1 | ! |
---|
2 | ! $Id$ |
---|
3 | ! |
---|
4 | MODULE filtreg_mod |
---|
5 | |
---|
6 | REAL, DIMENSION(:,:,:), ALLOCATABLE :: matriceun,matriceus,matricevn |
---|
7 | REAL, DIMENSION(:,:,:), ALLOCATABLE :: matricevs,matrinvn,matrinvs |
---|
8 | |
---|
9 | CONTAINS |
---|
10 | |
---|
11 | SUBROUTINE inifilr |
---|
12 | #ifdef CPP_PARA |
---|
13 | USE mod_filtre_fft, ONLY : use_filtre_fft,Init_filtre_fft |
---|
14 | USE mod_filtre_fft_loc, ONLY : Init_filtre_fft_loc=>Init_filtre_fft ! |
---|
15 | #endif |
---|
16 | USE comgeom_mod_h |
---|
17 | USE serre_mod, ONLY: alphax |
---|
18 | USE logic_mod, ONLY: fxyhypb, ysinus |
---|
19 | USE comconst_mod, ONLY: maxlatfilter |
---|
20 | |
---|
21 | ! ... H. Upadhyaya, O.Sharma ... |
---|
22 | ! |
---|
23 | USE dimensions_mod, ONLY: iim, jjm, llm, ndm |
---|
24 | USE paramet_mod_h, ONLY: iip1, iip2, iip3, jjp1, llmp1, llmp2, llmm1, kftd, ip1jm, ip1jmp1, & |
---|
25 | ip1jmi1, ijp1llm, ijmllm, mvar, jcfil, jcfllm |
---|
26 | IMPLICIT NONE |
---|
27 | ! |
---|
28 | ! version 3 ..... |
---|
29 | |
---|
30 | ! Correction le 28/10/97 P. Le Van . |
---|
31 | ! ------------------------------------------------------------------- |
---|
32 | |
---|
33 | |
---|
34 | ! ------------------------------------------------------------------- |
---|
35 | include "coefils.h" |
---|
36 | |
---|
37 | REAL dlonu(iim),dlatu(jjm) |
---|
38 | REAL rlamda( iim ), eignvl( iim ) |
---|
39 | ! |
---|
40 | |
---|
41 | REAL lamdamax,pi,cof |
---|
42 | INTEGER i,j,modemax,imx,k,kf,ii |
---|
43 | REAL dymin,dxmin,colat0 |
---|
44 | REAL eignft(iim,iim), coff |
---|
45 | |
---|
46 | LOGICAL, SAVE :: first_call_inifilr = .TRUE. |
---|
47 | |
---|
48 | #ifdef CRAY |
---|
49 | INTEGER ISMIN |
---|
50 | EXTERNAL ISMIN |
---|
51 | INTEGER iymin |
---|
52 | INTEGER ixmineq |
---|
53 | #endif |
---|
54 | ! |
---|
55 | ! ------------------------------------------------------------ |
---|
56 | ! This routine computes the eigenfunctions of the laplacien |
---|
57 | ! on the stretched grid, and the filtering coefficients |
---|
58 | ! |
---|
59 | ! We designate: |
---|
60 | ! eignfn eigenfunctions of the discrete laplacien |
---|
61 | ! eigenvl eigenvalues |
---|
62 | ! jfiltn indexof the last scalar line filtered in NH |
---|
63 | ! jfilts index of the first line filtered in SH |
---|
64 | ! modfrst index of the mode from WHERE modes are filtered |
---|
65 | ! modemax maximum number of modes ( im ) |
---|
66 | ! coefil filtering coefficients ( lamda_max*COS(rlat)/lamda ) |
---|
67 | ! sdd SQRT( dx ) |
---|
68 | ! |
---|
69 | ! the modes are filtered from modfrst to modemax |
---|
70 | ! |
---|
71 | !----------------------------------------------------------- |
---|
72 | ! |
---|
73 | if ( iim == 1 ) return ! No filtre in 2D y-z |
---|
74 | |
---|
