1 | ! |
---|
2 | ! $Header$ |
---|
3 | ! |
---|
4 | SUBROUTINE ADVZP(LIMIT,DTZ,W,SM,S0,SSX,SY,SZ & |
---|
5 | ,SSXX,SSXY,SSXZ,SYY,SYZ,SZZ,ntra ) |
---|
6 | |
---|
7 | USE comgeom_mod_h |
---|
8 | USE dimensions_mod, ONLY: iim, jjm, llm, ndm |
---|
9 | USE paramet_mod_h |
---|
10 | IMPLICIT NONE |
---|
11 | |
---|
12 | !CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC |
---|
13 | ! C |
---|
14 | ! second-order moments (SOM) advection of tracer in Z direction C |
---|
15 | ! C |
---|
16 | !CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC |
---|
17 | ! C |
---|
18 | ! Source : Pascal Simon ( Meteo, CNRM ) C |
---|
19 | ! Adaptation : A.A. (LGGE) C |
---|
20 | ! Derniere Modif : 19/11/95 LAST C |
---|
21 | ! C |
---|
22 | ! sont les arguments d'entree pour le s-pg C |
---|
23 | ! C |
---|
24 | ! argument de sortie du s-pg C |
---|
25 | ! C |
---|
26 | !CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC |
---|
27 | !CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC |
---|
28 | ! |
---|
29 | ! Rem : Probleme aux poles il faut reecrire ce cas specifique |
---|
30 | ! Attention au sens de l'indexation |
---|
31 | ! |
---|
32 | |
---|
33 | ! |
---|
34 | ! parametres principaux du modele |
---|
35 | ! |
---|
36 | |
---|
37 | |
---|
38 | ! |
---|
39 | ! Arguments : |
---|
40 | ! ---------- |
---|
41 | ! dty : frequence fictive d'appel du transport |
---|
42 | ! parbu,pbarv : flux de masse en x et y en Pa.m2.s-1 |
---|
43 | ! |
---|
44 | INTEGER :: lon,lat,niv |
---|
45 | INTEGER :: i,j,jv,k,kp,l,lp |
---|
46 | INTEGER :: ntra |
---|
47 | ! PARAMETER (ntra = 1) |
---|
48 | ! |
---|
49 | REAL :: dtz |
---|
50 | REAL :: w ( iip1,jjp1,llm ) |
---|
51 | ! |
---|
52 | ! moments: SM total mass in each grid box |
---|
53 | ! S0 mass of tracer in each grid box |
---|
54 | ! Si 1rst order moment in i direction |
---|
55 | ! |
---|
56 | REAL :: SM(iip1,jjp1,llm) & |
---|
57 | ,S0(iip1,jjp1,llm,ntra) |
---|
58 | REAL :: SSX(iip1,jjp1,llm,ntra) & |
---|
59 | ,SY(iip1,jjp1,llm,ntra) & |
---|
60 | ,SZ(iip1,jjp1,llm,ntra) & |
---|
61 | ,SSXX(iip1,jjp1,llm,ntra) & |
---|
62 | ,SSXY(iip1,jjp1,llm,ntra) & |
---|
63 | ,SSXZ(iip1,jjp1,llm,ntra) & |
---|
64 | ,SYY(iip1,jjp1,llm,ntra) & |
---|
65 | ,SYZ(iip1,jjp1,llm,ntra) & |
---|
66 | ,SZZ(iip1,jjp1,llm,ntra) |
---|
67 | ! |
---|
68 | ! Local : |
---|
69 | ! ------- |
---|
70 | ! |
---|
