[524] | 1 | ! |
---|
[1403] | 2 | ! $Id: ppm3d.f90 5246 2024-10-21 12:58:45Z evignon $ |
---|
[524] | 3 | ! |
---|
| 4 | |
---|
[5246] | 5 | !From lin@explorer.gsfc.nasa.gov Wed Apr 15 17:44:44 1998 |
---|
| 6 | !Date: Wed, 15 Apr 1998 11:37:03 -0400 |
---|
| 7 | !From: lin@explorer.gsfc.nasa.gov |
---|
| 8 | !To: Frederic.Hourdin@lmd.jussieu.fr |
---|
| 9 | !Subject: 3D transport module of the GSFC CTM and GEOS GCM |
---|
[524] | 10 | |
---|
| 11 | |
---|
[5246] | 12 | !This code is sent to you by S-J Lin, DAO, NASA-GSFC |
---|
[524] | 13 | |
---|
[5246] | 14 | !Note: this version is intended for machines like CRAY |
---|
| 15 | !-90. No multitasking directives implemented. |
---|
[524] | 16 | |
---|
| 17 | |
---|
[5246] | 18 | ! ******************************************************************** |
---|
| 19 | ! |
---|
| 20 | ! TransPort Core for Goddard Chemistry Transport Model (G-CTM), Goddard |
---|
| 21 | ! Earth Observing System General Circulation Model (GEOS-GCM), and Data |
---|
| 22 | ! Assimilation System (GEOS-DAS). |
---|
| 23 | ! |
---|
| 24 | ! ******************************************************************** |
---|
| 25 | ! |
---|
| 26 | ! Purpose: given horizontal winds on a hybrid sigma-p surfaces, |
---|
| 27 | ! one call to tpcore updates the 3-D mixing ratio |
---|
| 28 | ! fields one time step (NDT). [vertical mass flux is computed |
---|
| 29 | ! internally consistent with the discretized hydrostatic mass |
---|
| 30 | ! continuity equation of the C-Grid GEOS-GCM (for IGD=1)]. |
---|
| 31 | ! |
---|
| 32 | ! Schemes: Multi-dimensional Flux Form Semi-Lagrangian (FFSL) scheme based |
---|
| 33 | ! on the van Leer or PPM. |
---|
| 34 | ! (see Lin and Rood 1996). |
---|
| 35 | ! Version 4.5 |
---|
| 36 | ! Last modified: Dec. 5, 1996 |
---|
| 37 | ! Major changes from version 4.0: a more general vertical hybrid sigma- |
---|
| 38 | ! pressure coordinate. |
---|
| 39 | ! Subroutines modified: xtp, ytp, fzppm, qckxyz |
---|
| 40 | ! Subroutines deleted: vanz |
---|
| 41 | ! |
---|
| 42 | ! Author: Shian-Jiann Lin |
---|
| 43 | ! mail address: |
---|
| 44 | ! Shian-Jiann Lin* |
---|
| 45 | ! Code 910.3, NASA/GSFC, Greenbelt, MD 20771 |
---|
| 46 | ! Phone: 301-286-9540 |
---|
| 47 | ! E-mail: lin@dao.gsfc.nasa.gov |
---|
| 48 | ! |
---|
| 49 | ! *affiliation: |
---|
| 50 | ! Joint Center for Earth Systems Technology |
---|
| 51 | ! The University of Maryland Baltimore County |
---|
| 52 | ! NASA - Goddard Space Flight Center |
---|
| 53 | ! References: |
---|
| 54 | ! |
---|
| 55 | ! 1. Lin, S.-J., and R. B. Rood, 1996: Multidimensional flux form semi- |
---|
| 56 | ! Lagrangian transport schemes. Mon. Wea. Rev., 124, 2046-2070. |
---|
| 57 | ! |
---|
| 58 | ! 2. Lin, S.-J., W. C. Chao, Y. C. Sud, and G. K. Walker, 1994: A class of |
---|
| 59 | ! the van Leer-type transport schemes and its applications to the moist- |
---|
| 60 | ! ure transport in a General Circulation Model. Mon. Wea. Rev., 122, |
---|
| 61 | ! 1575-1593. |
---|
| 62 | ! |
---|
| 63 | ! ****6***0*********0*********0*********0*********0*********0**********72 |
---|
| 64 | ! |
---|
| 65 | subroutine ppm3d(IGD,Q,PS1,PS2,U,V,W,NDT,IORD,JORD,KORD,NC,IMR, & |
---|
| 66 | JNP,j1,NLAY,AP,BP,PT,AE,fill,dum,Umax) |
---|
[524] | 67 | |
---|
[5246] | 68 | implicit none |
---|
[524] | 69 | |
---|
[5246] | 70 | ! rajout de d�clarations |
---|
| 71 | ! integer Jmax,kmax,ndt0,nstep,k,j,i,ic,l,js,jn,imh,iad,jad,krd |
---|
| 72 | ! integer iu,iiu,j2,jmr,js0,jt |
---|
| 73 | ! real dtdy,dtdy5,rcap,iml,jn0,imjm,pi,dl,dp |
---|
| 74 | ! real dt,cr1,maxdt,ztc,d5,sum1,sum2,ru |
---|
| 75 | ! |
---|
| 76 | ! ******************************************************************** |
---|
| 77 | ! |
---|
| 78 | ! ============= |
---|
| 79 | ! INPUT: |
---|
| 80 | ! ============= |
---|
| 81 | ! |
---|
| 82 | ! Q(IMR,JNP,NLAY,NC): mixing ratios at current time (t) |
---|
| 83 | ! NC: total # of constituents |
---|
| 84 | ! IMR: first dimension (E-W); # of Grid intervals in E-W is IMR |
---|
| 85 | ! JNP: 2nd dimension (N-S); # of Grid intervals in N-S is JNP-1 |
---|
| 86 | ! NLAY: 3rd dimension (# of layers); vertical index increases from 1 at |
---|
| 87 | ! the model top to NLAY near the surface (see fig. below). |
---|
| 88 | ! It is assumed that 6 <= NLAY <= JNP (for dynamic memory allocation) |
---|
| 89 | ! |
---|
| 90 | ! PS1(IMR,JNP): surface pressure at current time (t) |
---|
| 91 | ! PS2(IMR,JNP): surface pressure at mid-time-level (t+NDT/2) |
---|
| 92 | ! PS2 is replaced by the predicted PS (at t+NDT) on output. |
---|
| 93 | ! Note: surface pressure can have any unit or can be multiplied by any |
---|
| 94 | ! const. |
---|
| 95 | ! |
---|
| 96 | ! The pressure at layer edges are defined as follows: |
---|
| 97 | ! |
---|
| 98 | ! p(i,j,k) = AP(k)*PT + BP(k)*PS(i,j) (1) |
---|
| 99 | ! |
---|
| 100 | ! Where PT is a constant having the same unit as PS. |
---|
| 101 | ! AP and BP are unitless constants given at layer edges |
---|
| 102 | ! defining the vertical coordinate. |
---|
| 103 | ! BP(1) = 0., BP(NLAY+1) = 1. |
---|
| 104 | ! The pressure at the model top is PTOP = AP(1)*PT |
---|
| 105 | ! |
---|
| 106 | ! For pure sigma system set AP(k) = 1 for all k, PT = PTOP, |
---|
| 107 | ! BP(k) = sige(k) (sigma at edges), PS = Psfc - PTOP. |
---|
| 108 | ! |
---|
| 109 | ! Note: the sigma-P coordinate is a subset of Eq. 1, which in turn |
---|
| 110 | ! is a subset of the following even more general sigma-P-thelta coord. |
---|
| 111 | ! currently under development. |
---|
| 112 | ! p(i,j,k) = (AP(k)*PT + BP(k)*PS(i,j))/(D(k)-C(k)*TE**(-1/kapa)) |
---|
| 113 | ! |
---|
| 114 | ! ///////////////////////////////// |
---|
| 115 | ! / \ ------------- PTOP -------------- AP(1), BP(1) |
---|
| 116 | ! | |
---|
| 117 | ! delp(1) | ........... Q(i,j,1) ............ |
---|
| 118 | ! | |
---|
| 119 | ! W(1) \ / --------------------------------- AP(2), BP(2) |
---|
| 120 | ! |
---|
| 121 | ! |
---|
| 122 | ! |
---|
| 123 | ! W(k-1) / \ --------------------------------- AP(k), BP(k) |
---|
| 124 | ! | |
---|
| 125 | ! delp(K) | ........... Q(i,j,k) ............ |
---|
| 126 | ! | |
---|
| 127 | ! W(k) \ / --------------------------------- AP(k+1), BP(k+1) |
---|
| 128 | ! |
---|
| 129 | ! |
---|
| 130 | ! |
---|
| 131 | ! / \ --------------------------------- AP(NLAY), BP(NLAY) |
---|
| 132 | ! | |
---|
| 133 | ! delp(NLAY) | ........... Q(i,j,NLAY) ......... |
---|
| 134 | ! | |
---|
| 135 | ! W(NLAY)=0 \ / ------------- surface ----------- AP(NLAY+1), BP(NLAY+1) |
---|
| 136 | ! ////////////////////////////////// |
---|
| 137 | ! |
---|
| 138 | ! U(IMR,JNP,NLAY) & V(IMR,JNP,NLAY):winds (m/s) at mid-time-level (t+NDT/2) |
---|
| 139 | ! U and V may need to be polar filtered in advance in some cases. |
---|
| 140 | ! |
---|
| 141 | ! IGD: grid type on which winds are defined. |
---|
| 142 | ! IGD = 0: A-Grid [all variables defined at the same point from south |
---|
| 143 | ! pole (j=1) to north pole (j=JNP) ] |
---|
| 144 | ! |
---|
| 145 | ! IGD = 1 GEOS-GCM C-Grid |
---|
| 146 | ! [North] |
---|
| 147 | ! |
---|
| 148 | ! V(i,j) |
---|
| 149 | ! | |
---|
| 150 | ! | |
---|
| 151 | ! | |
---|
| 152 | ! U(i-1,j)---Q(i,j)---U(i,j) [EAST] |
---|
| 153 | ! | |
---|
| 154 | ! | |
---|
| 155 | ! | |
---|
| 156 | ! V(i,j-1) |
---|
| 157 | ! |
---|
| 158 | ! U(i, 1) is defined at South Pole. |
---|
| 159 | ! V(i, 1) is half grid north of the South Pole. |
---|
| 160 | ! V(i,JMR) is half grid south of the North Pole. |
---|
| 161 | ! |
---|
| 162 | ! V must be defined at j=1 and j=JMR if IGD=1 |
---|
| 163 | ! V at JNP need not be given. |
---|
| 164 | ! |
---|
| 165 | ! NDT: time step in seconds (need not be constant during the course of |
---|
| 166 | ! the integration). Suggested value: 30 min. for 4x5, 15 min. for 2x2.5 |
---|
| 167 | ! (Lat-Lon) resolution. Smaller values are recommanded if the model |
---|
| 168 | ! has a well-resolved stratosphere. |
---|
| 169 | ! |
---|
| 170 | ! J1 defines the size of the polar cap: |
---|
| 171 | ! South polar cap edge is located at -90 + (j1-1.5)*180/(JNP-1) deg. |
---|
| 172 | ! North polar cap edge is located at 90 - (j1-1.5)*180/(JNP-1) deg. |
---|
| 173 | ! There are currently only two choices (j1=2 or 3). |
---|
| 174 | ! IMR must be an even integer if j1 = 2. Recommended value: J1=3. |
---|
| 175 | ! |
---|
| 176 | ! IORD, JORD, and KORD are integers controlling various options in E-W, N-S, |
---|
| 177 | ! and vertical transport, respectively. Recommended values for positive |
---|
| 178 | ! definite scalars: IORD=JORD=3, KORD=5. Use KORD=3 for non- |
---|
| 179 | ! positive definite scalars or when linear correlation between constituents |
---|
| 180 | ! is to be maintained. |
---|
| 181 | ! |
---|
| 182 | ! _ORD= |
---|
| 183 | ! 1: 1st order upstream scheme (too diffusive, not a useful option; it |
---|
| 184 | ! can be used for debugging purposes; this is THE only known "linear" |
---|
| 185 | ! monotonic advection scheme.). |
---|
| 186 | ! 2: 2nd order van Leer (full monotonicity constraint; |
---|
| 187 | ! see Lin et al 1994, MWR) |
---|
| 188 | ! 3: monotonic PPM* (slightly improved PPM of Collela & Woodward 1984) |
---|
| 189 | ! 4: semi-monotonic PPM (same as 3, but overshoots are allowed) |
---|
| 190 | ! 5: positive-definite PPM (constraint on the subgrid distribution is |
---|
| 191 | ! only strong enough to prevent generation of negative values; |
---|
| 192 | ! both overshoots & undershoots are possible). |
---|
| 193 | ! 6: un-constrained PPM (nearly diffusion free; slightly faster but |
---|
| 194 | ! positivity not quaranteed. Use this option only when the fields |
---|
| 195 | ! and winds are very smooth). |
---|
| 196 | ! |
---|
| 197 | ! *PPM: Piece-wise Parabolic Method |
---|
| 198 | ! |
---|
| 199 | ! Note that KORD <=2 options are no longer supported. DO not use option 4 or 5. |
---|
| 200 | ! for non-positive definite scalars (such as Ertel Potential Vorticity). |