75 | pi = 2. * ASIN( 1. ) |
---|
76 | |
---|
77 | DO i = 1,iim |
---|
78 | dlonu(i) = xprimu( i ) |
---|
79 | ENDDO |
---|
80 | ! |
---|
81 | CALL inifgn(eignvl) |
---|
82 | ! |
---|
83 | PRINT *,'inifilr: EIGNVL ' |
---|
84 | PRINT 250,eignvl |
---|
85 | 250 FORMAT( 1x,5e14.6) |
---|
86 | ! |
---|
87 | ! compute eigenvalues and eigenfunctions |
---|
88 | ! |
---|
89 | ! |
---|
90 | !................................................................. |
---|
91 | ! |
---|
92 | ! compute the filtering coefficients for scalar lines and |
---|
93 | ! meridional wind v-lines |
---|
94 | ! |
---|
95 | ! we filter all those latitude lines WHERE coefil < 1 |
---|
96 | ! NO FILTERING AT POLES |
---|
97 | ! |
---|
98 | ! colat0 is to be used when alpha (stretching coefficient) |
---|
99 | ! is set equal to zero for the regular grid CASE |
---|
100 | ! |
---|
101 | ! ....... Calcul de colat0 ......... |
---|
102 | ! ..... colat0 = minimum de ( 0.5, min dy/ min dx ) ... |
---|
103 | ! |
---|
104 | ! |
---|
105 | DO j = 1,jjm |
---|
106 | dlatu( j ) = rlatu( j ) - rlatu( j+1 ) |
---|
107 | ENDDO |
---|
108 | ! |
---|
109 | #ifdef CRAY |
---|
110 | iymin = ISMIN( jjm, dlatu, 1 ) |
---|
111 | ixmineq = ISMIN( iim, dlonu, 1 ) |
---|
112 | dymin = dlatu( iymin ) |
---|
113 | dxmin = dlonu( ixmineq ) |
---|
114 | #else |
---|
115 | dxmin = dlonu(1) |
---|
116 | DO i = 2, iim |
---|
117 | dxmin = MIN( dxmin,dlonu(i) ) |
---|
118 | ENDDO |
---|
119 | dymin = dlatu(1) |
---|
120 | DO j = 2, jjm |
---|
121 | dymin = MIN( dymin,dlatu(j) ) |
---|
122 | ENDDO |
---|
123 | #endif |
---|
124 | ! |
---|
125 | ! For a regular grid, we want the filter to start at latitudes |
---|
126 | ! corresponding to lengths dx of the same size as dy (in terms |
---|
127 | ! of angles: dx=2*dy) => at colat0=0.5 (i.e. colatitude=30 degrees |
---|
128 | ! <=> latitude=60 degrees). |
---|
129 | ! Same idea for the zoomed grid: start filtering polewards as soon |
---|
130 | ! as length dx becomes of the same size as dy |
---|
131 | ! |
---|
132 | ! if maxlatfilter >0, prescribe the colat0 value from the .def files |
---|
133 | |
---|
134 | IF (maxlatfilter .LT. 0.) THEN |
---|
135 | |
---|
136 | colat0 = MIN( 0.5, dymin/dxmin ) |
---|
137 | ! colat0 = 1. |
---|
138 | ! |
---|
139 | IF( .NOT.fxyhypb.AND.ysinus ) THEN |
---|
140 | colat0 = 0.6 |
---|
141 | ! ...... a revoir pour ysinus ! ....... |
---|
142 | alphax = 0. |
---|
143 | ENDIF |
---|
144 | |
---|
145 | ELSE |
---|
146 | |
---|
147 | colat0=(90.0-maxlatfilter)/180.0*pi |
---|
148 | |
---|
149 | ENDIF |
---|
150 | |
---|
151 | |
---|
152 | |
---|
153 | ! |
---|
154 | PRINT 50, colat0,alphax |
---|
155 | 50 FORMAT(/15x,' Inifilr colat0 alphax ',2e16.7) |
---|
156 | ! |
---|
157 | IF(alphax.EQ.1. ) THEN |
---|
158 | PRINT *,' Inifilr alphax doit etre < a 1. Corriger ' |
