ! pression pour chaque inter-couche (en Pa)
36
37! Stratospheric aerosols optical properties
38  REAL, DIMENSION(klon,klev,nbands_sw_rrtm) :: tau_strat, piz_strat, cg_strat
39  REAL, DIMENSION(klon,klev,nwave_sw+nwave_lw) :: tau_strat_wave
40  REAL, DIMENSION(klon,klev,nbands_lw_rrtm) :: tau_lw_abs_rrtm
41
42!!  REAL,DIMENSION(klon_glo,klev,nbtr)     :: tr_seri_glo         ! Concentration Traceur [U/KgA] 
43
44! local variables
45  REAL Ntot
46  PARAMETER (Ntot=1.0)
47  LOGICAL, PARAMETER :: refr_ind_interpol = .TRUE. ! set interpolation of refractive index
48  REAL r_0    ! aerosol particle radius [m]
49  INTEGER bin_number, ilon, ilev
50  REAL masse,volume,surface
51  REAL rmin, rmax    !----integral bounds in  m
52
53!-------------------------------------
54
55  COMPLEX m          !----refractive index m=n_r-i*n_i
56  INTEGER Nmax,Nstart !--number of iterations
57  COMPLEX k2, k3, z1, z2
58  COMPLEX u1,u5,u6,u8
59  COMPLEX a(1:21000), b(1:21000)
60  COMPLEX I
61  INTEGER n  !--loop index
62  REAL nnn
63  COMPLEX nn
64  REAL Q_ext, Q_abs, Q_sca, g, omega   !--parameters for radius r
65  REAL x, x_old  !--size parameter
66  REAL r, r_lower, r_upper  !--radius
67  REAL sigma_sca, sigma_ext, sigma_abs
68  REAL omegatot,  gtot !--averaged parameters
69  COMPLEX ksiz2(-1:21000), psiz2(1:21000)
70  COMPLEX nu1z1(1:21010), nu1z2(1:21010)
71  COMPLEX nu3z2(0:21000)
72  REAL number, deltar
73  INTEGER bin, Nbin, it
74  PARAMETER (Nbin=10)
75  LOGICAL smallx
76
77!---wavelengths STREAMER
78  INTEGER Nwv, NwvmaxSW
79  PARAMETER (NwvmaxSW=24)
80  REAL lambda(1:NwvmaxSW+1)
81  DATA lambda/0.28E-6, 0.30E-6, 0.33E-6, 0.36E-6, 0.40E-6, &
82              0.44E-6, 0.48E-6, 0.52E-6, 0.57E-6, 0.64E-6, &
83              0.69E-6, 0.75E-6, 0.78E-6, 0.87E-6, 1.00E-6, &
84              1.10E-6, 1.19E-6, 1.28E-6, 1.53E-6, 1.64E-6, &
85              2.13E-6, 2.38E-6, 2.91E-6, 3.42E-6, 4.00E-6/
86
87!---wavelengths de references
88!---be careful here the 5th wavelength is 1020 nm
89  INTEGER nb
90  REAL lambda_ref(nwave_sw+nwave_lw)
91  DATA lambda_ref /0.443E-6,0.550E-6,0.670E-6,  &
92                   0.765E-6,1.020E-6,10.E-6/
93
94!--LW
95  INTEGER NwvmaxLW
96  PARAMETER (NwvmaxLW=500)
97  REAL Tb, hh, cc, kb
98  PARAMETER (Tb=220.0, hh=6.62607e-34)
99  PARAMETER (cc=2.99792e8, kb=1.38065e-23)
100
101!---TOA fluxes - Streamer Cs
102  REAL weight(1:NwvmaxSW), weightLW
103!c        DATA weight/0.839920E1, 0.231208E2, 0.322393E2, 0.465058E2,
104!c     .              0.678199E2, 0.798964E2, 0.771359E2, 0.888472E2,
105!c     .              0.115281E3, 0.727565E2, 0.816992E2, 0.336172E2,
106!c     .              0.914603E2, 0.112706E3, 0.658840E2, 0.524470E2,
107!c     .              0.391067E2, 0.883864E2, 0.276672E2, 0.681812E2,
108!c     .              0.190966E2, 0.250766E2, 0.128704E2, 0.698720E1/
109!---TOA fluxes - Tad
110  DATA weight/ 4.20, 11.56, 16.12, 23.25, 33.91, 39.95, 38.57, &
111              44.42, 57.64, 29.36, 47.87, 16.81, 45.74, 56.35, &