---|
| 201 | ! |
---|
| 202 | ! The implicit numerical diffusion decreases as _ORD increases. |
---|
| 203 | ! The last two options (ORDER=5, 6) should only be used when there is |
---|
| 204 | ! significant explicit diffusion (such as a turbulence parameterization). You |
---|
| 205 | ! might get dispersive results otherwise. |
---|
| 206 | ! No filter of any kind is applied to the constituent fields here. |
---|
| 207 | ! |
---|
| 208 | ! AE: Radius of the sphere (meters). |
---|
| 209 | ! Recommended value for the planet earth: 6.371E6 |
---|
| 210 | ! |
---|
| 211 | ! fill(logical): flag to do filling for negatives (see note below). |
---|
| 212 | ! |
---|
| 213 | ! Umax: Estimate (upper limit) of the maximum U-wind speed (m/s). |
---|
| 214 | ! (220 m/s is a good value for troposphere model; 280 m/s otherwise) |
---|
| 215 | ! |
---|
| 216 | ! ============= |
---|
| 217 | ! Output |
---|
| 218 | ! ============= |
---|
| 219 | ! |
---|
| 220 | ! Q: mixing ratios at future time (t+NDT) (original values are over-written) |
---|
| 221 | ! W(NLAY): large-scale vertical mass flux as diagnosed from the hydrostatic |
---|
| 222 | ! relationship. W will have the same unit as PS1 and PS2 (eg, mb). |
---|
| 223 | ! W must be divided by NDT to get the correct mass-flux unit. |
---|
| 224 | ! The vertical Courant number C = W/delp_UPWIND, where delp_UPWIND |
---|
| 225 | ! is the pressure thickness in the "upwind" direction. For example, |
---|
| 226 | ! C(k) = W(k)/delp(k) if W(k) > 0; |
---|
| 227 | ! C(k) = W(k)/delp(k+1) if W(k) < 0. |
---|
| 228 | ! ( W > 0 is downward, ie, toward surface) |
---|
| 229 | ! PS2: predicted PS at t+NDT (original values are over-written) |
---|
| 230 | ! |
---|
| 231 | ! ******************************************************************** |
---|
| 232 | ! NOTES: |
---|
| 233 | ! This forward-in-time upstream-biased transport scheme reduces to |
---|
| 234 | ! the 2nd order center-in-time center-in-space mass continuity eqn. |
---|
| 235 | ! if Q = 1 (constant fields will remain constant). This also ensures |
---|
| 236 | ! that the computed vertical velocity to be identical to GEOS-1 GCM |
---|
| 237 | ! for on-line transport. |
---|
| 238 | ! |
---|
| 239 | ! A larger polar cap is used if j1=3 (recommended for C-Grid winds or when |
---|
| 240 | ! winds are noisy near poles). |
---|
| 241 | ! |
---|
| 242 | ! Flux-Form Semi-Lagrangian transport in the East-West direction is used |
---|
| 243 | ! when and where Courant # is greater than one. |
---|
| 244 | ! |
---|
| 245 | ! The user needs to change the parameter Jmax or Kmax if the resolution |
---|
| 246 | ! is greater than 0.5 deg in N-S or 150 layers in the vertical direction. |
---|
| 247 | ! (this TransPort Core is otherwise resolution independent and can be used |
---|
| 248 | ! as a library routine). |
---|
| 249 | ! |
---|
| 250 | ! PPM is 4th order accurate when grid spacing is uniform (x & y); 3rd |
---|
| 251 | ! order accurate for non-uniform grid (vertical sigma coord.). |
---|
| 252 | ! |
---|
| 253 | ! Time step is limitted only by transport in the meridional direction. |
---|
| 254 | ! (the FFSL scheme is not implemented in the meridional direction). |
---|
| 255 | ! |
---|
| 256 | ! Since only 1-D limiters are applied, negative values could |
---|
| 257 | ! potentially be generated when large time step is used and when the |
---|
| 258 | ! initial fields contain discontinuities. |
---|
| 259 | ! This does not necessarily imply the integration is unstable. |
---|
| 260 | ! These negatives are typically very small. A filling algorithm is |
---|
| 261 | ! activated if the user set "fill" to be true. |
---|
| 262 | ! |
---|
| 263 | ! The van Leer scheme used here is nearly as accurate as the original PPM |
---|
| 264 | ! due to the use of a 4th order accurate reference slope. The PPM imple- |
---|
| 265 | ! mented here is an improvement over the original and is also based on |
---|
| 266 | ! the 4th order reference slope. |
---|
| 267 | ! |
---|
| 268 | ! ****6***0*********0*********0*********0*********0*********0**********72 |
---|
| 269 | ! |
---|
| 270 | ! User modifiable parameters |
---|
| 271 | ! |
---|
| 272 | integer,parameter :: Jmax = 361, kmax = 150 |
---|
| 273 | ! |
---|
| 274 | ! ****6***0*********0*********0*********0*********0*********0**********72 |
---|
| 275 | ! |
---|
| 276 | ! Input-Output arrays |
---|
| 277 | ! |
---|
[524] | 278 | |
---|
[5246] | 279 | real :: Q(IMR,JNP,NLAY,NC),PS1(IMR,JNP),PS2(IMR,JNP), & |
---|
| 280 | U(IMR,JNP,NLAY),V(IMR,JNP,NLAY),AP(NLAY+1), & |
---|
| 281 | BP(NLAY+1),W(IMR,JNP,NLAY),NDT,val(NLAY),Umax |
---|
| 282 | integer :: IGD,IORD,JORD,KORD,NC,IMR,JNP,j1,NLAY,AE |
---|
| 283 | integer :: IMRD2 |
---|
| 284 | real :: PT |
---|
| 285 | logical :: cross, fill, dum |
---|
| 286 | ! |
---|
| 287 | ! Local dynamic arrays |
---|
| 288 | ! |
---|
| 289 | real :: CRX(IMR,JNP),CRY(IMR,JNP),xmass(IMR,JNP),ymass(IMR,JNP), & |
---|
| 290 | fx1(IMR+1),DPI(IMR,JNP,NLAY),delp1(IMR,JNP,NLAY), & |
---|
| 291 | WK1(IMR,JNP,NLAY),PU(IMR,JNP),PV(IMR,JNP),DC2(IMR,JNP), & |
---|
| 292 | delp2(IMR,JNP,NLAY),DQ(IMR,JNP,NLAY,NC),VA(IMR,JNP), & |
---|
| 293 | UA(IMR,JNP),qtmp(-IMR:2*IMR) |
---|
| 294 | ! |
---|
| 295 | ! Local static arrays |
---|
| 296 | ! |
---|
| 297 | real :: DTDX(Jmax), DTDX5(Jmax), acosp(Jmax), & |
---|
| 298 | cosp(Jmax), cose(Jmax), DAP(kmax),DBK(Kmax) |
---|
| 299 | data NDT0, NSTEP /0, 0/ |
---|
| 300 | data cross /.true./ |
---|
| 301 | REAL :: DTDY, DTDY5, RCAP |
---|
| 302 | INTEGER :: JS0, JN0, IML, JMR, IMJM |
---|
| 303 | SAVE DTDY, DTDY5, RCAP, JS0, JN0, IML, & |
---|
| 304 | DTDX, DTDX5, ACOSP, COSP, COSE, DAP,DBK |
---|
| 305 | ! |
---|
| 306 | INTEGER :: NDT0, NSTEP, j2, k,j,i,ic,l,JS,JN,IMH |
---|
| 307 | INTEGER :: IU,IIU,JT,iad,jad,krd |
---|
| 308 | REAL :: r23,r3,PI,DL,DP,DT,CR1,MAXDT,ZTC,D5 |
---|
| 309 | REAL :: sum1,sum2,ru |
---|
[524] | 310 | |
---|
[5246] | 311 | JMR = JNP -1 |
---|
| 312 | IMJM = IMR*JNP |
---|
| 313 | j2 = JNP - j1 + 1 |
---|
| 314 | NSTEP = NSTEP + 1 |
---|
| 315 | ! |
---|
| 316 | ! *********** Initialization ********************** |
---|
| 317 | if(NSTEP.eq.1) then |
---|
| 318 | ! |
---|
| 319 | write(6,*) '------------------------------------ ' |
---|
| 320 | write(6,*) 'NASA/GSFC Transport Core Version 4.5' |
---|
| 321 | write(6,*) '------------------------------------ ' |
---|
| 322 | ! |
---|
| 323 | WRITE(6,*) 'IMR=',IMR,' JNP=',JNP,' NLAY=',NLAY,' j1=',j1 |
---|
| 324 | WRITE(6,*) 'NC=',NC,IORD,JORD,KORD,NDT |
---|
| 325 | ! |
---|
| 326 | ! controles sur les parametres |
---|
| 327 | if(NLAY.LT.6) then |
---|
| 328 | write(6,*) 'NLAY must be >= 6' |
---|
| 329 | stop |
---|
| 330 | endif |
---|
| 331 | if (JNP.LT.NLAY) then |
---|
| 332 | write(6,*) 'JNP must be >= NLAY' |
---|
| 333 | stop |
---|
| 334 | endif |
---|
| 335 | IMRD2=mod(IMR,2) |
---|
| 336 | if (j1.eq.2.and.IMRD2.NE.0) then |
---|
| 337 | write(6,*) 'if j1=2 IMR must be an even integer' |
---|
| 338 | stop |
---|
| 339 | endif |
---|
[524] | 340 | |
---|
[5246] | 341 | ! |
---|
| 342 | if(Jmax.lt.JNP .or. Kmax.lt.NLAY) then |
---|
| 343 | write(6,*) 'Jmax or Kmax is too small' |
---|
| 344 | stop |
---|
| 345 | endif |
---|
| 346 | ! |
---|
| 347 | DO k=1,NLAY |
---|
| 348 | DAP(k) = (AP(k+1) - AP(k))*PT |
---|
| 349 | DBK(k) = BP(k+1) - BP(k) |
---|
| 350 | ENDDO |
---|
| 351 | ! |
---|
| 352 | PI = 4. * ATAN(1.) |
---|
| 353 | DL = 2.*PI / REAL(IMR) |
---|
| 354 | DP = PI / REAL(JMR) |
---|
| 355 | ! |
---|
| 356 | if(IGD.eq.0) then |
---|
| 357 | ! Compute analytic cosine at cell edges |
---|
| 358 | call cosa(cosp,cose,JNP,PI,DP) |
---|
| 359 | else |
---|
| 360 | ! Define cosine consistent with GEOS-GCM (using dycore2.0 or later) |
---|
| 361 | call cosc(cosp,cose,JNP,PI,DP) |
---|
| 362 | endif |
---|
| 363 | ! |
---|
| 364 | do J=2,JMR |
---|
| 365 | acosp(j) = 1. / cosp(j) |
---|
| 366 | end do |
---|
| 367 | ! |
---|
| 368 | ! Inverse of the Scaled polar cap area. |
---|
| 369 | ! |
---|
| 370 | RCAP = DP / (IMR*(1.-COS((j1-1.5)*DP))) |
---|
| 371 | acosp(1) = RCAP |
---|
| 372 | acosp(JNP) = RCAP |
---|
| 373 | endif |
---|
| 374 | ! |
---|
| 375 | if(NDT0 .ne. NDT) then |
---|
| 376 | DT = NDT |
---|
| 377 | NDT0 = NDT |
---|
[524] | 378 | |
---|
[5246] | 379 | if(Umax .lt. 180.) then |
---|
| 380 | write(6,*) 'Umax may be too small!' |
---|
| 381 | endif |
---|
| 382 | CR1 = abs(Umax*DT)/(DL*AE) |
---|
| 383 | MaxDT = DP*AE / abs(Umax) + 0.5 |
---|
| 384 | write(6,*)'Largest time step for max(V)=',Umax,' is ',MaxDT |
---|
| 385 | if(MaxDT .lt. abs(NDT)) then |
---|
| 386 | write(6,*) 'Warning!!! NDT maybe too large!' |
---|
| 387 | endif |
---|
| 388 | ! |
---|
| 389 | if(CR1.ge.0.95) then |
---|
| 390 | JS0 = 0 |
---|
| 391 | JN0 = 0 |
---|
| 392 | IML = IMR-2 |
---|
| 393 | ZTC = 0. |
---|
| 394 | else |
---|
| 395 | ZTC = acos(CR1) * (180./PI) |
---|
| 396 | ! |
---|
| 397 | JS0 = REAL(JMR)*(90.-ZTC)/180. + 2 |
---|
| 398 | JS0 = max(JS0, J1+1) |
---|
| 399 | IML = min(6*JS0/(J1-1)+2, 4*IMR/5) |
---|
| 400 | JN0 = JNP-JS0+1 |
---|
| 401 | endif |
---|
| 402 | ! |
---|
| 403 | ! |
---|
| 404 | do J=2,JMR |
---|
| 405 | DTDX(j) = DT / ( DL*AE*COSP(J) ) |
---|
| 406 | |
---|
| 407 | ! print*,'dtdx=',dtdx(j) |
---|
| 408 | DTDX5(j) = 0.5*DTDX(j) |
---|
| 409 | enddo |
---|
| 410 | ! |
---|
| 411 | |
---|
| 412 | DTDY = DT /(AE*DP) |
---|
| 413 | ! print*,'dtdy=',dtdy |
---|
| 414 | DTDY5 = 0.5*DTDY |
---|
| 415 | ! |
---|
| 416 | ! write(6,*) 'J1=',J1,' J2=', J2 |
---|
| 417 | endif |
---|
| 418 | ! |
---|
| 419 | ! *********** End Initialization ********************** |
---|
| 420 | ! |
---|
| 421 | ! delp = pressure thickness: the psudo-density in a hydrostatic system. |
---|
| 422 | do k=1,NLAY |
---|
| 423 | do j=1,JNP |
---|
| 424 | do i=1,IMR |
---|
| 425 | delp1(i,j,k)=DAP(k)+DBK(k)*PS1(i,j) |
---|
| 426 | delp2(i,j,k)=DAP(k)+DBK(k)*PS2(i,j) |
---|
