1 | ! |
---|
2 | ! $Id: ppm3d.f90 5246 2024-10-21 12:58:45Z evignon $ |
---|
3 | ! |
---|
4 | |
---|
5 | !From lin@explorer.gsfc.nasa.gov Wed Apr 15 17:44:44 1998 |
---|
6 | !Date: Wed, 15 Apr 1998 11:37:03 -0400 |
---|
7 | !From: lin@explorer.gsfc.nasa.gov |
---|
8 | !To: Frederic.Hourdin@lmd.jussieu.fr |
---|
9 | !Subject: 3D transport module of the GSFC CTM and GEOS GCM |
---|
10 | |
---|
11 | |
---|
12 | !This code is sent to you by S-J Lin, DAO, NASA-GSFC |
---|
13 | |
---|
14 | !Note: this version is intended for machines like CRAY |
---|
15 | !-90. No multitasking directives implemented. |
---|
16 | |
---|
17 | |
---|
18 | ! ******************************************************************** |
---|
19 | ! |
---|
20 | ! TransPort Core for Goddard Chemistry Transport Model (G-CTM), Goddard |
---|
21 | ! Earth Observing System General Circulation Model (GEOS-GCM), and Data |
---|
22 | ! Assimilation System (GEOS-DAS). |
---|
23 | ! |
---|
24 | ! ******************************************************************** |
---|
25 | ! |
---|
26 | ! Purpose: given horizontal winds on a hybrid sigma-p surfaces, |
---|
27 | ! one call to tpcore updates the 3-D mixing ratio |
---|
28 | ! fields one time step (NDT). [vertical mass flux is computed |
---|
29 | ! internally consistent with the discretized hydrostatic mass |
---|
30 | ! continuity equation of the C-Grid GEOS-GCM (for IGD=1)]. |
---|
31 | ! |
---|
32 | ! Schemes: Multi-dimensional Flux Form Semi-Lagrangian (FFSL) scheme based |
---|
33 | ! on the van Leer or PPM. |
---|
34 | ! (see Lin and Rood 1996). |
---|
35 | ! Version 4.5 |
---|
36 | ! Last modified: Dec. 5, 1996 |
---|
37 | ! Major changes from version 4.0: a more general vertical hybrid sigma- |
---|
38 | ! pressure coordinate. |
---|
39 | ! Subroutines modified: xtp, ytp, fzppm, qckxyz |
---|
40 | ! Subroutines deleted: vanz |
---|
41 | ! |
---|
42 | ! Author: Shian-Jiann Lin |
---|
43 | ! mail address: |
---|
44 | ! Shian-Jiann Lin* |
---|
45 | ! Code 910.3, NASA/GSFC, Greenbelt, MD 20771 |
---|
46 | ! Phone: 301-286-9540 |
---|
47 | ! E-mail: lin@dao.gsfc.nasa.gov |
---|
48 | ! |
---|
49 | ! *affiliation: |
---|
50 | ! Joint Center for Earth Systems Technology |
---|
51 | ! The University of Maryland Baltimore County |
---|
52 | ! NASA - Goddard Space Flight Center |
---|
53 | ! References: |
---|
54 | ! |
---|
55 | ! 1. Lin, S.-J., and R. B. Rood, 1996: Multidimensional flux form semi- |
---|
56 | ! Lagrangian transport schemes. Mon. Wea. Rev., 124, 2046-2070. |
---|
57 | ! |
---|
58 | ! 2. Lin, S.-J., W. C. Chao, Y. C. Sud, and G. K. Walker, 1994: A class of |
---|
59 | ! the van Leer-type transport schemes and its applications to the moist- |
---|
60 | ! ure transport in a General Circulation Model. Mon. Wea. Rev., 122, |
---|
61 | ! 1575-1593. |
---|
62 | ! |
---|
63 | ! ****6***0*********0*********0*********0*********0*********0**********72 |
---|
64 | ! |
---|
65 | subroutine ppm3d(IGD,Q,PS1,PS2,U,V,W,NDT,IORD,JORD,KORD,NC,IMR, & |
---|
66 | JNP,j1,NLAY,AP,BP,PT,AE,fill,dum,Umax) |
---|
67 | |
---|
68 | implicit none |
---|
69 | |
---|
70 | ! rajout de d�clarations |
---|
71 | ! integer Jmax,kmax,ndt0,nstep,k,j,i,ic,l,js,jn,imh,iad,jad,krd |
---|
72 | ! integer iu,iiu,j2,jmr,js0,jt |
---|
73 | ! real dtdy,dtdy5,rcap,iml,jn0,imjm,pi,dl,dp |
---|
74 | ! real dt,cr1,maxdt,ztc,d5,sum1,sum2,ru |
---|
75 | ! |
---|
76 | ! ******************************************************************** |
---|
77 | ! |
---|
78 | ! ============= |
---|
79 | ! INPUT: |
---|
80 | ! ============= |
---|
81 | ! |
---|
82 | ! Q(IMR,JNP,NLAY,NC): mixing ratios at current time (t) |
---|
83 | ! NC: total # of constituents |
---|
84 | ! IMR: first dimension (E-W); # of Grid intervals in E-W is IMR |
---|
85 | ! JNP: 2nd dimension (N-S); # of Grid intervals in N-S is JNP-1 |
---|
86 | ! NLAY: 3rd dimension (# of layers); vertical index increases from 1 at |
---|
87 | ! the model top to NLAY near the surface (see fig. below). |
---|
88 | ! It is assumed that 6 <= NLAY <= JNP (for dynamic memory allocation) |
---|
89 | ! |
---|
90 | ! PS1(IMR,JNP): surface pressure at current time (t) |
---|
91 | ! PS2(IMR,JNP): surface pressure at mid-time-level (t+NDT/2) |
---|
92 | ! PS2 is replaced by the predicted PS (at t+NDT) on output. |
---|
93 | ! Note: surface pressure can have any unit or can be multiplied by any |
---|
94 | ! const. |
---|
95 | ! |
---|
96 | ! The pressure at layer edges are defined as follows: |
---|
97 | ! |
---|
98 | ! p(i,j,k) = AP(k)*PT + BP(k)*PS(i,j) (1) |
---|
99 | ! |
---|
100 | ! Where PT is a constant having the same unit as PS. |
---|
101 | ! AP and BP are unitless constants given at layer edges |
---|
102 | ! defining the vertical coordinate. |
---|
103 | ! BP(1) = 0., BP(NLAY+1) = 1. |
---|
104 | ! The pressure at the model top is PTOP = AP(1)*PT |
---|
105 | ! |
---|
106 | ! For pure sigma system set AP(k) = 1 for all k, PT = PTOP, |
---|
107 | ! BP(k) = sige(k) (sigma at edges), PS = Psfc - PTOP. |
---|
108 | ! |
---|
109 | ! Note: the sigma-P coordinate is a subset of Eq. 1, which in turn |
---|
110 | ! is a subset of the following even more general sigma-P-thelta coord. |
---|
111 | ! currently under development. |
---|
112 | ! p(i,j,k) = (AP(k)*PT + BP(k)*PS(i,j))/(D(k)-C(k)*TE**(-1/kapa)) |
---|
113 | ! |
---|
114 | ! ///////////////////////////////// |
---|
115 | ! / \ ------------- PTOP -------------- AP(1), BP(1) |
---|
116 | ! | |
---|
117 | ! delp(1) | ........... Q(i,j,1) ............ |
---|
118 | ! | |
---|
119 | ! W(1) \ / --------------------------------- AP(2), BP(2) |
---|
120 | ! |
---|
121 | ! |
---|
122 | ! |
---|
123 | ! W(k-1) / \ --------------------------------- AP(k), BP(k) |
---|
124 | ! | |
---|
125 | ! delp(K) | ........... Q(i,j,k) ............ |
---|
126 | ! | |
---|
127 | ! W(k) \ / --------------------------------- AP(k+1), BP(k+1) |
---|
128 | ! |
---|
129 | ! |
---|
130 | ! |
---|
131 | ! / \ --------------------------------- AP(NLAY), BP(NLAY) |
---|
132 | ! | |
---|
133 | ! delp(NLAY) | ........... Q(i,j,NLAY) ......... |
---|
134 | ! | |
---|
135 | ! W(NLAY)=0 \ / ------------- surface ----------- AP(NLAY+1), BP(NLAY+1) |
---|
136 | ! ////////////////////////////////// |
---|
137 | ! |
---|
138 | ! U(IMR,JNP,NLAY) & V(IMR,JNP,NLAY):winds (m/s) at mid-time-level (t+NDT/2) |
---|
139 | ! U and V may need to be polar filtered in advance in some cases. |
---|
140 | ! |
---|
141 | ! IGD: grid type on which winds are defined. |
---|
142 | ! IGD = 0: A-Grid [all variables defined at the same point from south |
---|
143 | ! pole (j=1) to north pole (j=JNP) ] |
---|
144 | ! |
---|
145 | ! IGD = 1 GEOS-GCM C-Grid |
---|
146 | ! [North] |
---|
147 | ! |
---|
148 | ! V(i,j) |
---|
149 | ! | |
---|
150 | ! | |
---|
151 | ! | |
---|
152 | ! U(i-1,j)---Q(i,j)---U(i,j) [EAST] |
---|
153 | ! | |
---|
154 | ! | |
---|
155 | ! | |
---|
156 | ! V(i,j-1) |
---|
157 | ! |
---|
158 | ! U(i, 1) is defined at South Pole. |
---|
159 | ! V(i, 1) is half grid north of the South Pole. |
---|
160 | ! V(i,JMR) is half grid south of the North Pole. |
---|
161 | ! |
---|
162 | ! V must be defined at j=1 and j=JMR if IGD=1 |
---|
163 | ! V at JNP need not be given. |
---|
164 | ! |
---|
165 | ! NDT: time step in seconds (need not be constant during the course of |
---|
166 | ! the integration). Suggested value: 30 min. for 4x5, 15 min. for 2x2.5 |
---|
167 | ! (Lat-Lon) resolution. Smaller values are recommanded if the model |
---|
168 | ! has a well-resolved stratosphere. |
---|
169 | ! |
---|
170 | ! J1 defines the size of the polar cap: |
---|
171 | ! South polar cap edge is located at -90 + (j1-1.5)*180/(JNP-1) deg. |
---|
172 | ! North polar cap edge is located at 90 - (j1-1.5)*180/(JNP-1) deg. |
---|
173 | ! There are currently only two choices (j1=2 or 3). |
---|
174 | ! IMR must be an even integer if j1 = 2. Recommended value: J1=3. |
---|
175 | ! |
---|
176 | ! IORD, JORD, and KORD are integers controlling various options in E-W, N-S, |
---|
177 | ! and vertical transport, respectively. Recommended values for positive |
---|
178 | ! definite scalars: IORD=JORD=3, KORD=5. Use KORD=3 for non- |
---|
179 | ! positive definite scalars or when linear correlation between constituents |
---|
180 | ! is to be maintained. |
---|
181 | ! |
---|
182 | ! _ORD= |
---|
183 | ! 1: 1st order upstream scheme (too diffusive, not a useful option; it |
---|
184 | ! can be used for debugging purposes; this is THE only known "linear" |
---|
185 | ! monotonic advection scheme.). |
---|
186 | ! 2: 2nd order van Leer (full monotonicity constraint; |
---|
187 | ! see Lin et al 1994, MWR) |
---|
188 | ! 3: monotonic PPM* (slightly improved PPM of Collela & Woodward 1984) |
---|
189 | ! 4: semi-monotonic PPM (same as 3, but overshoots are allowed) |
---|
190 | ! 5: positive-definite PPM (constraint on the subgrid distribution is |
---|
191 | ! only strong enough to prevent generation of negative values; |
---|
192 | ! both overshoots & undershoots are possible). |
---|
193 | ! 6: un-constrained PPM (nearly diffusion free; slightly faster but |
---|
194 | ! positivity not quaranteed. Use this option only when the fields |
---|
195 | ! and winds are very smooth). |
---|
196 | ! |
---|
197 | ! *PPM: Piece-wise Parabolic Method |
---|
198 | ! |
---|
199 | ! Note that KORD <=2 options are no longer supported. DO not use option 4 or 5. |