112              32.94, 26.22, 19.55, 44.19, 13.83, 34.09,  9.55, &
113              12.54,  6.44,  3.49/
114!C---BOA fluxes - Tad
115!c        DATA weight/ 0.01,  4.05, 9.51,  15.99, 26.07, 33.10, 33.07,
116!c     .              39.91, 52.67, 27.89, 43.60, 13.67, 42.22, 40.12,
117!c     .              32.70, 14.44, 19.48, 14.23, 13.43, 16.42,  8.33,
118!c     .               0.95,  0.65, 2.76/
119
120  REAL lambda_int(1:NwvmaxSW+nwave_sw+nwave_lw+NwvmaxLW), ll
121  REAL dlambda_int(1:NwvmaxSW+nwave_sw+nwave_lw+NwvmaxLW), dl
122
123  REAL n_r(1:NwvmaxSW+nwave_sw+nwave_lw+NwvmaxLW)
124  REAL n_i(1:NwvmaxSW+nwave_sw+nwave_lw+NwvmaxLW)
125
126  REAL ilambda, ilambda_prev, ilambda_max, ilambda_min
127  REAL n_r_h2so4, n_i_h2so4
128  REAL n_r_h2so4_prev, n_i_h2so4_prev
129
130  REAL final_a(1:NwvmaxSW+nwave_sw+nwave_lw+NwvmaxLW)
131  REAL final_g(1:NwvmaxSW+nwave_sw+nwave_lw+NwvmaxLW)
132  REAL final_w(1:NwvmaxSW+nwave_sw+nwave_lw+NwvmaxLW)
133
134  INTEGER band, bandSW, bandLW, wavenumber
135
136!---wavelengths SW RRTM
137  REAL wv_rrtm_SW(nbands_sw_rrtm+1)
138  DATA wv_rrtm_SW/  0.185E-6, 0.25E-6, 0.44E-6, 0.69E-6,  &
139                     1.19E-6, 2.38E-6, 4.00E-6/
140
141!---wavenumbers and wavelengths LW RRTM
142  REAL wn_rrtm(nbands_lw_rrtm+1), wv_rrtm(nbands_lw_rrtm+1)
143  DATA wn_rrtm/  10.,  250.,  500.,  630.,  700.,  820.,  &
144                980., 1080., 1180., 1390., 1480., 1800.,  &
145               2080., 2250., 2380., 2600., 3000./
146
147!--GCM results
148  REAL gcm_a(nbands_sw_rrtm+nbands_lw_rrtm)
149  REAL gcm_g(nbands_sw_rrtm+nbands_lw_rrtm)
150  REAL gcm_w(nbands_sw_rrtm+nbands_lw_rrtm)
151  REAL gcm_weight_a(nbands_sw_rrtm+nbands_lw_rrtm)
152  REAL gcm_weight_g(nbands_sw_rrtm+nbands_lw_rrtm)
153  REAL gcm_weight_w(nbands_sw_rrtm+nbands_lw_rrtm)
154
155  REAL ss_a(nbands_sw_rrtm+nbands_lw_rrtm+nwave_sw+nwave_lw)
156  REAL ss_w(nbands_sw_rrtm+nbands_lw_rrtm+nwave_sw+nwave_lw)
157  REAL ss_g(nbands_sw_rrtm+nbands_lw_rrtm+nwave_sw+nwave_lw)
158
159  INTEGER, PARAMETER :: nb_lambda_h2so4=62
160  REAL, DIMENSION (nb_lambda_h2so4,4) :: ref_ind
161  !-- fichier h2so4_0.75_300.00_hummel_1988_p_q.dat
162  ! -- wavenumber (cm-1), wavelength (um), n_r, n_i
163  DATA ref_ind /                                &
164   200.000,   50.0000,   2.01000,   6.5000E-01, &
165   250.000,   40.0000,   1.94000,   6.3000E-01, &
166   285.714,   35.0000,   1.72000,   5.2000E-01, &
167   333.333,   30.0000,   1.73000,   2.9000E-01, &
168   358.423,   27.9000,   1.78000,   2.5000E-01, &
169   400.000,   25.0000,   1.84000,   2.4000E-01, &
170   444.444,   22.5000,   1.82000,   2.9000E-01, &
171   469.484,   21.3000,   1.79000,   2.5000E-01, &
172   500.000,   20.0000,   1.81000,   2.3000E-01, &
173   540.541,   18.5000,   1.92700,   3.0200E-01, &
174   555.556,   18.0000,   1.95000,   4.1000E-01, &
175   581.395,   17.2000,   1.72400,   5.9000E-01, &
176   609.756,   16.4000,   1.52000,   4.1400E-01, &
177   666.667,   15.0000,   1.59000,   2.1100E-01, &
178   675.676,   14.8000,   1.61000,   2.0500E-01, &