[524] | 427 | enddo |
---|
[5246] | 428 | enddo |
---|
| 429 | enddo |
---|
[524] | 430 | |
---|
[5246] | 431 | ! |
---|
| 432 | if(j1.ne.2) then |
---|
| 433 | DO IC=1,NC |
---|
| 434 | DO L=1,NLAY |
---|
| 435 | DO I=1,IMR |
---|
| 436 | Q(I, 2,L,IC) = Q(I, 1,L,IC) |
---|
| 437 | Q(I,JMR,L,IC) = Q(I,JNP,L,IC) |
---|
| 438 | END DO |
---|
| 439 | END DO |
---|
| 440 | END DO |
---|
| 441 | endif |
---|
| 442 | ! |
---|
| 443 | ! Compute "tracer density" |
---|
| 444 | DO IC=1,NC |
---|
| 445 | DO k=1,NLAY |
---|
| 446 | DO j=1,JNP |
---|
| 447 | DO i=1,IMR |
---|
| 448 | DQ(i,j,k,IC) = Q(i,j,k,IC)*delp1(i,j,k) |
---|
| 449 | END DO |
---|
| 450 | END DO |
---|
| 451 | END DO |
---|
| 452 | END DO |
---|
| 453 | ! |
---|
| 454 | do k=1,NLAY |
---|
| 455 | ! |
---|
| 456 | if(IGD.eq.0) then |
---|
| 457 | ! Convert winds on A-Grid to Courant # on C-Grid. |
---|
| 458 | call A2C(U(1,1,k),V(1,1,k),IMR,JMR,j1,j2,CRX,CRY,dtdx5,DTDY5) |
---|
| 459 | else |
---|
| 460 | ! Convert winds on C-grid to Courant # |
---|
| 461 | do j=j1,j2 |
---|
| 462 | do i=2,IMR |
---|
| 463 | CRX(i,J) = dtdx(j)*U(i-1,j,k) |
---|
| 464 | end do |
---|
| 465 | end do |
---|
| 466 | |
---|
| 467 | ! |
---|
| 468 | do j=j1,j2 |
---|
| 469 | CRX(1,J) = dtdx(j)*U(IMR,j,k) |
---|
| 470 | 50 continue |
---|
| 471 | end do |
---|
| 472 | ! |
---|
| 473 | do i=1,IMR*JMR |
---|
| 474 | CRY(i,2) = DTDY*V(i,1,k) |
---|
| 475 | end do |
---|
| 476 | endif |
---|
| 477 | ! |
---|
| 478 | ! Determine JS and JN |
---|
| 479 | JS = j1 |
---|
| 480 | JN = j2 |
---|
| 481 | ! |
---|
| 482 | do j=JS0,j1+1,-1 |
---|
| 483 | do i=1,IMR |
---|
| 484 | if(abs(CRX(i,j)).GT.1.) then |
---|
| 485 | JS = j |
---|
| 486 | go to 2222 |
---|
| 487 | endif |
---|
| 488 | enddo |
---|
| 489 | enddo |
---|
| 490 | ! |
---|
| 491 | 2222 continue |
---|
| 492 | do j=JN0,j2-1 |
---|
| 493 | do i=1,IMR |
---|
| 494 | if(abs(CRX(i,j)).GT.1.) then |
---|
| 495 | JN = j |
---|
| 496 | go to 2233 |
---|
| 497 | endif |
---|
| 498 | enddo |
---|
| 499 | enddo |
---|
| 500 | 2233 continue |
---|
| 501 | ! |
---|
| 502 | if(j1.ne.2) then ! Enlarged polar cap. |
---|
| 503 | do i=1,IMR |
---|
| 504 | DPI(i, 2,k) = 0. |
---|
| 505 | DPI(i,JMR,k) = 0. |
---|
| 506 | enddo |
---|
| 507 | endif |
---|
| 508 | ! |
---|
| 509 | ! ******* Compute horizontal mass fluxes ************ |
---|
| 510 | ! |
---|
| 511 | ! N-S component |
---|
| 512 | do j=j1,j2+1 |
---|
| 513 | D5 = 0.5 * COSE(j) |
---|
| 514 | do i=1,IMR |
---|
| 515 | ymass(i,j) = CRY(i,j)*D5*(delp2(i,j,k) + delp2(i,j-1,k)) |
---|
| 516 | enddo |
---|
| 517 | enddo |
---|
| 518 | ! |
---|
| 519 | do j=j1,j2 |
---|
| 520 | DO i=1,IMR |
---|
| 521 | DPI(i,j,k) = (ymass(i,j) - ymass(i,j+1)) * acosp(j) |
---|
| 522 | END DO |
---|
| 523 | end do |
---|
| 524 | ! |
---|
| 525 | ! Poles |
---|
| 526 | sum1 = ymass(IMR,j1 ) |
---|
| 527 | sum2 = ymass(IMR,J2+1) |
---|
| 528 | do i=1,IMR-1 |
---|
| 529 | sum1 = sum1 + ymass(i,j1 ) |
---|
| 530 | sum2 = sum2 + ymass(i,J2+1) |
---|
| 531 | enddo |
---|
| 532 | ! |
---|
| 533 | sum1 = - sum1 * RCAP |
---|
| 534 | sum2 = sum2 * RCAP |
---|
| 535 | do i=1,IMR |
---|
| 536 | DPI(i, 1,k) = sum1 |
---|
| 537 | DPI(i,JNP,k) = sum2 |
---|
| 538 | enddo |
---|
| 539 | ! |
---|
| 540 | ! E-W component |
---|
| 541 | ! |
---|
| 542 | do j=j1,j2 |
---|
| 543 | do i=2,IMR |
---|
| 544 | PU(i,j) = 0.5 * (delp2(i,j,k) + delp2(i-1,j,k)) |
---|
| 545 | enddo |
---|
| 546 | enddo |
---|
| 547 | ! |
---|
| 548 | do j=j1,j2 |
---|
| 549 | PU(1,j) = 0.5 * (delp2(1,j,k) + delp2(IMR,j,k)) |
---|
| 550 | enddo |
---|
| 551 | ! |
---|
| 552 | do j=j1,j2 |
---|
| 553 | DO i=1,IMR |
---|
| 554 | xmass(i,j) = PU(i,j)*CRX(i,j) |
---|
| 555 | END DO |
---|
| 556 | end do |
---|
| 557 | ! |
---|
| 558 | DO j=j1,j2 |
---|
| 559 | DO i=1,IMR-1 |
---|
| 560 | DPI(i,j,k) = DPI(i,j,k) + xmass(i,j) - xmass(i+1,j) |
---|
| 561 | END DO |
---|
| 562 | END DO |
---|
| 563 | ! |
---|
| 564 | DO j=j1,j2 |
---|
| 565 | DPI(IMR,j,k) = DPI(IMR,j,k) + xmass(IMR,j) - xmass(1,j) |
---|
| 566 | END DO |
---|
| 567 | ! |
---|
| 568 | DO j=j1,j2 |
---|
| 569 | do i=1,IMR-1 |
---|
| 570 | UA(i,j) = 0.5 * (CRX(i,j)+CRX(i+1,j)) |
---|
| 571 | enddo |
---|
| 572 | enddo |
---|
| 573 | ! |
---|
| 574 | DO j=j1,j2 |
---|
| 575 | UA(imr,j) = 0.5 * (CRX(imr,j)+CRX(1,j)) |
---|
| 576 | enddo |
---|
| 577 | !cccccccccccccccccccccccccccccccccccccccccccccccccccccc |
---|
| 578 | ! Rajouts pour LMDZ.3.3 |
---|
| 579 | !cccccccccccccccccccccccccccccccccccccccccccccccccccccc |
---|
| 580 | do i=1,IMR |
---|
| 581 | do j=1,JNP |
---|
| 582 | VA(i,j)=0. |
---|
| 583 | enddo |
---|
| 584 | enddo |
---|
| 585 | |
---|
| 586 | do i=1,imr*(JMR-1) |
---|
| 587 | VA(i,2) = 0.5*(CRY(i,2)+CRY(i,3)) |
---|
| 588 | enddo |
---|
| 589 | ! |
---|
| 590 | if(j1.eq.2) then |
---|
| 591 | IMH = IMR/2 |
---|
| 592 | do i=1,IMH |
---|
| 593 | VA(i, 1) = 0.5*(CRY(i,2)-CRY(i+IMH,2)) |
---|
| 594 | VA(i+IMH, 1) = -VA(i,1) |
---|
| 595 | VA(i, JNP) = 0.5*(CRY(i,JNP)-CRY(i+IMH,JMR)) |
---|
| 596 | VA(i+IMH,JNP) = -VA(i,JNP) |
---|
| 597 | enddo |
---|
| 598 | VA(IMR,1)=VA(1,1) |
---|
| 599 | VA(IMR,JNP)=VA(1,JNP) |
---|
| 600 | endif |
---|
| 601 | ! |
---|
| 602 | ! ****6***0*********0*********0*********0*********0*********0**********72 |
---|
| 603 | do IC=1,NC |
---|
| 604 | ! |
---|
| 605 | do i=1,IMJM |
---|
| 606 | wk1(i,1,1) = 0. |
---|
| 607 | wk1(i,1,2) = 0. |
---|
| 608 | enddo |
---|
| 609 | ! |
---|
| 610 | ! E-W advective cross term |
---|
| 611 | do j=J1,J2 |
---|
| 612 | if(J.GT.JS .and. J.LT.JN) GO TO 250 |
---|
| 613 | ! |
---|
| 614 | do i=1,IMR |
---|
| 615 | qtmp(i) = q(i,j,k,IC) |
---|
| 616 | enddo |
---|
| 617 | ! |
---|
| 618 | do i=-IML,0 |
---|
| 619 | qtmp(i) = q(IMR+i,j,k,IC) |
---|
| 620 | qtmp(IMR+1-i) = q(1-i,j,k,IC) |
---|
| 621 | enddo |
---|
| 622 | ! |
---|
| 623 | DO i=1,IMR |
---|
| 624 | iu = UA(i,j) |
---|
| 625 | ru = UA(i,j) - iu |
---|
| 626 | iiu = i-iu |
---|
| 627 | if(UA(i,j).GE.0.) then |
---|
| 628 | wk1(i,j,1) = qtmp(iiu)+ru*(qtmp(iiu-1)-qtmp(iiu)) |
---|
| 629 | else |
---|
| 630 | wk1(i,j,1) = qtmp(iiu)+ru*(qtmp(iiu)-qtmp(iiu+1)) |
---|
| 631 | endif |
---|
| 632 | wk1(i,j,1) = wk1(i,j,1) - qtmp(i) |
---|
| 633 | END DO |
---|
| 634 | 250 continue |
---|
| 635 | end do |
---|
| 636 | ! |
---|
| 637 | if(JN.ne.0) then |
---|
| 638 | do j=JS+1,JN-1 |
---|
| 639 | ! |
---|
| 640 | do i=1,IMR |
---|
| 641 | qtmp(i) = q(i,j,k,IC) |
---|
| 642 | enddo |
---|
| 643 | ! |
---|
| 644 | qtmp(0) = q(IMR,J,k,IC) |
---|
| 645 | qtmp(IMR+1) = q( 1,J,k,IC) |
---|
| 646 | ! |
---|
| 647 | do i=1,imr |
---|
| 648 | iu = i - UA(i,j) |
---|
| 649 | wk1(i,j,1) = UA(i,j)*(qtmp(iu) - qtmp(iu+1)) |
---|
| 650 | enddo |
---|
| 651 | enddo |
---|
| 652 | endif |
---|
| 653 | ! ****6***0*********0*********0*********0*********0*********0**********72 |
---|
| 654 | ! Contribution from the N-S advection |
---|
| 655 | do i=1,imr*(j2-j1+1) |
---|
| 656 | JT = REAL(J1) - VA(i,j1) |
---|
| 657 | wk1(i,j1,2) = VA(i,j1) * (q(i,jt,k,IC) - q(i,jt+1,k,IC)) |
---|
| 658 | enddo |
---|
| 659 | ! |
---|
| 660 | do i=1,IMJM |
---|
| 661 | wk1(i,1,1) = q(i,1,k,IC) + 0.5*wk1(i,1,1) |
---|
| 662 | wk1(i,1,2) = q(i,1,k,IC) + 0.5*wk1(i,1,2) |
---|
| 663 | enddo |
---|
| 664 | ! |
---|
| 665 | if(cross) then |
---|
| 666 | ! Add cross terms in the vertical direction. |
---|
| 667 | if(IORD .GE. 2) then |
---|
| 668 | iad = 2 |
---|
| 669 | else |
---|
| 670 | iad = 1 |
---|
| 671 | endif |
---|
| 672 | ! |
---|
| 673 | if(JORD .GE. 2) then |
---|
| 674 | jad = 2 |
---|
| 675 | else |
---|
| 676 | jad = 1 |
---|
| 677 | endif |
---|
| 678 | call xadv(IMR,JNP,j1,j2,wk1(1,1,2),UA,JS,JN,IML,DC2,iad) |
---|
| 679 | call yadv(IMR,JNP,j1,j2,wk1(1,1,1),VA,PV,W,jad) |
---|
| 680 | do j=1,JNP |
---|
| 681 | do i=1,IMR |
---|
| 682 | q(i,j,k,IC) = q(i,j,k,IC) + DC2(i,j) + PV(i,j) |
---|
| 683 | enddo |
---|
| 684 | enddo |
---|
| 685 | endif |
---|
| 686 | ! |
---|
| 687 | call xtp(IMR,JNP,IML,j1,j2,JN,JS,PU,DQ(1,1,k,IC),wk1(1,1,2) & |
---|
| 688 | ,CRX,fx1,xmass,IORD) |
---|
| 689 | |
---|
| 690 | call ytp(IMR,JNP,j1,j2,acosp,RCAP,DQ(1,1,k,IC),wk1(1,1,1),CRY, & |
---|
| 691 | DC2,ymass,WK1(1,1,3),wk1(1,1,4),WK1(1,1,5),WK1(1,1,6),JORD) |
---|
| 692 | ! |
---|
| 693 | end do |
---|
| 694 | end do |
---|
| 695 | ! |
---|
| 696 | ! ******* Compute vertical mass flux (same unit as PS) *********** |
---|
| 697 | ! |
---|
| 698 | ! 1st step: compute total column mass CONVERGENCE. |
---|
| 699 | ! |
---|
| 700 | do j=1,JNP |
---|
| 701 | do i=1,IMR |
---|
| 702 | CRY(i,j) = DPI(i,j,1) |
---|
| 703 | end do |
---|
| 704 | end do |
---|
| 705 | ! |
---|
| 706 | do k=2,NLAY |
---|
| 707 | do j=1,JNP |
---|
| 708 | do i=1,IMR |
---|
| 709 | CRY(i,j) = CRY(i,j) + DPI(i,j,k) |
---|
| 710 | end do |
---|
| 711 | end do |
---|
| 712 | end do |
---|
| 713 | ! |
---|
| 714 | do j=1,JNP |
---|
| 715 | do i=1,IMR |
---|
| 716 | ! |
---|
| 717 | ! 2nd step: compute PS2 (PS at n+1) using the hydrostatic assumption. |
---|
| 718 | ! Changes (increases) to surface pressure = total column mass convergence |
---|
| 719 | ! |
---|
| 720 | PS2(i,j) = PS1(i,j) + CRY(i,j) |
---|
| 721 | ! |
---|
| 722 | ! 3rd step: compute vertical mass flux from mass conservation principle. |
---|
| 723 | ! |
---|
| 724 | W(i,j,1) = DPI(i,j,1) - DBK(1)*CRY(i,j) |
---|
| 725 | W(i,j,NLAY) = 0. |
---|
| 726 | end do |
---|
| 727 | end do |
---|
| 728 | ! |
---|
| 729 | do k=2,NLAY-1 |
---|
| 730 | do j=1,JNP |
---|
| 731 | do i=1,IMR |
---|
| 732 | W(i,j,k) = W(i,j,k-1) + DPI(i,j,k) - DBK(k)*CRY(i,j) |
---|
| 733 | end do |
---|
| 734 | end do |
---|
| 735 | end do |
---|
| 736 | ! |
---|
| 737 | DO k=1,NLAY |
---|
| 738 | DO j=1,JNP |
---|
| 739 | DO i=1,IMR |
---|
| 740 | delp2(i,j,k) = DAP(k) + DBK(k)*PS2(i,j) |
---|
| 741 | END DO |
---|
| 742 | END DO |
---|
| 743 | END DO |
---|
| 744 | ! |
---|
| 745 | KRD = max(3, KORD) |
---|
| 746 | do IC=1,NC |
---|
| 747 | ! |
---|