---|
200 | ! for non-positive definite scalars (such as Ertel Potential Vorticity). |
---|
201 | ! |
---|
202 | ! The implicit numerical diffusion decreases as _ORD increases. |
---|
203 | ! The last two options (ORDER=5, 6) should only be used when there is |
---|
204 | ! significant explicit diffusion (such as a turbulence parameterization). You |
---|
205 | ! might get dispersive results otherwise. |
---|
206 | ! No filter of any kind is applied to the constituent fields here. |
---|
207 | ! |
---|
208 | ! AE: Radius of the sphere (meters). |
---|
209 | ! Recommended value for the planet earth: 6.371E6 |
---|
210 | ! |
---|
211 | ! fill(logical): flag to do filling for negatives (see note below). |
---|
212 | ! |
---|
213 | ! Umax: Estimate (upper limit) of the maximum U-wind speed (m/s). |
---|
214 | ! (220 m/s is a good value for troposphere model; 280 m/s otherwise) |
---|
215 | ! |
---|
216 | ! ============= |
---|
217 | ! Output |
---|
218 | ! ============= |
---|
219 | ! |
---|
220 | ! Q: mixing ratios at future time (t+NDT) (original values are over-written) |
---|
221 | ! W(NLAY): large-scale vertical mass flux as diagnosed from the hydrostatic |
---|
222 | ! relationship. W will have the same unit as PS1 and PS2 (eg, mb). |
---|
223 | ! W must be divided by NDT to get the correct mass-flux unit. |
---|
224 | ! The vertical Courant number C = W/delp_UPWIND, where delp_UPWIND |
---|
225 | ! is the pressure thickness in the "upwind" direction. For example, |
---|
226 | ! C(k) = W(k)/delp(k) if W(k) > 0; |
---|
227 | ! C(k) = W(k)/delp(k+1) if W(k) < 0. |
---|
228 | ! ( W > 0 is downward, ie, toward surface) |
---|
229 | ! PS2: predicted PS at t+NDT (original values are over-written) |
---|
230 | ! |
---|
231 | ! ******************************************************************** |
---|
232 | ! NOTES: |
---|
233 | ! This forward-in-time upstream-biased transport scheme reduces to |
---|
234 | ! the 2nd order center-in-time center-in-space mass continuity eqn. |
---|
235 | ! if Q = 1 (constant fields will remain constant). This also ensures |
---|
236 | ! that the computed vertical velocity to be identical to GEOS-1 GCM |
---|
237 | ! for on-line transport. |
---|
238 | ! |
---|
239 | ! A larger polar cap is used if j1=3 (recommended for C-Grid winds or when |
---|
240 | ! winds are noisy near poles). |
---|
241 | ! |
---|
242 | ! Flux-Form Semi-Lagrangian transport in the East-West direction is used |
---|
243 | ! when and where Courant # is greater than one. |
---|
244 | ! |
---|
245 | ! The user needs to change the parameter Jmax or Kmax if the resolution |
---|
246 | ! is greater than 0.5 deg in N-S or 150 layers in the vertical direction. |
---|
247 | ! (this TransPort Core is otherwise resolution independent and can be used |
---|
248 | ! as a library routine). |
---|
249 | ! |
---|
250 | ! PPM is 4th order accurate when grid spacing is uniform (x & y); 3rd |
---|
251 | ! order accurate for non-uniform grid (vertical sigma coord.). |
---|
252 | ! |
---|
253 | ! Time step is limitted only by transport in the meridional direction. |
---|
254 | ! (the FFSL scheme is not implemented in the meridional direction). |
---|
255 | ! |
---|
256 | ! Since only 1-D limiters are applied, negative values could |
---|
257 | ! potentially be generated when large time step is used and when the |
---|
258 | ! initial fields contain discontinuities. |
---|
259 | ! This does not necessarily imply the integration is unstable. |
---|
260 | ! These negatives are typically very small. A filling algorithm is |
---|
261 | ! activated if the user set "fill" to be true. |
---|
262 | ! |
---|
263 | ! The van Leer scheme used here is nearly as accurate as the original PPM |
---|
264 | ! due to the use of a 4th order accurate reference slope. The PPM imple- |
---|
265 | ! mented here is an improvement over the original and is also based on |
---|
266 | ! the 4th order reference slope. |
---|
267 | ! |
---|
268 | ! ****6***0*********0*********0*********0*********0*********0**********72 |
---|
269 | ! |
---|
270 | ! User modifiable parameters |
---|
271 | ! |
---|
272 | integer,parameter :: Jmax = 361, kmax = 150 |
---|
273 | ! |
---|
274 | ! ****6***0*********0*********0*********0*********0*********0**********72 |
---|
275 | ! |
---|
276 | ! Input-Output arrays |
---|
277 | ! |
---|
278 | |
---|
279 | real :: Q(IMR,JNP,NLAY,NC),PS1(IMR,JNP),PS2(IMR,JNP), & |
---|
280 | U(IMR,JNP,NLAY),V(IMR,JNP,NLAY),AP(NLAY+1), & |
---|
281 | BP(NLAY+1),W(IMR,JNP,NLAY),NDT,val(NLAY),Umax |
---|
282 | integer :: IGD,IORD,JORD,KORD,NC,IMR,JNP,j1,NLAY,AE |
---|
283 | integer :: IMRD2 |
---|
284 | real :: PT |
---|
285 | logical :: cross, fill, dum |
---|
286 | ! |
---|
287 | ! Local dynamic arrays |
---|
288 | ! |
---|
289 | real :: CRX(IMR,JNP),CRY(IMR,JNP),xmass(IMR,JNP),ymass(IMR,JNP), & |
---|
290 | fx1(IMR+1),DPI(IMR,JNP,NLAY),delp1(IMR,JNP,NLAY), & |
---|
291 | WK1(IMR,JNP,NLAY),PU(IMR,JNP),PV(IMR,JNP),DC2(IMR,JNP), & |
---|
292 | delp2(IMR,JNP,NLAY),DQ(IMR,JNP,NLAY,NC),VA(IMR,JNP), & |
---|
293 | UA(IMR,JNP),qtmp(-IMR:2*IMR) |
---|
294 | ! |
---|
295 | ! Local static arrays |
---|
296 | ! |
---|
297 | real :: DTDX(Jmax), DTDX5(Jmax), acosp(Jmax), & |
---|
298 | cosp(Jmax), cose(Jmax), DAP(kmax),DBK(Kmax) |
---|
299 | data NDT0, NSTEP /0, 0/ |
---|
300 | data cross /.true./ |
---|
301 | REAL :: DTDY, DTDY5, RCAP |
---|
302 | INTEGER :: JS0, JN0, IML, JMR, IMJM |
---|
303 | SAVE DTDY, DTDY5, RCAP, JS0, JN0, IML, & |
---|
304 | DTDX, DTDX5, ACOSP, COSP, COSE, DAP,DBK |
---|
305 | ! |
---|
306 | INTEGER :: NDT0, NSTEP, j2, k,j,i,ic,l,JS,JN,IMH |
---|
307 | INTEGER :: IU,IIU,JT,iad,jad,krd |
---|
308 | REAL :: r23,r3,PI,DL,DP,DT,CR1,MAXDT,ZTC,D5 |
---|
309 | REAL :: sum1,sum2,ru |
---|
310 | |
---|
311 | JMR = JNP -1 |
---|
312 | IMJM = IMR*JNP |
---|
313 | j2 = JNP - j1 + 1 |
---|
314 | NSTEP = NSTEP + 1 |
---|
315 | ! |
---|
316 | ! *********** Initialization ********************** |
---|
317 | if(NSTEP.eq.1) then |
---|
318 | ! |
---|
319 | write(6,*) '------------------------------------ ' |
---|
320 | write(6,*) 'NASA/GSFC Transport Core Version 4.5' |
---|
321 | write(6,*) '------------------------------------ ' |
---|
322 | ! |
---|
323 | WRITE(6,*) 'IMR=',IMR,' JNP=',JNP,' NLAY=',NLAY,' j1=',j1 |
---|
324 | WRITE(6,*) 'NC=',NC,IORD,JORD,KORD,NDT |
---|
325 | ! |
---|
326 | ! controles sur les parametres |
---|
327 | if(NLAY.LT.6) then |
---|
328 | write(6,*) 'NLAY must be >= 6' |
---|
329 | stop |
---|
330 | endif |
---|
331 | if (JNP.LT.NLAY) then |
---|
332 | write(6,*) 'JNP must be >= NLAY' |
---|
333 | stop |
---|
334 | endif |
---|
335 | IMRD2=mod(IMR,2) |
---|
336 | if (j1.eq.2.and.IMRD2.NE.0) then |
---|
337 | write(6,*) 'if j1=2 IMR must be an even integer' |
---|
338 | stop |
---|
339 | endif |
---|
340 | |
---|
341 | ! |
---|
342 | if(Jmax.lt.JNP .or. Kmax.lt.NLAY) then |
---|
343 | write(6,*) 'Jmax or Kmax is too small' |
---|
344 | stop |
---|
345 | endif |
---|
346 | ! |
---|
347 | DO k=1,NLAY |
---|
348 | DAP(k) = (AP(k+1) - AP(k))*PT |
---|
349 | DBK(k) = BP(k+1) - BP(k) |
---|
350 | ENDDO |
---|
351 | ! |
---|
352 | PI = 4. * ATAN(1.) |
---|
353 | DL = 2.*PI / REAL(IMR) |
---|
354 | DP = PI / REAL(JMR) |
---|
355 | ! |
---|
356 | if(IGD.eq.0) then |
---|
357 | ! Compute analytic cosine at cell edges |
---|
358 | call cosa(cosp,cose,JNP,PI,DP) |
---|
359 | else |
---|
360 | ! Define cosine consistent with GEOS-GCM (using dycore2.0 or later) |
---|
361 | call cosc(cosp,cose,JNP,PI,DP) |
---|
362 | endif |
---|
363 | ! |
---|
364 | do J=2,JMR |
---|
365 | acosp(j) = 1. / cosp(j) |
---|
366 | end do |
---|
367 | ! |
---|
368 | ! Inverse of the Scaled polar cap area. |
---|
369 | ! |
---|
370 | RCAP = DP / (IMR*(1.-COS((j1-1.5)*DP))) |
---|
371 | acosp(1) = RCAP |
---|
372 | acosp(JNP) = RCAP |
---|
373 | endif |
---|
374 | ! |
---|
375 | if(NDT0 .ne. NDT) then |
---|
376 | DT = NDT |
---|
377 | NDT0 = NDT |
---|
378 | |
---|
379 | if(Umax .lt. 180.) then |
---|
380 | write(6,*) 'Umax may be too small!' |
---|
381 | endif |
---|
382 | CR1 = abs(Umax*DT)/(DL*AE) |
---|
383 | MaxDT = DP*AE / abs(Umax) + 0.5 |
---|
384 | write(6,*)'Largest time step for max(V)=',Umax,' is ',MaxDT |
---|
385 | if(MaxDT .lt. abs(NDT)) then |
---|
386 | write(6,*) 'Warning!!! NDT maybe too large!' |
---|
387 | endif |
---|
388 | ! |
---|
389 | if(CR1.ge.0.95) then |
---|
390 | JS0 = 0 |
---|
391 | JN0 = 0 |
---|
392 | IML = IMR-2 |
---|
393 | ZTC = 0. |
---|
394 | else |
---|
395 | ZTC = acos(CR1) * (180./PI) |
---|
396 | ! |
---|
397 | JS0 = REAL(JMR)*(90.-ZTC)/180. + 2 |
---|
398 | JS0 = max(JS0, J1+1) |
---|
399 | IML = min(6*JS0/(J1-1)+2, 4*IMR/5) |
---|
400 | JN0 = JNP-JS0+1 |
---|
401 | endif |
---|
402 | ! |
---|
403 | ! |
---|
404 | do J=2,JMR |
---|
405 | DTDX(j) = DT / ( DL*AE*COSP(J) ) |
---|
406 | |
---|
407 | ! print*,'dtdx=',dtdx(j) |
---|
408 | DTDX5(j) = 0.5*DTDX(j) |
---|
409 | enddo |
---|
410 | ! |
---|
411 | |
---|
412 | DTDY = DT /(AE*DP) |
---|
413 | ! print*,'dtdy=',dtdy |
---|
414 | DTDY5 = 0.5*DTDY |
---|
415 | ! |
---|
416 | ! write(6,*) 'J1=',J1,' J2=', J2 |
---|
417 | endif |
---|
418 | ! |
---|
419 | ! *********** End Initialization ********************** |
---|
420 | ! |
---|
421 | ! delp = pressure thickness: the psudo-density in a hydrostatic system. |
---|
422 | do k=1,NLAY |
---|
423 | do j=1,JNP |