71 | ! mass fluxes across the boundaries (UGRI,VGRI,WGRI) |
---|
72 | ! mass fluxes in kg |
---|
73 | ! declaration : |
---|
74 | ! |
---|
75 | REAL :: WGRI(iip1,jjp1,0:llm) |
---|
76 | |
---|
77 | ! Rem : UGRI et VGRI ne sont pas utilises dans |
---|
78 | ! cette subroutine ( advection en z uniquement ) |
---|
79 | ! Rem 2 :le dimensionnement de VGRI depend de celui de pbarv |
---|
80 | ! attention a celui de WGRI |
---|
81 | ! |
---|
82 | ! the moments F are similarly defined and used as temporary |
---|
83 | ! storage for portions of the grid boxes in transit |
---|
84 | ! |
---|
85 | ! the moments Fij are used as temporary storage for |
---|
86 | ! portions of the grid boxes in transit at the current level |
---|
87 | ! |
---|
88 | ! work arrays |
---|
89 | ! |
---|
90 | ! |
---|
91 | REAL :: F0(iim,llm,ntra),FM(iim,llm) |
---|
92 | REAL :: FX(iim,llm,ntra),FY(iim,llm,ntra) |
---|
93 | REAL :: FZ(iim,llm,ntra) |
---|
94 | REAL :: FXX(iim,llm,ntra),FXY(iim,llm,ntra) |
---|
95 | REAL :: FXZ(iim,llm,ntra),FYY(iim,llm,ntra) |
---|
96 | REAL :: FYZ(iim,llm,ntra),FZZ(iim,llm,ntra) |
---|
97 | REAL :: S00(ntra) |
---|
98 | REAL :: SM0 ! Just temporal variable |
---|
99 | ! |
---|
100 | ! work arrays |
---|
101 | ! |
---|
102 | REAL :: ALF(iim),ALF1(iim) |
---|
103 | REAL :: ALFQ(iim),ALF1Q(iim) |
---|
104 | REAL :: ALF2(iim),ALF3(iim) |
---|
105 | REAL :: ALF4(iim) |
---|
106 | REAL :: TEMPTM ! Just temporal variable |
---|
107 | REAL :: SLPMAX,S1MAX,S1NEW,S2NEW |
---|
108 | ! |
---|
109 | REAL :: sqi,sqf |
---|
110 | LOGICAL :: LIMIT |
---|
111 | |
---|
112 | lon = iim ! rem : Il est possible qu'un pbl. arrive ici |
---|
113 | lat = jjp1 ! a cause des dim. differentes entre les |
---|
114 | niv = llm ! tab. S et VGRI |
---|
115 | |
---|
116 | !----------------------------------------------------------------- |
---|
117 | ! *** Test : diag de la qtite totale de traceur dans |
---|
118 | ! l'atmosphere avant l'advection en Y |
---|
119 | ! |
---|
120 | sqi = 0. |
---|
121 | sqf = 0. |
---|
122 | ! |
---|
123 | DO l = 1,llm |
---|
124 | DO j = 1,jjp1 |
---|
125 | DO i = 1,iim |
---|
126 | sqi = sqi + S0(i,j,l,ntra) |
---|
127 | END DO |
---|
128 | END DO |
---|
129 | END DO |
---|
130 | PRINT*,'---------- DIAG DANS ADVZP - ENTREE --------' |
---|
131 | PRINT*,'sqi=',sqi |
---|
132 | |
---|
133 | !----------------------------------------------------------------- |