| 748 | !****6***0*********0*********0*********0*********0*********0**********72 |
---|
| 749 | |
---|
| 750 | call FZPPM(IMR,JNP,NLAY,j1,DQ(1,1,1,IC),W,Q(1,1,1,IC),WK1,DPI, & |
---|
| 751 | DC2,CRX,CRY,PU,PV,xmass,ymass,delp1,KRD) |
---|
| 752 | ! |
---|
| 753 | |
---|
| 754 | if(fill) call qckxyz(DQ(1,1,1,IC),DC2,IMR,JNP,NLAY,j1,j2, & |
---|
| 755 | cosp,acosp,.false.,IC,NSTEP) |
---|
| 756 | ! |
---|
| 757 | ! Recover tracer mixing ratio from "density" using predicted |
---|
| 758 | ! "air density" (pressure thickness) at time-level n+1 |
---|
| 759 | ! |
---|
| 760 | DO k=1,NLAY |
---|
| 761 | DO j=1,JNP |
---|
| 762 | DO i=1,IMR |
---|
| 763 | Q(i,j,k,IC) = DQ(i,j,k,IC) / delp2(i,j,k) |
---|
| 764 | ! print*,'i=',i,'j=',j,'k=',k,'Q(i,j,k,IC)=',Q(i,j,k,IC) |
---|
| 765 | enddo |
---|
| 766 | enddo |
---|
| 767 | enddo |
---|
| 768 | ! |
---|
| 769 | if(j1.ne.2) then |
---|
| 770 | DO k=1,NLAY |
---|
| 771 | DO I=1,IMR |
---|
| 772 | ! j=1 c'est le p�le Sud, j=JNP c'est le p�le Nord |
---|
| 773 | Q(I, 2,k,IC) = Q(I, 1,k,IC) |
---|
| 774 | Q(I,JMR,k,IC) = Q(I,JNP,k,IC) |
---|
| 775 | END DO |
---|
| 776 | END DO |
---|
| 777 | endif |
---|
| 778 | end do |
---|
| 779 | ! |
---|
| 780 | if(j1.ne.2) then |
---|
| 781 | DO k=1,NLAY |
---|
| 782 | DO i=1,IMR |
---|
| 783 | W(i, 2,k) = W(i, 1,k) |
---|
| 784 | W(i,JMR,k) = W(i,JNP,k) |
---|
| 785 | END DO |
---|
| 786 | END DO |
---|
| 787 | endif |
---|
| 788 | ! |
---|
| 789 | RETURN |
---|
| 790 | END SUBROUTINE ppm3d |
---|
| 791 | ! |
---|
| 792 | !****6***0*********0*********0*********0*********0*********0**********72 |
---|
| 793 | subroutine FZPPM(IMR,JNP,NLAY,j1,DQ,WZ,P,DC,DQDT,AR,AL,A6, & |
---|
| 794 | flux,wk1,wk2,wz2,delp,KORD) |
---|
| 795 | implicit none |
---|
| 796 | integer,parameter :: kmax = 150 |
---|
| 797 | real,parameter :: R23 = 2./3., R3 = 1./3. |
---|
| 798 | integer :: IMR,JNP,NLAY,J1,KORD |
---|
| 799 | real :: WZ(IMR,JNP,NLAY),P(IMR,JNP,NLAY),DC(IMR,JNP,NLAY), & |
---|
| 800 | wk1(IMR,*),delp(IMR,JNP,NLAY),DQ(IMR,JNP,NLAY), & |
---|
| 801 | DQDT(IMR,JNP,NLAY) |
---|
| 802 | ! Assuming JNP >= NLAY |
---|
| 803 | real :: AR(IMR,*),AL(IMR,*),A6(IMR,*),flux(IMR,*),wk2(IMR,*), & |
---|
| 804 | wz2(IMR,*) |
---|
| 805 | integer :: JMR,IMJM,NLAYM1,LMT,K,I,J |
---|
| 806 | real :: c0,c1,c2,tmp,qmax,qmin,a,b,fct,a1,a2,cm,cp |
---|
| 807 | ! |
---|
| 808 | JMR = JNP - 1 |
---|
| 809 | IMJM = IMR*JNP |
---|
| 810 | NLAYM1 = NLAY - 1 |
---|
| 811 | ! |
---|
| 812 | LMT = KORD - 3 |
---|
| 813 | ! |
---|
| 814 | ! ****6***0*********0*********0*********0*********0*********0**********72 |
---|
| 815 | ! Compute DC for PPM |
---|
| 816 | ! ****6***0*********0*********0*********0*********0*********0**********72 |
---|
| 817 | ! |
---|
| 818 | do k=1,NLAYM1 |
---|
| 819 | do i=1,IMJM |
---|
| 820 | DQDT(i,1,k) = P(i,1,k+1) - P(i,1,k) |
---|
| 821 | end do |
---|
| 822 | end do |
---|
| 823 | ! |
---|
| 824 | DO k=2,NLAYM1 |
---|
| 825 | DO I=1,IMJM |
---|
| 826 | c0 = delp(i,1,k) / (delp(i,1,k-1)+delp(i,1,k)+delp(i,1,k+1)) |
---|
| 827 | c1 = (delp(i,1,k-1)+0.5*delp(i,1,k))/(delp(i,1,k+1)+delp(i,1,k)) |
---|
| 828 | c2 = (delp(i,1,k+1)+0.5*delp(i,1,k))/(delp(i,1,k-1)+delp(i,1,k)) |
---|
| 829 | tmp = c0*(c1*DQDT(i,1,k) + c2*DQDT(i,1,k-1)) |
---|
| 830 | Qmax = max(P(i,1,k-1),P(i,1,k),P(i,1,k+1)) - P(i,1,k) |
---|
| 831 | Qmin = P(i,1,k) - min(P(i,1,k-1),P(i,1,k),P(i,1,k+1)) |
---|
| 832 | DC(i,1,k) = sign(min(abs(tmp),Qmax,Qmin), tmp) |
---|
| 833 | END DO |
---|
| 834 | END DO |
---|
| 835 | |
---|
| 836 | ! |
---|
| 837 | ! ****6***0*********0*********0*********0*********0*********0**********72 |
---|
| 838 | ! Loop over latitudes (to save memory) |
---|
| 839 | ! ****6***0*********0*********0*********0*********0*********0**********72 |
---|
| 840 | ! |
---|
| 841 | DO j=1,JNP |
---|
| 842 | if((j.eq.2 .or. j.eq.JMR) .and. j1.ne.2) goto 2000 |
---|
| 843 | ! |
---|
| 844 | DO k=1,NLAY |
---|
| 845 | DO i=1,IMR |
---|
| 846 | wz2(i,k) = WZ(i,j,k) |
---|
| 847 | wk1(i,k) = P(i,j,k) |
---|
| 848 | wk2(i,k) = delp(i,j,k) |
---|
| 849 | flux(i,k) = DC(i,j,k) !this flux is actually the monotone slope |
---|
| 850 | enddo |
---|
| 851 | enddo |
---|
| 852 | ! |
---|
| 853 | !****6***0*********0*********0*********0*********0*********0**********72 |
---|
| 854 | ! Compute first guesses at cell interfaces |
---|
| 855 | ! First guesses are required to be continuous. |
---|
| 856 | ! ****6***0*********0*********0*********0*********0*********0**********72 |
---|
| 857 | ! |
---|
| 858 | ! three-cell parabolic subgrid distribution at model top |
---|
| 859 | ! two-cell parabolic with zero gradient subgrid distribution |
---|
| 860 | ! at the surface. |
---|
| 861 | ! |
---|
| 862 | ! First guess top edge value |
---|
| 863 | DO i=1,IMR |
---|
| 864 | ! three-cell PPM |
---|
| 865 | ! Compute a,b, and c of q = aP**2 + bP + c using cell averages and delp |
---|
| 866 | a = 3.*( DQDT(i,j,2) - DQDT(i,j,1)*(wk2(i,2)+wk2(i,3))/ & |
---|
| 867 | (wk2(i,1)+wk2(i,2)) ) / & |
---|
| 868 | ( (wk2(i,2)+wk2(i,3))*(wk2(i,1)+wk2(i,2)+wk2(i,3)) ) |
---|
| 869 | b = 2.*DQDT(i,j,1)/(wk2(i,1)+wk2(i,2)) - & |
---|
| 870 | R23*a*(2.*wk2(i,1)+wk2(i,2)) |
---|
| 871 | AL(i,1) = wk1(i,1) - wk2(i,1)*(R3*a*wk2(i,1) + 0.5*b) |
---|
| 872 | AL(i,2) = wk2(i,1)*(a*wk2(i,1) + b) + AL(i,1) |
---|
| 873 | ! |
---|
| 874 | ! Check if change sign |
---|
| 875 | if(wk1(i,1)*AL(i,1).le.0.) then |
---|
| 876 | AL(i,1) = 0. |
---|
| 877 | flux(i,1) = 0. |
---|
| 878 | else |
---|
| 879 | flux(i,1) = wk1(i,1) - AL(i,1) |
---|
| 880 | endif |
---|
| 881 | END DO |
---|
| 882 | ! |
---|
| 883 | ! Bottom |
---|
| 884 | DO i=1,IMR |
---|
| 885 | ! 2-cell PPM with zero gradient right at the surface |
---|
| 886 | ! |
---|
| 887 | fct = DQDT(i,j,NLAYM1)*wk2(i,NLAY)**2 / & |
---|
| 888 | ( (wk2(i,NLAY)+wk2(i,NLAYM1))*(2.*wk2(i,NLAY)+wk2(i,NLAYM1))) |
---|
| 889 | AR(i,NLAY) = wk1(i,NLAY) + fct |
---|
| 890 | AL(i,NLAY) = wk1(i,NLAY) - (fct+fct) |
---|
| 891 | if(wk1(i,NLAY)*AR(i,NLAY).le.0.) AR(i,NLAY) = 0. |
---|
| 892 | flux(i,NLAY) = AR(i,NLAY) - wk1(i,NLAY) |
---|
| 893 | END DO |
---|
| 894 | |
---|
| 895 | ! |
---|
| 896 | !****6***0*********0*********0*********0*********0*********0**********72 |
---|
| 897 | ! 4th order interpolation in the interior. |
---|
| 898 | !****6***0*********0*********0*********0*********0*********0**********72 |
---|
| 899 | ! |
---|
| 900 | DO k=3,NLAYM1 |
---|
| 901 | DO i=1,IMR |
---|
| 902 | c1 = DQDT(i,j,k-1)*wk2(i,k-1) / (wk2(i,k-1)+wk2(i,k)) |
---|
| 903 | c2 = 2. / (wk2(i,k-2)+wk2(i,k-1)+wk2(i,k)+wk2(i,k+1)) |
---|
| 904 | A1 = (wk2(i,k-2)+wk2(i,k-1)) / (2.*wk2(i,k-1)+wk2(i,k)) |
---|
| 905 | A2 = (wk2(i,k )+wk2(i,k+1)) / (2.*wk2(i,k)+wk2(i,k-1)) |
---|
| 906 | AL(i,k) = wk1(i,k-1) + c1 + c2 * & |
---|
| 907 | ( wk2(i,k )*(c1*(A1 - A2)+A2*flux(i,k-1)) - & |
---|
| 908 | wk2(i,k-1)*A1*flux(i,k) ) |
---|
| 909 | ! print *,'AL1',i,k, AL(i,k) |
---|
| 910 | END DO |
---|
| 911 | END DO |
---|
| 912 | ! |
---|
| 913 | do i=1,IMR*NLAYM1 |
---|
| 914 | AR(i,1) = AL(i,2) |
---|
| 915 | ! print *,'AR1',i,AR(i,1) |
---|
| 916 | end do |
---|
| 917 | ! |
---|
| 918 | do i=1,IMR*NLAY |
---|
| 919 | A6(i,1) = 3.*(wk1(i,1)+wk1(i,1) - (AL(i,1)+AR(i,1))) |
---|
| 920 | ! print *,'A61',i,A6(i,1) |
---|
| 921 | end do |
---|
| 922 | ! |
---|
| 923 | !****6***0*********0*********0*********0*********0*********0**********72 |
---|
| 924 | ! Top & Bot always monotonic |
---|
| 925 | call lmtppm(flux(1,1),A6(1,1),AR(1,1),AL(1,1),wk1(1,1),IMR,0) |
---|
| 926 | call lmtppm(flux(1,NLAY),A6(1,NLAY),AR(1,NLAY),AL(1,NLAY), & |
---|
| 927 | wk1(1,NLAY),IMR,0) |
---|
| 928 | ! |
---|
| 929 | ! Interior depending on KORD |
---|
| 930 | if(LMT.LE.2) & |
---|
| 931 | call lmtppm(flux(1,2),A6(1,2),AR(1,2),AL(1,2),wk1(1,2), & |
---|
| 932 | IMR*(NLAY-2),LMT) |
---|
| 933 | ! |
---|
| 934 | !****6***0*********0*********0*********0*********0*********0**********72 |
---|
| 935 | ! |
---|
| 936 | DO i=1,IMR*NLAYM1 |
---|
| 937 | IF(wz2(i,1).GT.0.) then |
---|
| 938 | CM = wz2(i,1) / wk2(i,1) |
---|
| 939 | flux(i,2) = AR(i,1)+0.5*CM*(AL(i,1)-AR(i,1)+A6(i,1)*(1.-R23*CM)) |
---|
| 940 | else |
---|
| 941 | ! print *,'test2-0',i,j,wz2(i,1),wk2(i,2) |
---|
| 942 | CP= wz2(i,1) / wk2(i,2) |
---|
| 943 | ! print *,'testCP',CP |
---|
| 944 | flux(i,2) = AL(i,2)+0.5*CP*(AL(i,2)-AR(i,2)-A6(i,2)*(1.+R23*CP)) |
---|
| 945 | ! print *,'test2',i, AL(i,2),AR(i,2),A6(i,2),R23 |
---|
| 946 | endif |
---|
| 947 | END DO |
---|
| 948 | ! |
---|
| 949 | DO i=1,IMR*NLAYM1 |
---|
| 950 | flux(i,2) = wz2(i,1) * flux(i,2) |
---|
| 951 | 250 CONTINUE |
---|
| 952 | END DO |
---|
| 953 | ! |
---|
| 954 | do i=1,IMR |
---|
| 955 | DQ(i,j, 1) = DQ(i,j, 1) - flux(i, 2) |
---|
| 956 | DQ(i,j,NLAY) = DQ(i,j,NLAY) + flux(i,NLAY) |
---|
| 957 | end do |
---|
| 958 | ! |
---|
| 959 | do k=2,NLAYM1 |
---|
| 960 | do i=1,IMR |
---|
| 961 | DQ(i,j,k) = DQ(i,j,k) + flux(i,k) - flux(i,k+1) |
---|
| 962 | end do |
---|
| 963 | end do |
---|
| 964 | 2000 CONTINUE |
---|
| 965 | END DO |
---|
| 966 | return |
---|
| 967 | end subroutine fzppm |
---|
| 968 | ! |
---|
| 969 | subroutine xtp(IMR,JNP,IML,j1,j2,JN,JS,PU,DQ,Q,UC, & |
---|
| 970 | fx1,xmass,IORD) |
---|
| 971 | implicit none |
---|
| 972 | integer :: IMR,JNP,IML,j1,j2,JN,JS,IORD |
---|
| 973 | real :: PU,DQ,Q,UC,fx1,xmass |
---|
| 974 | real :: dc,qtmp |
---|
| 975 | integer :: ISAVE(IMR) |
---|
| 976 | dimension UC(IMR,*),DC(-IML:IMR+IML+1),xmass(IMR,JNP) & |
---|
| 977 | ,fx1(IMR+1),DQ(IMR,JNP),qtmp(-IML:IMR+1+IML) |
---|
| 978 | dimension PU(IMR,JNP),Q(IMR,JNP) |
---|
| 979 | integer :: jvan,j1vl,j2vl,j,i,iu,itmp,ist,imp |
---|
| 980 | real :: rut |
---|
| 981 | ! |
---|
| 982 | IMP = IMR + 1 |
---|
| 983 | ! |
---|
| 984 | ! van Leer at high latitudes |
---|
| 985 | jvan = max(1,JNP/18) |
---|
| 986 | j1vl = j1+jvan |
---|
| 987 | j2vl = j2-jvan |
---|
| 988 | ! |
---|
| 989 | do j=j1,j2 |
---|
| 990 | ! |
---|
| 991 | do i=1,IMR |
---|