---|
424 | do i=1,IMR |
---|
425 | delp1(i,j,k)=DAP(k)+DBK(k)*PS1(i,j) |
---|
426 | delp2(i,j,k)=DAP(k)+DBK(k)*PS2(i,j) |
---|
427 | enddo |
---|
428 | enddo |
---|
429 | enddo |
---|
430 | |
---|
431 | ! |
---|
432 | if(j1.ne.2) then |
---|
433 | DO IC=1,NC |
---|
434 | DO L=1,NLAY |
---|
435 | DO I=1,IMR |
---|
436 | Q(I, 2,L,IC) = Q(I, 1,L,IC) |
---|
437 | Q(I,JMR,L,IC) = Q(I,JNP,L,IC) |
---|
438 | END DO |
---|
439 | END DO |
---|
440 | END DO |
---|
441 | endif |
---|
442 | ! |
---|
443 | ! Compute "tracer density" |
---|
444 | DO IC=1,NC |
---|
445 | DO k=1,NLAY |
---|
446 | DO j=1,JNP |
---|
447 | DO i=1,IMR |
---|
448 | DQ(i,j,k,IC) = Q(i,j,k,IC)*delp1(i,j,k) |
---|
449 | END DO |
---|
450 | END DO |
---|
451 | END DO |
---|
452 | END DO |
---|
453 | ! |
---|
454 | do k=1,NLAY |
---|
455 | ! |
---|
456 | if(IGD.eq.0) then |
---|
457 | ! Convert winds on A-Grid to Courant # on C-Grid. |
---|
458 | call A2C(U(1,1,k),V(1,1,k),IMR,JMR,j1,j2,CRX,CRY,dtdx5,DTDY5) |
---|
459 | else |
---|
460 | ! Convert winds on C-grid to Courant # |
---|
461 | do j=j1,j2 |
---|
462 | do i=2,IMR |
---|
463 | CRX(i,J) = dtdx(j)*U(i-1,j,k) |
---|
464 | end do |
---|
465 | end do |
---|
466 | |
---|
467 | ! |
---|
468 | do j=j1,j2 |
---|
469 | CRX(1,J) = dtdx(j)*U(IMR,j,k) |
---|
470 | 50 continue |
---|
471 | end do |
---|
472 | ! |
---|
473 | do i=1,IMR*JMR |
---|
474 | CRY(i,2) = DTDY*V(i,1,k) |
---|
475 | end do |
---|
476 | endif |
---|
477 | ! |
---|
478 | ! Determine JS and JN |
---|
479 | JS = j1 |
---|
480 | JN = j2 |
---|
481 | ! |
---|
482 | do j=JS0,j1+1,-1 |
---|
483 | do i=1,IMR |
---|
484 | if(abs(CRX(i,j)).GT.1.) then |
---|
485 | JS = j |
---|
486 | go to 2222 |
---|
487 | endif |
---|
488 | enddo |
---|
489 | enddo |
---|
490 | ! |
---|
491 | 2222 continue |
---|
492 | do j=JN0,j2-1 |
---|
493 | do i=1,IMR |
---|
494 | if(abs(CRX(i,j)).GT.1.) then |
---|
495 | JN = j |
---|
496 | go to 2233 |
---|
497 | endif |
---|
498 | enddo |
---|
499 | enddo |
---|
500 | 2233 continue |
---|
501 | ! |
---|
502 | if(j1.ne.2) then ! Enlarged polar cap. |
---|
503 | do i=1,IMR |
---|
504 | DPI(i, 2,k) = 0. |
---|
505 | DPI(i,JMR,k) = 0. |
---|
506 | enddo |
---|
507 | endif |
---|
508 | ! |
---|
509 | ! ******* Compute horizontal mass fluxes ************ |
---|
510 | ! |
---|
511 | ! N-S component |
---|
512 | do j=j1,j2+1 |
---|
513 | D5 = 0.5 * COSE(j) |
---|
514 | do i=1,IMR |
---|
515 | ymass(i,j) = CRY(i,j)*D5*(delp2(i,j,k) + delp2(i,j-1,k)) |
---|
516 | enddo |
---|
517 | enddo |
---|
518 | ! |
---|
519 | do j=j1,j2 |
---|
520 | DO i=1,IMR |
---|
521 | DPI(i,j,k) = (ymass(i,j) - ymass(i,j+1)) * acosp(j) |
---|
522 | END DO |
---|
523 | end do |
---|
524 | ! |
---|
525 | ! Poles |
---|
526 | sum1 = ymass(IMR,j1 ) |
---|
527 | sum2 = ymass(IMR,J2+1) |
---|
528 | do i=1,IMR-1 |
---|
529 | sum1 = sum1 + ymass(i,j1 ) |
---|
530 | sum2 = sum2 + ymass(i,J2+1) |
---|
531 | enddo |
---|
532 | ! |
---|
533 | sum1 = - sum1 * RCAP |
---|
534 | sum2 = sum2 * RCAP |
---|
535 | do i=1,IMR |
---|
536 | DPI(i, 1,k) = sum1 |
---|
537 | DPI(i,JNP,k) = sum2 |
---|
538 | enddo |
---|
539 | ! |
---|
540 | ! E-W component |
---|
541 | ! |
---|
542 | do j=j1,j2 |
---|
543 | do i=2,IMR |
---|
544 | PU(i,j) = 0.5 * (delp2(i,j,k) + delp2(i-1,j,k)) |
---|
545 | enddo |
---|
546 | enddo |
---|
547 | ! |
---|
548 | do j=j1,j2 |
---|
549 | PU(1,j) = 0.5 * (delp2(1,j,k) + delp2(IMR,j,k)) |
---|
550 | enddo |
---|
551 | ! |
---|
552 | do j=j1,j2 |
---|
553 | DO i=1,IMR |
---|
554 | xmass(i,j) = PU(i,j)*CRX(i,j) |
---|
555 | END DO |
---|
556 | end do |
---|
557 | ! |
---|
558 | DO j=j1,j2 |
---|
559 | DO i=1,IMR-1 |
---|
560 | DPI(i,j,k) = DPI(i,j,k) + xmass(i,j) - xmass(i+1,j) |
---|
561 | END DO |
---|
562 | END DO |
---|
563 | ! |
---|
564 | DO j=j1,j2 |
---|
565 | DPI(IMR,j,k) = DPI(IMR,j,k) + xmass(IMR,j) - xmass(1,j) |
---|
566 | END DO |
---|
567 | ! |
---|
568 | DO j=j1,j2 |
---|
569 | do i=1,IMR-1 |
---|
570 | UA(i,j) = 0.5 * (CRX(i,j)+CRX(i+1,j)) |
---|
571 | enddo |
---|
572 | enddo |
---|
573 | ! |
---|
574 | DO j=j1,j2 |
---|
575 | UA(imr,j) = 0.5 * (CRX(imr,j)+CRX(1,j)) |
---|
576 | enddo |
---|
577 | !cccccccccccccccccccccccccccccccccccccccccccccccccccccc |
---|
578 | ! Rajouts pour LMDZ.3.3 |
---|
579 | !cccccccccccccccccccccccccccccccccccccccccccccccccccccc |
---|
580 | do i=1,IMR |
---|
581 | do j=1,JNP |
---|
582 | VA(i,j)=0. |
---|
583 | enddo |
---|
584 | enddo |
---|
585 | |
---|
586 | do i=1,imr*(JMR-1) |
---|
587 | VA(i,2) = 0.5*(CRY(i,2)+CRY(i,3)) |
---|
588 | enddo |
---|
589 | ! |
---|
590 | if(j1.eq.2) then |
---|
591 | IMH = IMR/2 |
---|
592 | do i=1,IMH |
---|
593 | VA(i, 1) = 0.5*(CRY(i,2)-CRY(i+IMH,2)) |
---|
594 | VA(i+IMH, 1) = -VA(i,1) |
---|
595 | VA(i, JNP) = 0.5*(CRY(i,JNP)-CRY(i+IMH,JMR)) |
---|
596 | VA(i+IMH,JNP) = -VA(i,JNP) |
---|
597 | enddo |
---|
598 | VA(IMR,1)=VA(1,1) |
---|
599 | VA(IMR,JNP)=VA(1,JNP) |
---|
600 | endif |
---|
601 | ! |
---|
602 | ! ****6***0*********0*********0*********0*********0*********0**********72 |
---|
603 | do IC=1,NC |
---|
604 | ! |
---|
605 | do i=1,IMJM |
---|
606 | wk1(i,1,1) = 0. |
---|
607 | wk1(i,1,2) = 0. |
---|
608 | enddo |
---|
609 | ! |
---|
610 | ! E-W advective cross term |
---|
611 | do j=J1,J2 |
---|
612 | if(J.GT.JS .and. J.LT.JN) GO TO 250 |
---|
613 | ! |
---|
614 | do i=1,IMR |
---|
615 | qtmp(i) = q(i,j,k,IC) |
---|
616 | enddo |
---|
617 | ! |
---|
618 | do i=-IML,0 |
---|
619 | qtmp(i) = q(IMR+i,j,k,IC) |
---|
620 | qtmp(IMR+1-i) = q(1-i,j,k,IC) |
---|
621 | enddo |
---|
622 | ! |
---|
623 | DO i=1,IMR |
---|
624 | iu = UA(i,j) |
---|
625 | ru = UA(i,j) - iu |
---|
626 | iiu = i-iu |
---|
627 | if(UA(i,j).GE.0.) then |
---|
628 | wk1(i,j,1) = qtmp(iiu)+ru*(qtmp(iiu-1)-qtmp(iiu)) |
---|
629 | else |
---|
630 | wk1(i,j,1) = qtmp(iiu)+ru*(qtmp(iiu)-qtmp(iiu+1)) |
---|
631 | endif |
---|
632 | wk1(i,j,1) = wk1(i,j,1) - qtmp(i) |
---|
633 | END DO |
---|
634 | 250 continue |
---|
635 | end do |
---|
636 | ! |
---|
637 | if(JN.ne.0) then |
---|
638 | do j=JS+1,JN-1 |
---|
639 | ! |
---|
640 | do i=1,IMR |
---|
641 | qtmp(i) = q(i,j,k,IC) |
---|
642 | enddo |
---|
643 | ! |
---|
644 | qtmp(0) = q(IMR,J,k,IC) |
---|
645 | qtmp(IMR+1) = q( 1,J,k,IC) |
---|
646 | ! |
---|
647 | do i=1,imr |
---|
648 | iu = i - UA(i,j) |
---|
649 | wk1(i,j,1) = UA(i,j)*(qtmp(iu) - qtmp(iu+1)) |
---|
650 | enddo |
---|
651 | enddo |
---|
652 | endif |
---|
653 | ! ****6***0*********0*********0*********0*********0*********0**********72 |
---|
654 | ! Contribution from the N-S advection |
---|
655 | do i=1,imr*(j2-j1+1) |
---|
656 | JT = REAL(J1) - VA(i,j1) |
---|
657 | wk1(i,j1,2) = VA(i,j1) * (q(i,jt,k,IC) - q(i,jt+1,k,IC)) |
---|
658 | enddo |
---|
659 | ! |
---|
660 | do i=1,IMJM |
---|
661 | wk1(i,1,1) = q(i,1,k,IC) + 0.5*wk1(i,1,1) |
---|
662 | wk1(i,1,2) = q(i,1,k,IC) + 0.5*wk1(i,1,2) |
---|
663 | enddo |
---|
664 | ! |
---|
665 | if(cross) then |
---|
666 | ! Add cross terms in the vertical direction. |
---|
667 | if(IORD .GE. 2) then |
---|
668 | iad = 2 |
---|
669 | else |
---|
670 | iad = 1 |
---|
671 | endif |
---|
672 | ! |
---|
673 | if(JORD .GE. 2) then |
---|
674 | jad = 2 |
---|
675 | else |
---|
676 | jad = 1 |
---|
677 | endif |
---|
678 | call xadv(IMR,JNP,j1,j2,wk1(1,1,2),UA,JS,JN,IML,DC2,iad) |
---|
679 | call yadv(IMR,JNP,j1,j2,wk1(1,1,1),VA,PV,W,jad) |
---|
680 | do j=1,JNP |
---|
681 | do i=1,IMR |
---|
682 | q(i,j,k,IC) = q(i,j,k,IC) + DC2(i,j) + PV(i,j) |
---|
683 | enddo |
---|
684 | enddo |
---|
685 | endif |
---|
686 | ! |
---|
687 | call xtp(IMR,JNP,IML,j1,j2,JN,JS,PU,DQ(1,1,k,IC),wk1(1,1,2) & |
---|
688 | ,CRX,fx1,xmass,IORD) |
---|
689 | |
---|
690 | call ytp(IMR,JNP,j1,j2,acosp,RCAP,DQ(1,1,k,IC),wk1(1,1,1),CRY, & |
---|
691 | DC2,ymass,WK1(1,1,3),wk1(1,1,4),WK1(1,1,5),WK1(1,1,6),JORD) |
---|
692 | ! |
---|
693 | end do |
---|
694 | end do |
---|
695 | ! |
---|
696 | ! ******* Compute vertical mass flux (same unit as PS) *********** |
---|
697 | ! |
---|
698 | ! 1st step: compute total column mass CONVERGENCE. |
---|
699 | ! |
---|
700 | do j=1,JNP |
---|
701 | do i=1,IMR |
---|
702 | CRY(i,j) = DPI(i,j,1) |
---|
703 | end do |
---|
704 | end do |
---|
705 | ! |
---|
706 | do k=2,NLAY |
---|
707 | do j=1,JNP |
---|
708 | do i=1,IMR |
---|
709 | CRY(i,j) = CRY(i,j) + DPI(i,j,k) |
---|
710 | end do |
---|
711 | end do |
---|
712 | end do |
---|
713 | ! |
---|
714 | do j=1,JNP |
---|
715 | do i=1,IMR |
---|
716 | ! |
---|
717 | ! 2nd step: compute PS2 (PS at n+1) using the hydrostatic assumption. |
---|
718 | ! Changes (increases) to surface pressure = total column mass convergence |
---|
719 | ! |
---|
720 | PS2(i,j) = PS1(i,j) + CRY(i,j) |
---|
721 | ! |
---|
722 | ! 3rd step: compute vertical mass flux from mass conservation principle. |
---|
723 | ! |
---|
724 | W(i,j,1) = DPI(i,j,1) - DBK(1)*CRY(i,j) |
---|
725 | W(i,j,NLAY) = 0. |
---|
726 | end do |
---|
727 | end do |
---|
728 | ! |
---|
729 | do k=2,NLAY-1 |
---|
730 | do j=1,JNP |
---|
731 | do i=1,IMR |
---|
732 | W(i,j,k) = W(i,j,k-1) + DPI(i,j,k) - DBK(k)*CRY(i,j) |
---|
733 | end do |
---|
734 | end do |
---|
735 | end do |
---|
736 | ! |
---|
737 | DO k=1,NLAY |
---|
738 | DO j=1,JNP |
---|
739 | DO i=1,IMR |
---|
740 | delp2(i,j,k) = DAP(k) + DBK(k)*PS2(i,j) |
---|
741 | END DO |
---|
742 | END DO |
---|
743 | END DO |
---|
744 | ! |
---|
745 | KRD = max(3, KORD) |
---|
746 | do IC=1,NC |
---|