---|
134 | ! Interface : adaptation nouveau modele |
---|
135 | ! ------------------------------------- |
---|
136 | ! |
---|
137 | ! Conversion des flux de masses en kg |
---|
138 | |
---|
139 | DO l = 1,llm |
---|
140 | DO j = 1,jjp1 |
---|
141 | DO i = 1,iip1 |
---|
142 | wgri (i,j,llm+1-l) = w (i,j,l) |
---|
143 | END DO |
---|
144 | END DO |
---|
145 | END DO |
---|
146 | do j=1,jjp1 |
---|
147 | do i=1,iip1 |
---|
148 | wgri(i,j,0)=0. |
---|
149 | enddo |
---|
150 | enddo |
---|
151 | ! |
---|
152 | !AA rem : Je ne suis pas sur du signe |
---|
153 | !AA Je ne suis pas sur pour le 0:llm |
---|
154 | ! |
---|
155 | !----------------------------------------------------------------- |
---|
156 | !---------------------- START HERE ------------------------------- |
---|
157 | ! |
---|
158 | ! boucle sur les latitudes |
---|
159 | ! |
---|
160 | DO K=1,LAT |
---|
161 | ! |
---|
162 | ! place limits on appropriate moments before transport |
---|
163 | ! (if flux-limiting is to be applied) |
---|
164 | ! |
---|
165 | IF(.NOT.LIMIT) GO TO 101 |
---|
166 | ! |
---|
167 | DO JV=1,NTRA |
---|
168 | DO L=1,NIV |
---|
169 | DO I=1,LON |
---|
170 | IF(S0(I,K,L,JV).GT.0.) THEN |
---|
171 | SLPMAX=S0(I,K,L,JV) |
---|
172 | S1MAX =1.5*SLPMAX |
---|
173 | S1NEW =AMIN1(S1MAX,AMAX1(-S1MAX,SZ(I,K,L,JV))) |
---|
174 | S2NEW =AMIN1( 2.*SLPMAX-ABS(S1NEW)/3. , & |
---|
175 | AMAX1(ABS(S1NEW)-SLPMAX,SZZ(I,K,L,JV)) ) |
---|
176 | SZ (I,K,L,JV)=S1NEW |
---|
177 | SZZ(I,K,L,JV)=S2NEW |
---|
178 | SSXZ(I,K,L,JV)=AMIN1(SLPMAX,AMAX1(-SLPMAX,SSXZ(I,K,L,JV))) |
---|
179 | SYZ(I,K,L,JV)=AMIN1(SLPMAX,AMAX1(-SLPMAX,SYZ(I,K,L,JV))) |
---|
180 | ELSE |
---|
181 | SZ (I,K,L,JV)=0. |
---|
182 | SZZ(I,K,L,JV)=0. |
---|
183 | SSXZ(I,K,L,JV)=0. |
---|
184 | SYZ(I,K,L,JV)=0. |
---|
185 | ENDIF |
---|
186 | END DO |
---|
187 | END DO |
---|
188 | END DO |
---|
189 | ! |
---|
190 | 101 CONTINUE |
---|
191 | ! |
---|
192 | ! boucle sur les niveaux intercouches de 1 a NIV-1 |
---|
193 | ! (flux nul au sommet L=0 et a la base L=NIV) |
---|
194 | ! |
---|
195 | ! calculate flux and moments between adjacent boxes |
---|
196 | ! (flux from LP to L if WGRI(L).lt.0, from L to LP if WGRI(L).gt.0) |
---|
197 | ! 1- create temporary moments/masses for partial boxes in transit |
---|
198 | ! 2- reajusts moments remaining in the box |
---|
199 | ! |
---|
200 | DO L=1,NIV-1 |