---|
159 | STOP |
---|
160 | ENDIF |
---|
161 | ! |
---|
162 | lamdamax = iim / ( pi * colat0 * ( 1. - alphax ) ) |
---|
163 | |
---|
164 | ! ... Correction le 28/10/97 ( P.Le Van ) .. |
---|
165 | ! |
---|
166 | DO i = 2,iim |
---|
167 | rlamda( i ) = lamdamax/ SQRT( ABS( eignvl(i) ) ) |
---|
168 | ENDDO |
---|
169 | ! |
---|
170 | |
---|
171 | DO j = 1,jjm |
---|
172 | DO i = 1,iim |
---|
173 | coefilu( i,j ) = 0.0 |
---|
174 | coefilv( i,j ) = 0.0 |
---|
175 | coefilu2( i,j ) = 0.0 |
---|
176 | coefilv2( i,j ) = 0.0 |
---|
177 | ENDDO |
---|
178 | ENDDO |
---|
179 | |
---|
180 | ! |
---|
181 | ! ... Determination de jfiltnu,jfiltnv,jfiltsu,jfiltsv .... |
---|
182 | ! ......................................................... |
---|
183 | ! |
---|
184 | modemax = iim |
---|
185 | |
---|
186 | !!!! imx = modemax - 4 * (modemax/iim) |
---|
187 | |
---|
188 | imx = iim |
---|
189 | ! |
---|
190 | PRINT *,'inifilr: TRUNCATION AT ',imx |
---|
191 | ! |
---|
192 | ! Ehouarn: set up some defaults |
---|
193 | jfiltnu=2 ! avoid north pole |
---|
194 | jfiltsu=jjm ! avoid south pole (which is at jjm+1) |
---|
195 | jfiltnv=1 ! NB: no poles on the V grid |
---|
196 | jfiltsv=jjm |
---|
197 | |
---|
198 | DO j = 2, jjm/2+1 |
---|
199 | cof = COS( rlatu(j) )/ colat0 |
---|
200 | IF ( cof .LT. 1. ) THEN |
---|
201 | IF( rlamda(imx) * COS(rlatu(j) ).LT.1. ) THEN |
---|
202 | jfiltnu= j |
---|
203 | ENDIF |
---|
204 | ENDIF |
---|
205 | |
---|
206 | cof = COS( rlatu(jjp1-j+1) )/ colat0 |
---|
207 | IF ( cof .LT. 1. ) THEN |
---|
208 | IF( rlamda(imx) * COS(rlatu(jjp1-j+1) ).LT.1. ) THEN |
---|
209 | jfiltsu= jjp1-j+1 |
---|
210 | ENDIF |
---|
211 | ENDIF |
---|
212 | ENDDO |
---|
213 | ! |
---|
214 | DO j = 1, jjm/2 |
---|
215 | cof = COS( rlatv(j) )/ colat0 |
---|
216 | IF ( cof .LT. 1. ) THEN |
---|
217 | IF( rlamda(imx) * COS(rlatv(j) ).LT.1. ) THEN |
---|
218 | jfiltnv= j |
---|
219 | ENDIF |
---|
220 | ENDIF |
---|
221 | |
---|
222 | cof = COS( rlatv(jjm-j+1) )/ colat0 |
---|
223 | IF ( cof .LT. 1. ) THEN |
---|
224 | IF( rlamda(imx) * COS(rlatv(jjm-j+1) ).LT.1. ) THEN |
---|
225 | jfiltsv= jjm-j+1 |
---|
226 | ENDIF |
---|
227 | ENDIF |
---|
228 | ENDDO |
---|
229 | ! |
---|
230 | |
---|
231 | IF( jfiltnu.GT. jjm/2 +1 ) THEN |
---|
232 | PRINT *,' jfiltnu en dehors des valeurs acceptables ' ,jfiltnu |
---|
233 | STOP |
---|
234 | ENDIF |
---|
235 | |
---|
236 | IF( jfiltsu.GT. jjm +1 ) THEN |
---|
237 | PRINT *,' jfiltsu en dehors des valeurs acceptables ' ,jfiltsu |
---|
238 | STOP |
---|
239 | ENDIF |
---|
240 | |
---|
241 | IF( jfiltnv.GT. jjm/2 ) THEN |
---|
242 | PRINT *,' jfiltnv en dehors des valeurs acceptables ' ,jfiltnv |
---|
243 | STOP |
---|
244 | ENDIF |
---|
245 | |
---|
246 | IF( jfiltsv.GT. jjm ) THEN |
---|