747 | ! |
---|
748 | !****6***0*********0*********0*********0*********0*********0**********72 |
---|
749 | |
---|
750 | call FZPPM(IMR,JNP,NLAY,j1,DQ(1,1,1,IC),W,Q(1,1,1,IC),WK1,DPI, & |
---|
751 | DC2,CRX,CRY,PU,PV,xmass,ymass,delp1,KRD) |
---|
752 | ! |
---|
753 | |
---|
754 | if(fill) call qckxyz(DQ(1,1,1,IC),DC2,IMR,JNP,NLAY,j1,j2, & |
---|
755 | cosp,acosp,.false.,IC,NSTEP) |
---|
756 | ! |
---|
757 | ! Recover tracer mixing ratio from "density" using predicted |
---|
758 | ! "air density" (pressure thickness) at time-level n+1 |
---|
759 | ! |
---|
760 | DO k=1,NLAY |
---|
761 | DO j=1,JNP |
---|
762 | DO i=1,IMR |
---|
763 | Q(i,j,k,IC) = DQ(i,j,k,IC) / delp2(i,j,k) |
---|
764 | ! print*,'i=',i,'j=',j,'k=',k,'Q(i,j,k,IC)=',Q(i,j,k,IC) |
---|
765 | enddo |
---|
766 | enddo |
---|
767 | enddo |
---|
768 | ! |
---|
769 | if(j1.ne.2) then |
---|
770 | DO k=1,NLAY |
---|
771 | DO I=1,IMR |
---|
772 | ! j=1 c'est le p�le Sud, j=JNP c'est le p�le Nord |
---|
773 | Q(I, 2,k,IC) = Q(I, 1,k,IC) |
---|
774 | Q(I,JMR,k,IC) = Q(I,JNP,k,IC) |
---|
775 | END DO |
---|
776 | END DO |
---|
777 | endif |
---|
778 | end do |
---|
779 | ! |
---|
780 | if(j1.ne.2) then |
---|
781 | DO k=1,NLAY |
---|
782 | DO i=1,IMR |
---|
783 | W(i, 2,k) = W(i, 1,k) |
---|
784 | W(i,JMR,k) = W(i,JNP,k) |
---|
785 | END DO |
---|
786 | END DO |
---|
787 | endif |
---|
788 | ! |
---|
789 | RETURN |
---|
790 | END SUBROUTINE ppm3d |
---|
791 | ! |
---|
792 | !****6***0*********0*********0*********0*********0*********0**********72 |
---|
793 | subroutine FZPPM(IMR,JNP,NLAY,j1,DQ,WZ,P,DC,DQDT,AR,AL,A6, & |
---|
794 | flux,wk1,wk2,wz2,delp,KORD) |
---|
795 | implicit none |
---|
796 | integer,parameter :: kmax = 150 |
---|
797 | real,parameter :: R23 = 2./3., R3 = 1./3. |
---|
798 | integer :: IMR,JNP,NLAY,J1,KORD |
---|
799 | real :: WZ(IMR,JNP,NLAY),P(IMR,JNP,NLAY),DC(IMR,JNP,NLAY), & |
---|
800 | wk1(IMR,*),delp(IMR,JNP,NLAY),DQ(IMR,JNP,NLAY), & |
---|
801 | DQDT(IMR,JNP,NLAY) |
---|
802 | ! Assuming JNP >= NLAY |
---|
803 | real :: AR(IMR,*),AL(IMR,*),A6(IMR,*),flux(IMR,*),wk2(IMR,*), & |
---|
804 | wz2(IMR,*) |
---|
805 | integer :: JMR,IMJM,NLAYM1,LMT,K,I,J |
---|
806 | real :: c0,c1,c2,tmp,qmax,qmin,a,b,fct,a1,a2,cm,cp |
---|
807 | ! |
---|
808 | JMR = JNP - 1 |
---|
809 | IMJM = IMR*JNP |
---|
810 | NLAYM1 = NLAY - 1 |
---|
811 | ! |
---|
812 | LMT = KORD - 3 |
---|
813 | ! |
---|
814 | ! ****6***0*********0*********0*********0*********0*********0**********72 |
---|
815 | ! Compute DC for PPM |
---|
816 | ! ****6***0*********0*********0*********0*********0*********0**********72 |
---|
817 | ! |
---|
818 | do k=1,NLAYM1 |
---|
819 | do i=1,IMJM |
---|
820 | DQDT(i,1,k) = P(i,1,k+1) - P(i,1,k) |
---|
821 | end do |
---|
822 | end do |
---|
823 | ! |
---|
824 | DO k=2,NLAYM1 |
---|
825 | DO I=1,IMJM |
---|
826 | c0 = delp(i,1,k) / (delp(i,1,k-1)+delp(i,1,k)+delp(i,1,k+1)) |
---|
827 | c1 = (delp(i,1,k-1)+0.5*delp(i,1,k))/(delp(i,1,k+1)+delp(i,1,k)) |
---|
828 | c2 = (delp(i,1,k+1)+0.5*delp(i,1,k))/(delp(i,1,k-1)+delp(i,1,k)) |
---|
829 | tmp = c0*(c1*DQDT(i,1,k) + c2*DQDT(i,1,k-1)) |
---|
830 | Qmax = max(P(i,1,k-1),P(i,1,k),P(i,1,k+1)) - P(i,1,k) |
---|
831 | Qmin = P(i,1,k) - min(P(i,1,k-1),P(i,1,k),P(i,1,k+1)) |
---|
832 | DC(i,1,k) = sign(min(abs(tmp),Qmax,Qmin), tmp) |
---|
833 | END DO |
---|
834 | END DO |
---|
835 | |
---|
836 | ! |
---|
837 | ! ****6***0*********0*********0*********0*********0*********0**********72 |
---|
838 | ! Loop over latitudes (to save memory) |
---|
839 | ! ****6***0*********0*********0*********0*********0*********0**********72 |
---|
840 | ! |
---|
841 | DO j=1,JNP |
---|
842 | if((j.eq.2 .or. j.eq.JMR) .and. j1.ne.2) goto 2000 |
---|
843 | ! |
---|
844 | DO k=1,NLAY |
---|
845 | DO i=1,IMR |
---|
846 | wz2(i,k) = WZ(i,j,k) |
---|
847 | wk1(i,k) = P(i,j,k) |
---|
848 | wk2(i,k) = delp(i,j,k) |
---|
849 | flux(i,k) = DC(i,j,k) !this flux is actually the monotone slope |
---|
850 | enddo |
---|
851 | enddo |
---|
852 | ! |
---|
853 | !****6***0*********0*********0*********0*********0*********0**********72 |
---|
854 | ! Compute first guesses at cell interfaces |
---|
855 | ! First guesses are required to be continuous. |
---|
856 | ! ****6***0*********0*********0*********0*********0*********0**********72 |
---|
857 | ! |
---|
858 | ! three-cell parabolic subgrid distribution at model top |
---|
859 | ! two-cell parabolic with zero gradient subgrid distribution |
---|
860 | ! at the surface. |
---|
861 | ! |
---|
862 | ! First guess top edge value |
---|
863 | DO i=1,IMR |
---|
864 | ! three-cell PPM |
---|
865 | ! Compute a,b, and c of q = aP**2 + bP + c using cell averages and delp |
---|
866 | a = 3.*( DQDT(i,j,2) - DQDT(i,j,1)*(wk2(i,2)+wk2(i,3))/ & |
---|
867 | (wk2(i,1)+wk2(i,2)) ) / & |
---|
868 | ( (wk2(i,2)+wk2(i,3))*(wk2(i,1)+wk2(i,2)+wk2(i,3)) ) |
---|
869 | b = 2.*DQDT(i,j,1)/(wk2(i,1)+wk2(i,2)) - & |
---|
870 | R23*a*(2.*wk2(i,1)+wk2(i,2)) |
---|
871 | AL(i,1) = wk1(i,1) - wk2(i,1)*(R3*a*wk2(i,1) + 0.5*b) |
---|
872 | AL(i,2) = wk2(i,1)*(a*wk2(i,1) + b) + AL(i,1) |
---|
873 | ! |
---|
874 | ! Check if change sign |
---|
875 | if(wk1(i,1)*AL(i,1).le.0.) then |
---|
876 | AL(i,1) = 0. |
---|
877 | flux(i,1) = 0. |
---|
878 | else |
---|
879 | flux(i,1) = wk1(i,1) - AL(i,1) |
---|
880 | endif |
---|
881 | END DO |
---|
882 | ! |
---|
883 | ! Bottom |
---|
884 | DO i=1,IMR |
---|
885 | ! 2-cell PPM with zero gradient right at the surface |
---|
886 | ! |
---|
887 | fct = DQDT(i,j,NLAYM1)*wk2(i,NLAY)**2 / & |
---|
888 | ( (wk2(i,NLAY)+wk2(i,NLAYM1))*(2.*wk2(i,NLAY)+wk2(i,NLAYM1))) |
---|
889 | AR(i,NLAY) = wk1(i,NLAY) + fct |
---|
890 | AL(i,NLAY) = wk1(i,NLAY) - (fct+fct) |
---|
891 | if(wk1(i,NLAY)*AR(i,NLAY).le.0.) AR(i,NLAY) = 0. |
---|
892 | flux(i,NLAY) = AR(i,NLAY) - wk1(i,NLAY) |
---|
893 | END DO |
---|
894 | |
---|
895 | ! |
---|
896 | !****6***0*********0*********0*********0*********0*********0**********72 |
---|
897 | ! 4th order interpolation in the interior. |
---|
898 | !****6***0*********0*********0*********0*********0*********0**********72 |
---|
899 | ! |
---|
900 | DO k=3,NLAYM1 |
---|
901 | DO i=1,IMR |
---|
902 | c1 = DQDT(i,j,k-1)*wk2(i,k-1) / (wk2(i,k-1)+wk2(i,k)) |
---|
903 | c2 = 2. / (wk2(i,k-2)+wk2(i,k-1)+wk2(i,k)+wk2(i,k+1)) |
---|
904 | A1 = (wk2(i,k-2)+wk2(i,k-1)) / (2.*wk2(i,k-1)+wk2(i,k)) |
---|
905 | A2 = (wk2(i,k )+wk2(i,k+1)) / (2.*wk2(i,k)+wk2(i,k-1)) |
---|
906 | AL(i,k) = wk1(i,k-1) + c1 + c2 * & |
---|
907 | ( wk2(i,k )*(c1*(A1 - A2)+A2*flux(i,k-1)) - & |
---|
908 | wk2(i,k-1)*A1*flux(i,k) ) |
---|
909 | ! print *,'AL1',i,k, AL(i,k) |
---|
910 | END DO |
---|
911 | END DO |
---|
912 | ! |
---|
913 | do i=1,IMR*NLAYM1 |
---|
914 | AR(i,1) = AL(i,2) |
---|
915 | ! print *,'AR1',i,AR(i,1) |
---|
916 | end do |
---|
917 | ! |
---|
918 | do i=1,IMR*NLAY |
---|
919 | A6(i,1) = 3.*(wk1(i,1)+wk1(i,1) - (AL(i,1)+AR(i,1))) |
---|
920 | ! print *,'A61',i,A6(i,1) |
---|
921 | end do |
---|
922 | ! |
---|
923 | !****6***0*********0*********0*********0*********0*********0**********72 |
---|
924 | ! Top & Bot always monotonic |
---|
925 | call lmtppm(flux(1,1),A6(1,1),AR(1,1),AL(1,1),wk1(1,1),IMR,0) |
---|
926 | call lmtppm(flux(1,NLAY),A6(1,NLAY),AR(1,NLAY),AL(1,NLAY), & |
---|
927 | wk1(1,NLAY),IMR,0) |
---|
928 | ! |
---|
929 | ! Interior depending on KORD |
---|
930 | if(LMT.LE.2) & |
---|
931 | call lmtppm(flux(1,2),A6(1,2),AR(1,2),AL(1,2),wk1(1,2), & |
---|
932 | IMR*(NLAY-2),LMT) |
---|
933 | ! |
---|
934 | !****6***0*********0*********0*********0*********0*********0**********72 |
---|
935 | ! |
---|
936 | DO i=1,IMR*NLAYM1 |
---|
937 | IF(wz2(i,1).GT.0.) then |
---|
938 | CM = wz2(i,1) / wk2(i,1) |
---|
939 | flux(i,2) = AR(i,1)+0.5*CM*(AL(i,1)-AR(i,1)+A6(i,1)*(1.-R23*CM)) |
---|
940 | else |
---|
941 | ! print *,'test2-0',i,j,wz2(i,1),wk2(i,2) |
---|
942 | CP= wz2(i,1) / wk2(i,2) |
---|
943 | ! print *,'testCP',CP |
---|
944 | flux(i,2) = AL(i,2)+0.5*CP*(AL(i,2)-AR(i,2)-A6(i,2)*(1.+R23*CP)) |
---|
945 | ! print *,'test2',i, AL(i,2),AR(i,2),A6(i,2),R23 |
---|
946 | endif |
---|
947 | END DO |
---|
948 | ! |
---|
949 | DO i=1,IMR*NLAYM1 |
---|
950 | flux(i,2) = wz2(i,1) * flux(i,2) |
---|
951 | 250 CONTINUE |
---|
952 | END DO |
---|
953 | ! |
---|
954 | do i=1,IMR |
---|
955 | DQ(i,j, 1) = DQ(i,j, 1) - flux(i, 2) |
---|
956 | DQ(i,j,NLAY) = DQ(i,j,NLAY) + flux(i,NLAY) |
---|
957 | end do |
---|
958 | ! |
---|
959 | do k=2,NLAYM1 |
---|
960 | do i=1,IMR |
---|
961 | DQ(i,j,k) = DQ(i,j,k) + flux(i,k) - flux(i,k+1) |
---|
962 | end do |
---|
963 | end do |
---|
964 | 2000 CONTINUE |
---|
965 | END DO |
---|
966 | return |
---|
967 | end subroutine fzppm |
---|
968 | ! |
---|
969 | subroutine xtp(IMR,JNP,IML,j1,j2,JN,JS,PU,DQ,Q,UC, & |
---|
970 | fx1,xmass,IORD) |
---|
971 | implicit none |
---|
972 | integer :: IMR,JNP,IML,j1,j2,JN,JS,IORD |
---|
973 | real :: PU,DQ,Q,UC,fx1,xmass |
---|
974 | real :: dc,qtmp |
---|
975 | integer :: ISAVE(IMR) |
---|
976 | dimension UC(IMR,*),DC(-IML:IMR+IML+1),xmass(IMR,JNP) & |
---|
977 | ,fx1(IMR+1),DQ(IMR,JNP),qtmp(-IML:IMR+1+IML) |
---|
978 | dimension PU(IMR,JNP),Q(IMR,JNP) |
---|
979 | integer :: jvan,j1vl,j2vl,j,i,iu,itmp,ist,imp |
---|
980 | real :: rut |
---|
981 | ! |
---|
982 | IMP = IMR + 1 |
---|
983 | ! |
---|
984 | ! van Leer at high latitudes |
---|
985 | jvan = max(1,JNP/18) |
---|
986 | j1vl = j1+jvan |
---|
987 | j2vl = j2-jvan |