---|
201 | LP=L+1 |
---|
202 | ! |
---|
203 | DO I=1,LON |
---|
204 | ! |
---|
205 | IF(WGRI(I,K,L).LT.0.) THEN |
---|
206 | FM(I,L)=-WGRI(I,K,L)*DTZ |
---|
207 | ALF(I)=FM(I,L)/SM(I,K,LP) |
---|
208 | SM(I,K,LP)=SM(I,K,LP)-FM(I,L) |
---|
209 | ELSE |
---|
210 | FM(I,L)=WGRI(I,K,L)*DTZ |
---|
211 | ALF(I)=FM(I,L)/SM(I,K,L) |
---|
212 | SM(I,K,L)=SM(I,K,L)-FM(I,L) |
---|
213 | ENDIF |
---|
214 | ! |
---|
215 | ALFQ (I)=ALF(I)*ALF(I) |
---|
216 | ALF1 (I)=1.-ALF(I) |
---|
217 | ALF1Q(I)=ALF1(I)*ALF1(I) |
---|
218 | ALF2 (I)=ALF1(I)-ALF(I) |
---|
219 | ALF3 (I)=ALF(I)*ALFQ(I) |
---|
220 | ALF4 (I)=ALF1(I)*ALF1Q(I) |
---|
221 | ! |
---|
222 | END DO |
---|
223 | ! |
---|
224 | DO JV=1,NTRA |
---|
225 | DO I=1,LON |
---|
226 | ! |
---|
227 | IF(WGRI(I,K,L).LT.0.) THEN |
---|
228 | ! |
---|
229 | F0 (I,L,JV)=ALF (I)* ( S0(I,K,LP,JV)-ALF1(I)* & |
---|
230 | ( SZ(I,K,LP,JV)-ALF2(I)*SZZ(I,K,LP,JV) ) ) |
---|
231 | FZ (I,L,JV)=ALFQ(I)*(SZ(I,K,LP,JV)-3.*ALF1(I)*SZZ(I,K,LP,JV)) |
---|
232 | FZZ(I,L,JV)=ALF3(I)*SZZ(I,K,LP,JV) |
---|
233 | FXZ(I,L,JV)=ALFQ(I)*SSXZ(I,K,LP,JV) |
---|
234 | FYZ(I,L,JV)=ALFQ(I)*SYZ(I,K,LP,JV) |
---|
235 | FX (I,L,JV)=ALF (I)*(SSX(I,K,LP,JV)-ALF1(I)*SSXZ(I,K,LP,JV)) |
---|
236 | FY (I,L,JV)=ALF (I)*(SY(I,K,LP,JV)-ALF1(I)*SYZ(I,K,LP,JV)) |
---|
237 | FXX(I,L,JV)=ALF (I)*SSXX(I,K,LP,JV) |
---|
238 | FXY(I,L,JV)=ALF (I)*SSXY(I,K,LP,JV) |
---|
239 | FYY(I,L,JV)=ALF (I)*SYY(I,K,LP,JV) |
---|
240 | ! |
---|
241 | S0 (I,K,LP,JV)=S0 (I,K,LP,JV)-F0 (I,L,JV) |
---|
242 | SZ (I,K,LP,JV)=ALF1Q(I) & |
---|
243 | *(SZ(I,K,LP,JV)+3.*ALF(I)*SZZ(I,K,LP,JV)) |
---|
244 | SZZ(I,K,LP,JV)=ALF4 (I)*SZZ(I,K,LP,JV) |
---|
245 | SSXZ(I,K,LP,JV)=ALF1Q(I)*SSXZ(I,K,LP,JV) |
---|
246 | SYZ(I,K,LP,JV)=ALF1Q(I)*SYZ(I,K,LP,JV) |
---|
247 | SSX (I,K,LP,JV)=SSX (I,K,LP,JV)-FX (I,L,JV) |
---|
248 | SY (I,K,LP,JV)=SY (I,K,LP,JV)-FY (I,L,JV) |
---|
249 | SSXX(I,K,LP,JV)=SSXX(I,K,LP,JV)-FXX(I,L,JV) |
---|
250 | SSXY(I,K,LP,JV)=SSXY(I,K,LP,JV)-FXY(I,L,JV) |
---|
251 | SYY(I,K,LP,JV)=SYY(I,K,LP,JV)-FYY(I,L,JV) |
---|
252 | ! |
---|
253 | ELSE |
---|
254 | ! |
---|
255 | F0 (I,L,JV)=ALF (I)*(S0(I,K,L,JV) & |
---|
256 | +ALF1(I) * (SZ(I,K,L,JV)+ALF2(I)*SZZ(I,K,L,JV)) ) |
---|
257 | FZ (I,L,JV)=ALFQ(I)*(SZ(I,K,L,JV)+3.*ALF1(I)*SZZ(I,K,L,JV)) |
---|
258 | FZZ(I,L,JV)=ALF3(I)*SZZ(I,K,L,JV) |
---|
259 | FXZ(I,L,JV)=ALFQ(I)*SSXZ(I,K,L,JV) |
---|