247 | PRINT *,' jfiltsv en dehors des valeurs acceptables ' ,jfiltsv |
---|
248 | STOP |
---|
249 | ENDIF |
---|
250 | |
---|
251 | PRINT *,'inifilr: jfiltnv jfiltsv jfiltnu jfiltsu ' , & |
---|
252 | jfiltnv,jfiltsv,jfiltnu,jfiltsu |
---|
253 | |
---|
254 | IF(first_call_inifilr) THEN |
---|
255 | ALLOCATE(matriceun(iim,iim,jfiltnu)) |
---|
256 | ALLOCATE(matriceus(iim,iim,jjm-jfiltsu+1)) |
---|
257 | ALLOCATE(matricevn(iim,iim,jfiltnv)) |
---|
258 | ALLOCATE(matricevs(iim,iim,jjm-jfiltsv+1)) |
---|
259 | ALLOCATE( matrinvn(iim,iim,jfiltnu)) |
---|
260 | ALLOCATE( matrinvs(iim,iim,jjm-jfiltsu+1)) |
---|
261 | first_call_inifilr = .FALSE. |
---|
262 | ENDIF |
---|
263 | |
---|
264 | ! |
---|
265 | ! ... Determination de coefilu,coefilv,n=modfrstu,modfrstv .... |
---|
266 | !................................................................ |
---|
267 | ! |
---|
268 | ! |
---|
269 | DO j = 1,jjm |
---|
270 | !default initialization: all modes are retained (i.e. no filtering) |
---|
271 | modfrstu( j ) = iim |
---|
272 | modfrstv( j ) = iim |
---|
273 | ENDDO |
---|
274 | ! |
---|
275 | DO j = 2,jfiltnu |
---|
276 | DO k = 2,modemax |
---|
277 | cof = rlamda(k) * COS( rlatu(j) ) |
---|
278 | IF ( cof .LT. 1. ) GOTO 82 |
---|
279 | ENDDO |
---|
280 | GOTO 84 |
---|
281 | 82 modfrstu( j ) = k |
---|
282 | ! |
---|
283 | kf = modfrstu( j ) |
---|
284 | DO k = kf , modemax |
---|
285 | cof = rlamda(k) * COS( rlatu(j) ) |
---|
286 | coefilu(k,j) = cof - 1. |
---|
287 | coefilu2(k,j) = cof*cof - 1. |
---|
288 | ENDDO |
---|
289 | 84 CONTINUE |
---|
290 | ENDDO |
---|
291 | ! |
---|
292 | ! |
---|
293 | DO j = 1,jfiltnv |
---|
294 | ! |
---|
295 | DO k = 2,modemax |
---|
296 | cof = rlamda(k) * COS( rlatv(j) ) |
---|
297 | IF ( cof .LT. 1. ) GOTO 87 |
---|
298 | ENDDO |
---|
299 | GOTO 89 |
---|
300 | 87 modfrstv( j ) = k |
---|
301 | ! |
---|
302 | kf = modfrstv( j ) |
---|
303 | DO k = kf , modemax |
---|
304 | cof = rlamda(k) * COS( rlatv(j) ) |
---|
305 | coefilv(k,j) = cof - 1. |
---|
306 | coefilv2(k,j) = cof*cof - 1. |
---|
307 | ENDDO |
---|
308 | 89 CONTINUE |
---|
309 | ENDDO |
---|
310 | ! |
---|
311 | DO j = jfiltsu,jjm |
---|
312 | DO k = 2,modemax |
---|
313 | cof = rlamda(k) * COS( rlatu(j) ) |
---|
314 | IF ( cof .LT. 1. ) GOTO 92 |
---|
315 | ENDDO |
---|
316 | GOTO 94 |
---|
317 | 92 modfrstu( j ) = k |
---|
318 | ! |
---|
319 | kf = modfrstu( j ) |
---|
320 | DO k = kf , modemax |
---|
321 | cof = rlamda(k) * COS( rlatu(j) ) |
---|
322 | coefilu(k,j) = cof - 1. |
---|
323 | coefilu2(k,j) = cof*cof - 1. |
---|
324 | ENDDO |
---|
325 | 94 CONTINUE |
---|
326 | ENDDO |
---|
327 | ! |
---|
328 | DO j = jfiltsv,jjm |
---|
329 | DO k = 2,modemax |
---|
330 | cof = rlamda(k) * COS( rlatv(j) ) |
---|
331 | IF ( cof .LT. 1. ) GOTO 97 |
---|
332 | ENDDO |
---|
333 | GOTO 99 |