179   714.286,   14.0000,   1.64000,   1.9500E-01, &
180   769.231,   13.0000,   1.69000,   1.9500E-01, &
181   800.000,   12.5000,   1.74000,   1.9800E-01, &
182   869.565,   11.5000,   1.89000,   3.7400E-01, &
183   909.091,   11.0000,   1.67000,   4.8500E-01, &
184   944.198,   10.5910,   1.72000,   3.4000E-01, &
185  1000.000,   10.0000,   1.89000,   4.5500E-01, &
186  1020.408,    9.8000,   1.91000,   6.8000E-01, &
187  1052.632,    9.5000,   1.67000,   7.5000E-01, &
188  1086.957,    9.2000,   1.60000,   5.8600E-01, &
189  1111.111,    9.0000,   1.65000,   6.3300E-01, &
190  1149.425,    8.7000,   1.53000,   7.7200E-01, &
191  1176.471,    8.5000,   1.37000,   7.5500E-01, &
192  1219.512,    8.2000,   1.20000,   6.4500E-01, &
193  1265.823,    7.9000,   1.14000,   4.8800E-01, &
194  1388.889,    7.2000,   1.21000,   1.7600E-01, &
195  1538.462,    6.5000,   1.37000,   1.2800E-01, &
196  1612.903,    6.2000,   1.42400,   1.6500E-01, &
197  1666.667,    6.0000,   1.42500,   1.9500E-01, &
198  1818.182,    5.5000,   1.33700,   1.8300E-01, &
199  2000.000,    5.0000,   1.36000,   1.2100E-01, &
200  2222.222,    4.5000,   1.38500,   1.2000E-01, &
201  2500.000,    4.0000,   1.39800,   1.2600E-01, &
202  2666.667,    3.7500,   1.39600,   1.3100E-01, &
203  2857.143,    3.5000,   1.37600,   1.5800E-01, &
204  2948.113,    3.3920,   1.35200,   1.5900E-01, &
205  3125.000,    3.2000,   1.31100,   1.3500E-01, &
206  3333.333,    3.0000,   1.29300,   9.5500E-02, &
207  3703.704,    2.7000,   1.30300,   5.7000E-03, &
208  4000.000,    2.5000,   1.34400,   3.7600E-03, &
209  4444.444,    2.2500,   1.37000,   1.8000E-03, &
210  5000.000,    2.0000,   1.38400,   1.2600E-03, &
211  5555.556,    1.8000,   1.39000,   5.5000E-04, &
212  6510.417,    1.5360,   1.40300,   1.3700E-04, &
213  7692.308,    1.3000,   1.41000,   1.0000E-05, &
214  9433.962,    1.0600,   1.42000,   1.5000E-06, &
215 11627.907,    0.8600,   1.42500,   1.7900E-07, &
216 14409.222,    0.6940,   1.42800,   1.9900E-08, &
217 15797.788,    0.6330,   1.42900,   1.4700E-08, &
218 18181.818,    0.5500,   1.43000,   1.0000E-08, &
219 19417.476,    0.5150,   1.43100,   1.0000E-08, &
220 20491.803,    0.4880,   1.43200,   1.0000E-08, &
221 25000.000,    0.4000,   1.44000,   1.0000E-08, &
222 29673.591,    0.3370,   1.45900,   1.0000E-08, &
223 33333.333,    0.3000,   1.46900,   1.0000E-08, &
224 40000.000,    0.2500,   1.48400,   1.0000E-08, &
225 50000.000,    0.2000,   1.49800,   1.0000E-08 /
226!---------------------------------------------------------
227
228  IF (debut) THEN   
229
230  !--initialising dry diameters to geometrically spaced mass/volume (see Jacobson 1994)
231      mdw(1)=mdwmin
232      IF (V_rat.LT.1.62) THEN ! compensate for dip in second bin for lower volume ratio
233        mdw(2)=mdw(1)*2.**(1./3.)
234        DO it=3, nbtr_bin
235          mdw(it)=mdw(it-1)*V_rat**(1./3.)
236        ENDDO
237      ELSE
238        DO it=2, nbtr_bin
239          mdw(it)=mdw(it-1)*V_rat**(1./3.)