---|
988 | ! |
---|
989 | do j=j1,j2 |
---|
990 | ! |
---|
991 | do i=1,IMR |
---|
992 | qtmp(i) = q(i,j) |
---|
993 | enddo |
---|
994 | ! |
---|
995 | if(j.ge.JN .or. j.le.JS) goto 2222 |
---|
996 | ! ************* Eulerian ********** |
---|
997 | ! |
---|
998 | qtmp(0) = q(IMR,J) |
---|
999 | qtmp(-1) = q(IMR-1,J) |
---|
1000 | qtmp(IMP) = q(1,J) |
---|
1001 | qtmp(IMP+1) = q(2,J) |
---|
1002 | ! |
---|
1003 | IF(IORD.eq.1 .or. j.eq.j1.OR. j.eq.j2) THEN |
---|
1004 | DO i=1,IMR |
---|
1005 | iu = REAL(i) - uc(i,j) |
---|
1006 | fx1(i) = qtmp(iu) |
---|
1007 | END DO |
---|
1008 | ELSE |
---|
1009 | call xmist(IMR,IML,Qtmp,DC) |
---|
1010 | DC(0) = DC(IMR) |
---|
1011 | ! |
---|
1012 | if(IORD.eq.2 .or. j.le.j1vl .or. j.ge.j2vl) then |
---|
1013 | DO i=1,IMR |
---|
1014 | iu = REAL(i) - uc(i,j) |
---|
1015 | fx1(i) = qtmp(iu) + DC(iu)*(sign(1.,uc(i,j))-uc(i,j)) |
---|
1016 | END DO |
---|
1017 | else |
---|
1018 | call fxppm(IMR,IML,UC(1,j),Qtmp,DC,fx1,IORD) |
---|
1019 | endif |
---|
1020 | ! |
---|
1021 | ENDIF |
---|
1022 | ! |
---|
1023 | DO i=1,IMR |
---|
1024 | fx1(i) = fx1(i)*xmass(i,j) |
---|
1025 | END DO |
---|
1026 | ! |
---|
1027 | goto 1309 |
---|
1028 | ! |
---|
1029 | ! ***** Conservative (flux-form) Semi-Lagrangian transport ***** |
---|
1030 | ! |
---|
1031 | 2222 continue |
---|
1032 | ! |
---|
1033 | do i=-IML,0 |
---|
1034 | qtmp(i) = q(IMR+i,j) |
---|
1035 | qtmp(IMP-i) = q(1-i,j) |
---|
1036 | enddo |
---|
1037 | ! |
---|
1038 | IF(IORD.eq.1 .or. j.eq.j1.OR. j.eq.j2) THEN |
---|
1039 | DO i=1,IMR |
---|
1040 | itmp = INT(uc(i,j)) |
---|
1041 | ISAVE(i) = i - itmp |
---|
1042 | iu = i - uc(i,j) |
---|
1043 | fx1(i) = (uc(i,j) - itmp)*qtmp(iu) |
---|
1044 | END DO |
---|
1045 | ELSE |
---|
1046 | call xmist(IMR,IML,Qtmp,DC) |
---|
1047 | ! |
---|
1048 | do i=-IML,0 |
---|
1049 | DC(i) = DC(IMR+i) |
---|
1050 | DC(IMP-i) = DC(1-i) |
---|
1051 | enddo |
---|
1052 | ! |
---|
1053 | DO i=1,IMR |
---|
1054 | itmp = INT(uc(i,j)) |
---|
1055 | rut = uc(i,j) - itmp |
---|
1056 | ISAVE(i) = i - itmp |
---|
1057 | iu = i - uc(i,j) |
---|
1058 | fx1(i) = rut*(qtmp(iu) + DC(iu)*(sign(1.,rut) - rut)) |
---|
1059 | END DO |
---|
1060 | ENDIF |
---|
1061 | ! |
---|
1062 | do i=1,IMR |
---|
1063 | IF(uc(i,j).GT.1.) then |
---|
1064 | !DIR$ NOVECTOR |
---|
1065 | do ist = ISAVE(i),i-1 |
---|
1066 | fx1(i) = fx1(i) + qtmp(ist) |
---|
1067 | enddo |
---|
1068 | elseIF(uc(i,j).LT.-1.) then |
---|
1069 | do ist = i,ISAVE(i)-1 |
---|
1070 | fx1(i) = fx1(i) - qtmp(ist) |
---|
1071 | enddo |
---|
1072 | !DIR$ VECTOR |
---|
1073 | endif |
---|
1074 | end do |
---|
1075 | do i=1,IMR |
---|
1076 | fx1(i) = PU(i,j)*fx1(i) |
---|
1077 | enddo |
---|
1078 | ! |
---|
1079 | ! *************************************** |
---|
1080 | ! |
---|
1081 | 1309 fx1(IMP) = fx1(1) |
---|
1082 | DO i=1,IMR |
---|
1083 | DQ(i,j) = DQ(i,j) + fx1(i)-fx1(i+1) |
---|
1084 | END DO |
---|
1085 | ! |
---|
1086 | ! *************************************** |
---|
1087 | ! |
---|
1088 | end do |
---|
1089 | return |
---|
1090 | end subroutine xtp |
---|
1091 | ! |
---|
1092 | subroutine fxppm(IMR,IML,UT,P,DC,flux,IORD) |
---|
1093 | implicit none |
---|
1094 | integer :: IMR,IML,IORD |
---|
1095 | real :: UT,P,DC,flux |
---|
1096 | real,parameter :: R3 = 1./3., R23 = 2./3. |
---|
1097 | DIMENSION UT(*),flux(*),P(-IML:IMR+IML+1),DC(-IML:IMR+IML+1) |
---|
1098 | REAL :: AR(0:IMR),AL(0:IMR),A6(0:IMR) |
---|
1099 | integer :: LMT,IMP,JLVL,i |
---|
1100 | ! logical first |
---|
1101 | ! data first /.true./ |
---|
1102 | ! SAVE LMT |
---|
1103 | ! if(first) then |
---|
1104 | ! |
---|
1105 | ! correction calcul de LMT a chaque passage pour pouvoir choisir |
---|
1106 | ! plusieurs schemas PPM pour differents traceurs |
---|
1107 | ! IF (IORD.LE.0) then |
---|
1108 | ! if(IMR.GE.144) then |
---|
1109 | ! LMT = 0 |
---|
1110 | ! elseif(IMR.GE.72) then |
---|
1111 | ! LMT = 1 |
---|
1112 | ! else |
---|
1113 | ! LMT = 2 |
---|
1114 | ! endif |
---|
1115 | ! else |
---|
1116 | ! LMT = IORD - 3 |
---|
1117 | ! endif |
---|
1118 | ! |
---|
1119 | LMT = IORD - 3 |
---|
1120 | ! write(6,*) 'PPM option in E-W direction = ', LMT |
---|
1121 | ! first = .false. |
---|
1122 | ! endif |
---|
1123 | ! |
---|
1124 | DO i=1,IMR |
---|
1125 | AL(i) = 0.5*(p(i-1)+p(i)) + (DC(i-1) - DC(i))*R3 |
---|
1126 | END DO |
---|
1127 | ! |
---|
1128 | do i=1,IMR-1 |
---|
1129 | AR(i) = AL(i+1) |
---|
1130 | end do |
---|
1131 | AR(IMR) = AL(1) |
---|
1132 | ! |
---|
1133 | do i=1,IMR |
---|
1134 | A6(i) = 3.*(p(i)+p(i) - (AL(i)+AR(i))) |
---|
1135 | end do |
---|
1136 | ! |
---|
1137 | if(LMT.LE.2) call lmtppm(DC(1),A6(1),AR(1),AL(1),P(1),IMR,LMT) |
---|
1138 | ! |
---|
1139 | AL(0) = AL(IMR) |
---|
1140 | AR(0) = AR(IMR) |
---|
1141 | A6(0) = A6(IMR) |
---|
1142 | ! |
---|
1143 | DO i=1,IMR |
---|
1144 | IF(UT(i).GT.0.) then |
---|
1145 | flux(i) = AR(i-1) + 0.5*UT(i)*(AL(i-1) - AR(i-1) + & |
---|
1146 | A6(i-1)*(1.-R23*UT(i)) ) |
---|
1147 | else |
---|
1148 | flux(i) = AL(i) - 0.5*UT(i)*(AR(i) - AL(i) + & |
---|
1149 | A6(i)*(1.+R23*UT(i))) |
---|
1150 | endif |
---|
1151 | enddo |
---|
1152 | return |
---|
1153 | end subroutine fxppm |
---|
1154 | ! |
---|
1155 | subroutine xmist(IMR,IML,P,DC) |
---|
1156 | implicit none |
---|
1157 | integer :: IMR,IML |
---|
1158 | real,parameter :: R24 = 1./24. |
---|
1159 | real :: P(-IML:IMR+1+IML),DC(-IML:IMR+1+IML) |
---|
1160 | integer :: i |
---|
1161 | real :: tmp,pmax,pmin |
---|
1162 | ! |
---|
1163 | do i=1,IMR |
---|
1164 | tmp = R24*(8.*(p(i+1) - p(i-1)) + p(i-2) - p(i+2)) |
---|
1165 | Pmax = max(P(i-1), p(i), p(i+1)) - p(i) |
---|
1166 | Pmin = p(i) - min(P(i-1), p(i), p(i+1)) |
---|
1167 | DC(i) = sign(min(abs(tmp),Pmax,Pmin), tmp) |
---|
1168 | end do |
---|
1169 | return |
---|
1170 | end subroutine xmist |
---|
1171 | ! |
---|
1172 | subroutine ytp(IMR,JNP,j1,j2,acosp,RCAP,DQ,P,VC,DC2 & |
---|
1173 | ,ymass,fx,A6,AR,AL,JORD) |
---|
1174 | implicit none |
---|
1175 | integer :: IMR,JNP,j1,j2,JORD |
---|
1176 | real :: acosp,RCAP,DQ,P,VC,DC2,ymass,fx,A6,AR,AL |
---|
1177 | dimension P(IMR,JNP),VC(IMR,JNP),ymass(IMR,JNP) & |
---|
1178 | ,DC2(IMR,JNP),DQ(IMR,JNP),acosp(JNP) |
---|
1179 | ! Work array |
---|
1180 | DIMENSION fx(IMR,JNP),AR(IMR,JNP),AL(IMR,JNP),A6(IMR,JNP) |
---|
1181 | integer :: JMR,len,i,jt,j |
---|
1182 | real :: sum1,sum2 |
---|
1183 | ! |
---|
1184 | JMR = JNP - 1 |
---|
1185 | len = IMR*(J2-J1+2) |
---|
1186 | ! |
---|
1187 | if(JORD.eq.1) then |
---|
1188 | DO i=1,len |
---|
1189 | JT = REAL(J1) - VC(i,J1) |
---|
1190 | fx(i,j1) = p(i,JT) |
---|
1191 | END DO |
---|
1192 | else |
---|
1193 | |
---|
1194 | call ymist(IMR,JNP,j1,P,DC2,4) |
---|
1195 | ! |
---|
1196 | if(JORD.LE.0 .or. JORD.GE.3) then |
---|
1197 | |
---|
1198 | call fyppm(VC,P,DC2,fx,IMR,JNP,j1,j2,A6,AR,AL,JORD) |
---|
1199 | |
---|
1200 | else |
---|
1201 | DO i=1,len |
---|
1202 | JT = REAL(J1) - VC(i,J1) |
---|
1203 | fx(i,j1) = p(i,JT) + (sign(1.,VC(i,j1))-VC(i,j1))*DC2(i,JT) |
---|
1204 | END DO |
---|
1205 | endif |
---|
1206 | endif |
---|
1207 | ! |
---|
1208 | DO i=1,len |
---|
1209 | fx(i,j1) = fx(i,j1)*ymass(i,j1) |
---|
1210 | END DO |
---|
1211 | ! |
---|
1212 | DO j=j1,j2 |
---|
1213 | DO i=1,IMR |
---|
1214 | DQ(i,j) = DQ(i,j) + (fx(i,j) - fx(i,j+1)) * acosp(j) |
---|
1215 | END DO |
---|
1216 | END DO |
---|
1217 | ! |
---|
1218 | ! Poles |
---|
1219 | sum1 = fx(IMR,j1 ) |
---|
1220 | sum2 = fx(IMR,J2+1) |
---|
1221 | do i=1,IMR-1 |
---|
1222 | sum1 = sum1 + fx(i,j1 ) |
---|
1223 | sum2 = sum2 + fx(i,J2+1) |
---|
1224 | enddo |
---|
1225 | ! |
---|
1226 | sum1 = DQ(1, 1) - sum1 * RCAP |
---|
1227 | sum2 = DQ(1,JNP) + sum2 * RCAP |
---|
1228 | do i=1,IMR |
---|
1229 | DQ(i, 1) = sum1 |
---|
1230 | DQ(i,JNP) = sum2 |
---|
1231 | enddo |
---|
1232 | ! |
---|
1233 | if(j1.ne.2) then |
---|
1234 | do i=1,IMR |
---|
1235 | DQ(i, 2) = sum1 |
---|
1236 | DQ(i,JMR) = sum2 |
---|
1237 | enddo |
---|
1238 | endif |
---|
1239 | ! |
---|
1240 | return |
---|
1241 | end subroutine ytp |
---|
1242 | ! |
---|
1243 | subroutine ymist(IMR,JNP,j1,P,DC,ID) |
---|
1244 | implicit none |
---|
1245 | integer :: IMR,JNP,j1,ID |
---|
1246 | real,parameter :: R24 = 1./24. |
---|
1247 | real :: P(IMR,JNP),DC(IMR,JNP) |
---|
1248 | integer :: iimh,jmr,ijm3,imh,i |
---|
1249 | real :: pmax,pmin,tmp |
---|
1250 | ! |
---|
1251 | IMH = IMR / 2 |
---|
1252 | JMR = JNP - 1 |
---|
1253 | IJM3 = IMR*(JMR-3) |
---|
1254 | ! |
---|
1255 | IF(ID.EQ.2) THEN |
---|
1256 | do i=1,IMR*(JMR-1) |
---|
1257 | tmp = 0.25*(p(i,3) - p(i,1)) |
---|
1258 | Pmax = max(p(i,1),p(i,2),p(i,3)) - p(i,2) |
---|
1259 | Pmin = p(i,2) - min(p(i,1),p(i,2),p(i,3)) |
---|
1260 | DC(i,2) = sign(min(abs(tmp),Pmin,Pmax),tmp) |
---|
1261 | end do |
---|
1262 | ELSE |
---|
1263 | do i=1,IMH |
---|
1264 | ! J=2 |
---|
1265 | tmp = (8.*(p(i,3) - p(i,1)) + p(i+IMH,2) - p(i,4))*R24 |
---|
1266 | Pmax = max(p(i,1),p(i,2),p(i,3)) - p(i,2) |
---|
1267 | Pmin = p(i,2) - min(p(i,1),p(i,2),p(i,3)) |
---|
1268 | DC(i,2) = sign(min(abs(tmp),Pmin,Pmax),tmp) |
---|
1269 | ! J=JMR |
---|
1270 | tmp=(8.*(p(i,JNP)-p(i,JMR-1))+p(i,JMR-2)-p(i+IMH,JMR))*R24 |
---|
1271 | Pmax = max(p(i,JMR-1),p(i,JMR),p(i,JNP)) - p(i,JMR) |
---|
1272 | Pmin = p(i,JMR) - min(p(i,JMR-1),p(i,JMR),p(i,JNP)) |
---|
1273 | DC(i,JMR) = sign(min(abs(tmp),Pmin,Pmax),tmp) |
---|
1274 | end do |
---|
1275 | do i=IMH+1,IMR |