| 992 | qtmp(i) = q(i,j) |
---|
| 993 | enddo |
---|
| 994 | ! |
---|
| 995 | if(j.ge.JN .or. j.le.JS) goto 2222 |
---|
| 996 | ! ************* Eulerian ********** |
---|
| 997 | ! |
---|
| 998 | qtmp(0) = q(IMR,J) |
---|
| 999 | qtmp(-1) = q(IMR-1,J) |
---|
| 1000 | qtmp(IMP) = q(1,J) |
---|
| 1001 | qtmp(IMP+1) = q(2,J) |
---|
| 1002 | ! |
---|
| 1003 | IF(IORD.eq.1 .or. j.eq.j1.OR. j.eq.j2) THEN |
---|
| 1004 | DO i=1,IMR |
---|
| 1005 | iu = REAL(i) - uc(i,j) |
---|
| 1006 | fx1(i) = qtmp(iu) |
---|
| 1007 | END DO |
---|
| 1008 | ELSE |
---|
| 1009 | call xmist(IMR,IML,Qtmp,DC) |
---|
| 1010 | DC(0) = DC(IMR) |
---|
| 1011 | ! |
---|
| 1012 | if(IORD.eq.2 .or. j.le.j1vl .or. j.ge.j2vl) then |
---|
| 1013 | DO i=1,IMR |
---|
| 1014 | iu = REAL(i) - uc(i,j) |
---|
| 1015 | fx1(i) = qtmp(iu) + DC(iu)*(sign(1.,uc(i,j))-uc(i,j)) |
---|
| 1016 | END DO |
---|
| 1017 | else |
---|
| 1018 | call fxppm(IMR,IML,UC(1,j),Qtmp,DC,fx1,IORD) |
---|
| 1019 | endif |
---|
| 1020 | ! |
---|
| 1021 | ENDIF |
---|
| 1022 | ! |
---|
| 1023 | DO i=1,IMR |
---|
| 1024 | fx1(i) = fx1(i)*xmass(i,j) |
---|
| 1025 | END DO |
---|
| 1026 | ! |
---|
| 1027 | goto 1309 |
---|
| 1028 | ! |
---|
| 1029 | ! ***** Conservative (flux-form) Semi-Lagrangian transport ***** |
---|
| 1030 | ! |
---|
| 1031 | 2222 continue |
---|
| 1032 | ! |
---|
| 1033 | do i=-IML,0 |
---|
| 1034 | qtmp(i) = q(IMR+i,j) |
---|
| 1035 | qtmp(IMP-i) = q(1-i,j) |
---|
| 1036 | enddo |
---|
| 1037 | ! |
---|
| 1038 | IF(IORD.eq.1 .or. j.eq.j1.OR. j.eq.j2) THEN |
---|
| 1039 | DO i=1,IMR |
---|
| 1040 | itmp = INT(uc(i,j)) |
---|
| 1041 | ISAVE(i) = i - itmp |
---|
| 1042 | iu = i - uc(i,j) |
---|
| 1043 | fx1(i) = (uc(i,j) - itmp)*qtmp(iu) |
---|
| 1044 | END DO |
---|
| 1045 | ELSE |
---|
| 1046 | call xmist(IMR,IML,Qtmp,DC) |
---|
| 1047 | ! |
---|
| 1048 | do i=-IML,0 |
---|
| 1049 | DC(i) = DC(IMR+i) |
---|
| 1050 | DC(IMP-i) = DC(1-i) |
---|
| 1051 | enddo |
---|
| 1052 | ! |
---|
| 1053 | DO i=1,IMR |
---|
| 1054 | itmp = INT(uc(i,j)) |
---|
| 1055 | rut = uc(i,j) - itmp |
---|
| 1056 | ISAVE(i) = i - itmp |
---|
| 1057 | iu = i - uc(i,j) |
---|
| 1058 | fx1(i) = rut*(qtmp(iu) + DC(iu)*(sign(1.,rut) - rut)) |
---|
| 1059 | END DO |
---|
| 1060 | ENDIF |
---|
| 1061 | ! |
---|
| 1062 | do i=1,IMR |
---|
| 1063 | IF(uc(i,j).GT.1.) then |
---|
| 1064 | !DIR$ NOVECTOR |
---|
| 1065 | do ist = ISAVE(i),i-1 |
---|
| 1066 | fx1(i) = fx1(i) + qtmp(ist) |
---|
| 1067 | enddo |
---|
| 1068 | elseIF(uc(i,j).LT.-1.) then |
---|
| 1069 | do ist = i,ISAVE(i)-1 |
---|
| 1070 | fx1(i) = fx1(i) - qtmp(ist) |
---|
| 1071 | enddo |
---|
| 1072 | !DIR$ VECTOR |
---|
| 1073 | endif |
---|
| 1074 | end do |
---|
| 1075 | do i=1,IMR |
---|
| 1076 | fx1(i) = PU(i,j)*fx1(i) |
---|
| 1077 | enddo |
---|
| 1078 | ! |
---|
| 1079 | ! *************************************** |
---|
| 1080 | ! |
---|
| 1081 | 1309 fx1(IMP) = fx1(1) |
---|
| 1082 | DO i=1,IMR |
---|
| 1083 | DQ(i,j) = DQ(i,j) + fx1(i)-fx1(i+1) |
---|
| 1084 | END DO |
---|
| 1085 | ! |
---|
| 1086 | ! *************************************** |
---|
| 1087 | ! |
---|
| 1088 | end do |
---|
| 1089 | return |
---|
| 1090 | end subroutine xtp |
---|
| 1091 | ! |
---|
| 1092 | subroutine fxppm(IMR,IML,UT,P,DC,flux,IORD) |
---|
| 1093 | implicit none |
---|
| 1094 | integer :: IMR,IML,IORD |
---|
| 1095 | real :: UT,P,DC,flux |
---|
| 1096 | real,parameter :: R3 = 1./3., R23 = 2./3. |
---|
| 1097 | DIMENSION UT(*),flux(*),P(-IML:IMR+IML+1),DC(-IML:IMR+IML+1) |
---|
| 1098 | REAL :: AR(0:IMR),AL(0:IMR),A6(0:IMR) |
---|
| 1099 | integer :: LMT,IMP,JLVL,i |
---|
| 1100 | ! logical first |
---|
| 1101 | ! data first /.true./ |
---|
| 1102 | ! SAVE LMT |
---|
| 1103 | ! if(first) then |
---|
| 1104 | ! |
---|
| 1105 | ! correction calcul de LMT a chaque passage pour pouvoir choisir |
---|
| 1106 | ! plusieurs schemas PPM pour differents traceurs |
---|
| 1107 | ! IF (IORD.LE.0) then |
---|
| 1108 | ! if(IMR.GE.144) then |
---|
| 1109 | ! LMT = 0 |
---|
| 1110 | ! elseif(IMR.GE.72) then |
---|
| 1111 | ! LMT = 1 |
---|
| 1112 | ! else |
---|
| 1113 | ! LMT = 2 |
---|
| 1114 | ! endif |
---|
| 1115 | ! else |
---|
| 1116 | ! LMT = IORD - 3 |
---|
| 1117 | ! endif |
---|
| 1118 | ! |
---|
| 1119 | LMT = IORD - 3 |
---|
| 1120 | ! write(6,*) 'PPM option in E-W direction = ', LMT |
---|
| 1121 | ! first = .false. |
---|
| 1122 | ! endif |
---|
| 1123 | ! |
---|
| 1124 | DO i=1,IMR |
---|
| 1125 | AL(i) = 0.5*(p(i-1)+p(i)) + (DC(i-1) - DC(i))*R3 |
---|
| 1126 | END DO |
---|
| 1127 | ! |
---|
| 1128 | do i=1,IMR-1 |
---|
| 1129 | AR(i) = AL(i+1) |
---|
| 1130 | end do |
---|
| 1131 | AR(IMR) = AL(1) |
---|
| 1132 | ! |
---|
| 1133 | do i=1,IMR |
---|
| 1134 | A6(i) = 3.*(p(i)+p(i) - (AL(i)+AR(i))) |
---|
| 1135 | end do |
---|
| 1136 | ! |
---|
| 1137 | if(LMT.LE.2) call lmtppm(DC(1),A6(1),AR(1),AL(1),P(1),IMR,LMT) |
---|
| 1138 | ! |
---|
| 1139 | AL(0) = AL(IMR) |
---|
| 1140 | AR(0) = AR(IMR) |
---|
| 1141 | A6(0) = A6(IMR) |
---|
| 1142 | ! |
---|
| 1143 | DO i=1,IMR |
---|
| 1144 | IF(UT(i).GT.0.) then |
---|
| 1145 | flux(i) = AR(i-1) + 0.5*UT(i)*(AL(i-1) - AR(i-1) + & |
---|
| 1146 | A6(i-1)*(1.-R23*UT(i)) ) |
---|
| 1147 | else |
---|
| 1148 | flux(i) = AL(i) - 0.5*UT(i)*(AR(i) - AL(i) + & |
---|
| 1149 | A6(i)*(1.+R23*UT(i))) |
---|
| 1150 | endif |
---|
| 1151 | enddo |
---|
| 1152 | return |
---|
| 1153 | end subroutine fxppm |
---|
| 1154 | ! |
---|
| 1155 | subroutine xmist(IMR,IML,P,DC) |
---|
| 1156 | implicit none |
---|
| 1157 | integer :: IMR,IML |
---|
| 1158 | real,parameter :: R24 = 1./24. |
---|
| 1159 | real :: P(-IML:IMR+1+IML),DC(-IML:IMR+1+IML) |
---|
| 1160 | integer :: i |
---|
| 1161 | real :: tmp,pmax,pmin |
---|
| 1162 | ! |
---|
| 1163 | do i=1,IMR |
---|
| 1164 | tmp = R24*(8.*(p(i+1) - p(i-1)) + p(i-2) - p(i+2)) |
---|
| 1165 | Pmax = max(P(i-1), p(i), p(i+1)) - p(i) |
---|
| 1166 | Pmin = p(i) - min(P(i-1), p(i), p(i+1)) |
---|
| 1167 | DC(i) = sign(min(abs(tmp),Pmax,Pmin), tmp) |
---|
| 1168 | end do |
---|
| 1169 | return |
---|
| 1170 | end subroutine xmist |
---|
| 1171 | ! |
---|
| 1172 | subroutine ytp(IMR,JNP,j1,j2,acosp,RCAP,DQ,P,VC,DC2 & |
---|
| 1173 | ,ymass,fx,A6,AR,AL,JORD) |
---|
| 1174 | implicit none |
---|
| 1175 | integer :: IMR,JNP,j1,j2,JORD |
---|
| 1176 | real :: acosp,RCAP,DQ,P,VC,DC2,ymass,fx,A6,AR,AL |
---|
| 1177 | dimension P(IMR,JNP),VC(IMR,JNP),ymass(IMR,JNP) & |
---|
| 1178 | ,DC2(IMR,JNP),DQ(IMR,JNP),acosp(JNP) |
---|
| 1179 | ! Work array |
---|
| 1180 | DIMENSION fx(IMR,JNP),AR(IMR,JNP),AL(IMR,JNP),A6(IMR,JNP) |
---|
| 1181 | integer :: JMR,len,i,jt,j |
---|
| 1182 | real :: sum1,sum2 |
---|
| 1183 | ! |
---|
| 1184 | JMR = JNP - 1 |
---|
| 1185 | len = IMR*(J2-J1+2) |
---|
| 1186 | ! |
---|
| 1187 | if(JORD.eq.1) then |
---|
| 1188 | DO i=1,len |
---|
| 1189 | JT = REAL(J1) - VC(i,J1) |
---|
| 1190 | fx(i,j1) = p(i,JT) |
---|
| 1191 | END DO |
---|
| 1192 | else |
---|
| 1193 | |
---|
| 1194 | call ymist(IMR,JNP,j1,P,DC2,4) |
---|
| 1195 | ! |
---|
| 1196 | if(JORD.LE.0 .or. JORD.GE.3) then |
---|
| 1197 | |
---|
| 1198 | call fyppm(VC,P,DC2,fx,IMR,JNP,j1,j2,A6,AR,AL,JORD) |
---|
| 1199 | |
---|
| 1200 | else |
---|
| 1201 | DO i=1,len |
---|
| 1202 | JT = REAL(J1) - VC(i,J1) |
---|
| 1203 | fx(i,j1) = p(i,JT) + (sign(1.,VC(i,j1))-VC(i,j1))*DC2(i,JT) |
---|
| 1204 | END DO |
---|
| 1205 | endif |
---|
| 1206 | endif |
---|
| 1207 | ! |
---|
| 1208 | DO i=1,len |
---|
| 1209 | fx(i,j1) = fx(i,j1)*ymass(i,j1) |
---|
| 1210 | END DO |
---|
| 1211 | ! |
---|
| 1212 | DO j=j1,j2 |
---|
| 1213 | DO i=1,IMR |
---|
| 1214 | DQ(i,j) = DQ(i,j) + (fx(i,j) - fx(i,j+1)) * acosp(j) |
---|
| 1215 | END DO |
---|
| 1216 | END DO |
---|
| 1217 | ! |
---|
| 1218 | ! Poles |
---|
| 1219 | sum1 = fx(IMR,j1 ) |
---|
| 1220 | sum2 = fx(IMR,J2+1) |
---|
| 1221 | do i=1,IMR-1 |
---|
| 1222 | sum1 = sum1 + fx(i,j1 ) |
---|
| 1223 | sum2 = sum2 + fx(i,J2+1) |
---|
| 1224 | enddo |
---|
| 1225 | ! |
---|
| 1226 | sum1 = DQ(1, 1) - sum1 * RCAP |
---|
| 1227 | sum2 = DQ(1,JNP) + sum2 * RCAP |
---|
| 1228 | do i=1,IMR |
---|
| 1229 | DQ(i, 1) = sum1 |
---|
| 1230 | DQ(i,JNP) = sum2 |
---|
| 1231 | enddo |
---|
| 1232 | ! |
---|
| 1233 | if(j1.ne.2) then |
---|
| 1234 | do i=1,IMR |
---|
| 1235 | DQ(i, 2) = sum1 |
---|
| 1236 | DQ(i,JMR) = sum2 |
---|
| 1237 | enddo |
---|
| 1238 | endif |
---|
| 1239 | ! |
---|
| 1240 | return |
---|
| 1241 | end subroutine ytp |
---|
| 1242 | ! |
---|
| 1243 | subroutine ymist(IMR,JNP,j1,P,DC,ID) |
---|
| 1244 | implicit none |
---|
| 1245 | integer :: IMR,JNP,j1,ID |
---|
| 1246 | real,parameter :: R24 = 1./24. |
---|
| 1247 | real :: P(IMR,JNP),DC(IMR,JNP) |
---|
| 1248 | integer :: iimh,jmr,ijm3,imh,i |
---|
| 1249 | real :: pmax,pmin,tmp |
---|
| 1250 | ! |
---|
| 1251 | IMH = IMR / 2 |
---|
| 1252 | JMR = JNP - 1 |
---|
| 1253 | IJM3 = IMR*(JMR-3) |
---|
| 1254 | ! |
---|
| 1255 | IF(ID.EQ.2) THEN |
---|
| 1256 | do i=1,IMR*(JMR-1) |
---|
| 1257 | tmp = 0.25*(p(i,3) - p(i,1)) |
---|
| 1258 | Pmax = max(p(i,1),p(i,2),p(i,3)) - p(i,2) |
---|
| 1259 | Pmin = p(i,2) - min(p(i,1),p(i,2),p(i,3)) |
---|
| 1260 | DC(i,2) = sign(min(abs(tmp),Pmin,Pmax),tmp) |
---|
| 1261 | end do |
---|
| 1262 | ELSE |
---|
| 1263 | do i=1,IMH |
---|
| 1264 | ! J=2 |
---|
| 1265 | tmp = (8.*(p(i,3) - p(i,1)) + p(i+IMH,2) - p(i,4))*R24 |
---|
| 1266 | Pmax = max(p(i,1),p(i,2),p(i,3)) - p(i,2) |
---|
| 1267 | Pmin = p(i,2) - min(p(i,1),p(i,2),p(i,3)) |
---|
| 1268 | DC(i,2) = sign(min(abs(tmp),Pmin,Pmax),tmp) |
---|
| 1269 | ! J=JMR |
---|
| 1270 | tmp=(8.*(p(i,JNP)-p(i,JMR-1))+p(i,JMR-2)-p(i+IMH,JMR))*R24 |
---|
| 1271 | Pmax = max(p(i,JMR-1),p(i,JMR),p(i,JNP)) - p(i,JMR) |
---|
| 1272 | Pmin = p(i,JMR) - min(p(i,JMR-1),p(i,JMR),p(i,JNP)) |
---|
| 1273 | DC(i,JMR) = sign(min(abs(tmp),Pmin,Pmax),tmp) |
---|
| 1274 | end do |
---|
| 1275 | do i=IMH+1,IMR |
---|
| 1276 | ! J=2 |
---|
| 1277 | tmp = (8.*(p(i,3) - p(i,1)) + p(i-IMH,2) - p(i,4))*R24 |