240        ENDDO
241      ENDIF
242      PRINT *,'init mdw=', mdw
243
244    !--compute particle radius for a composition of 75% H2SO4 / 25% H2O at T=293K
245    DO bin_number=1, nbtr_bin
246      r_0=(dens_aer_dry/dens_aer_ref/0.75)**(1./3.)*mdw(bin_number)/2.
247    !--integral boundaries set to bin boundaries
248      rmin=r_0/sqrt(V_rat**(1./3.))
249      rmax=r_0*sqrt(V_rat**(1./3.))
250
251    !--set up SW
252      DO Nwv=1, NwvmaxSW
253        lambda_int(Nwv)=( lambda(Nwv)+lambda(Nwv+1) ) /2.
254      ENDDO
255
256      DO nb=1, nwave_sw+nwave_lw
257        lambda_int(NwvmaxSW+nb)=lambda_ref(nb)
258      ENDDO
259
260    !--set up LW
261    !--conversion wavenumber in cm-1 to wavelength in m
262      DO Nwv=1, nbands_lw_rrtm+1
263        wv_rrtm(Nwv)=10000./wn_rrtm(Nwv)*1.e-6
264      ENDDO
265
266      DO Nwv=1, NwvmaxLW
267        lambda_int(NwvmaxSW+nwave_sw+nwave_lw+Nwv)= &
268          exp( log(wv_rrtm(1))+float(Nwv-1)/float(NwvmaxLW-1)* &
269          (log(wv_rrtm(nbands_lw_rrtm+1))-log(wv_rrtm(1))) )
270      ENDDO
271
272!--computing the dlambdas
273      Nwv=1
274      dlambda_int(NwvmaxSW+nwave_sw+nwave_lw+Nwv)= &
275      &  lambda_int(NwvmaxSW+nwave_sw+nwave_lw+Nwv)- &
276      &  lambda_int(NwvmaxSW+nwave_sw+nwave_lw+Nwv+1)
277      DO Nwv=2, NwvmaxLW-1
278      dlambda_int(NwvmaxSW+nwave_sw+nwave_lw+Nwv)= &
279      &  (lambda_int(NwvmaxSW+nwave_sw+nwave_lw+Nwv-1)- &
280      &  lambda_int(NwvmaxSW+nwave_sw+nwave_lw+Nwv+1))/2.
281      ENDDO
282      Nwv=NwvmaxLW
283      dlambda_int(NwvmaxSW+nwave_sw+nwave_lw+Nwv)= &
284      &  lambda_int(NwvmaxSW+nwave_sw+nwave_lw+Nwv-1)- &
285      &  lambda_int(NwvmaxSW+nwave_sw+nwave_lw+Nwv)
286
287      IF (refr_ind_interpol) THEN
288
289        ilambda_max=ref_ind(1,2)/1.e6 !--in m
290        ilambda_min=ref_ind(nb_lambda_h2so4,2)/1.e6 !--in m
291        DO Nwv=1, NwvmaxSW+nwave_sw+nwave_lw+NwvmaxLW
292          IF (lambda_int(Nwv).GT.ilambda_max) THEN
293            !for lambda out of data range, take boundary values
294            n_r(Nwv)=ref_ind(1,3)
295            n_i(Nwv)=ref_ind(1,4)
296          ELSEIF (lambda_int(Nwv).LE.ilambda_min) THEN
297            n_r(Nwv)=ref_ind(nb_lambda_h2so4,3)
298            n_i(Nwv)=ref_ind(nb_lambda_h2so4,4)
299          ELSE
300            DO nb=2,nb_lambda_h2so4
301              ilambda=ref_ind(nb,2)/1.e6
302              ilambda_prev=ref_ind(nb-1,2)/1.e6
303              n_r_h2so4=ref_ind(nb,3)
304              n_r_h2so4_prev=ref_ind(nb-1,3)
305              n_i_h2so4=ref_ind(nb,4)
306              n_i_h2so4_prev=ref_ind(nb-1,4)
307              IF (lambda_int(Nwv).GT.ilambda.AND. &
308                lambda_int(Nwv).LE.ilambda_prev) THEN !--- linear interpolation
309                n_r(Nwv)=n_r_h2so4+(lambda_int(Nwv)-ilambda)/ &
310                     (ilambda_prev-ilambda)*(n_r_h2so4_prev-n_r_h2so4)
311                n_i(Nwv)=n_i_h2so4+(lambda_int(Nwv)-ilambda)/ &
312                     (ilambda_prev-ilambda)*(n_i_h2so4_prev-n_i_h2so4)
313              ENDIF
314            ENDDO
315          ENDIF
316        ENDDO
317
318      ELSE  !-- no refr_ind_interpol, closest neighbour from upper wavelength
319
320        DO Nwv=1, NwvmaxSW+nwave_sw+nwave_lw+NwvmaxLW
321          n_r(Nwv)=ref_ind(1,3)
322          n_i(Nwv)=ref_ind(1,4)
323          DO nb=2,nb_lambda_h2so4
324            IF (ref_ind(nb,2)/1.e6.GT.lambda_int(Nwv)) THEN !--- step function
325              n_r(Nwv)=ref_ind(nb,3)
326              n_i(Nwv)=ref_ind(nb,4)
327            ENDIF 
328          ENDDO
329        ENDDO
330      ENDIF
331
332    !---Loop on wavelengths
333      DO Nwv=1, NwvmaxSW+nwave_sw+nwave_lw+NwvmaxLW
334
335      m=CMPLX(n_r(Nwv),-n_i(Nwv))
