[3816] | 1 | module Microlayer_m |
---|
| 2 | |
---|
| 3 | Implicit none |
---|
| 4 | |
---|
| 5 | contains |
---|
| 6 | |
---|
| 7 | subroutine Microlayer(dter, dser, tkt, tks, hlb, tau, s_subskin, al, & |
---|
| 8 | xlv, taur, rf, rain, qcol) |
---|
| 9 | |
---|
| 10 | ! H. Bellenger 2016 |
---|
| 11 | |
---|
| 12 | use const, only: beta, cpw, grav, rhow |
---|
| 13 | use fv_m, only: fv |
---|
| 14 | |
---|
| 15 | real, intent(out):: dter(:) |
---|
| 16 | ! Temperature variation in the diffusive microlayer, that is |
---|
| 17 | ! ocean-air interface temperature minus subskin temperature. In K. |
---|
| 18 | |
---|
| 19 | real, intent(out):: dser(:) |
---|
| 20 | ! Salinity variation in the diffusive microlayer, that is ocean-air |
---|
| 21 | ! interface salinity minus subskin salinity. In ppt. |
---|
| 22 | |
---|
| 23 | real, intent(inout):: tkt(:) |
---|
| 24 | ! thickness of cool skin (microlayer), in m |
---|
| 25 | |
---|
| 26 | real, intent(inout):: tks(:) |
---|
| 27 | ! thickness of mass diffusion layer (microlayer), in m |
---|
| 28 | |
---|
| 29 | real, intent(in):: hlb(:) |
---|
| 30 | ! latent heat flux at the surface, positive upward (W m-2) |
---|
| 31 | |
---|
| 32 | real, intent(in):: tau(:) ! wind stress, turbulent part only, in Pa |
---|
| 33 | real, intent(in):: s_subskin(:) ! subskin salinity, in ppt |
---|
| 34 | real, intent(in):: al(:) ! water thermal expansion coefficient (in K-1) |
---|
| 35 | real, intent(in):: xlv(:) ! latent heat of evaporation (J/kg) |
---|
| 36 | real, intent(in):: taur(:) ! momentum flux due to rainfall, in Pa |
---|
| 37 | |
---|
| 38 | real, intent(in):: rf(:) |
---|
| 39 | ! sensible heat flux at the surface due to rainfall, in W m-2 |
---|
| 40 | |
---|
| 41 | real, intent(in):: rain(:) ! rain mass flux, in kg m-2 s-1 |
---|
| 42 | |
---|
| 43 | real, intent(in):: qcol(:) |
---|
| 44 | ! net flux at the surface, without sensible heat flux due to rain, in W m-2 |
---|
| 45 | |
---|
| 46 | ! Local: |
---|
| 47 | |
---|
| 48 | real, dimension(size(qcol)):: usrk, usrct, usrcs, alq |
---|
| 49 | real xlamx(size(qcol)) ! Saunders coefficient |
---|
| 50 | real, parameter:: visw = 1e-6 |
---|
| 51 | real, parameter:: tcw = 0.6 ! thermal conductivity of water |
---|
| 52 | |
---|
| 53 | real, parameter:: mu = 0.0129e-7 ! in m2 / s |
---|
| 54 | ! molecular salinity diffusivity, Kraus and Businger, page 47 |
---|
| 55 | |
---|
| 56 | real, parameter:: kappa = 1.49e-7 ! thermal diffusivity, in m2 / s |
---|
| 57 | |
---|
| 58 | real, parameter:: afk = 4e-4 |
---|
| 59 | real, parameter:: bfk = 1.3 |
---|
| 60 | ! a and b coefficient for the power function fitting the TKE flux |
---|
| 61 | ! carried by rain: Fk = a * R**b, derived form the exact solution |
---|
| 62 | ! of Soloviev and Lukas 2006 (Schlussel et al 1997, Craeye and |
---|
| 63 | ! Schlussel 1998) |
---|
| 64 | |
---|
| 65 | !-------------------------------------------------------------------------- |
---|
| 66 | |
---|
| 67 | alq = al * (qcol + rf * (1 - fV(tkt, rain))) - beta * s_subskin * cpw & |
---|
| 68 | * (hlb / xlv - rain * (1 - fV(tks, rain))) |
---|
| 69 | |
---|
| 70 | usrk = (afk / rhow)**(1. / 3.) * (rain * 3600.)**(bfk / 3.) |
---|
| 71 | ! Equivalent friction velocity due to the TKE input by the penetrating |
---|
| 72 | ! raindrops Fk |
---|
| 73 | |
---|
| 74 | ! Friction velocities in the air: |
---|
| 75 | usrct = sqrt((tau + (1. - fV(tkt, rain)) * taur) / rhow & |
---|
| 76 | + (fV(0., rain) - fV(tkt, rain)) * usrk**2) |
---|
| 77 | usrcs = sqrt((tau + (1. - fV(tks, rain)) * taur) / rhow & |
---|
| 78 | + (fV(0., rain) - fV(tks, rain)) * usrk**2) |
---|
| 79 | |
---|
| 80 | where (alq > 0.) |
---|
| 81 | ! Fairall 1996 982, equation (14): |
---|
| 82 | xlamx = 6. * (1. + (16. * grav * cpw * rhow * visw**3 * alq & |
---|
| 83 | / (tcw**2 * usrct**4 ))**0.75)**(- 1. / 3.) |
---|
| 84 | |
---|
| 85 | ! Fairall 1996 982, equation (12): |
---|
| 86 | tkt = xlamx * visw / usrct |
---|
| 87 | |
---|
| 88 | tks = xlamx * mu * (kappa / mu)**(2. / 3.) & |
---|
| 89 | * visw * cpw * rhow / ( tcw * usrcs) |
---|
| 90 | ! From Saunders 1967 (4) |
---|
| 91 | elsewhere |
---|
| 92 | xlamx = 6. ! prevent excessive warm skins |
---|
| 93 | tkt = min(.01, xlamx * visw / usrct) ! Limit tkt |
---|
| 94 | tks = min(.001, xlamx * mu * (kappa / mu)**(2. / 3.) * visw * cpw & |
---|
| 95 | * rhow / (tcw * usrcs)) |
---|
| 96 | end where |
---|
| 97 | |
---|
| 98 | ! Fairall 1996 982, equation (13): |
---|
| 99 | dter = - (qcol + rf * (1 - fV(tkt, rain))) * tkt / tcw |
---|
| 100 | |
---|
| 101 | dser = s_subskin * (hlb / xlv - rain * (1 - fV(tks, rain))) * tks & |
---|
| 102 | / (rhow * mu) ! eq. fresh skin |
---|
| 103 | |
---|
| 104 | end subroutine Microlayer |
---|
| 105 | |
---|
| 106 | end module Microlayer_m |
---|