---|
| 1278 | Pmax = max(p(i,1),p(i,2),p(i,3)) - p(i,2) |
---|
| 1279 | Pmin = p(i,2) - min(p(i,1),p(i,2),p(i,3)) |
---|
| 1280 | DC(i,2) = sign(min(abs(tmp),Pmin,Pmax),tmp) |
---|
| 1281 | ! J=JMR |
---|
| 1282 | tmp=(8.*(p(i,JNP)-p(i,JMR-1))+p(i,JMR-2)-p(i-IMH,JMR))*R24 |
---|
| 1283 | Pmax = max(p(i,JMR-1),p(i,JMR),p(i,JNP)) - p(i,JMR) |
---|
| 1284 | Pmin = p(i,JMR) - min(p(i,JMR-1),p(i,JMR),p(i,JNP)) |
---|
| 1285 | DC(i,JMR) = sign(min(abs(tmp),Pmin,Pmax),tmp) |
---|
| 1286 | end do |
---|
| 1287 | ! |
---|
| 1288 | do i=1,IJM3 |
---|
| 1289 | tmp = (8.*(p(i,4) - p(i,2)) + p(i,1) - p(i,5))*R24 |
---|
| 1290 | Pmax = max(p(i,2),p(i,3),p(i,4)) - p(i,3) |
---|
| 1291 | Pmin = p(i,3) - min(p(i,2),p(i,3),p(i,4)) |
---|
| 1292 | DC(i,3) = sign(min(abs(tmp),Pmin,Pmax),tmp) |
---|
| 1293 | end do |
---|
| 1294 | ENDIF |
---|
| 1295 | ! |
---|
| 1296 | if(j1.ne.2) then |
---|
| 1297 | do i=1,IMR |
---|
| 1298 | DC(i,1) = 0. |
---|
| 1299 | DC(i,JNP) = 0. |
---|
| 1300 | enddo |
---|
| 1301 | else |
---|
| 1302 | ! Determine slopes in polar caps for scalars! |
---|
| 1303 | ! |
---|
| 1304 | do i=1,IMH |
---|
| 1305 | ! South |
---|
| 1306 | tmp = 0.25*(p(i,2) - p(i+imh,2)) |
---|
| 1307 | Pmax = max(p(i,2),p(i,1), p(i+imh,2)) - p(i,1) |
---|
| 1308 | Pmin = p(i,1) - min(p(i,2),p(i,1), p(i+imh,2)) |
---|
| 1309 | DC(i,1)=sign(min(abs(tmp),Pmax,Pmin),tmp) |
---|
| 1310 | ! North. |
---|
| 1311 | tmp = 0.25*(p(i+imh,JMR) - p(i,JMR)) |
---|
| 1312 | Pmax = max(p(i+imh,JMR),p(i,jnp), p(i,JMR)) - p(i,JNP) |
---|
| 1313 | Pmin = p(i,JNP) - min(p(i+imh,JMR),p(i,jnp), p(i,JMR)) |
---|
| 1314 | DC(i,JNP) = sign(min(abs(tmp),Pmax,pmin),tmp) |
---|
| 1315 | end do |
---|
| 1316 | ! |
---|
| 1317 | do i=imh+1,IMR |
---|
| 1318 | DC(i, 1) = - DC(i-imh, 1) |
---|
| 1319 | DC(i,JNP) = - DC(i-imh,JNP) |
---|
| 1320 | end do |
---|
| 1321 | endif |
---|
| 1322 | return |
---|
| 1323 | end subroutine ymist |
---|
| 1324 | ! |
---|
| 1325 | subroutine fyppm(VC,P,DC,flux,IMR,JNP,j1,j2,A6,AR,AL,JORD) |
---|
| 1326 | implicit none |
---|
| 1327 | integer :: IMR,JNP,j1,j2,JORD |
---|
| 1328 | real,parameter :: R3 = 1./3., R23 = 2./3. |
---|
| 1329 | real :: VC(IMR,*),flux(IMR,*),P(IMR,*),DC(IMR,*) |
---|
| 1330 | ! Local work arrays. |
---|
| 1331 | real :: AR(IMR,JNP),AL(IMR,JNP),A6(IMR,JNP) |
---|
| 1332 | integer :: LMT,i |
---|
| 1333 | integer :: IMH,JMR,j11,IMJM1,len |
---|
| 1334 | ! logical first |
---|
| 1335 | ! data first /.true./ |
---|
| 1336 | ! SAVE LMT |
---|
| 1337 | ! |
---|
| 1338 | IMH = IMR / 2 |
---|
| 1339 | JMR = JNP - 1 |
---|
| 1340 | j11 = j1-1 |
---|
| 1341 | IMJM1 = IMR*(J2-J1+2) |
---|
| 1342 | len = IMR*(J2-J1+3) |
---|
| 1343 | ! if(first) then |
---|
| 1344 | ! IF(JORD.LE.0) then |
---|
| 1345 | ! if(JMR.GE.90) then |
---|
| 1346 | ! LMT = 0 |
---|
| 1347 | ! elseif(JMR.GE.45) then |
---|
| 1348 | ! LMT = 1 |
---|
| 1349 | ! else |
---|
| 1350 | ! LMT = 2 |
---|
| 1351 | ! endif |
---|
| 1352 | ! else |
---|
| 1353 | ! LMT = JORD - 3 |
---|
| 1354 | ! endif |
---|
| 1355 | ! |
---|
| 1356 | ! first = .false. |
---|
| 1357 | ! endif |
---|
| 1358 | ! |
---|
| 1359 | ! modifs pour pouvoir choisir plusieurs schemas PPM |
---|
| 1360 | LMT = JORD - 3 |
---|
| 1361 | ! |
---|
| 1362 | DO i=1,IMR*JMR |
---|
| 1363 | AL(i,2) = 0.5*(p(i,1)+p(i,2)) + (DC(i,1) - DC(i,2))*R3 |
---|
| 1364 | AR(i,1) = AL(i,2) |
---|
| 1365 | END DO |
---|
| 1366 | ! |
---|
| 1367 | !Poles: |
---|
| 1368 | ! |
---|
| 1369 | DO i=1,IMH |
---|
| 1370 | AL(i,1) = AL(i+IMH,2) |
---|
| 1371 | AL(i+IMH,1) = AL(i,2) |
---|
| 1372 | ! |
---|
| 1373 | AR(i,JNP) = AR(i+IMH,JMR) |
---|
| 1374 | AR(i+IMH,JNP) = AR(i,JMR) |
---|
| 1375 | ENDDO |
---|
| 1376 | |
---|
| 1377 | !cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc |
---|
| 1378 | ! Rajout pour LMDZ.3.3 |
---|
| 1379 | !ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc |
---|
| 1380 | AR(IMR,1)=AL(1,1) |
---|
| 1381 | AR(IMR,JNP)=AL(1,JNP) |
---|
| 1382 | !cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc |
---|
| 1383 | |
---|
| 1384 | |
---|
| 1385 | do i=1,len |
---|
| 1386 | A6(i,j11) = 3.*(p(i,j11)+p(i,j11) - (AL(i,j11)+AR(i,j11))) |
---|
| 1387 | end do |
---|
| 1388 | ! |
---|
| 1389 | if(LMT.le.2) call lmtppm(DC(1,j11),A6(1,j11),AR(1,j11) & |
---|
| 1390 | ,AL(1,j11),P(1,j11),len,LMT) |
---|
| 1391 | ! |
---|
| 1392 | |
---|
| 1393 | DO i=1,IMJM1 |
---|
| 1394 | IF(VC(i,j1).GT.0.) then |
---|
| 1395 | flux(i,j1) = AR(i,j11) + 0.5*VC(i,j1)*(AL(i,j11) - AR(i,j11) + & |
---|
| 1396 | A6(i,j11)*(1.-R23*VC(i,j1)) ) |
---|
| 1397 | else |
---|
| 1398 | flux(i,j1) = AL(i,j1) - 0.5*VC(i,j1)*(AR(i,j1) - AL(i,j1) + & |
---|
| 1399 | A6(i,j1)*(1.+R23*VC(i,j1))) |
---|
| 1400 | endif |
---|
| 1401 | END DO |
---|
| 1402 | return |
---|
| 1403 | end subroutine fyppm |
---|
| 1404 | ! |
---|
| 1405 | subroutine yadv(IMR,JNP,j1,j2,p,VA,ady,wk,IAD) |
---|
| 1406 | implicit none |
---|
| 1407 | integer :: IMR,JNP,j1,j2,IAD |
---|
| 1408 | REAL :: p(IMR,JNP),ady(IMR,JNP),VA(IMR,JNP) |
---|
| 1409 | REAL :: WK(IMR,-1:JNP+2) |
---|
| 1410 | INTEGER :: JMR,IMH,i,j,jp |
---|
| 1411 | REAL :: rv,a1,b1,sum1,sum2 |
---|
| 1412 | ! |
---|
| 1413 | JMR = JNP-1 |
---|
| 1414 | IMH = IMR/2 |
---|
| 1415 | do j=1,JNP |
---|
| 1416 | do i=1,IMR |
---|
| 1417 | wk(i,j) = p(i,j) |
---|
| 1418 | enddo |
---|
| 1419 | enddo |
---|
| 1420 | ! Poles: |
---|
| 1421 | do i=1,IMH |
---|
| 1422 | wk(i, -1) = p(i+IMH,3) |
---|
| 1423 | wk(i+IMH,-1) = p(i,3) |
---|
| 1424 | wk(i, 0) = p(i+IMH,2) |
---|
| 1425 | wk(i+IMH,0) = p(i,2) |
---|
| 1426 | wk(i,JNP+1) = p(i+IMH,JMR) |
---|
| 1427 | wk(i+IMH,JNP+1) = p(i,JMR) |
---|
| 1428 | wk(i,JNP+2) = p(i+IMH,JNP-2) |
---|
| 1429 | wk(i+IMH,JNP+2) = p(i,JNP-2) |
---|
| 1430 | enddo |
---|
| 1431 | ! write(*,*) 'toto 1' |
---|
| 1432 | ! -------------------------------- |
---|
| 1433 | IF(IAD.eq.2) then |
---|
| 1434 | do j=j1-1,j2+1 |
---|
| 1435 | do i=1,IMR |
---|
| 1436 | ! write(*,*) 'avt NINT','i=',i,'j=',j |
---|
| 1437 | JP = NINT(VA(i,j)) |
---|
| 1438 | rv = JP - VA(i,j) |
---|
| 1439 | ! write(*,*) 'VA=',VA(i,j), 'JP1=',JP,'rv=',rv |
---|
| 1440 | JP = j - JP |
---|
| 1441 | ! write(*,*) 'JP2=',JP |
---|
| 1442 | a1 = 0.5*(wk(i,jp+1)+wk(i,jp-1)) - wk(i,jp) |
---|
| 1443 | b1 = 0.5*(wk(i,jp+1)-wk(i,jp-1)) |
---|
| 1444 | ! write(*,*) 'a1=',a1,'b1=',b1 |
---|
| 1445 | ady(i,j) = wk(i,jp) + rv*(a1*rv + b1) - wk(i,j) |
---|
| 1446 | enddo |
---|
| 1447 | enddo |
---|
| 1448 | ! write(*,*) 'toto 2' |
---|
| 1449 | ! |
---|
| 1450 | ELSEIF(IAD.eq.1) then |
---|
| 1451 | do j=j1-1,j2+1 |
---|
| 1452 | do i=1,imr |
---|
| 1453 | JP = REAL(j)-VA(i,j) |
---|
| 1454 | ady(i,j) = VA(i,j)*(wk(i,jp)-wk(i,jp+1)) |
---|
| 1455 | enddo |
---|
| 1456 | enddo |
---|
| 1457 | ENDIF |
---|
| 1458 | ! |
---|
| 1459 | if(j1.ne.2) then |
---|
| 1460 | sum1 = 0. |
---|
| 1461 | sum2 = 0. |
---|
| 1462 | do i=1,imr |
---|
| 1463 | sum1 = sum1 + ady(i,2) |
---|
| 1464 | sum2 = sum2 + ady(i,JMR) |
---|
| 1465 | enddo |
---|
| 1466 | sum1 = sum1 / IMR |
---|
| 1467 | sum2 = sum2 / IMR |
---|
| 1468 | ! |
---|
| 1469 | do i=1,imr |
---|
| 1470 | ady(i, 2) = sum1 |
---|
| 1471 | ady(i,JMR) = sum2 |
---|
| 1472 | ady(i, 1) = sum1 |
---|
| 1473 | ady(i,JNP) = sum2 |
---|
| 1474 | enddo |
---|
| 1475 | else |
---|
| 1476 | ! Poles: |
---|
| 1477 | sum1 = 0. |
---|
| 1478 | sum2 = 0. |
---|
| 1479 | do i=1,imr |
---|
| 1480 | sum1 = sum1 + ady(i,1) |
---|
| 1481 | sum2 = sum2 + ady(i,JNP) |
---|
| 1482 | enddo |
---|
| 1483 | sum1 = sum1 / IMR |
---|
| 1484 | sum2 = sum2 / IMR |
---|
| 1485 | ! |
---|
| 1486 | do i=1,imr |
---|
| 1487 | ady(i, 1) = sum1 |
---|
| 1488 | ady(i,JNP) = sum2 |
---|
| 1489 | enddo |
---|
| 1490 | endif |
---|
| 1491 | ! |
---|
| 1492 | return |
---|
| 1493 | end subroutine yadv |
---|
| 1494 | ! |
---|
| 1495 | subroutine xadv(IMR,JNP,j1,j2,p,UA,JS,JN,IML,adx,IAD) |
---|
| 1496 | implicit none |
---|
| 1497 | INTEGER :: IMR,JNP,j1,j2,JS,JN,IML,IAD |
---|
| 1498 | REAL :: p(IMR,JNP),adx(IMR,JNP),qtmp(-IMR:IMR+IMR),UA(IMR,JNP) |
---|
| 1499 | INTEGER :: JMR,j,i,ip,iu,iiu |
---|
| 1500 | REAL :: ru,a1,b1 |
---|
| 1501 | ! |
---|
| 1502 | JMR = JNP-1 |
---|
| 1503 | do j=j1,j2 |
---|
| 1504 | if(J.GT.JS .and. J.LT.JN) GO TO 1309 |
---|
| 1505 | ! |
---|
| 1506 | do i=1,IMR |
---|
| 1507 | qtmp(i) = p(i,j) |
---|
| 1508 | enddo |
---|
| 1509 | ! |
---|
| 1510 | do i=-IML,0 |
---|
| 1511 | qtmp(i) = p(IMR+i,j) |
---|
| 1512 | qtmp(IMR+1-i) = p(1-i,j) |
---|
| 1513 | enddo |
---|
| 1514 | ! |
---|
| 1515 | IF(IAD.eq.2) THEN |
---|
| 1516 | DO i=1,IMR |
---|
| 1517 | IP = NINT(UA(i,j)) |
---|
| 1518 | ru = IP - UA(i,j) |
---|
| 1519 | IP = i - IP |
---|
| 1520 | a1 = 0.5*(qtmp(ip+1)+qtmp(ip-1)) - qtmp(ip) |
---|
| 1521 | b1 = 0.5*(qtmp(ip+1)-qtmp(ip-1)) |
---|
| 1522 | adx(i,j) = qtmp(ip) + ru*(a1*ru + b1) |
---|
| 1523 | enddo |
---|
| 1524 | ELSEIF(IAD.eq.1) then |
---|
| 1525 | DO i=1,IMR |
---|
| 1526 | iu = UA(i,j) |
---|
| 1527 | ru = UA(i,j) - iu |
---|
| 1528 | iiu = i-iu |
---|
| 1529 | if(UA(i,j).GE.0.) then |
---|
| 1530 | adx(i,j) = qtmp(iiu)+ru*(qtmp(iiu-1)-qtmp(iiu)) |
---|
| 1531 | else |
---|
| 1532 | adx(i,j) = qtmp(iiu)+ru*(qtmp(iiu)-qtmp(iiu+1)) |
---|
| 1533 | endif |
---|
| 1534 | enddo |
---|
| 1535 | ENDIF |
---|
| 1536 | ! |
---|
| 1537 | do i=1,IMR |
---|
| 1538 | adx(i,j) = adx(i,j) - p(i,j) |
---|
| 1539 | enddo |
---|
| 1540 | 1309 continue |
---|
| 1541 | end do |
---|
| 1542 | ! |
---|
| 1543 | ! Eulerian upwind |
---|
| 1544 | ! |
---|
| 1545 | do j=JS+1,JN-1 |
---|
| 1546 | ! |
---|
| 1547 | do i=1,IMR |
---|
| 1548 | qtmp(i) = p(i,j) |
---|
| 1549 | enddo |
---|
| 1550 | ! |
---|
| 1551 | qtmp(0) = p(IMR,J) |
---|
| 1552 | qtmp(IMR+1) = p(1,J) |
---|
| 1553 | ! |
---|
| 1554 | IF(IAD.eq.2) THEN |
---|
| 1555 | qtmp(-1) = p(IMR-1,J) |
---|
| 1556 | qtmp(IMR+2) = p(2,J) |
---|
| 1557 | do i=1,imr |
---|
| 1558 | IP = NINT(UA(i,j)) |
---|
| 1559 | ru = IP - UA(i,j) |
---|
| 1560 | IP = i - IP |