336
337      I=CMPLX(0.,1.)
338
339      sigma_sca=0.0
340      sigma_ext=0.0
341      sigma_abs=0.0
342      gtot=0.0
343      omegatot=0.0
344      masse = 0.0
345      volume=0.0
346      surface=0.0
347
348      DO bin=1, Nbin !---loop on size bins
349
350      r_lower=exp(log(rmin)+FLOAT(bin-1)/FLOAT(Nbin)*(log(rmax)-log(rmin)))
351      r_upper=exp(log(rmin)+FLOAT(bin)/FLOAT(Nbin)*(log(rmax)-log(rmin)))
352      deltar=r_upper-r_lower
353
354      r=sqrt(r_lower*r_upper)
355      x=2.*RPI*r/lambda_int(Nwv)
356
357!we impose a minimum value for x and extrapolate quantities for small x values
358      smallx = .FALSE.
359      IF (x.LT.0.001) THEN
360        smallx = .TRUE.
361        x_old = x
362        x = 0.001
363      ENDIF
364
365      number=Ntot*deltar/(rmax-rmin) !dN/dr constant over tracer bin
366!      masse=masse  +4./3.*RPI*(r**3)*number*deltar*ropx*1.E3  !--g/m3
367      volume=volume+4./3.*RPI*(r**3)*number*deltar
368      surface=surface+4.*RPI*r**2*number*deltar
369
370      k2=m
371      k3=CMPLX(1.0,0.0)
372
373      z2=CMPLX(x,0.0)
374      z1=m*z2
375
376      IF (0.0.LE.x.AND.x.LE.8.) THEN
377        Nmax=INT(x+4*x**(1./3.)+1.)+2
378      ELSEIF (8..LT.x.AND.x.LT.4200.) THEN
379        Nmax=INT(x+4.05*x**(1./3.)+2.)+1
380      ELSEIF (4200..LE.x.AND.x.LE.20000.) THEN
381        Nmax=INT(x+4*x**(1./3.)+2.)+1
382      ELSE
383        PRINT *, 'x out of bound, x=', x
384        STOP
385      ENDIF
386
387      Nstart=Nmax+100
388
389    !-----------loop for nu1z1, nu1z2
390
391      nu1z1(Nstart)=CMPLX(0.0,0.0)
392      nu1z2(Nstart)=CMPLX(0.0,0.0)
393      DO n=Nstart-1, 1 , -1
394        nn=CMPLX(FLOAT(n),0.0)
395        nu1z1(n)=(nn+1.)/z1 - 1./( (nn+1.)/z1 + nu1z1(n+1) )
396        nu1z2(n)=(nn+1.)/z2 - 1./( (nn+1.)/z2 + nu1z2(n+1) )
397      ENDDO
398
399    !------------loop for nu3z2
400
401      nu3z2(0)=-I
402      DO n=1, Nmax
403        nn=CMPLX(FLOAT(n),0.0)
404        nu3z2(n)=-nn/z2 + 1./ (nn/z2 - nu3z2(n-1) )
405      ENDDO
406
407    !-----------loop for psiz2 and ksiz2 (z2)
408      ksiz2(-1)=COS(REAL(z2))-I*SIN(REAL(z2))
409      ksiz2(0)=SIN(REAL(z2))+I*COS(REAL(z2))
410      DO n=1,Nmax
411       nn=CMPLX(FLOAT(n),0.0)
412       ksiz2(n)=(2.*nn-1.)/z2 * ksiz2(n-1) - ksiz2(n-2)
413       psiz2(n)=CMPLX(REAL(ksiz2(n)),0.0)
414      ENDDO
415
416    !-----------loop for a(n) and b(n)
417
418      DO n=1, Nmax
419        u1=k3*nu1z1(n) - k2*nu1z2(n)
420        u5=k3*nu1z1(n) - k2*nu3z2(n)
421        u6=k2*nu1z1(n) - k3*nu1z2(n)
422        u8=k2*nu1z1(n) - k3*nu3z2(n)
423        a(n)=psiz2(n)/ksiz2(n) * u1/u5
424        b(n)=psiz2(n)/ksiz2(n) * u6/u8
425      ENDDO
426
427    !-----------------final loop--------------
428      Q_ext=0.0
429      Q_sca=0.0
430      g=0.0
431
432      DO n=Nmax-1,1,-1
433        nnn=FLOAT(n)
