[2021] | 1 | module exner_hyb_m |
---|
[524] | 2 | |
---|
[2021] | 3 | IMPLICIT NONE |
---|
[524] | 4 | |
---|
[2021] | 5 | contains |
---|
[524] | 6 | |
---|
[2021] | 7 | SUBROUTINE exner_hyb ( ngrid, ps, p, pks, pk, pkf ) |
---|
[524] | 8 | |
---|
[2021] | 9 | ! Auteurs : P.Le Van , Fr. Hourdin . |
---|
| 10 | ! .......... |
---|
| 11 | ! |
---|
| 12 | ! .... ngrid, ps,p sont des argum.d'entree au sous-prog ... |
---|
| 13 | ! .... pks,pk,pkf sont des argum.de sortie au sous-prog ... |
---|
| 14 | ! |
---|
| 15 | ! ************************************************************************ |
---|
| 16 | ! Calcule la fonction d'Exner pk = Cp * (p/preff) ** kappa , aux milieux des |
---|
| 17 | ! couches . Pk(l) sera calcule aux milieux des couches l ,entre les |
---|
| 18 | ! pressions p(l) et p(l+1) ,definis aux interfaces des llm couches . |
---|
| 19 | ! ************************************************************************ |
---|
| 20 | ! .. N.B : Au sommet de l'atmosphere, p(llm+1) = 0. , et ps et pks sont |
---|
| 21 | ! la pression et la fonction d'Exner au sol . |
---|
| 22 | ! |
---|
| 23 | ! -------- z |
---|
| 24 | ! A partir des relations ( 1 ) p*dz(pk) = kappa *pk*dz(p) et |
---|
| 25 | ! ( 2 ) pk(l) = alpha(l)+ beta(l)*pk(l-1) |
---|
| 26 | ! ( voir note de Fr.Hourdin ) , |
---|
| 27 | ! |
---|
| 28 | ! on determine successivement , du haut vers le bas des couches, les |
---|
| 29 | ! coef. alpha(llm),beta(llm) .,.,alpha(l),beta(l),,,alpha(2),beta(2), |
---|
| 30 | ! puis pk(ij,1). Ensuite ,on calcule,du bas vers le haut des couches, |
---|
| 31 | ! pk(ij,l) donne par la relation (2), pour l = 2 a l = llm . |
---|
| 32 | ! |
---|
| 33 | ! |
---|
| 34 | ! |
---|
[2597] | 35 | USE comconst_mod, ONLY: jmp1, cpp, kappa, r |
---|
[2600] | 36 | USE comvert_mod, ONLY: preff |
---|
| 37 | |
---|
[5271] | 38 | USE dimensions_mod, ONLY: iim, jjm, llm, ndm |
---|
[5272] | 39 | USE paramet_mod_h, ONLY: iip1, iip2, iip3, jjp1, llmp1, llmp2, llmm1, kftd, ip1jm, ip1jmp1, & |
---|
| 40 | ip1jmi1, ijp1llm, ijmllm, mvar, jcfil, jcfllm |
---|
[5271] | 41 | IMPLICIT NONE |
---|
| 42 | |
---|
| 43 | |
---|
[5272] | 44 | |
---|
[2021] | 45 | include "comgeom.h" |
---|
| 46 | |
---|
| 47 | INTEGER ngrid |
---|
| 48 | REAL p(ngrid,llmp1),pk(ngrid,llm) |
---|
| 49 | real, optional:: pkf(ngrid,llm) |
---|
| 50 | REAL ps(ngrid),pks(ngrid), alpha(ngrid,llm),beta(ngrid,llm) |
---|
| 51 | |
---|
| 52 | ! .... variables locales ... |
---|
| 53 | |
---|
| 54 | INTEGER l, ij |
---|
| 55 | REAL unpl2k,dellta |
---|
| 56 | |
---|
| 57 | logical,save :: firstcall=.true. |
---|
| 58 | character(len=*),parameter :: modname="exner_hyb" |
---|
| 59 | |
---|
| 60 | ! Sanity check |
---|
| 61 | if (firstcall) then |
---|
| 62 | ! sanity checks for Shallow Water case (1 vertical layer) |
---|
| 63 | if (llm.eq.1) then |
---|
[1520] | 64 | if (kappa.ne.1) then |
---|
[2021] | 65 | call abort_gcm(modname, & |
---|
| 66 | "kappa!=1 , but running in Shallow Water mode!!",42) |
---|
[1520] | 67 | endif |