---|
| 1561 | a1 = 0.5*(qtmp(ip+1)+qtmp(ip-1)) - qtmp(ip) |
---|
| 1562 | b1 = 0.5*(qtmp(ip+1)-qtmp(ip-1)) |
---|
| 1563 | adx(i,j) = qtmp(ip)- p(i,j) + ru*(a1*ru + b1) |
---|
| 1564 | enddo |
---|
| 1565 | ELSEIF(IAD.eq.1) then |
---|
| 1566 | ! 1st order |
---|
| 1567 | DO i=1,IMR |
---|
| 1568 | IP = i - UA(i,j) |
---|
| 1569 | adx(i,j) = UA(i,j)*(qtmp(ip)-qtmp(ip+1)) |
---|
| 1570 | enddo |
---|
| 1571 | ENDIF |
---|
| 1572 | enddo |
---|
| 1573 | ! |
---|
| 1574 | if(j1.ne.2) then |
---|
| 1575 | do i=1,IMR |
---|
| 1576 | adx(i, 2) = 0. |
---|
| 1577 | adx(i,JMR) = 0. |
---|
| 1578 | enddo |
---|
| 1579 | endif |
---|
| 1580 | ! set cross term due to x-adv at the poles to zero. |
---|
| 1581 | do i=1,IMR |
---|
| 1582 | adx(i, 1) = 0. |
---|
| 1583 | adx(i,JNP) = 0. |
---|
| 1584 | enddo |
---|
| 1585 | return |
---|
| 1586 | end subroutine xadv |
---|
| 1587 | ! |
---|
| 1588 | subroutine lmtppm(DC,A6,AR,AL,P,IM,LMT) |
---|
| 1589 | implicit none |
---|
| 1590 | ! |
---|
| 1591 | ! A6 = CURVATURE OF THE TEST PARABOLA |
---|
| 1592 | ! AR = RIGHT EDGE VALUE OF THE TEST PARABOLA |
---|
| 1593 | ! AL = LEFT EDGE VALUE OF THE TEST PARABOLA |
---|
| 1594 | ! DC = 0.5 * MISMATCH |
---|
| 1595 | ! P = CELL-AVERAGED VALUE |
---|
| 1596 | ! IM = VECTOR LENGTH |
---|
| 1597 | ! |
---|
| 1598 | ! OPTIONS: |
---|
| 1599 | ! |
---|
| 1600 | ! LMT = 0: FULL MONOTONICITY |
---|
| 1601 | ! LMT = 1: SEMI-MONOTONIC CONSTRAINT (NO UNDERSHOOTS) |
---|
| 1602 | ! LMT = 2: POSITIVE-DEFINITE CONSTRAINT |
---|
| 1603 | ! |
---|
| 1604 | real,parameter :: R12 = 1./12. |
---|
| 1605 | real :: A6(IM),AR(IM),AL(IM),P(IM),DC(IM) |
---|
| 1606 | integer :: IM,LMT |
---|
| 1607 | INTEGER :: i |
---|
| 1608 | REAL :: da1,da2,a6da,fmin |
---|
| 1609 | ! |
---|
| 1610 | if(LMT.eq.0) then |
---|
| 1611 | ! Full constraint |
---|
| 1612 | do i=1,IM |
---|
| 1613 | if(DC(i).eq.0.) then |
---|
| 1614 | AR(i) = p(i) |
---|
| 1615 | AL(i) = p(i) |
---|
| 1616 | A6(i) = 0. |
---|
| 1617 | else |
---|
| 1618 | da1 = AR(i) - AL(i) |
---|
| 1619 | da2 = da1**2 |
---|
| 1620 | A6DA = A6(i)*da1 |
---|
| 1621 | if(A6DA .lt. -da2) then |
---|
| 1622 | A6(i) = 3.*(AL(i)-p(i)) |
---|
| 1623 | AR(i) = AL(i) - A6(i) |
---|
| 1624 | elseif(A6DA .gt. da2) then |
---|
| 1625 | A6(i) = 3.*(AR(i)-p(i)) |
---|
| 1626 | AL(i) = AR(i) - A6(i) |
---|
| 1627 | endif |
---|
| 1628 | endif |
---|
| 1629 | end do |
---|
| 1630 | elseif(LMT.eq.1) then |
---|
| 1631 | ! Semi-monotonic constraint |
---|
| 1632 | do i=1,IM |
---|
| 1633 | if(abs(AR(i)-AL(i)) .GE. -A6(i)) go to 150 |
---|
| 1634 | if(p(i).lt.AR(i) .and. p(i).lt.AL(i)) then |
---|
| 1635 | AR(i) = p(i) |
---|
| 1636 | AL(i) = p(i) |
---|
| 1637 | A6(i) = 0. |
---|
| 1638 | elseif(AR(i) .gt. AL(i)) then |
---|
| 1639 | A6(i) = 3.*(AL(i)-p(i)) |
---|
| 1640 | AR(i) = AL(i) - A6(i) |
---|
| 1641 | else |
---|
| 1642 | A6(i) = 3.*(AR(i)-p(i)) |
---|
| 1643 | AL(i) = AR(i) - A6(i) |
---|
| 1644 | endif |
---|
| 1645 | 150 continue |
---|
| 1646 | end do |
---|
| 1647 | elseif(LMT.eq.2) then |
---|
| 1648 | do i=1,IM |
---|
| 1649 | if(abs(AR(i)-AL(i)) .GE. -A6(i)) go to 250 |
---|
| 1650 | fmin = p(i) + 0.25*(AR(i)-AL(i))**2/A6(i) + A6(i)*R12 |
---|
| 1651 | if(fmin.ge.0.) go to 250 |
---|
| 1652 | if(p(i).lt.AR(i) .and. p(i).lt.AL(i)) then |
---|
| 1653 | AR(i) = p(i) |
---|
| 1654 | AL(i) = p(i) |
---|
| 1655 | A6(i) = 0. |
---|
| 1656 | elseif(AR(i) .gt. AL(i)) then |
---|
| 1657 | A6(i) = 3.*(AL(i)-p(i)) |
---|
| 1658 | AR(i) = AL(i) - A6(i) |
---|
| 1659 | else |
---|
| 1660 | A6(i) = 3.*(AR(i)-p(i)) |
---|
| 1661 | AL(i) = AR(i) - A6(i) |
---|
| 1662 | endif |
---|
| 1663 | 250 continue |
---|
| 1664 | end do |
---|
| 1665 | endif |
---|
| 1666 | return |
---|
| 1667 | end subroutine lmtppm |
---|
| 1668 | ! |
---|
| 1669 | subroutine A2C(U,V,IMR,JMR,j1,j2,CRX,CRY,dtdx5,DTDY5) |
---|
| 1670 | implicit none |
---|
| 1671 | integer :: IMR,JMR,j1,j2 |
---|
| 1672 | real :: U(IMR,*),V(IMR,*),CRX(IMR,*),CRY(IMR,*),DTDX5(*),DTDY5 |
---|
| 1673 | integer :: i,j |
---|
| 1674 | ! |
---|
| 1675 | do j=j1,j2 |
---|
| 1676 | do i=2,IMR |
---|
| 1677 | CRX(i,J) = dtdx5(j)*(U(i,j)+U(i-1,j)) |
---|
| 1678 | end do |
---|
| 1679 | end do |
---|
| 1680 | ! |
---|
| 1681 | do j=j1,j2 |
---|
| 1682 | CRX(1,J) = dtdx5(j)*(U(1,j)+U(IMR,j)) |
---|
| 1683 | end do |
---|
| 1684 | ! |
---|
| 1685 | do i=1,IMR*JMR |
---|
| 1686 | CRY(i,2) = DTDY5*(V(i,2)+V(i,1)) |
---|
| 1687 | end do |
---|
| 1688 | return |
---|
| 1689 | end subroutine a2c |
---|
| 1690 | ! |
---|
| 1691 | subroutine cosa(cosp,cose,JNP,PI,DP) |
---|
| 1692 | implicit none |
---|
| 1693 | integer :: JNP |
---|
| 1694 | real :: cosp(*),cose(*),PI,DP |
---|
| 1695 | integer :: JMR,j,jeq |
---|
| 1696 | real :: ph5 |
---|
| 1697 | JMR = JNP-1 |
---|
| 1698 | do j=2,JNP |
---|
| 1699 | ph5 = -0.5*PI + (REAL(J-1)-0.5)*DP |
---|
| 1700 | cose(j) = cos(ph5) |
---|
| 1701 | end do |
---|
| 1702 | ! |
---|
| 1703 | JEQ = (JNP+1) / 2 |
---|
| 1704 | if(JMR .eq. 2*(JMR/2) ) then |
---|
| 1705 | do j=JNP, JEQ+1, -1 |
---|
| 1706 | cose(j) = cose(JNP+2-j) |
---|
| 1707 | enddo |
---|
| 1708 | else |
---|
| 1709 | ! cell edge at equator. |
---|
| 1710 | cose(JEQ+1) = 1. |
---|
| 1711 | do j=JNP, JEQ+2, -1 |
---|
| 1712 | cose(j) = cose(JNP+2-j) |
---|
| 1713 | enddo |
---|
| 1714 | endif |
---|
| 1715 | ! |
---|
| 1716 | do j=2,JMR |
---|
| 1717 | cosp(j) = 0.5*(cose(j)+cose(j+1)) |
---|
| 1718 | end do |
---|
| 1719 | cosp(1) = 0. |
---|
| 1720 | cosp(JNP) = 0. |
---|
| 1721 | return |
---|
| 1722 | end subroutine cosa |
---|
| 1723 | ! |
---|
| 1724 | subroutine cosc(cosp,cose,JNP,PI,DP) |
---|
| 1725 | implicit none |
---|
| 1726 | integer :: JNP |
---|
| 1727 | real :: cosp(*),cose(*),PI,DP |
---|
| 1728 | real :: phi |
---|
| 1729 | integer :: j |
---|
| 1730 | ! |
---|
| 1731 | phi = -0.5*PI |
---|
| 1732 | do j=2,JNP-1 |
---|
| 1733 | phi = phi + DP |
---|
| 1734 | cosp(j) = cos(phi) |
---|
| 1735 | end do |
---|
| 1736 | cosp( 1) = 0. |
---|
| 1737 | cosp(JNP) = 0. |
---|
| 1738 | ! |
---|
| 1739 | do j=2,JNP |
---|
| 1740 | cose(j) = 0.5*(cosp(j)+cosp(j-1)) |
---|
| 1741 | end do |
---|
| 1742 | ! |
---|
| 1743 | do j=2,JNP-1 |
---|
| 1744 | cosp(j) = 0.5*(cose(j)+cose(j+1)) |
---|
| 1745 | end do |
---|
| 1746 | return |
---|
| 1747 | end subroutine cosc |
---|
| 1748 | ! |
---|
| 1749 | SUBROUTINE qckxyz (Q,qtmp,IMR,JNP,NLAY,j1,j2,cosp,acosp, & |
---|
| 1750 | cross,IC,NSTEP) |
---|
| 1751 | ! |
---|
| 1752 | real,parameter :: tiny = 1.E-60 |
---|
| 1753 | INTEGER :: IMR,JNP,NLAY,j1,j2,IC,NSTEP |
---|
| 1754 | REAL :: Q(IMR,JNP,NLAY),qtmp(IMR,JNP),cosp(*),acosp(*) |
---|
| 1755 | logical :: cross |
---|
| 1756 | INTEGER :: NLAYM1,len,ip,L,icr,ipy,ipx,i |
---|
| 1757 | real :: qup,qly,dup,sum |
---|
| 1758 | ! |
---|
| 1759 | NLAYM1 = NLAY-1 |
---|
| 1760 | len = IMR*(j2-j1+1) |
---|
| 1761 | ip = 0 |
---|
| 1762 | ! |
---|
| 1763 | ! Top layer |
---|
| 1764 | L = 1 |
---|
| 1765 | icr = 1 |
---|
| 1766 | call filns(q(1,1,L),IMR,JNP,j1,j2,cosp,acosp,ipy,tiny) |
---|
| 1767 | if(ipy.eq.0) goto 50 |
---|
| 1768 | call filew(q(1,1,L),qtmp,IMR,JNP,j1,j2,ipx,tiny) |
---|
| 1769 | if(ipx.eq.0) goto 50 |
---|
| 1770 | ! |
---|
| 1771 | if(cross) then |
---|
| 1772 | call filcr(q(1,1,L),IMR,JNP,j1,j2,cosp,acosp,icr,tiny) |
---|
| 1773 | endif |
---|
| 1774 | if(icr.eq.0) goto 50 |
---|
| 1775 | ! |
---|
| 1776 | ! Vertical filling... |
---|
| 1777 | do i=1,len |
---|
| 1778 | IF( Q(i,j1,1).LT.0.) THEN |
---|
| 1779 | ip = ip + 1 |
---|
| 1780 | Q(i,j1,2) = Q(i,j1,2) + Q(i,j1,1) |
---|
| 1781 | Q(i,j1,1) = 0. |
---|
| 1782 | endif |
---|
| 1783 | enddo |
---|
| 1784 | ! |
---|
| 1785 | 50 continue |
---|
| 1786 | DO L = 2,NLAYM1 |
---|
| 1787 | icr = 1 |
---|
| 1788 | ! |
---|
| 1789 | call filns(q(1,1,L),IMR,JNP,j1,j2,cosp,acosp,ipy,tiny) |
---|
| 1790 | if(ipy.eq.0) goto 225 |
---|
| 1791 | call filew(q(1,1,L),qtmp,IMR,JNP,j1,j2,ipx,tiny) |
---|
| 1792 | if(ipx.eq.0) go to 225 |
---|
| 1793 | if(cross) then |
---|
| 1794 | call filcr(q(1,1,L),IMR,JNP,j1,j2,cosp,acosp,icr,tiny) |
---|
| 1795 | endif |
---|
| 1796 | if(icr.eq.0) goto 225 |
---|
| 1797 | ! |
---|
| 1798 | do i=1,len |
---|
| 1799 | IF( Q(I,j1,L).LT.0.) THEN |
---|
| 1800 | ! |
---|
| 1801 | ip = ip + 1 |
---|
| 1802 | ! From above |
---|
| 1803 | qup = Q(I,j1,L-1) |
---|
| 1804 | qly = -Q(I,j1,L) |
---|
| 1805 | dup = min(qly,qup) |
---|
| 1806 | Q(I,j1,L-1) = qup - dup |
---|
| 1807 | Q(I,j1,L ) = dup-qly |
---|
| 1808 | ! Below |
---|
| 1809 | Q(I,j1,L+1) = Q(I,j1,L+1) + Q(I,j1,L) |
---|
| 1810 | Q(I,j1,L) = 0. |
---|
| 1811 | ENDIF |
---|
| 1812 | ENDDO |
---|
| 1813 | 225 CONTINUE |
---|
| 1814 | END DO |
---|
| 1815 | ! |
---|
| 1816 | ! BOTTOM LAYER |
---|
| 1817 | sum = 0. |
---|
| 1818 | L = NLAY |
---|
| 1819 | ! |
---|
| 1820 | call filns(q(1,1,L),IMR,JNP,j1,j2,cosp,acosp,ipy,tiny) |
---|
| 1821 | if(ipy.eq.0) goto 911 |
---|
| 1822 | call filew(q(1,1,L),qtmp,IMR,JNP,j1,j2,ipx,tiny) |
---|
| 1823 | if(ipx.eq.0) goto 911 |
---|
| 1824 | ! |
---|
| 1825 | call filcr(q(1,1,L),IMR,JNP,j1,j2,cosp,acosp,icr,tiny) |
---|
| 1826 | if(icr.eq.0) goto 911 |
---|
| 1827 | ! |
---|
| 1828 | DO I=1,len |
---|
| 1829 | IF( Q(I,j1,L).LT.0.) THEN |
---|
| 1830 | ip = ip + 1 |
---|
| 1831 | ! |
---|
| 1832 | ! From above |
---|
| 1833 | ! |
---|
| 1834 | qup = Q(I,j1,NLAYM1) |
---|
| 1835 | qly = -Q(I,j1,L) |
---|
| 1836 | dup = min(qly,qup) |
---|
| 1837 | Q(I,j1,NLAYM1) = qup - dup |
---|
| 1838 | ! From "below" the surface. |
---|
| 1839 | sum = sum + qly-dup |
---|
| 1840 | Q(I,j1,L) = 0. |
---|
| 1841 | ENDIF |
---|
| 1842 | ENDDO |
---|
| 1843 | ! |
---|
[524] | 1844 | 911 continue |
---|
[5246] | 1845 | ! |
---|
| 1846 | if(ip.gt.IMR) then |
---|
| 1847 | write(6,*) 'IC=',IC,' STEP=',NSTEP, & |
---|
| 1848 | ' Vertical filling pts=',ip |
---|
| 1849 | endif |
---|
| 1850 | ! |
---|
| 1851 | if(sum.gt.1.e-25) then |
---|