434        Q_ext=Q_ext+ (2.*nnn+1.) * REAL( a(n)+b(n) )
435        Q_sca=Q_sca+ (2.*nnn+1.) *  &
436                   REAL( a(n)*CONJG(a(n)) + b(n)*CONJG(b(n)) )
437        g=g + nnn*(nnn+2.)/(nnn+1.) *   &
438           REAL( a(n)*CONJG(a(n+1))+b(n)*CONJG(b(n+1)) )  +   &
439              (2.*nnn+1.)/nnn/(nnn+1.) * REAL(a(n)*CONJG(b(n)))
440      ENDDO
441
442      Q_ext=2./x**2 * Q_ext
443      Q_sca=2./x**2 * Q_sca
444    !--extrapolation in case of small x values
445      IF (smallx) THEN
446        Q_ext = x_old/x * Q_ext
447        Q_sca = x_old/x * Q_sca
448      ENDIF
449
450      Q_abs=Q_ext-Q_sca
451
452      IF (AIMAG(m).EQ.0.0) Q_abs=0.0
453      omega=Q_sca/Q_ext
454
455    ! g is wrong in the smallx case (but that does not matter as long as we ignore LW scattering)
456      g=g*4./x**2/Q_sca
457
458      sigma_sca=sigma_sca+r**2*Q_sca*number
459      sigma_abs=sigma_abs+r**2*Q_abs*number
460      sigma_ext=sigma_ext+r**2*Q_ext*number
461      omegatot=omegatot+r**2*Q_ext*omega*number
462      gtot    =gtot+r**2*Q_sca*g*number
463
464      ENDDO   !---bin
465    !------------------------------------------------------------------
466
467      sigma_sca=RPI*sigma_sca
468      sigma_abs=RPI*sigma_abs
469      sigma_ext=RPI*sigma_ext
470      gtot=RPI*gtot/sigma_sca
471      omegatot=RPI*omegatot/sigma_ext
472
473      final_g(Nwv)=gtot
474      final_w(Nwv)=omegatot
475!      final_a(Nwv)=sigma_ext/masse
476      final_a(Nwv)=sigma_ext !extinction/absorption cross section per particle
477
478      ENDDO  !--loop on wavelength
479
480    !---averaging over LMDZ wavebands
481
482      DO band=1, nbands_sw_rrtm+nbands_lw_rrtm
483        gcm_a(band)=0.0
484        gcm_g(band)=0.0
485        gcm_w(band)=0.0
486        gcm_weight_a(band)=0.0
487        gcm_weight_g(band)=0.0
488        gcm_weight_w(band)=0.0
489      ENDDO
490
491    !---band 1 is now in the UV, so we take the first wavelength as being representative
492      DO Nwv=1,1
493        bandSW=1
494        gcm_a(bandSW)=gcm_a(bandSW)+final_a(Nwv)*weight(Nwv)
495        gcm_weight_a(bandSW)=gcm_weight_a(bandSW)+weight(Nwv)
496        gcm_w(bandSW)=gcm_w(bandSW)+final_w(Nwv)*final_a(Nwv)*weight(Nwv)
497        gcm_weight_w(bandSW)=gcm_weight_w(bandSW)+final_a(Nwv)*weight(Nwv)
498        gcm_g(bandSW)=gcm_g(bandSW)+final_g(Nwv)*final_a(Nwv)*final_w(Nwv)*weight(Nwv)
499        gcm_weight_g(bandSW)=gcm_weight_g(bandSW)+final_a(Nwv)*final_w(Nwv)*weight(Nwv)
500      ENDDO
501
502      DO Nwv=1,NwvmaxSW
503
504        IF (lambda_int(Nwv).LE.wv_rrtm_SW(3)) THEN      !--RRTM spectral interval 2
505          bandSW=2
506        ELSEIF (lambda_int(Nwv).LE.wv_rrtm_SW(4)) THEN  !--RRTM spectral interval 3
507          bandSW=3
508        ELSEIF (lambda_int(Nwv).LE.wv_rrtm_SW(5)) THEN  !--RRTM spectral interval 4