---|
334 | 97 modfrstv( j ) = k |
---|
335 | ! |
---|
336 | kf = modfrstv( j ) |
---|
337 | DO k = kf , modemax |
---|
338 | cof = rlamda(k) * COS( rlatv(j) ) |
---|
339 | coefilv(k,j) = cof - 1. |
---|
340 | coefilv2(k,j) = cof*cof - 1. |
---|
341 | ENDDO |
---|
342 | 99 CONTINUE |
---|
343 | ENDDO |
---|
344 | ! |
---|
345 | |
---|
346 | IF(jfiltnv.GE.jjm/2 .OR. jfiltnu.GE.jjm/2)THEN |
---|
347 | ! Ehouarn: and what are these for??? Trying to handle a limit case |
---|
348 | ! where filters extend to and meet at the equator? |
---|
349 | IF(jfiltnv.EQ.jfiltsv)jfiltsv=1+jfiltnv |
---|
350 | IF(jfiltnu.EQ.jfiltsu)jfiltsu=1+jfiltnu |
---|
351 | |
---|
352 | PRINT *,'jfiltnv jfiltsv jfiltnu jfiltsu' , & |
---|
353 | jfiltnv,jfiltsv,jfiltnu,jfiltsu |
---|
354 | ENDIF |
---|
355 | |
---|
356 | PRINT *,' Modes premiers v ' |
---|
357 | PRINT 334,modfrstv |
---|
358 | PRINT *,' Modes premiers u ' |
---|
359 | PRINT 334,modfrstu |
---|
360 | |
---|
361 | ! |
---|
362 | ! ................................................................... |
---|
363 | ! |
---|
364 | ! ... Calcul de la matrice filtre 'matriceu' pour les champs situes |
---|
365 | ! sur la grille scalaire ........ |
---|
366 | ! ................................................................... |
---|
367 | ! |
---|
368 | DO j = 2, jfiltnu |
---|
369 | |
---|
370 | DO i=1,iim |
---|
371 | coff = coefilu(i,j) |
---|
372 | IF( i.LT.modfrstu(j) ) coff = 0. |
---|
373 | DO k=1,iim |
---|
374 | eignft(i,k) = eignfnv(k,i) * coff |
---|
375 | ENDDO |
---|
376 | ENDDO ! of DO i=1,iim |
---|
377 | #ifdef CRAY |
---|
378 | CALL MXM( eignfnv,iim,eignft,iim,matriceun(1,1,j),iim ) |
---|
379 | #else |
---|
380 | #ifdef BLAS |
---|
381 | CALL SGEMM ('N', 'N', iim, iim, iim, 1.0, & |
---|
382 | eignfnv, iim, eignft, iim, 0.0, matriceun(1,1,j), iim) |
---|
383 | #else |
---|
384 | DO k = 1, iim |
---|
385 | DO i = 1, iim |
---|
386 | matriceun(i,k,j) = 0.0 |
---|
387 | DO ii = 1, iim |
---|
388 | matriceun(i,k,j) = matriceun(i,k,j) & |
---|
389 | + eignfnv(i,ii)*eignft(ii,k) |
---|
390 | ENDDO |
---|
391 | ENDDO |
---|
392 | ENDDO ! of DO k = 1, iim |
---|
393 | #endif |
---|
394 | #endif |
---|
395 | |
---|
396 | ENDDO ! of DO j = 2, jfiltnu |
---|
397 | |
---|
398 | DO j = jfiltsu, jjm |
---|
399 | |
---|
400 | DO i=1,iim |
---|
401 | coff = coefilu(i,j) |
---|
402 | IF( i.LT.modfrstu(j) ) coff = 0. |
---|
403 | DO k=1,iim |
---|
404 | eignft(i,k) = eignfnv(k,i) * coff |
---|
405 | ENDDO |
---|
406 | ENDDO ! of DO i=1,iim |
---|
407 | #ifdef CRAY |
---|
408 | CALL MXM(eignfnv,iim,eignft,iim,matriceus(1,1,j-jfiltsu+1),iim) |
---|
409 | #else |
---|
410 | #ifdef BLAS |
---|
411 | CALL SGEMM ('N', 'N', iim, iim, iim, 1.0, & |
---|
412 | eignfnv, iim, eignft, iim, 0.0, & |
---|
413 | matriceus(1,1,j-jfiltsu+1), iim) |