---|
| 68 | if (cpp.ne.r) then |
---|
[2021] | 69 | call abort_gcm(modname, & |
---|
| 70 | "cpp!=r , but running in Shallow Water mode!!",42) |
---|
[1520] | 71 | endif |
---|
[2021] | 72 | endif ! of if (llm.eq.1) |
---|
[1520] | 73 | |
---|
[2021] | 74 | firstcall=.false. |
---|
| 75 | endif ! of if (firstcall) |
---|
[1520] | 76 | |
---|
[2021] | 77 | ! Specific behaviour for Shallow Water (1 vertical layer) case: |
---|
| 78 | if (llm.eq.1) then |
---|
| 79 | |
---|
| 80 | ! Compute pks(:),pk(:),pkf(:) |
---|
| 81 | |
---|
| 82 | DO ij = 1, ngrid |
---|
| 83 | pks(ij) = (cpp/preff) * ps(ij) |
---|
[1403] | 84 | pk(ij,1) = .5*pks(ij) |
---|
[2021] | 85 | ENDDO |
---|
[1520] | 86 | |
---|
[2021] | 87 | if (present(pkf)) then |
---|
| 88 | pkf = pk |
---|
| 89 | CALL filtreg ( pkf, jmp1, llm, 2, 1, .TRUE., 1 ) |
---|
| 90 | end if |
---|
[1403] | 91 | |
---|
[2021] | 92 | ! our work is done, exit routine |
---|
| 93 | return |
---|
| 94 | endif ! of if (llm.eq.1) |
---|
[524] | 95 | |
---|
[2021] | 96 | ! General case: |
---|
[524] | 97 | |
---|
[2021] | 98 | unpl2k = 1.+ 2.* kappa |
---|
| 99 | |
---|
| 100 | ! ------------- |
---|
| 101 | ! Calcul de pks |
---|
| 102 | ! ------------- |
---|
| 103 | |
---|
| 104 | DO ij = 1, ngrid |
---|
| 105 | pks(ij) = cpp * ( ps(ij)/preff ) ** kappa |
---|
| 106 | ENDDO |
---|
| 107 | |
---|
| 108 | ! .... Calcul des coeff. alpha et beta pour la couche l = llm .. |
---|
| 109 | ! |
---|
| 110 | DO ij = 1, ngrid |
---|
[524] | 111 | alpha(ij,llm) = 0. |
---|
| 112 | beta (ij,llm) = 1./ unpl2k |
---|
[2021] | 113 | ENDDO |
---|
| 114 | ! |
---|
| 115 | ! ... Calcul des coeff. alpha et beta pour l = llm-1 a l = 2 ... |
---|
| 116 | ! |
---|
| 117 | DO l = llm -1 , 2 , -1 |
---|
| 118 | ! |
---|
| 119 | DO ij = 1, ngrid |
---|
| 120 | dellta = p(ij,l)* unpl2k + p(ij,l+1)* ( beta(ij,l+1)-unpl2k ) |
---|
| 121 | alpha(ij,l) = - p(ij,l+1) / dellta * alpha(ij,l+1) |
---|
| 122 | beta (ij,l) = p(ij,l ) / dellta |
---|
| 123 | ENDDO |
---|
| 124 | ENDDO |
---|
[524] | 125 | |
---|
[2021] | 126 | ! *********************************************************************** |
---|
| 127 | ! ..... Calcul de pk pour la couche 1 , pres du sol .... |
---|
| 128 | ! |
---|
| 129 | DO ij = 1, ngrid |
---|
| 130 | pk(ij,1) = ( p(ij,1)*pks(ij) - 0.5*alpha(ij,2)*p(ij,2) ) / & |
---|
| 131 | ( p(ij,1)* (1.+kappa) + 0.5*( beta(ij,2)-unpl2k )* p(ij,2) ) |
---|
| 132 | ENDDO |
---|
| 133 | ! |
---|
| 134 | ! ..... Calcul de pk(ij,l) , pour l = 2 a l = llm ........ |
---|
| 135 | ! |
---|
| 136 | DO l = 2, llm |
---|
| 137 | DO ij = 1, ngrid |
---|
| 138 | pk(ij,l) = alpha(ij,l) + beta(ij,l) * pk(ij,l-1) |
---|
| 139 | ENDDO |
---|
| 140 | ENDDO |
---|
| 141 | |
---|
| 142 | if (present(pkf)) then |
---|
| 143 | ! calcul de pkf |
---|
| 144 | pkf = pk |
---|
| 145 | CALL filtreg ( pkf, jmp1, llm, 2, 1, .TRUE., 1 ) |
---|
| 146 | end if |
---|
| 147 | |
---|
| 148 | END SUBROUTINE exner_hyb |
---|
| 149 | |
---|
| 150 | end module exner_hyb_m |
---|