509          bandSW=4
510        ELSEIF (lambda_int(Nwv).LE.wv_rrtm_SW(6)) THEN  !--RRTM spectral interval 5
511          bandSW=5
512        ELSE                                            !--RRTM spectral interval 6
513          bandSW=6
514        ENDIF
515
516        gcm_a(bandSW)=gcm_a(bandSW)+final_a(Nwv)*weight(Nwv)
517        gcm_weight_a(bandSW)=gcm_weight_a(bandSW)+weight(Nwv)
518        gcm_w(bandSW)=gcm_w(bandSW)+final_w(Nwv)*final_a(Nwv)*weight(Nwv)
519        gcm_weight_w(bandSW)=gcm_weight_w(bandSW)+final_a(Nwv)*weight(Nwv)
520        gcm_g(bandSW)=gcm_g(bandSW)+final_g(Nwv)*final_a(Nwv)*final_w(Nwv)*weight(Nwv)
521        gcm_weight_g(bandSW)=gcm_weight_g(bandSW)+final_a(Nwv)*final_w(Nwv)*weight(Nwv)
522
523      ENDDO
524
525      DO Nwv=NwvmaxSW+nwave_sw+nwave_lw+1,NwvmaxSW+nwave_sw+nwave_lw+NwvmaxLW
526        ll=lambda_int(Nwv)
527        dl=dlambda_int(Nwv)
528        weightLW=1./ll**5./(exp(hh*cc/kb/Tb/ll)-1.)*dl
529        bandLW=1  !--default value starting from the highest lambda
530        DO band=2, nbands_lw_rrtm
531          IF (ll.LT.wv_rrtm(band)) THEN   !--as long as
532            bandLW=band
533          ENDIF
534        ENDDO
535        gcm_a(nbands_sw_rrtm+bandLW)=gcm_a(nbands_sw_rrtm+bandLW)+final_a(Nwv)*   &
536             (1.-final_w(Nwv))*weightLW
537        gcm_weight_a(nbands_sw_rrtm+bandLW)=gcm_weight_a(nbands_sw_rrtm+bandLW)+weightLW
538
539        gcm_w(nbands_sw_rrtm+bandLW)=gcm_w(nbands_sw_rrtm+bandLW)+final_w(Nwv)*   &
540             final_a(Nwv)*weightLW
541        gcm_weight_w(nbands_sw_rrtm+bandLW)=gcm_weight_w(nbands_sw_rrtm+bandLW)+  &
542             final_a(Nwv)*weightLW
543
544        gcm_g(nbands_sw_rrtm+bandLW)=gcm_g(nbands_sw_rrtm+bandLW)+final_g(Nwv)*   &
545             final_a(Nwv)*final_w(Nwv)*weightLW
546        gcm_weight_g(nbands_sw_rrtm+bandLW)=gcm_weight_g(nbands_sw_rrtm+bandLW)+  &
547             final_a(Nwv)*final_w(Nwv)*weightLW
548      ENDDO
549
550      DO band=1, nbands_sw_rrtm+nbands_lw_rrtm
551        gcm_a(band)=gcm_a(band)/gcm_weight_a(band)
552        gcm_w(band)=gcm_w(band)/gcm_weight_w(band)
553        gcm_g(band)=gcm_g(band)/gcm_weight_g(band)
554        ss_a(band)=gcm_a(band)
555        ss_w(band)=gcm_w(band)
556        ss_g(band)=gcm_g(band)
557      ENDDO
558
559      DO nb=1, nwave_sw+nwave_lw
560        ss_a(nbands_sw_rrtm+nbands_lw_rrtm+nb)=final_a(NwvmaxSW+nb)
561        ss_w(nbands_sw_rrtm+nbands_lw_rrtm+nb)=final_w(NwvmaxSW+nb)
562        ss_g(nbands_sw_rrtm+nbands_lw_rrtm+nb)=final_g(NwvmaxSW+nb)
563      ENDDO
564
565      DO nb=1,nbands_sw_rrtm+nbands_lw_rrtm+nwave_sw+nwave_lw
566        alpha_bin(nb,bin_number)=ss_a(nb) !extinction/absorption cross section per particle
567        piz_bin(nb,bin_number)=ss_w(nb)
