source: LMDZ6/trunk/libf/dyn3dmem/top_bound_loc.f90 @ 5282

Last change on this file since 5282 was 5282, checked in by abarral, 6 hours ago

Turn iniprint.h clesphys.h into modules
Remove unused description.h

  • Property copyright set to
    Name of program: LMDZ
    Creation date: 1984
    Version: LMDZ5
    License: CeCILL version 2
    Holder: Laboratoire de m\'et\'eorologie dynamique, CNRS, UMR 8539
    See the license file in the root directory
File size: 7.0 KB
Line 
1!
2! $Id: $
3!
4SUBROUTINE top_bound_loc(vcov,ucov,teta,masse,dt)
5  USE iniprint_mod_h
6  USE comgeom2_mod_h
7  USE comdissipn_mod_h
8  USE parallel_lmdz
9  USE comconst_mod, ONLY: iflag_top_bound, mode_top_bound, &
10        tau_top_bound
11  USE comvert_mod, ONLY: presnivs, preff, scaleheight
12
13  USE dimensions_mod, ONLY: iim, jjm, llm, ndm
14USE paramet_mod_h, ONLY: iip1, iip2, iip3, jjp1, llmp1, llmp2, llmm1, kftd, ip1jm, ip1jmp1, &
15          ip1jmi1, ijp1llm, ijmllm, mvar, jcfil, jcfllm
16IMPLICIT NONE
17  !
18
19
20
21
22  ! ..  DISSIPATION LINEAIRE A HAUT NIVEAU, RUN MESO,
23  ! F. LOTT DEC. 2006
24  !                             (  10/12/06  )
25
26  !=======================================================================
27  !
28  !   Auteur:  F. LOTT
29  !   -------
30  !
31  !   Objet:
32  !   ------
33  !
34  !   Dissipation lin�aire (ex top_bound de la physique)
35  !
36  !=======================================================================
37
38  ! top_bound sponge layer model:
39  ! Quenching is modeled as: A(t)=Am+A0*exp(-lambda*t)
40  ! where Am is the zonal average of the field (or zero), and lambda the inverse
41  ! of the characteristic quenching/relaxation time scale
42  ! Thus, assuming Am to be time-independent, field at time t+dt is given by:
43  ! A(t+dt)=A(t)-(A(t)-Am)*(1-exp(-lambda*t))
44  ! Moreover lambda can be a function of model level (see below), and relaxation
45  ! can be toward the average zonal field or just zero (see below).
46
47  ! NB: top_bound sponge is only called from leapfrog if ok_strato=.true.
48
49  ! sponge parameters: (loaded/set in conf_gcm.F ; stored in comconst_mod)
50  !    iflag_top_bound=0 for no sponge
51  !    iflag_top_bound=1 for sponge over 4 topmost layers
52  !    iflag_top_bound=2 for sponge from top to ~1% of top layer pressure
53  !    mode_top_bound=0: no relaxation
54  !    mode_top_bound=1: u and v relax towards 0
55  !    mode_top_bound=2: u and v relax towards their zonal mean
56  !    mode_top_bound=3: u,v and pot. temp. relax towards their zonal mean
57  !    tau_top_bound : inverse of charactericstic relaxation time scale at
58  !                   the topmost layer (Hz)
59
60
61
62  !   Arguments:
63  !   ----------
64
65  real,intent(inout) :: ucov(iip1,jjb_u:jje_u,llm) ! covariant zonal wind
66  real,intent(inout) :: vcov(iip1,jjb_v:jje_v,llm) ! covariant meridional wind
67  real,intent(inout) :: teta(iip1,jjb_u:jje_u,llm) ! potential temperature
68  real,intent(in) :: masse(iip1,jjb_u:jje_u,llm) ! mass of atmosphere
69  real,intent(in) :: dt ! time step (s) of sponge model
70
71   ! REAL dv(iip1,jjb_v:jje_v,llm),du(iip1,jjb_u:jje_u,llm)
72   ! REAL dh(iip1,jjb_u:jje_u,llm)
73
74  !   Local:
75  !   ------
76  REAL :: massebx(iip1,jjb_u:jje_u,llm),masseby(iip1,jjb_v:jje_v,llm)
77  REAL :: zm
78  REAL :: uzon(jjb_u:jje_u,llm),vzon(jjb_v:jje_v,llm)
79  REAL :: tzon(jjb_u:jje_u,llm)
80
81  integer :: i
82  REAL,SAVE :: rdamp(llm)
83  real,save :: lambda(llm) ! inverse or quenching time scale (Hz)
84  LOGICAL,SAVE :: first=.true.
85  INTEGER :: j,l,jjb,jje
86
87
88  if (iflag_top_bound == 0) return
89
90  if (first) then
91!$OMP BARRIER
92!$OMP MASTER
93     if (iflag_top_bound == 1) then
94  ! sponge quenching over the topmost 4 atmospheric layers
95         lambda(:)=0.
96         lambda(llm)=tau_top_bound
97         lambda(llm-1)=tau_top_bound/2.
98         lambda(llm-2)=tau_top_bound/4.
99         lambda(llm-3)=tau_top_bound/8.
100     else if (iflag_top_bound == 2) then
101  ! sponge quenching over topmost layers down to pressures which are
102  ! higher than 100 times the topmost layer pressure
103         lambda(:)=tau_top_bound &
104               *max(presnivs(llm)/presnivs(:)-0.01,0.)