---|
414 | #else |
---|
415 | DO k = 1, iim |
---|
416 | DO i = 1, iim |
---|
417 | matriceus(i,k,j-jfiltsu+1) = 0.0 |
---|
418 | DO ii = 1, iim |
---|
419 | matriceus(i,k,j-jfiltsu+1) = matriceus(i,k,j-jfiltsu+1) & |
---|
420 | + eignfnv(i,ii)*eignft(ii,k) |
---|
421 | ENDDO |
---|
422 | ENDDO |
---|
423 | ENDDO ! of DO k = 1, iim |
---|
424 | #endif |
---|
425 | #endif |
---|
426 | |
---|
427 | ENDDO ! of DO j = jfiltsu, jjm |
---|
428 | |
---|
429 | ! ................................................................... |
---|
430 | ! |
---|
431 | ! ... Calcul de la matrice filtre 'matricev' pour les champs situes |
---|
432 | ! sur la grille de V ou de Z ........ |
---|
433 | ! ................................................................... |
---|
434 | ! |
---|
435 | DO j = 1, jfiltnv |
---|
436 | |
---|
437 | DO i = 1, iim |
---|
438 | coff = coefilv(i,j) |
---|
439 | IF( i.LT.modfrstv(j) ) coff = 0. |
---|
440 | DO k = 1, iim |
---|
441 | eignft(i,k) = eignfnu(k,i) * coff |
---|
442 | ENDDO |
---|
443 | ENDDO |
---|
444 | #ifdef CRAY |
---|
445 | CALL MXM( eignfnu,iim,eignft,iim,matricevn(1,1,j),iim ) |
---|
446 | #else |
---|
447 | #ifdef BLAS |
---|
448 | CALL SGEMM ('N', 'N', iim, iim, iim, 1.0, & |
---|
449 | eignfnu, iim, eignft, iim, 0.0, matricevn(1,1,j), iim) |
---|
450 | #else |
---|
451 | DO k = 1, iim |
---|
452 | DO i = 1, iim |
---|
453 | matricevn(i,k,j) = 0.0 |
---|
454 | DO ii = 1, iim |
---|
455 | matricevn(i,k,j) = matricevn(i,k,j) & |
---|
456 | + eignfnu(i,ii)*eignft(ii,k) |
---|
457 | ENDDO |
---|
458 | ENDDO |
---|
459 | ENDDO |
---|
460 | #endif |
---|
461 | #endif |
---|
462 | |
---|
463 | ENDDO ! of DO j = 1, jfiltnv |
---|
464 | |
---|
465 | DO j = jfiltsv, jjm |
---|
466 | |
---|
467 | DO i = 1, iim |
---|
468 | coff = coefilv(i,j) |
---|
469 | IF( i.LT.modfrstv(j) ) coff = 0. |
---|
470 | DO k = 1, iim |
---|
471 | eignft(i,k) = eignfnu(k,i) * coff |
---|
472 | ENDDO |
---|
473 | ENDDO |
---|
474 | #ifdef CRAY |
---|
475 | CALL MXM(eignfnu,iim,eignft,iim,matricevs(1,1,j-jfiltsv+1),iim) |
---|
476 | #else |
---|
477 | #ifdef BLAS |
---|
478 | CALL SGEMM ('N', 'N', iim, iim, iim, 1.0, & |
---|
479 | eignfnu, iim, eignft, iim, 0.0, & |
---|
480 | matricevs(1,1,j-jfiltsv+1), iim) |
---|
481 | #else |
---|
482 | DO k = 1, iim |
---|
483 | DO i = 1, iim |
---|
484 | matricevs(i,k,j-jfiltsv+1) = 0.0 |
---|
485 | DO ii = 1, iim |
---|
486 | matricevs(i,k,j-jfiltsv+1) = matricevs(i,k,j-jfiltsv+1) & |
---|
487 | + eignfnu(i,ii)*eignft(ii,k) |
---|
488 | ENDDO |
---|
489 | ENDDO |
---|
490 | ENDDO |
---|
491 | #endif |
---|
492 | #endif |
---|
493 | |
---|
494 | ENDDO ! of DO j = jfiltsv, jjm |
---|
495 | |
---|
496 | ! ................................................................... |
---|
497 | ! |
---|