---|
1276 | ! J=2 |
---|
1277 | tmp = (8.*(p(i,3) - p(i,1)) + p(i-IMH,2) - p(i,4))*R24 |
---|
1278 | Pmax = max(p(i,1),p(i,2),p(i,3)) - p(i,2) |
---|
1279 | Pmin = p(i,2) - min(p(i,1),p(i,2),p(i,3)) |
---|
1280 | DC(i,2) = sign(min(abs(tmp),Pmin,Pmax),tmp) |
---|
1281 | ! J=JMR |
---|
1282 | tmp=(8.*(p(i,JNP)-p(i,JMR-1))+p(i,JMR-2)-p(i-IMH,JMR))*R24 |
---|
1283 | Pmax = max(p(i,JMR-1),p(i,JMR),p(i,JNP)) - p(i,JMR) |
---|
1284 | Pmin = p(i,JMR) - min(p(i,JMR-1),p(i,JMR),p(i,JNP)) |
---|
1285 | DC(i,JMR) = sign(min(abs(tmp),Pmin,Pmax),tmp) |
---|
1286 | end do |
---|
1287 | ! |
---|
1288 | do i=1,IJM3 |
---|
1289 | tmp = (8.*(p(i,4) - p(i,2)) + p(i,1) - p(i,5))*R24 |
---|
1290 | Pmax = max(p(i,2),p(i,3),p(i,4)) - p(i,3) |
---|
1291 | Pmin = p(i,3) - min(p(i,2),p(i,3),p(i,4)) |
---|
1292 | DC(i,3) = sign(min(abs(tmp),Pmin,Pmax),tmp) |
---|
1293 | end do |
---|
1294 | ENDIF |
---|
1295 | ! |
---|
1296 | if(j1.ne.2) then |
---|
1297 | do i=1,IMR |
---|
1298 | DC(i,1) = 0. |
---|
1299 | DC(i,JNP) = 0. |
---|
1300 | enddo |
---|
1301 | else |
---|
1302 | ! Determine slopes in polar caps for scalars! |
---|
1303 | ! |
---|
1304 | do i=1,IMH |
---|
1305 | ! South |
---|
1306 | tmp = 0.25*(p(i,2) - p(i+imh,2)) |
---|
1307 | Pmax = max(p(i,2),p(i,1), p(i+imh,2)) - p(i,1) |
---|
1308 | Pmin = p(i,1) - min(p(i,2),p(i,1), p(i+imh,2)) |
---|
1309 | DC(i,1)=sign(min(abs(tmp),Pmax,Pmin),tmp) |
---|
1310 | ! North. |
---|
1311 | tmp = 0.25*(p(i+imh,JMR) - p(i,JMR)) |
---|
1312 | Pmax = max(p(i+imh,JMR),p(i,jnp), p(i,JMR)) - p(i,JNP) |
---|
1313 | Pmin = p(i,JNP) - min(p(i+imh,JMR),p(i,jnp), p(i,JMR)) |
---|
1314 | DC(i,JNP) = sign(min(abs(tmp),Pmax,pmin),tmp) |
---|
1315 | end do |
---|
1316 | ! |
---|
1317 | do i=imh+1,IMR |
---|
1318 | DC(i, 1) = - DC(i-imh, 1) |
---|
1319 | DC(i,JNP) = - DC(i-imh,JNP) |
---|
1320 | end do |
---|
1321 | endif |
---|
1322 | return |
---|
1323 | end subroutine ymist |
---|
1324 | ! |
---|
1325 | subroutine fyppm(VC,P,DC,flux,IMR,JNP,j1,j2,A6,AR,AL,JORD) |
---|
1326 | implicit none |
---|
1327 | integer :: IMR,JNP,j1,j2,JORD |
---|
1328 | real,parameter :: R3 = 1./3., R23 = 2./3. |
---|
1329 | real :: VC(IMR,*),flux(IMR,*),P(IMR,*),DC(IMR,*) |
---|
1330 | ! Local work arrays. |
---|
1331 | real :: AR(IMR,JNP),AL(IMR,JNP),A6(IMR,JNP) |
---|
1332 | integer :: LMT,i |
---|
1333 | integer :: IMH,JMR,j11,IMJM1,len |
---|
1334 | ! logical first |
---|
1335 | ! data first /.true./ |
---|
1336 | ! SAVE LMT |
---|
1337 | ! |
---|
1338 | IMH = IMR / 2 |
---|
1339 | JMR = JNP - 1 |
---|
1340 | j11 = j1-1 |
---|
1341 | IMJM1 = IMR*(J2-J1+2) |
---|
1342 | len = IMR*(J2-J1+3) |
---|
1343 | ! if(first) then |
---|
1344 | ! IF(JORD.LE.0) then |
---|
1345 | ! if(JMR.GE.90) then |
---|
1346 | ! LMT = 0 |
---|
1347 | ! elseif(JMR.GE.45) then |
---|
1348 | ! LMT = 1 |
---|
1349 | ! else |
---|
1350 | ! LMT = 2 |
---|
1351 | ! endif |
---|
1352 | ! else |
---|
1353 | ! LMT = JORD - 3 |
---|
1354 | ! endif |
---|
1355 | ! |
---|
1356 | ! first = .false. |
---|
1357 | ! endif |
---|
1358 | ! |
---|
1359 | ! modifs pour pouvoir choisir plusieurs schemas PPM |
---|
1360 | LMT = JORD - 3 |
---|
1361 | ! |
---|
1362 | DO i=1,IMR*JMR |
---|
1363 | AL(i,2) = 0.5*(p(i,1)+p(i,2)) + (DC(i,1) - DC(i,2))*R3 |
---|
1364 | AR(i,1) = AL(i,2) |
---|
1365 | END DO |
---|
1366 | ! |
---|
1367 | !Poles: |
---|
1368 | ! |
---|
1369 | DO i=1,IMH |
---|
1370 | AL(i,1) = AL(i+IMH,2) |
---|
1371 | AL(i+IMH,1) = AL(i,2) |
---|
1372 | ! |
---|
1373 | AR(i,JNP) = AR(i+IMH,JMR) |
---|
1374 | AR(i+IMH,JNP) = AR(i,JMR) |
---|
1375 | ENDDO |
---|
1376 | |
---|
1377 | !cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc |
---|
1378 | ! Rajout pour LMDZ.3.3 |
---|
1379 | !ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc |
---|
1380 | AR(IMR,1)=AL(1,1) |
---|
1381 | AR(IMR,JNP)=AL(1,JNP) |
---|
1382 | !cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc |
---|
1383 | |
---|
1384 | |
---|
1385 | do i=1,len |
---|
1386 | A6(i,j11) = 3.*(p(i,j11)+p(i,j11) - (AL(i,j11)+AR(i,j11))) |
---|
1387 | end do |
---|
1388 | ! |
---|
1389 | if(LMT.le.2) call lmtppm(DC(1,j11),A6(1,j11),AR(1,j11) & |
---|
1390 | ,AL(1,j11),P(1,j11),len,LMT) |
---|
1391 | ! |
---|
1392 | |
---|
1393 | DO i=1,IMJM1 |
---|
1394 | IF(VC(i,j1).GT.0.) then |
---|
1395 | flux(i,j1) = AR(i,j11) + 0.5*VC(i,j1)*(AL(i,j11) - AR(i,j11) + & |
---|
1396 | A6(i,j11)*(1.-R23*VC(i,j1)) ) |
---|
1397 | else |
---|
1398 | flux(i,j1) = AL(i,j1) - 0.5*VC(i,j1)*(AR(i,j1) - AL(i,j1) + & |
---|
1399 | A6(i,j1)*(1.+R23*VC(i,j1))) |
---|
1400 | endif |
---|
1401 | END DO |
---|
1402 | return |
---|
1403 | end subroutine fyppm |
---|
1404 | ! |
---|
1405 | subroutine yadv(IMR,JNP,j1,j2,p,VA,ady,wk,IAD) |
---|
1406 | implicit none |
---|
1407 | integer :: IMR,JNP,j1,j2,IAD |
---|
1408 | REAL :: p(IMR,JNP),ady(IMR,JNP),VA(IMR,JNP) |
---|
1409 | REAL :: WK(IMR,-1:JNP+2) |
---|
1410 | INTEGER :: JMR,IMH,i,j,jp |
---|
1411 | REAL :: rv,a1,b1,sum1,sum2 |
---|
1412 | ! |
---|
1413 | JMR = JNP-1 |
---|
1414 | IMH = IMR/2 |
---|
1415 | do j=1,JNP |
---|
1416 | do i=1,IMR |
---|
1417 | wk(i,j) = p(i,j) |
---|
1418 | enddo |
---|
1419 | enddo |
---|
1420 | ! Poles: |
---|
1421 | do i=1,IMH |
---|
1422 | wk(i, -1) = p(i+IMH,3) |
---|
1423 | wk(i+IMH,-1) = p(i,3) |
---|
1424 | wk(i, 0) = p(i+IMH,2) |
---|
1425 | wk(i+IMH,0) = p(i,2) |
---|
1426 | wk(i,JNP+1) = p(i+IMH,JMR) |
---|
1427 | wk(i+IMH,JNP+1) = p(i,JMR) |
---|
1428 | wk(i,JNP+2) = p(i+IMH,JNP-2) |
---|
1429 | wk(i+IMH,JNP+2) = p(i,JNP-2) |
---|
1430 | enddo |
---|
1431 | ! write(*,*) 'toto 1' |
---|
1432 | ! -------------------------------- |
---|
1433 | IF(IAD.eq.2) then |
---|
1434 | do j=j1-1,j2+1 |
---|
1435 | do i=1,IMR |
---|
1436 | ! write(*,*) 'avt NINT','i=',i,'j=',j |
---|
1437 | JP = NINT(VA(i,j)) |
---|
1438 | rv = JP - VA(i,j) |
---|
1439 | ! write(*,*) 'VA=',VA(i,j), 'JP1=',JP,'rv=',rv |
---|
1440 | JP = j - JP |
---|
1441 | ! write(*,*) 'JP2=',JP |
---|
1442 | a1 = 0.5*(wk(i,jp+1)+wk(i,jp-1)) - wk(i,jp) |
---|
1443 | b1 = 0.5*(wk(i,jp+1)-wk(i,jp-1)) |
---|
1444 | ! write(*,*) 'a1=',a1,'b1=',b1 |
---|
1445 | ady(i,j) = wk(i,jp) + rv*(a1*rv + b1) - wk(i,j) |
---|
1446 | enddo |
---|
1447 | enddo |
---|
1448 | ! write(*,*) 'toto 2' |
---|
1449 | ! |
---|
1450 | ELSEIF(IAD.eq.1) then |
---|
1451 | do j=j1-1,j2+1 |
---|
1452 | do i=1,imr |
---|
1453 | JP = REAL(j)-VA(i,j) |
---|
1454 | ady(i,j) = VA(i,j)*(wk(i,jp)-wk(i,jp+1)) |
---|
1455 | enddo |
---|
1456 | enddo |
---|
1457 | ENDIF |
---|
1458 | ! |
---|
1459 | if(j1.ne.2) then |
---|
1460 | sum1 = 0. |
---|
1461 | sum2 = 0. |
---|
1462 | do i=1,imr |
---|
1463 | sum1 = sum1 + ady(i,2) |
---|
1464 | sum2 = sum2 + ady(i,JMR) |
---|
1465 | enddo |
---|
1466 | sum1 = sum1 / IMR |
---|
1467 | sum2 = sum2 / IMR |
---|
1468 | ! |
---|
1469 | do i=1,imr |
---|
1470 | ady(i, 2) = sum1 |
---|
1471 | ady(i,JMR) = sum2 |
---|
1472 | ady(i, 1) = sum1 |
---|
1473 | ady(i,JNP) = sum2 |
---|
1474 | enddo |
---|
1475 | else |
---|
1476 | ! Poles: |
---|
1477 | sum1 = 0. |
---|
1478 | sum2 = 0. |
---|
1479 | do i=1,imr |
---|
1480 | sum1 = sum1 + ady(i,1) |
---|
1481 | sum2 = sum2 + ady(i,JNP) |
---|
1482 | enddo |
---|
1483 | sum1 = sum1 / IMR |
---|
1484 | sum2 = sum2 / IMR |
---|
1485 | ! |
---|
1486 | do i=1,imr |
---|
1487 | ady(i, 1) = sum1 |
---|
1488 | ady(i,JNP) = sum2 |
---|
1489 | enddo |
---|
1490 | endif |
---|
1491 | ! |
---|
1492 | return |
---|
1493 | end subroutine yadv |
---|
1494 | ! |
---|
1495 | subroutine xadv(IMR,JNP,j1,j2,p,UA,JS,JN,IML,adx,IAD) |
---|
1496 | implicit none |
---|
1497 | INTEGER :: IMR,JNP,j1,j2,JS,JN,IML,IAD |
---|
1498 | REAL :: p(IMR,JNP),adx(IMR,JNP),qtmp(-IMR:IMR+IMR),UA(IMR,JNP) |
---|
1499 | INTEGER :: JMR,j,i,ip,iu,iiu |
---|
1500 | REAL :: ru,a1,b1 |
---|
1501 | ! |
---|
1502 | JMR = JNP-1 |
---|
1503 | do j=j1,j2 |
---|
1504 | if(J.GT.JS .and. J.LT.JN) GO TO 1309 |
---|
1505 | ! |
---|
1506 | do i=1,IMR |
---|
1507 | qtmp(i) = p(i,j) |
---|
1508 | enddo |
---|
1509 | ! |
---|
1510 | do i=-IML,0 |
---|
1511 | qtmp(i) = p(IMR+i,j) |
---|
1512 | qtmp(IMR+1-i) = p(1-i,j) |
---|
1513 | enddo |
---|
1514 | ! |
---|
1515 | IF(IAD.eq.2) THEN |
---|
1516 | DO i=1,IMR |
---|
1517 | IP = NINT(UA(i,j)) |
---|
1518 | ru = IP - UA(i,j) |
---|
1519 | IP = i - IP |
---|
1520 | a1 = 0.5*(qtmp(ip+1)+qtmp(ip-1)) - qtmp(ip) |
---|
1521 | b1 = 0.5*(qtmp(ip+1)-qtmp(ip-1)) |
---|
1522 | adx(i,j) = qtmp(ip) + ru*(a1*ru + b1) |
---|
1523 | enddo |
---|
1524 | ELSEIF(IAD.eq.1) then |
---|
1525 | DO i=1,IMR |
---|
1526 | iu = UA(i,j) |
---|
1527 | ru = UA(i,j) - iu |
---|
1528 | iiu = i-iu |
---|
1529 | if(UA(i,j).GE.0.) then |
---|
1530 | adx(i,j) = qtmp(iiu)+ru*(qtmp(iiu-1)-qtmp(iiu)) |
---|
1531 | else |
---|
1532 | adx(i,j) = qtmp(iiu)+ru*(qtmp(iiu)-qtmp(iiu+1)) |
---|
1533 | endif |
---|
1534 | enddo |
---|
1535 | ENDIF |
---|
1536 | ! |
---|
1537 | do i=1,IMR |
---|
1538 | adx(i,j) = adx(i,j) - p(i,j) |
---|
1539 | enddo |
---|
1540 | 1309 continue |
---|
1541 | end do |
---|
1542 | ! |
---|
1543 | ! Eulerian upwind |
---|
1544 | ! |
---|
1545 | do j=JS+1,JN-1 |
---|
1546 | ! |
---|
1547 | do i=1,IMR |
---|
1548 | qtmp(i) = p(i,j) |
---|
1549 | enddo |
---|
1550 | ! |
---|
1551 | qtmp(0) = p(IMR,J) |
---|
1552 | qtmp(IMR+1) = p(1,J) |
---|
1553 | ! |
---|
1554 | IF(IAD.eq.2) THEN |
---|
1555 | qtmp(-1) = p(IMR-1,J) |
---|
1556 | qtmp(IMR+2) = p(2,J) |
---|
1557 | do i=1,imr |