260 | FYZ(I,L,JV)=ALFQ(I)*SYZ(I,K,L,JV) |
---|
261 | FX (I,L,JV)=ALF (I)*(SSX(I,K,L,JV)+ALF1(I)*SSXZ(I,K,L,JV)) |
---|
262 | FY (I,L,JV)=ALF (I)*(SY(I,K,L,JV)+ALF1(I)*SYZ(I,K,L,JV)) |
---|
263 | FXX(I,L,JV)=ALF (I)*SSXX(I,K,L,JV) |
---|
264 | FXY(I,L,JV)=ALF (I)*SSXY(I,K,L,JV) |
---|
265 | FYY(I,L,JV)=ALF (I)*SYY(I,K,L,JV) |
---|
266 | ! |
---|
267 | S0 (I,K,L,JV)=S0 (I,K,L,JV)-F0(I,L,JV) |
---|
268 | SZ (I,K,L,JV)=ALF1Q(I)*(SZ(I,K,L,JV)-3.*ALF(I)*SZZ(I,K,L,JV)) |
---|
269 | SZZ(I,K,L,JV)=ALF4 (I)*SZZ(I,K,L,JV) |
---|
270 | SSXZ(I,K,L,JV)=ALF1Q(I)*SSXZ(I,K,L,JV) |
---|
271 | SYZ(I,K,L,JV)=ALF1Q(I)*SYZ(I,K,L,JV) |
---|
272 | SSX (I,K,L,JV)=SSX (I,K,L,JV)-FX (I,L,JV) |
---|
273 | SY (I,K,L,JV)=SY (I,K,L,JV)-FY (I,L,JV) |
---|
274 | SSXX(I,K,L,JV)=SSXX(I,K,L,JV)-FXX(I,L,JV) |
---|
275 | SSXY(I,K,L,JV)=SSXY(I,K,L,JV)-FXY(I,L,JV) |
---|
276 | SYY(I,K,L,JV)=SYY(I,K,L,JV)-FYY(I,L,JV) |
---|
277 | ! |
---|
278 | ENDIF |
---|
279 | ! |
---|
280 | END DO |
---|
281 | END DO |
---|
282 | ! |
---|
283 | END DO |
---|
284 | ! |
---|
285 | ! puts the temporary moments Fi into appropriate neighboring boxes |
---|
286 | ! |
---|
287 | DO L=1,NIV-1 |
---|
288 | LP=L+1 |
---|
289 | ! |
---|
290 | DO I=1,LON |
---|
291 | ! |
---|
292 | IF(WGRI(I,K,L).LT.0.) THEN |
---|
293 | SM(I,K,L)=SM(I,K,L)+FM(I,L) |
---|
294 | ALF(I)=FM(I,L)/SM(I,K,L) |
---|
295 | ELSE |
---|
296 | SM(I,K,LP)=SM(I,K,LP)+FM(I,L) |
---|
297 | ALF(I)=FM(I,L)/SM(I,K,LP) |
---|
298 | ENDIF |
---|
299 | ! |
---|
300 | ALF1(I)=1.-ALF(I) |
---|
301 | ALFQ(I)=ALF(I)*ALF(I) |
---|
302 | ALF1Q(I)=ALF1(I)*ALF1(I) |
---|
303 | ALF2(I)=ALF(I)*ALF1(I) |
---|
304 | ALF3(I)=ALF1(I)-ALF(I) |
---|
305 | ! |
---|
306 | END DO |
---|
307 | ! |
---|
308 | DO JV=1,NTRA |
---|
309 | DO I=1,LON |
---|
310 | ! |
---|
311 | IF(WGRI(I,K,L).LT.0.) THEN |
---|
312 | ! |
---|
313 | TEMPTM=-ALF(I)*S0(I,K,L,JV)+ALF1(I)*F0(I,L,JV) |
---|
314 | S0 (I,K,L,JV)=S0(I,K,L,JV)+F0(I,L,JV) |
---|
315 | SZZ(I,K,L,JV)=ALFQ(I)*FZZ(I,L,JV)+ALF1Q(I)*SZZ(I,K,L,JV) & |
---|
316 | +5.*( ALF2(I)*(FZ(I,L,JV)-SZ(I,K,L,JV))+ALF3(I)*TEMPTM ) |
---|
317 | SZ (I,K,L,JV)=ALF (I)*FZ (I,L,JV)+ALF1 (I)*SZ (I,K,L,JV) & |
---|
318 | +3.*TEMPTM |
---|
319 | SSXZ(I,K,L,JV)=ALF (I)*FXZ(I,L,JV)+ALF1 (I)*SSXZ(I,K,L,JV) & |
---|
320 | +3.*(ALF1(I)*FX (I,L,JV)-ALF (I)*SSX (I,K,L,JV)) |
---|
321 | SYZ(I,K,L,JV)=ALF (I)*FYZ(I,L,JV)+ALF1 (I)*SYZ(I,K,L,JV) & |
---|