| 1852 | write(6,*) IC,NSTEP,' Mass source from the ground=',sum |
---|
| 1853 | endif |
---|
| 1854 | RETURN |
---|
| 1855 | END SUBROUTINE qckxyz |
---|
| 1856 | ! |
---|
| 1857 | subroutine filcr(q,IMR,JNP,j1,j2,cosp,acosp,icr,tiny) |
---|
| 1858 | implicit none |
---|
| 1859 | integer :: IMR,JNP,j1,j2,icr |
---|
| 1860 | real :: q(IMR,*),cosp(*),acosp(*),tiny |
---|
| 1861 | integer :: i,j |
---|
| 1862 | real :: dq,dn,d0,d1,ds,d2 |
---|
| 1863 | icr = 0 |
---|
| 1864 | do j=j1+1,j2-1 |
---|
| 1865 | DO i=1,IMR-1 |
---|
| 1866 | IF(q(i,j).LT.0.) THEN |
---|
| 1867 | icr = 1 |
---|
| 1868 | dq = - q(i,j)*cosp(j) |
---|
| 1869 | ! N-E |
---|
| 1870 | dn = q(i+1,j+1)*cosp(j+1) |
---|
| 1871 | d0 = max(0.,dn) |
---|
| 1872 | d1 = min(dq,d0) |
---|
| 1873 | q(i+1,j+1) = (dn - d1)*acosp(j+1) |
---|
| 1874 | dq = dq - d1 |
---|
| 1875 | ! S-E |
---|
| 1876 | ds = q(i+1,j-1)*cosp(j-1) |
---|
| 1877 | d0 = max(0.,ds) |
---|
| 1878 | d2 = min(dq,d0) |
---|
| 1879 | q(i+1,j-1) = (ds - d2)*acosp(j-1) |
---|
| 1880 | q(i,j) = (d2 - dq)*acosp(j) + tiny |
---|
| 1881 | endif |
---|
| 1882 | 50 CONTINUE |
---|
| 1883 | END DO |
---|
| 1884 | if(icr.eq.0 .and. q(IMR,j).ge.0.) goto 65 |
---|
| 1885 | DO i=2,IMR |
---|
| 1886 | IF(q(i,j).LT.0.) THEN |
---|
| 1887 | icr = 1 |
---|
| 1888 | dq = - q(i,j)*cosp(j) |
---|
| 1889 | ! N-W |
---|
| 1890 | dn = q(i-1,j+1)*cosp(j+1) |
---|
| 1891 | d0 = max(0.,dn) |
---|
| 1892 | d1 = min(dq,d0) |
---|
| 1893 | q(i-1,j+1) = (dn - d1)*acosp(j+1) |
---|
| 1894 | dq = dq - d1 |
---|
| 1895 | ! S-W |
---|
| 1896 | ds = q(i-1,j-1)*cosp(j-1) |
---|
| 1897 | d0 = max(0.,ds) |
---|
| 1898 | d2 = min(dq,d0) |
---|
| 1899 | q(i-1,j-1) = (ds - d2)*acosp(j-1) |
---|
| 1900 | q(i,j) = (d2 - dq)*acosp(j) + tiny |
---|
| 1901 | endif |
---|
| 1902 | END DO |
---|
| 1903 | ! ***************************************** |
---|
| 1904 | ! i=1 |
---|
| 1905 | i=1 |
---|
| 1906 | IF(q(i,j).LT.0.) THEN |
---|
| 1907 | icr = 1 |
---|
| 1908 | dq = - q(i,j)*cosp(j) |
---|
| 1909 | ! N-W |
---|
| 1910 | dn = q(IMR,j+1)*cosp(j+1) |
---|
| 1911 | d0 = max(0.,dn) |
---|
| 1912 | d1 = min(dq,d0) |
---|
| 1913 | q(IMR,j+1) = (dn - d1)*acosp(j+1) |
---|
| 1914 | dq = dq - d1 |
---|
| 1915 | ! S-W |
---|
| 1916 | ds = q(IMR,j-1)*cosp(j-1) |
---|
| 1917 | d0 = max(0.,ds) |
---|
| 1918 | d2 = min(dq,d0) |
---|
| 1919 | q(IMR,j-1) = (ds - d2)*acosp(j-1) |
---|
| 1920 | q(i,j) = (d2 - dq)*acosp(j) + tiny |
---|
| 1921 | endif |
---|
| 1922 | ! ***************************************** |
---|
| 1923 | ! i=IMR |
---|
| 1924 | i=IMR |
---|
| 1925 | IF(q(i,j).LT.0.) THEN |
---|
| 1926 | icr = 1 |
---|
| 1927 | dq = - q(i,j)*cosp(j) |
---|
| 1928 | ! N-E |
---|
| 1929 | dn = q(1,j+1)*cosp(j+1) |
---|
| 1930 | d0 = max(0.,dn) |
---|
| 1931 | d1 = min(dq,d0) |
---|
| 1932 | q(1,j+1) = (dn - d1)*acosp(j+1) |
---|
| 1933 | dq = dq - d1 |
---|
| 1934 | ! S-E |
---|
| 1935 | ds = q(1,j-1)*cosp(j-1) |
---|
| 1936 | d0 = max(0.,ds) |
---|
| 1937 | d2 = min(dq,d0) |
---|
| 1938 | q(1,j-1) = (ds - d2)*acosp(j-1) |
---|
| 1939 | q(i,j) = (d2 - dq)*acosp(j) + tiny |
---|
| 1940 | endif |
---|
| 1941 | ! ***************************************** |
---|
| 1942 | 65 continue |
---|
| 1943 | end do |
---|
| 1944 | ! |
---|
| 1945 | do i=1,IMR |
---|
| 1946 | if(q(i,j1).lt.0. .or. q(i,j2).lt.0.) then |
---|
| 1947 | icr = 1 |
---|
| 1948 | goto 80 |
---|
| 1949 | endif |
---|
| 1950 | enddo |
---|
| 1951 | ! |
---|
| 1952 | 80 continue |
---|
| 1953 | ! |
---|
| 1954 | if(q(1,1).lt.0. .or. q(1,jnp).lt.0.) then |
---|
| 1955 | icr = 1 |
---|
| 1956 | endif |
---|
| 1957 | ! |
---|
| 1958 | return |
---|
| 1959 | end subroutine filcr |
---|
| 1960 | ! |
---|
| 1961 | subroutine filns(q,IMR,JNP,j1,j2,cosp,acosp,ipy,tiny) |
---|
| 1962 | implicit none |
---|
| 1963 | integer :: IMR,JNP,j1,j2,ipy |
---|
| 1964 | real :: q(IMR,*),cosp(*),acosp(*),tiny |
---|
| 1965 | real :: DP,CAP1,dq,dn,d0,d1,ds,d2 |
---|
| 1966 | INTEGER :: i,j |
---|
| 1967 | ! logical first |
---|
| 1968 | ! data first /.true./ |
---|
| 1969 | ! save cap1 |
---|
| 1970 | ! |
---|
| 1971 | ! if(first) then |
---|
| 1972 | DP = 4.*ATAN(1.)/REAL(JNP-1) |
---|
| 1973 | CAP1 = IMR*(1.-COS((j1-1.5)*DP))/DP |
---|
| 1974 | ! first = .false. |
---|
| 1975 | ! endif |
---|
| 1976 | ! |
---|
| 1977 | ipy = 0 |
---|
| 1978 | do j=j1+1,j2-1 |
---|
| 1979 | DO i=1,IMR |
---|
| 1980 | IF(q(i,j).LT.0.) THEN |
---|
| 1981 | ipy = 1 |
---|
| 1982 | dq = - q(i,j)*cosp(j) |
---|
| 1983 | ! North |
---|
| 1984 | dn = q(i,j+1)*cosp(j+1) |
---|
| 1985 | d0 = max(0.,dn) |
---|
| 1986 | d1 = min(dq,d0) |
---|
| 1987 | q(i,j+1) = (dn - d1)*acosp(j+1) |
---|
| 1988 | dq = dq - d1 |
---|
| 1989 | ! South |
---|
| 1990 | ds = q(i,j-1)*cosp(j-1) |
---|
| 1991 | d0 = max(0.,ds) |
---|
| 1992 | d2 = min(dq,d0) |
---|
| 1993 | q(i,j-1) = (ds - d2)*acosp(j-1) |
---|
| 1994 | q(i,j) = (d2 - dq)*acosp(j) + tiny |
---|
| 1995 | endif |
---|
| 1996 | END DO |
---|
| 1997 | end do |
---|
| 1998 | ! |
---|
| 1999 | do i=1,imr |
---|
| 2000 | IF(q(i,j1).LT.0.) THEN |
---|
| 2001 | ipy = 1 |
---|
| 2002 | dq = - q(i,j1)*cosp(j1) |
---|
| 2003 | ! North |
---|
| 2004 | dn = q(i,j1+1)*cosp(j1+1) |
---|
| 2005 | d0 = max(0.,dn) |
---|
| 2006 | d1 = min(dq,d0) |
---|
| 2007 | q(i,j1+1) = (dn - d1)*acosp(j1+1) |
---|
| 2008 | q(i,j1) = (d1 - dq)*acosp(j1) + tiny |
---|
| 2009 | endif |
---|
| 2010 | enddo |
---|
| 2011 | ! |
---|
| 2012 | j = j2 |
---|
| 2013 | do i=1,imr |
---|
| 2014 | IF(q(i,j).LT.0.) THEN |
---|
| 2015 | ipy = 1 |
---|
| 2016 | dq = - q(i,j)*cosp(j) |
---|
| 2017 | ! South |
---|
| 2018 | ds = q(i,j-1)*cosp(j-1) |
---|
| 2019 | d0 = max(0.,ds) |
---|
| 2020 | d2 = min(dq,d0) |
---|
| 2021 | q(i,j-1) = (ds - d2)*acosp(j-1) |
---|
| 2022 | q(i,j) = (d2 - dq)*acosp(j) + tiny |
---|
| 2023 | endif |
---|
| 2024 | enddo |
---|
| 2025 | ! |
---|
| 2026 | ! Check Poles. |
---|
| 2027 | if(q(1,1).lt.0.) then |
---|
| 2028 | dq = q(1,1)*cap1/REAL(IMR)*acosp(j1) |
---|
| 2029 | do i=1,imr |
---|
| 2030 | q(i,1) = 0. |
---|
| 2031 | q(i,j1) = q(i,j1) + dq |
---|
| 2032 | if(q(i,j1).lt.0.) ipy = 1 |
---|
| 2033 | enddo |
---|
| 2034 | endif |
---|
| 2035 | ! |
---|
| 2036 | if(q(1,JNP).lt.0.) then |
---|
| 2037 | dq = q(1,JNP)*cap1/REAL(IMR)*acosp(j2) |
---|
| 2038 | do i=1,imr |
---|
| 2039 | q(i,JNP) = 0. |
---|
| 2040 | q(i,j2) = q(i,j2) + dq |
---|
| 2041 | if(q(i,j2).lt.0.) ipy = 1 |
---|
| 2042 | enddo |
---|
| 2043 | endif |
---|
| 2044 | ! |
---|
| 2045 | return |
---|
| 2046 | end subroutine filns |
---|
| 2047 | ! |
---|
| 2048 | subroutine filew(q,qtmp,IMR,JNP,j1,j2,ipx,tiny) |
---|
| 2049 | implicit none |
---|
| 2050 | integer :: IMR,JNP,j1,j2,ipx |
---|
| 2051 | real :: q(IMR,*),qtmp(JNP,IMR),tiny |
---|
| 2052 | integer :: i,j |
---|
| 2053 | real :: d0,d1,d2 |
---|
| 2054 | ! |
---|
| 2055 | ipx = 0 |
---|
| 2056 | ! Copy & swap direction for vectorization. |
---|
| 2057 | do i=1,imr |
---|
| 2058 | do j=j1,j2 |
---|
| 2059 | qtmp(j,i) = q(i,j) |
---|
| 2060 | end do |
---|
| 2061 | end do |
---|
| 2062 | ! |
---|
| 2063 | do i=2,imr-1 |
---|
| 2064 | do j=j1,j2 |
---|
| 2065 | if(qtmp(j,i).lt.0.) then |
---|
| 2066 | ipx = 1 |
---|
| 2067 | ! west |
---|
| 2068 | d0 = max(0.,qtmp(j,i-1)) |
---|
| 2069 | d1 = min(-qtmp(j,i),d0) |
---|
| 2070 | qtmp(j,i-1) = qtmp(j,i-1) - d1 |
---|
| 2071 | qtmp(j,i) = qtmp(j,i) + d1 |
---|
| 2072 | ! east |
---|
| 2073 | d0 = max(0.,qtmp(j,i+1)) |
---|
| 2074 | d2 = min(-qtmp(j,i),d0) |
---|
| 2075 | qtmp(j,i+1) = qtmp(j,i+1) - d2 |
---|
| 2076 | qtmp(j,i) = qtmp(j,i) + d2 + tiny |
---|
| 2077 | endif |
---|
| 2078 | end do |
---|
| 2079 | end do |
---|
| 2080 | ! |
---|
| 2081 | i=1 |
---|
| 2082 | do j=j1,j2 |
---|
| 2083 | if(qtmp(j,i).lt.0.) then |
---|
| 2084 | ipx = 1 |
---|
| 2085 | ! west |
---|
| 2086 | d0 = max(0.,qtmp(j,imr)) |
---|
| 2087 | d1 = min(-qtmp(j,i),d0) |
---|
| 2088 | qtmp(j,imr) = qtmp(j,imr) - d1 |
---|
| 2089 | qtmp(j,i) = qtmp(j,i) + d1 |
---|
| 2090 | ! east |
---|
| 2091 | d0 = max(0.,qtmp(j,i+1)) |
---|
| 2092 | d2 = min(-qtmp(j,i),d0) |
---|
| 2093 | qtmp(j,i+1) = qtmp(j,i+1) - d2 |
---|
| 2094 | ! |
---|
| 2095 | qtmp(j,i) = qtmp(j,i) + d2 + tiny |
---|
| 2096 | endif |
---|
| 2097 | 65 continue |
---|
| 2098 | end do |
---|
| 2099 | i=IMR |
---|
| 2100 | do j=j1,j2 |
---|
| 2101 | if(qtmp(j,i).lt.0.) then |
---|
| 2102 | ipx = 1 |
---|
| 2103 | ! west |
---|
| 2104 | d0 = max(0.,qtmp(j,i-1)) |
---|
| 2105 | d1 = min(-qtmp(j,i),d0) |
---|
| 2106 | qtmp(j,i-1) = qtmp(j,i-1) - d1 |
---|
| 2107 | qtmp(j,i) = qtmp(j,i) + d1 |
---|
| 2108 | ! east |
---|
| 2109 | d0 = max(0.,qtmp(j,1)) |
---|
| 2110 | d2 = min(-qtmp(j,i),d0) |
---|
| 2111 | qtmp(j,1) = qtmp(j,1) - d2 |
---|
| 2112 | ! |
---|
| 2113 | qtmp(j,i) = qtmp(j,i) + d2 + tiny |
---|
| 2114 | endif |
---|
| 2115 | end do |
---|
| 2116 | ! |
---|
| 2117 | if(ipx.ne.0) then |
---|
| 2118 | do j=j1,j2 |
---|
| 2119 | do i=1,imr |
---|
| 2120 | q(i,j) = qtmp(j,i) |
---|
| 2121 | end do |
---|
| 2122 | end do |
---|
| 2123 | else |
---|
| 2124 | ! |
---|
| 2125 | ! Poles. |
---|
| 2126 | if(q(1,1).lt.0.OR. q(1,JNP).lt.0.) ipx = 1 |
---|
| 2127 | endif |
---|
| 2128 | return |
---|
| 2129 | end subroutine filew |
---|
| 2130 | ! |
---|
| 2131 | subroutine zflip(q,im,km,nc) |
---|
| 2132 | implicit none |
---|
| 2133 | ! This routine flip the array q (in the vertical). |
---|
| 2134 | integer :: im,km,nc |
---|
| 2135 | real :: q(im,km,nc) |
---|
| 2136 | ! local dynamic array |
---|
| 2137 | real :: qtmp(im,km) |
---|
| 2138 | integer :: IC,k,i |
---|
| 2139 | ! |
---|
| 2140 | do IC = 1, nc |
---|
| 2141 | ! |
---|
| 2142 | do k=1,km |
---|
| 2143 | do i=1,im |
---|
| 2144 | qtmp(i,k) = q(i,km+1-k,IC) |
---|
| 2145 | end do |
---|
| 2146 | end do |
---|
| 2147 | ! |
---|
| 2148 | do i=1,im*km |
---|
| 2149 | q(i,1,IC) = qtmp(i,1) |
---|
| 2150 | 2000 continue |
---|
| 2151 | end do |
---|
| 2152 | end do |
---|
| 2153 | return |
---|
| 2154 | end subroutine zflip |
---|