---|
1558 | IP = NINT(UA(i,j)) |
---|
1559 | ru = IP - UA(i,j) |
---|
1560 | IP = i - IP |
---|
1561 | a1 = 0.5*(qtmp(ip+1)+qtmp(ip-1)) - qtmp(ip) |
---|
1562 | b1 = 0.5*(qtmp(ip+1)-qtmp(ip-1)) |
---|
1563 | adx(i,j) = qtmp(ip)- p(i,j) + ru*(a1*ru + b1) |
---|
1564 | enddo |
---|
1565 | ELSEIF(IAD.eq.1) then |
---|
1566 | ! 1st order |
---|
1567 | DO i=1,IMR |
---|
1568 | IP = i - UA(i,j) |
---|
1569 | adx(i,j) = UA(i,j)*(qtmp(ip)-qtmp(ip+1)) |
---|
1570 | enddo |
---|
1571 | ENDIF |
---|
1572 | enddo |
---|
1573 | ! |
---|
1574 | if(j1.ne.2) then |
---|
1575 | do i=1,IMR |
---|
1576 | adx(i, 2) = 0. |
---|
1577 | adx(i,JMR) = 0. |
---|
1578 | enddo |
---|
1579 | endif |
---|
1580 | ! set cross term due to x-adv at the poles to zero. |
---|
1581 | do i=1,IMR |
---|
1582 | adx(i, 1) = 0. |
---|
1583 | adx(i,JNP) = 0. |
---|
1584 | enddo |
---|
1585 | return |
---|
1586 | end subroutine xadv |
---|
1587 | ! |
---|
1588 | subroutine lmtppm(DC,A6,AR,AL,P,IM,LMT) |
---|
1589 | implicit none |
---|
1590 | ! |
---|
1591 | ! A6 = CURVATURE OF THE TEST PARABOLA |
---|
1592 | ! AR = RIGHT EDGE VALUE OF THE TEST PARABOLA |
---|
1593 | ! AL = LEFT EDGE VALUE OF THE TEST PARABOLA |
---|
1594 | ! DC = 0.5 * MISMATCH |
---|
1595 | ! P = CELL-AVERAGED VALUE |
---|
1596 | ! IM = VECTOR LENGTH |
---|
1597 | ! |
---|
1598 | ! OPTIONS: |
---|
1599 | ! |
---|
1600 | ! LMT = 0: FULL MONOTONICITY |
---|
1601 | ! LMT = 1: SEMI-MONOTONIC CONSTRAINT (NO UNDERSHOOTS) |
---|
1602 | ! LMT = 2: POSITIVE-DEFINITE CONSTRAINT |
---|
1603 | ! |
---|
1604 | real,parameter :: R12 = 1./12. |
---|
1605 | real :: A6(IM),AR(IM),AL(IM),P(IM),DC(IM) |
---|
1606 | integer :: IM,LMT |
---|
1607 | INTEGER :: i |
---|
1608 | REAL :: da1,da2,a6da,fmin |
---|
1609 | ! |
---|
1610 | if(LMT.eq.0) then |
---|
1611 | ! Full constraint |
---|
1612 | do i=1,IM |
---|
1613 | if(DC(i).eq.0.) then |
---|
1614 | AR(i) = p(i) |
---|
1615 | AL(i) = p(i) |
---|
1616 | A6(i) = 0. |
---|
1617 | else |
---|
1618 | da1 = AR(i) - AL(i) |
---|
1619 | da2 = da1**2 |
---|
1620 | A6DA = A6(i)*da1 |
---|
1621 | if(A6DA .lt. -da2) then |
---|
1622 | A6(i) = 3.*(AL(i)-p(i)) |
---|
1623 | AR(i) = AL(i) - A6(i) |
---|
1624 | elseif(A6DA .gt. da2) then |
---|
1625 | A6(i) = 3.*(AR(i)-p(i)) |
---|
1626 | AL(i) = AR(i) - A6(i) |
---|
1627 | endif |
---|
1628 | endif |
---|
1629 | end do |
---|
1630 | elseif(LMT.eq.1) then |
---|
1631 | ! Semi-monotonic constraint |
---|
1632 | do i=1,IM |
---|
1633 | if(abs(AR(i)-AL(i)) .GE. -A6(i)) go to 150 |
---|
1634 | if(p(i).lt.AR(i) .and. p(i).lt.AL(i)) then |
---|
1635 | AR(i) = p(i) |
---|
1636 | AL(i) = p(i) |
---|
1637 | A6(i) = 0. |
---|
1638 | elseif(AR(i) .gt. AL(i)) then |
---|
1639 | A6(i) = 3.*(AL(i)-p(i)) |
---|
1640 | AR(i) = AL(i) - A6(i) |
---|
1641 | else |
---|
1642 | A6(i) = 3.*(AR(i)-p(i)) |
---|
1643 | AL(i) = AR(i) - A6(i) |
---|
1644 | endif |
---|
1645 | 150 continue |
---|
1646 | end do |
---|
1647 | elseif(LMT.eq.2) then |
---|
1648 | do i=1,IM |
---|
1649 | if(abs(AR(i)-AL(i)) .GE. -A6(i)) go to 250 |
---|
1650 | fmin = p(i) + 0.25*(AR(i)-AL(i))**2/A6(i) + A6(i)*R12 |
---|
1651 | if(fmin.ge.0.) go to 250 |
---|
1652 | if(p(i).lt.AR(i) .and. p(i).lt.AL(i)) then |
---|
1653 | AR(i) = p(i) |
---|
1654 | AL(i) = p(i) |
---|
1655 | A6(i) = 0. |
---|
1656 | elseif(AR(i) .gt. AL(i)) then |
---|
1657 | A6(i) = 3.*(AL(i)-p(i)) |
---|
1658 | AR(i) = AL(i) - A6(i) |
---|
1659 | else |
---|
1660 | A6(i) = 3.*(AR(i)-p(i)) |
---|
1661 | AL(i) = AR(i) - A6(i) |
---|
1662 | endif |
---|
1663 | 250 continue |
---|
1664 | end do |
---|
1665 | endif |
---|
1666 | return |
---|
1667 | end subroutine lmtppm |
---|
1668 | ! |
---|
1669 | subroutine A2C(U,V,IMR,JMR,j1,j2,CRX,CRY,dtdx5,DTDY5) |
---|
1670 | implicit none |
---|
1671 | integer :: IMR,JMR,j1,j2 |
---|
1672 | real :: U(IMR,*),V(IMR,*),CRX(IMR,*),CRY(IMR,*),DTDX5(*),DTDY5 |
---|
1673 | integer :: i,j |
---|
1674 | ! |
---|
1675 | do j=j1,j2 |
---|
1676 | do i=2,IMR |
---|
1677 | CRX(i,J) = dtdx5(j)*(U(i,j)+U(i-1,j)) |
---|
1678 | end do |
---|
1679 | end do |
---|
1680 | ! |
---|
1681 | do j=j1,j2 |
---|
1682 | CRX(1,J) = dtdx5(j)*(U(1,j)+U(IMR,j)) |
---|
1683 | end do |
---|
1684 | ! |
---|
1685 | do i=1,IMR*JMR |
---|
1686 | CRY(i,2) = DTDY5*(V(i,2)+V(i,1)) |
---|
1687 | end do |
---|
1688 | return |
---|
1689 | end subroutine a2c |
---|
1690 | ! |
---|
1691 | subroutine cosa(cosp,cose,JNP,PI,DP) |
---|
1692 | implicit none |
---|
1693 | integer :: JNP |
---|
1694 | real :: cosp(*),cose(*),PI,DP |
---|
1695 | integer :: JMR,j,jeq |
---|
1696 | real :: ph5 |
---|
1697 | JMR = JNP-1 |
---|
1698 | do j=2,JNP |
---|
1699 | ph5 = -0.5*PI + (REAL(J-1)-0.5)*DP |
---|
1700 | cose(j) = cos(ph5) |
---|
1701 | end do |
---|
1702 | ! |
---|
1703 | JEQ = (JNP+1) / 2 |
---|
1704 | if(JMR .eq. 2*(JMR/2) ) then |
---|
1705 | do j=JNP, JEQ+1, -1 |
---|
1706 | cose(j) = cose(JNP+2-j) |
---|
1707 | enddo |
---|
1708 | else |
---|
1709 | ! cell edge at equator. |
---|
1710 | cose(JEQ+1) = 1. |
---|
1711 | do j=JNP, JEQ+2, -1 |
---|
1712 | cose(j) = cose(JNP+2-j) |
---|
1713 | enddo |
---|
1714 | endif |
---|
1715 | ! |
---|
1716 | do j=2,JMR |
---|
1717 | cosp(j) = 0.5*(cose(j)+cose(j+1)) |
---|
1718 | end do |
---|
1719 | cosp(1) = 0. |
---|
1720 | cosp(JNP) = 0. |
---|
1721 | return |
---|
1722 | end subroutine cosa |
---|
1723 | ! |
---|
1724 | subroutine cosc(cosp,cose,JNP,PI,DP) |
---|
1725 | implicit none |
---|
1726 | integer :: JNP |
---|
1727 | real :: cosp(*),cose(*),PI,DP |
---|
1728 | real :: phi |
---|
1729 | integer :: j |
---|
1730 | ! |
---|
1731 | phi = -0.5*PI |
---|
1732 | do j=2,JNP-1 |
---|
1733 | phi = phi + DP |
---|
1734 | cosp(j) = cos(phi) |
---|
1735 | end do |
---|
1736 | cosp( 1) = 0. |
---|
1737 | cosp(JNP) = 0. |
---|
1738 | ! |
---|
1739 | do j=2,JNP |
---|
1740 | cose(j) = 0.5*(cosp(j)+cosp(j-1)) |
---|
1741 | end do |
---|
1742 | ! |
---|
1743 | do j=2,JNP-1 |
---|
1744 | cosp(j) = 0.5*(cose(j)+cose(j+1)) |
---|
1745 | end do |
---|
1746 | return |
---|
1747 | end subroutine cosc |
---|
1748 | ! |
---|
1749 | SUBROUTINE qckxyz (Q,qtmp,IMR,JNP,NLAY,j1,j2,cosp,acosp, & |
---|
1750 | cross,IC,NSTEP) |
---|
1751 | ! |
---|
1752 | real,parameter :: tiny = 1.E-60 |
---|
1753 | INTEGER :: IMR,JNP,NLAY,j1,j2,IC,NSTEP |
---|
1754 | REAL :: Q(IMR,JNP,NLAY),qtmp(IMR,JNP),cosp(*),acosp(*) |
---|
1755 | logical :: cross |
---|
1756 | INTEGER :: NLAYM1,len,ip,L,icr,ipy,ipx,i |
---|
1757 | real :: qup,qly,dup,sum |
---|
1758 | ! |
---|
1759 | NLAYM1 = NLAY-1 |
---|
1760 | len = IMR*(j2-j1+1) |
---|
1761 | ip = 0 |
---|
1762 | ! |
---|
1763 | ! Top layer |
---|
1764 | L = 1 |
---|
1765 | icr = 1 |
---|
1766 | call filns(q(1,1,L),IMR,JNP,j1,j2,cosp,acosp,ipy,tiny) |
---|
1767 | if(ipy.eq.0) goto 50 |
---|
1768 | call filew(q(1,1,L),qtmp,IMR,JNP,j1,j2,ipx,tiny) |
---|
1769 | if(ipx.eq.0) goto 50 |
---|
1770 | ! |
---|
1771 | if(cross) then |
---|
1772 | call filcr(q(1,1,L),IMR,JNP,j1,j2,cosp,acosp,icr,tiny) |
---|
1773 | endif |
---|
1774 | if(icr.eq.0) goto 50 |
---|
1775 | ! |
---|
1776 | ! Vertical filling... |
---|
1777 | do i=1,len |
---|
1778 | IF( Q(i,j1,1).LT.0.) THEN |
---|
1779 | ip = ip + 1 |
---|
1780 | Q(i,j1,2) = Q(i,j1,2) + Q(i,j1,1) |
---|
1781 | Q(i,j1,1) = 0. |
---|
1782 | endif |
---|
1783 | enddo |
---|
1784 | ! |
---|
1785 | 50 continue |
---|
1786 | DO L = 2,NLAYM1 |
---|
1787 | icr = 1 |
---|
1788 | ! |
---|
1789 | call filns(q(1,1,L),IMR,JNP,j1,j2,cosp,acosp,ipy,tiny) |
---|
1790 | if(ipy.eq.0) goto 225 |
---|
1791 | call filew(q(1,1,L),qtmp,IMR,JNP,j1,j2,ipx,tiny) |
---|
1792 | if(ipx.eq.0) go to 225 |
---|
1793 | if(cross) then |
---|
1794 | call filcr(q(1,1,L),IMR,JNP,j1,j2,cosp,acosp,icr,tiny) |
---|
1795 | endif |
---|
1796 | if(icr.eq.0) goto 225 |
---|
1797 | ! |
---|
1798 | do i=1,len |
---|
1799 | IF( Q(I,j1,L).LT.0.) THEN |
---|
1800 | ! |
---|
1801 | ip = ip + 1 |
---|
1802 | ! From above |
---|
1803 | qup = Q(I,j1,L-1) |
---|
1804 | qly = -Q(I,j1,L) |
---|
1805 | dup = min(qly,qup) |
---|
1806 | Q(I,j1,L-1) = qup - dup |
---|
1807 | Q(I,j1,L ) = dup-qly |
---|
1808 | ! Below |
---|
1809 | Q(I,j1,L+1) = Q(I,j1,L+1) + Q(I,j1,L) |
---|
1810 | Q(I,j1,L) = 0. |
---|
1811 | ENDIF |
---|
1812 | ENDDO |
---|
1813 | 225 CONTINUE |
---|
1814 | END DO |
---|
1815 | ! |
---|
1816 | ! BOTTOM LAYER |
---|
1817 | sum = 0. |
---|
1818 | L = NLAY |
---|
1819 | ! |
---|
1820 | call filns(q(1,1,L),IMR,JNP,j1,j2,cosp,acosp,ipy,tiny) |
---|
1821 | if(ipy.eq.0) goto 911 |
---|
1822 | call filew(q(1,1,L),qtmp,IMR,JNP,j1,j2,ipx,tiny) |
---|
1823 | if(ipx.eq.0) goto 911 |
---|
1824 | ! |
---|
1825 | call filcr(q(1,1,L),IMR,JNP,j1,j2,cosp,acosp,icr,tiny) |
---|
1826 | if(icr.eq.0) goto 911 |
---|
1827 | ! |
---|
1828 | DO I=1,len |
---|
1829 | IF( Q(I,j1,L).LT.0.) THEN |
---|
1830 | ip = ip + 1 |
---|
1831 | ! |
---|
1832 | ! From above |
---|
1833 | ! |
---|
1834 | qup = Q(I,j1,NLAYM1) |
---|
1835 | qly = -Q(I,j1,L) |
---|
1836 | dup = min(qly,qup) |
---|
1837 | Q(I,j1,NLAYM1) = qup - dup |
---|
1838 | ! From "below" the surface. |
---|
1839 | sum = sum + qly-dup |
---|
1840 | Q(I,j1,L) = 0. |
---|
1841 | ENDIF |
---|
1842 | ENDDO |
---|
1843 | ! |
---|
1844 | 911 continue |
---|
1845 | ! |
---|
1846 | if(ip.gt.IMR) then |
---|
1847 | write(6,*) 'IC=',IC,' STEP=',NSTEP, & |
---|
1848 | ' Vertical filling pts=',ip |
---|
1849 | endif |
---|
1850 | ! |
---|
1851 | if(sum.gt.1.e-25) then |