498 | ! ... Calcul de la matrice filtre 'matrinv' pour les champs situes |
---|
499 | ! sur la grille scalaire , pour le filtre inverse ........ |
---|
500 | ! ................................................................... |
---|
501 | ! |
---|
502 | DO j = 2, jfiltnu |
---|
503 | |
---|
504 | DO i = 1,iim |
---|
505 | coff = coefilu(i,j)/ ( 1. + coefilu(i,j) ) |
---|
506 | IF( i.LT.modfrstu(j) ) coff = 0. |
---|
507 | DO k=1,iim |
---|
508 | eignft(i,k) = eignfnv(k,i) * coff |
---|
509 | ENDDO |
---|
510 | ENDDO |
---|
511 | #ifdef CRAY |
---|
512 | CALL MXM( eignfnv,iim,eignft,iim,matrinvn(1,1,j),iim ) |
---|
513 | #else |
---|
514 | #ifdef BLAS |
---|
515 | CALL SGEMM ('N', 'N', iim, iim, iim, 1.0, & |
---|
516 | eignfnv, iim, eignft, iim, 0.0, matrinvn(1,1,j), iim) |
---|
517 | #else |
---|
518 | DO k = 1, iim |
---|
519 | DO i = 1, iim |
---|
520 | matrinvn(i,k,j) = 0.0 |
---|
521 | DO ii = 1, iim |
---|
522 | matrinvn(i,k,j) = matrinvn(i,k,j) & |
---|
523 | + eignfnv(i,ii)*eignft(ii,k) |
---|
524 | ENDDO |
---|
525 | ENDDO |
---|
526 | ENDDO |
---|
527 | #endif |
---|
528 | #endif |
---|
529 | |
---|
530 | ENDDO ! of DO j = 2, jfiltnu |
---|
531 | |
---|
532 | DO j = jfiltsu, jjm |
---|
533 | |
---|
534 | DO i = 1,iim |
---|
535 | coff = coefilu(i,j) / ( 1. + coefilu(i,j) ) |
---|
536 | IF( i.LT.modfrstu(j) ) coff = 0. |
---|
537 | DO k=1,iim |
---|
538 | eignft(i,k) = eignfnv(k,i) * coff |
---|
539 | ENDDO |
---|
540 | ENDDO |
---|
541 | #ifdef CRAY |
---|
542 | CALL MXM(eignfnv,iim,eignft,iim,matrinvs(1,1,j-jfiltsu+1),iim) |
---|
543 | #else |
---|
544 | #ifdef BLAS |
---|
545 | CALL SGEMM ('N', 'N', iim, iim, iim, 1.0, & |
---|
546 | eignfnv, iim, eignft, iim, 0.0, matrinvs(1,1,j-jfiltsu+1), iim) |
---|
547 | #else |
---|
548 | DO k = 1, iim |
---|
549 | DO i = 1, iim |
---|
550 | matrinvs(i,k,j-jfiltsu+1) = 0.0 |
---|
551 | DO ii = 1, iim |
---|
552 | matrinvs(i,k,j-jfiltsu+1) = matrinvs(i,k,j-jfiltsu+1) & |
---|
553 | + eignfnv(i,ii)*eignft(ii,k) |
---|
554 | ENDDO |
---|
555 | ENDDO |
---|
556 | ENDDO |
---|
557 | #endif |
---|
558 | #endif |
---|
559 | |
---|
560 | ENDDO ! of DO j = jfiltsu, jjm |
---|
561 | |
---|
562 | #ifdef CPP_PARA |
---|
563 | IF (use_filtre_fft) THEN |
---|
564 | CALL Init_filtre_fft(coefilu,modfrstu,jfiltnu,jfiltsu, & |
---|
565 | coefilv,modfrstv,jfiltnv,jfiltsv) |
---|
566 | CALL Init_filtre_fft_loc(coefilu,modfrstu,jfiltnu,jfiltsu, & |
---|
567 | coefilv,modfrstv,jfiltnv,jfiltsv) |
---|
568 | ENDIF |
---|
569 | #endif |
---|
570 | ! ................................................................... |
---|
571 | |
---|
572 | ! |
---|
573 | 334 FORMAT(1x,24i3) |
---|
574 | 755 FORMAT(1x,6f10.3,i3) |
---|
575 | |
---|
576 | RETURN |
---|
577 | END SUBROUTINE inifilr |
---|
578 | |
---|
579 | END MODULE filtreg_mod |
---|