105     endif
106
107  ! quenching coefficient rdamp(:)
108      ! rdamp(:)=dt*lambda(:) ! Explicit Euler approx.
109     rdamp(:)=1.-exp(-lambda(:)*dt)
110
111     write(lunout,*)'TOP_BOUND mode',mode_top_bound
112     write(lunout,*)'Sponge layer coefficients'
113     write(lunout,*)'p (Pa)  z(km)  tau(s)   1./tau (Hz)'
114     do l=1,llm
115       if (rdamp(l).ne.0.) then
116         write(lunout,'(6(1pe12.4,1x))') &
117               presnivs(l),log(preff/presnivs(l))*scaleheight, &
118               1./lambda(l),lambda(l)
119       endif
120     enddo
121     first=.false.
122!$OMP END MASTER
123!$OMP BARRIER
124  endif ! of if (first)
125
126
127  CALL massbar_loc(masse,massebx,masseby)
128
129  ! ! compute zonal average of vcov (or set it to zero)
130  if (mode_top_bound.ge.2) then
131   jjb=jj_begin
132   jje=jj_end
133   IF (pole_sud) jje=jj_end-1
134!$OMP DO SCHEDULE(STATIC,OMP_CHUNK)
135   do l=1,llm
136    do j=jjb,jje
137      zm=0.
138      vzon(j,l)=0
139      do i=1,iim
140  ! NB: we can work using vcov zonal mean rather than v since the
141  ! cv coefficient (which relates the two) only varies with latitudes
142        vzon(j,l)=vzon(j,l)+vcov(i,j,l)*masseby(i,j,l)
143        zm=zm+masseby(i,j,l)
144      enddo
145      vzon(j,l)=vzon(j,l)/zm
146    enddo
147   enddo
148!$OMP END DO NOWAIT
149  else
150!$OMP DO SCHEDULE(STATIC,OMP_CHUNK)
151   do l=1,llm
152     vzon(:,l)=0.
153   enddo
154!$OMP END DO NOWAIT
155  endif ! of if (mode_top_bound.ge.2)
156
157  ! ! compute zonal average of u (or set it to zero)
158  if (mode_top_bound.ge.2) then
159   jjb=jj_begin
160   jje=jj_end
161   IF (pole_nord) jjb=jj_begin+1
162   IF (pole_sud)  jje=jj_end-1
163!$OMP DO SCHEDULE(STATIC,OMP_CHUNK)
164   do l=1,llm
165    do j=jjb,jje
166      uzon(j,l)=0.
167      zm=0.
168      do i=1,iim
169        uzon(j,l)=uzon(j,l)+massebx(i,j,l)*ucov(i,j,l)/cu(i,j)
170        zm=zm+massebx(i,j,l)
171      enddo
172      uzon(j,l)=uzon(j,l)/zm
173    enddo
174   enddo
175!$OMP END DO NOWAIT
176  else
177!$OMP DO SCHEDULE(STATIC,OMP_CHUNK)
178   do l=1,llm
179     uzon(:,l)=0.
180   enddo
181!$OMP END DO NOWAIT
182  endif ! of if (mode_top_bound.ge.2)
183
184  ! ! compute zonal average of potential temperature, if necessary
185  if (mode_top_bound.ge.3) then
186   jjb=jj_begin
187   jje=jj_end
188   IF (pole_nord) jjb=jj_begin+1
189   IF (pole_sud)  jje=jj_end-1
190!$OMP DO SCHEDULE(STATIC,OMP_CHUNK)
191   do l=1,llm
192    do j=jjb,jje
193      zm=0.
194      tzon(j,l)=0.
195      do i=1,iim
196        tzon(j,l)=tzon(j,l)+teta(i,j,l)*masse(i,j,l)
197        zm=zm+masse(i,j,l)
198      enddo
199      tzon(j,l)=tzon(j,l)/zm
200    enddo
201   enddo
202!$OMP END DO NOWAIT
203  endif ! of if (mode_top_bound.ge.3)
204
205  if (mode_top_bound.ge.1) then
206   ! ! Apply sponge quenching on vcov:
207   jjb=jj_begin
208   jje=jj_end
209   IF (pole_sud) jje=jj_end-1
210
211!$OMP DO SCHEDULE(STATIC,OMP_CHUNK)
212   do l=1,llm
213    do j=jjb,jje
214      do i=1,iip1
215        vcov(i,j,l)=vcov(i,j,l) &
216              -rdamp(l)*(vcov(i,j,l)-vzon(j,l))
217      enddo
218    enddo
219   enddo
220!$OMP END DO NOWAIT
221
222   ! ! Apply sponge quenching on ucov:
223   jjb=jj_begin
224   jje=jj_end
225   IF (pole_nord) jjb=jj_begin+1
226   IF (pole_sud)  jje=jj_end-1
227
228!$OMP DO SCHEDULE(STATIC,OMP_CHUNK)
229   do l=1,llm
230    do j=jjb,jje
231      do i=1,iip1
232        ucov(i,j,l)=ucov(i,j,l) &
233              -rdamp(l)*(ucov(i,j,l)-cu(i,j)*uzon(j,l))
234      enddo
235   enddo
236   enddo
237!$OMP END DO NOWAIT
238  endif ! of if (mode_top_bound.ge.1)
239
240  if (mode_top_bound.ge.3) then
241   ! ! Apply sponge quenching on teta:
242   jjb=jj_begin
243   jje=jj_end
244   IF (pole_nord) jjb=jj_begin+1
245   IF (pole_sud)  jje=jj_end-1
246
247!$OMP DO SCHEDULE(STATIC,OMP_CHUNK)
248   do l=1,llm
249    do j=jjb,jje
250      do i=1,iip1
251        teta(i,j,l)=teta(i,j,l) &
252              -rdamp(l)*(teta(i,j,l)-tzon(j,l))
253      enddo
254   enddo
255   enddo
256!$OMP END DO NOWAIT
257  endif ! of if (mode_top_bond.ge.3)
258
259END SUBROUTINE top_bound_loc
Note: See TracBrowser for help on using the repository browser.