---|
1852 | write(6,*) IC,NSTEP,' Mass source from the ground=',sum |
---|
1853 | endif |
---|
1854 | RETURN |
---|
1855 | END SUBROUTINE qckxyz |
---|
1856 | ! |
---|
1857 | subroutine filcr(q,IMR,JNP,j1,j2,cosp,acosp,icr,tiny) |
---|
1858 | implicit none |
---|
1859 | integer :: IMR,JNP,j1,j2,icr |
---|
1860 | real :: q(IMR,*),cosp(*),acosp(*),tiny |
---|
1861 | integer :: i,j |
---|
1862 | real :: dq,dn,d0,d1,ds,d2 |
---|
1863 | icr = 0 |
---|
1864 | do j=j1+1,j2-1 |
---|
1865 | DO i=1,IMR-1 |
---|
1866 | IF(q(i,j).LT.0.) THEN |
---|
1867 | icr = 1 |
---|
1868 | dq = - q(i,j)*cosp(j) |
---|
1869 | ! N-E |
---|
1870 | dn = q(i+1,j+1)*cosp(j+1) |
---|
1871 | d0 = max(0.,dn) |
---|
1872 | d1 = min(dq,d0) |
---|
1873 | q(i+1,j+1) = (dn - d1)*acosp(j+1) |
---|
1874 | dq = dq - d1 |
---|
1875 | ! S-E |
---|
1876 | ds = q(i+1,j-1)*cosp(j-1) |
---|
1877 | d0 = max(0.,ds) |
---|
1878 | d2 = min(dq,d0) |
---|
1879 | q(i+1,j-1) = (ds - d2)*acosp(j-1) |
---|
1880 | q(i,j) = (d2 - dq)*acosp(j) + tiny |
---|
1881 | endif |
---|
1882 | 50 CONTINUE |
---|
1883 | END DO |
---|
1884 | if(icr.eq.0 .and. q(IMR,j).ge.0.) goto 65 |
---|
1885 | DO i=2,IMR |
---|
1886 | IF(q(i,j).LT.0.) THEN |
---|
1887 | icr = 1 |
---|
1888 | dq = - q(i,j)*cosp(j) |
---|
1889 | ! N-W |
---|
1890 | dn = q(i-1,j+1)*cosp(j+1) |
---|
1891 | d0 = max(0.,dn) |
---|
1892 | d1 = min(dq,d0) |
---|
1893 | q(i-1,j+1) = (dn - d1)*acosp(j+1) |
---|
1894 | dq = dq - d1 |
---|
1895 | ! S-W |
---|
1896 | ds = q(i-1,j-1)*cosp(j-1) |
---|
1897 | d0 = max(0.,ds) |
---|
1898 | d2 = min(dq,d0) |
---|
1899 | q(i-1,j-1) = (ds - d2)*acosp(j-1) |
---|
1900 | q(i,j) = (d2 - dq)*acosp(j) + tiny |
---|
1901 | endif |
---|
1902 | END DO |
---|
1903 | ! ***************************************** |
---|
1904 | ! i=1 |
---|
1905 | i=1 |
---|
1906 | IF(q(i,j).LT.0.) THEN |
---|
1907 | icr = 1 |
---|
1908 | dq = - q(i,j)*cosp(j) |
---|
1909 | ! N-W |
---|
1910 | dn = q(IMR,j+1)*cosp(j+1) |
---|
1911 | d0 = max(0.,dn) |
---|
1912 | d1 = min(dq,d0) |
---|
1913 | q(IMR,j+1) = (dn - d1)*acosp(j+1) |
---|
1914 | dq = dq - d1 |
---|
1915 | ! S-W |
---|
1916 | ds = q(IMR,j-1)*cosp(j-1) |
---|
1917 | d0 = max(0.,ds) |
---|
1918 | d2 = min(dq,d0) |
---|
1919 | q(IMR,j-1) = (ds - d2)*acosp(j-1) |
---|
1920 | q(i,j) = (d2 - dq)*acosp(j) + tiny |
---|
1921 | endif |
---|
1922 | ! ***************************************** |
---|
1923 | ! i=IMR |
---|
1924 | i=IMR |
---|
1925 | IF(q(i,j).LT.0.) THEN |
---|
1926 | icr = 1 |
---|
1927 | dq = - q(i,j)*cosp(j) |
---|
1928 | ! N-E |
---|
1929 | dn = q(1,j+1)*cosp(j+1) |
---|
1930 | d0 = max(0.,dn) |
---|
1931 | d1 = min(dq,d0) |
---|
1932 | q(1,j+1) = (dn - d1)*acosp(j+1) |
---|
1933 | dq = dq - d1 |
---|
1934 | ! S-E |
---|
1935 | ds = q(1,j-1)*cosp(j-1) |
---|
1936 | d0 = max(0.,ds) |
---|
1937 | d2 = min(dq,d0) |
---|
1938 | q(1,j-1) = (ds - d2)*acosp(j-1) |
---|
1939 | q(i,j) = (d2 - dq)*acosp(j) + tiny |
---|
1940 | endif |
---|
1941 | ! ***************************************** |
---|
1942 | 65 continue |
---|
1943 | end do |
---|
1944 | ! |
---|
1945 | do i=1,IMR |
---|
1946 | if(q(i,j1).lt.0. .or. q(i,j2).lt.0.) then |
---|
1947 | icr = 1 |
---|
1948 | goto 80 |
---|
1949 | endif |
---|
1950 | enddo |
---|
1951 | ! |
---|
1952 | 80 continue |
---|
1953 | ! |
---|
1954 | if(q(1,1).lt.0. .or. q(1,jnp).lt.0.) then |
---|
1955 | icr = 1 |
---|
1956 | endif |
---|
1957 | ! |
---|
1958 | return |
---|
1959 | end subroutine filcr |
---|
1960 | ! |
---|
1961 | subroutine filns(q,IMR,JNP,j1,j2,cosp,acosp,ipy,tiny) |
---|
1962 | implicit none |
---|
1963 | integer :: IMR,JNP,j1,j2,ipy |
---|
1964 | real :: q(IMR,*),cosp(*),acosp(*),tiny |
---|
1965 | real :: DP,CAP1,dq,dn,d0,d1,ds,d2 |
---|
1966 | INTEGER :: i,j |
---|
1967 | ! logical first |
---|
1968 | ! data first /.true./ |
---|
1969 | ! save cap1 |
---|
1970 | ! |
---|
1971 | ! if(first) then |
---|
1972 | DP = 4.*ATAN(1.)/REAL(JNP-1) |
---|
1973 | CAP1 = IMR*(1.-COS((j1-1.5)*DP))/DP |
---|
1974 | ! first = .false. |
---|
1975 | ! endif |
---|
1976 | ! |
---|
1977 | ipy = 0 |
---|
1978 | do j=j1+1,j2-1 |
---|
1979 | DO i=1,IMR |
---|
1980 | IF(q(i,j).LT.0.) THEN |
---|
1981 | ipy = 1 |
---|
1982 | dq = - q(i,j)*cosp(j) |
---|
1983 | ! North |
---|
1984 | dn = q(i,j+1)*cosp(j+1) |
---|
1985 | d0 = max(0.,dn) |
---|
1986 | d1 = min(dq,d0) |
---|
1987 | q(i,j+1) = (dn - d1)*acosp(j+1) |
---|
1988 | dq = dq - d1 |
---|
1989 | ! South |
---|
1990 | ds = q(i,j-1)*cosp(j-1) |
---|
1991 | d0 = max(0.,ds) |
---|
1992 | d2 = min(dq,d0) |
---|
1993 | q(i,j-1) = (ds - d2)*acosp(j-1) |
---|
1994 | q(i,j) = (d2 - dq)*acosp(j) + tiny |
---|
1995 | endif |
---|
1996 | END DO |
---|
1997 | end do |
---|
1998 | ! |
---|
1999 | do i=1,imr |
---|
2000 | IF(q(i,j1).LT.0.) THEN |
---|
2001 | ipy = 1 |
---|
2002 | dq = - q(i,j1)*cosp(j1) |
---|
2003 | ! North |
---|
2004 | dn = q(i,j1+1)*cosp(j1+1) |
---|
2005 | d0 = max(0.,dn) |
---|
2006 | d1 = min(dq,d0) |
---|
2007 | q(i,j1+1) = (dn - d1)*acosp(j1+1) |
---|
2008 | q(i,j1) = (d1 - dq)*acosp(j1) + tiny |
---|
2009 | endif |
---|
2010 | enddo |
---|
2011 | ! |
---|
2012 | j = j2 |
---|
2013 | do i=1,imr |
---|
2014 | IF(q(i,j).LT.0.) THEN |
---|
2015 | ipy = 1 |
---|
2016 | dq = - q(i,j)*cosp(j) |
---|
2017 | ! South |
---|
2018 | ds = q(i,j-1)*cosp(j-1) |
---|
2019 | d0 = max(0.,ds) |
---|
2020 | d2 = min(dq,d0) |
---|
2021 | q(i,j-1) = (ds - d2)*acosp(j-1) |
---|
2022 | q(i,j) = (d2 - dq)*acosp(j) + tiny |
---|
2023 | endif |
---|
2024 | enddo |
---|
2025 | ! |
---|
2026 | ! Check Poles. |
---|
2027 | if(q(1,1).lt.0.) then |
---|
2028 | dq = q(1,1)*cap1/REAL(IMR)*acosp(j1) |
---|
2029 | do i=1,imr |
---|
2030 | q(i,1) = 0. |
---|
2031 | q(i,j1) = q(i,j1) + dq |
---|
2032 | if(q(i,j1).lt.0.) ipy = 1 |
---|
2033 | enddo |
---|
2034 | endif |
---|
2035 | ! |
---|
2036 | if(q(1,JNP).lt.0.) then |
---|
2037 | dq = q(1,JNP)*cap1/REAL(IMR)*acosp(j2) |
---|
2038 | do i=1,imr |
---|
2039 | q(i,JNP) = 0. |
---|
2040 | q(i,j2) = q(i,j2) + dq |
---|
2041 | if(q(i,j2).lt.0.) ipy = 1 |
---|
2042 | enddo |
---|
2043 | endif |
---|
2044 | ! |
---|
2045 | return |
---|
2046 | end subroutine filns |
---|
2047 | ! |
---|
2048 | subroutine filew(q,qtmp,IMR,JNP,j1,j2,ipx,tiny) |
---|
2049 | implicit none |
---|
2050 | integer :: IMR,JNP,j1,j2,ipx |
---|
2051 | real :: q(IMR,*),qtmp(JNP,IMR),tiny |
---|
2052 | integer :: i,j |
---|
2053 | real :: d0,d1,d2 |
---|
2054 | ! |
---|
2055 | ipx = 0 |
---|
2056 | ! Copy & swap direction for vectorization. |
---|
2057 | do i=1,imr |
---|
2058 | do j=j1,j2 |
---|
2059 | qtmp(j,i) = q(i,j) |
---|
2060 | end do |
---|
2061 | end do |
---|
2062 | ! |
---|
2063 | do i=2,imr-1 |
---|
2064 | do j=j1,j2 |
---|
2065 | if(qtmp(j,i).lt.0.) then |
---|
2066 | ipx = 1 |
---|
2067 | ! west |
---|
2068 | d0 = max(0.,qtmp(j,i-1)) |
---|
2069 | d1 = min(-qtmp(j,i),d0) |
---|
2070 | qtmp(j,i-1) = qtmp(j,i-1) - d1 |
---|
2071 | qtmp(j,i) = qtmp(j,i) + d1 |
---|
2072 | ! east |
---|
2073 | d0 = max(0.,qtmp(j,i+1)) |
---|
2074 | d2 = min(-qtmp(j,i),d0) |
---|
2075 | qtmp(j,i+1) = qtmp(j,i+1) - d2 |
---|
2076 | qtmp(j,i) = qtmp(j,i) + d2 + tiny |
---|
2077 | endif |
---|
2078 | end do |
---|
2079 | end do |
---|
2080 | ! |
---|
2081 | i=1 |
---|
2082 | do j=j1,j2 |
---|
2083 | if(qtmp(j,i).lt.0.) then |
---|
2084 | ipx = 1 |
---|
2085 | ! west |
---|
2086 | d0 = max(0.,qtmp(j,imr)) |
---|
2087 | d1 = min(-qtmp(j,i),d0) |
---|
2088 | qtmp(j,imr) = qtmp(j,imr) - d1 |
---|
2089 | qtmp(j,i) = qtmp(j,i) + d1 |
---|
2090 | ! east |
---|
2091 | d0 = max(0.,qtmp(j,i+1)) |
---|
2092 | d2 = min(-qtmp(j,i),d0) |
---|
2093 | qtmp(j,i+1) = qtmp(j,i+1) - d2 |
---|
2094 | ! |
---|
2095 | qtmp(j,i) = qtmp(j,i) + d2 + tiny |
---|
2096 | endif |
---|
2097 | 65 continue |
---|
2098 | end do |
---|
2099 | i=IMR |
---|
2100 | do j=j1,j2 |
---|
2101 | if(qtmp(j,i).lt.0.) then |
---|
2102 | ipx = 1 |
---|
2103 | ! west |
---|
2104 | d0 = max(0.,qtmp(j,i-1)) |
---|
2105 | d1 = min(-qtmp(j,i),d0) |
---|
2106 | qtmp(j,i-1) = qtmp(j,i-1) - d1 |
---|
2107 | qtmp(j,i) = qtmp(j,i) + d1 |
---|
2108 | ! east |
---|
2109 | d0 = max(0.,qtmp(j,1)) |
---|
2110 | d2 = min(-qtmp(j,i),d0) |
---|
2111 | qtmp(j,1) = qtmp(j,1) - d2 |
---|
2112 | ! |
---|
2113 | qtmp(j,i) = qtmp(j,i) + d2 + tiny |
---|
2114 | endif |
---|
2115 | end do |
---|
2116 | ! |
---|
2117 | if(ipx.ne.0) then |
---|
2118 | do j=j1,j2 |
---|
2119 | do i=1,imr |
---|
2120 | q(i,j) = qtmp(j,i) |
---|
2121 | end do |
---|
2122 | end do |
---|
2123 | else |
---|
2124 | ! |
---|
2125 | ! Poles. |
---|
2126 | if(q(1,1).lt.0.OR. q(1,JNP).lt.0.) ipx = 1 |
---|
2127 | endif |
---|
2128 | return |
---|
2129 | end subroutine filew |
---|
2130 | ! |
---|
2131 | subroutine zflip(q,im,km,nc) |
---|
2132 | implicit none |
---|
2133 | ! This routine flip the array q (in the vertical). |
---|
2134 | integer :: im,km,nc |
---|
2135 | real :: q(im,km,nc) |
---|
2136 | ! local dynamic array |
---|
2137 | real :: qtmp(im,km) |
---|
2138 | integer :: IC,k,i |
---|
2139 | ! |
---|
2140 | do IC = 1, nc |
---|
2141 | ! |
---|
2142 | do k=1,km |
---|
2143 | do i=1,im |
---|
2144 | qtmp(i,k) = q(i,km+1-k,IC) |
---|
2145 | end do |
---|
2146 | end do |
---|
2147 | ! |
---|
2148 | do i=1,im*km |
---|
2149 | q(i,1,IC) = qtmp(i,1) |
---|
2150 | 2000 continue |
---|
2151 | end do |
---|
2152 | end do |
---|
2153 | return |
---|
2154 | end subroutine zflip |
---|