322 | +3.*(ALF1(I)*FY (I,L,JV)-ALF (I)*SY (I,K,L,JV)) |
---|
323 | SSX (I,K,L,JV)=SSX (I,K,L,JV)+FX (I,L,JV) |
---|
324 | SY (I,K,L,JV)=SY (I,K,L,JV)+FY (I,L,JV) |
---|
325 | SSXX(I,K,L,JV)=SSXX(I,K,L,JV)+FXX(I,L,JV) |
---|
326 | SSXY(I,K,L,JV)=SSXY(I,K,L,JV)+FXY(I,L,JV) |
---|
327 | SYY(I,K,L,JV)=SYY(I,K,L,JV)+FYY(I,L,JV) |
---|
328 | ! |
---|
329 | ELSE |
---|
330 | ! |
---|
331 | TEMPTM=ALF(I)*S0(I,K,LP,JV)-ALF1(I)*F0(I,L,JV) |
---|
332 | S0 (I,K,LP,JV)=S0(I,K,LP,JV)+F0(I,L,JV) |
---|
333 | SZZ(I,K,LP,JV)=ALFQ(I)*FZZ(I,L,JV)+ALF1Q(I)*SZZ(I,K,LP,JV) & |
---|
334 | +5.*( ALF2(I)*(SZ(I,K,LP,JV)-FZ(I,L,JV))-ALF3(I)*TEMPTM ) |
---|
335 | SZ (I,K,LP,JV)=ALF (I)*FZ(I,L,JV)+ALF1(I)*SZ(I,K,LP,JV) & |
---|
336 | +3.*TEMPTM |
---|
337 | SSXZ(I,K,LP,JV)=ALF(I)*FXZ(I,L,JV)+ALF1(I)*SSXZ(I,K,LP,JV) & |
---|
338 | +3.*(ALF(I)*SSX(I,K,LP,JV)-ALF1(I)*FX(I,L,JV)) |
---|
339 | SYZ(I,K,LP,JV)=ALF(I)*FYZ(I,L,JV)+ALF1(I)*SYZ(I,K,LP,JV) & |
---|
340 | +3.*(ALF(I)*SY(I,K,LP,JV)-ALF1(I)*FY(I,L,JV)) |
---|
341 | SSX (I,K,LP,JV)=SSX (I,K,LP,JV)+FX (I,L,JV) |
---|
342 | SY (I,K,LP,JV)=SY (I,K,LP,JV)+FY (I,L,JV) |
---|
343 | SSXX(I,K,LP,JV)=SSXX(I,K,LP,JV)+FXX(I,L,JV) |
---|
344 | SSXY(I,K,LP,JV)=SSXY(I,K,LP,JV)+FXY(I,L,JV) |
---|
345 | SYY(I,K,LP,JV)=SYY(I,K,LP,JV)+FYY(I,L,JV) |
---|
346 | ! |
---|
347 | ENDIF |
---|
348 | ! |
---|
349 | END DO |
---|
350 | END DO |
---|
351 | ! |
---|
352 | END DO |
---|
353 | ! |
---|
354 | ! fin de la boucle principale sur les latitudes |
---|
355 | ! |
---|
356 | END DO |
---|
357 | ! |
---|
358 | DO l = 1,llm |
---|
359 | DO j = 1,jjp1 |
---|
360 | SM(iip1,j,l) = SM(1,j,l) |
---|
361 | S0(iip1,j,l,ntra) = S0(1,j,l,ntra) |
---|
362 | SSX(iip1,j,l,ntra) = SSX(1,j,l,ntra) |
---|
363 | SY(iip1,j,l,ntra) = SY(1,j,l,ntra) |
---|
364 | SZ(iip1,j,l,ntra) = SZ(1,j,l,ntra) |
---|
365 | ENDDO |
---|
366 | ENDDO |
---|
367 | ! C------------------------------------------------------------- |
---|
368 | ! *** Test : diag de la qqtite totale de tarceur |
---|
369 | ! dans l'atmosphere avant l'advection en z |
---|
370 | DO l = 1,llm |
---|
371 | DO j = 1,jjp1 |
---|
372 | DO i = 1,iim |
---|
373 | sqf = sqf + S0(i,j,l,ntra) |
---|
374 | ENDDO |
---|
375 | ENDDO |
---|
376 | ENDDO |
---|
377 | PRINT*,'-------- DIAG DANS ADVZ - SORTIE ---------' |
---|
378 | PRINT*,'sqf=', sqf |
---|
379 | |
---|
380 | RETURN |
---|
381 | END SUBROUTINE ADVZP |
---|