568        cg_bin(nb,bin_number)=ss_g(nb)
569      ENDDO
570
571    ENDDO !loop over tracer bins
572
573!!$OMP END MASTER
574!  CALL bcast(alpha_bin)
575!  CALL bcast(piz_bin)
576!  CALL bcast(cg_bin)
577!!$OMP BARRIER
578
579    !set to default values at first time step (tr_seri still zero)
580    tau_strat(:,:,:)=1.e-15
581    piz_strat(:,:,:)=1.0
582    cg_strat(:,:,:)=0.0
583    tau_lw_abs_rrtm(:,:,:)=1.e-15
584    tau_strat_wave(:,:,:)=1.e-15
585
586  ELSE  !-- not debut
587
588  !--compute optical properties of actual size distribution (from tr_seri)
589    DO ilon=1,klon
590      DO ilev=1, klev
591        DO nb=1,nbands_sw_rrtm
592          tau_strat(ilon,ilev,nb)=0.0
593          DO bin_number=1, nbtr_bin
594            tau_strat(ilon,ilev,nb)=tau_strat(ilon,ilev,nb)+alpha_bin(nb,bin_number) &
595                                *tr_seri(ilon,ilev,bin_number+nbtr_sulgas)*(paprs(ilon,ilev)-paprs(ilon,ilev+1))/RG
596          ENDDO
597
598          piz_strat(ilon,ilev,nb)=0.0
599          DO bin_number=1, nbtr_bin
600            piz_strat(ilon,ilev,nb)=piz_strat(ilon,ilev,nb)+piz_bin(nb,bin_number)*alpha_bin(nb,bin_number) &
601                                *tr_seri(ilon,ilev,bin_number+nbtr_sulgas)*(paprs(ilon,ilev)-paprs(ilon,ilev+1))/RG
602          ENDDO
603          piz_strat(ilon,ilev,nb)=piz_strat(ilon,ilev,nb)/MAX(tau_strat(ilon,ilev,nb),1.e-15)
604
605          cg_strat(ilon,ilev,nb)=0.0
606          DO bin_number=1, nbtr_bin
607            cg_strat(ilon,ilev,nb)=cg_strat(ilon,ilev,nb)+cg_bin(nb,bin_number)*piz_bin(nb,bin_number)*alpha_bin(nb,bin_number) &
608                                *tr_seri(ilon,ilev,bin_number+nbtr_sulgas)*(paprs(ilon,ilev)-paprs(ilon,ilev+1))/RG
609          ENDDO
610          cg_strat(ilon,ilev,nb)=cg_strat(ilon,ilev,nb)/MAX(tau_strat(ilon,ilev,nb)*piz_strat(ilon,ilev,nb),1.e-15)
611        ENDDO
612        DO nb=1,nbands_lw_rrtm
613          tau_lw_abs_rrtm(ilon,ilev,nb)=0.0
614          DO bin_number=1, nbtr_bin
615            tau_lw_abs_rrtm(ilon,ilev,nb)=tau_lw_abs_rrtm(ilon,ilev,nb)+alpha_bin(nbands_sw_rrtm+nb,bin_number) &
616                                *tr_seri(ilon,ilev,bin_number+nbtr_sulgas)*(paprs(ilon,ilev)-paprs(ilon,ilev+1))/RG
617          ENDDO
618        ENDDO
619        DO nb=1,nwave_sw+nwave_lw
620          tau_strat_wave(ilon,ilev,nb)=0.0
621          DO bin_number=1, nbtr_bin
622            tau_strat_wave(ilon,ilev,nb)=tau_strat_wave(ilon,ilev,nb)+alpha_bin(nbands_sw_rrtm+nbands_lw_rrtm+nb,bin_number) &
623                                *tr_seri(ilon,ilev,bin_number+nbtr_sulgas)*(paprs(ilon,ilev)-paprs(ilon,ilev+1))/RG
624          ENDDO
625        ENDDO
626      ENDDO
627    ENDDO
628
629  ENDIF !debut
630
631END SUBROUTINE MIECALC_AER
Note: See TracBrowser for help on using the repository browser.