1 | ! |
---|
2 | ! $Header$ |
---|
3 | ! |
---|
4 | SUBROUTINE ADVYP(LIMIT,DTY,PBARV,SM,S0,SSX,SY,SZ & |
---|
5 | ,SSXX,SSXY,SSXZ,SYY,SYZ,SZZ,ntra ) |
---|
6 | USE comgeom_mod_h |
---|
7 | USE dimensions_mod, ONLY: iim, jjm, llm, ndm |
---|
8 | USE paramet_mod_h |
---|
9 | IMPLICIT NONE |
---|
10 | !CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC |
---|
11 | ! C |
---|
12 | ! second-order moments (SOM) advection of tracer in Y direction C |
---|
13 | ! C |
---|
14 | !CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC |
---|
15 | ! C |
---|
16 | ! Source : Pascal Simon ( Meteo, CNRM ) C |
---|
17 | ! Adaptation : A.A. (LGGE) C |
---|
18 | ! Derniere Modif : 19/10/95 LAST |
---|
19 | ! C |
---|
20 | ! sont les arguments d'entree pour le s-pg C |
---|
21 | ! C |
---|
22 | ! argument de sortie du s-pg C |
---|
23 | ! C |
---|
24 | !CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC |
---|
25 | !CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC |
---|
26 | ! |
---|
27 | ! Rem : Probleme aux poles il faut reecrire ce cas specifique |
---|
28 | ! Attention au sens de l'indexation |
---|
29 | ! |
---|
30 | ! parametres principaux du modele |
---|
31 | ! |
---|
32 | ! |
---|
33 | |
---|
34 | |
---|
35 | |
---|
36 | ! Arguments : |
---|
37 | ! ---------- |
---|
38 | ! dty : frequence fictive d'appel du transport |
---|
39 | ! parbu,pbarv : flux de masse en x et y en Pa.m2.s-1 |
---|
40 | |
---|
41 | INTEGER :: lon,lat,niv |
---|
42 | INTEGER :: i,j,jv,k,kp,l |
---|
43 | INTEGER :: ntra |
---|
44 | ! PARAMETER (ntra = 1) |
---|
45 | |
---|
46 | REAL :: dty |
---|
47 | REAL :: pbarv ( iip1,jjm, llm ) |
---|
48 | |
---|
49 | ! moments: SM total mass in each grid box |
---|
50 | ! S0 mass of tracer in each grid box |
---|
51 | ! Si 1rst order moment in i direction |
---|
52 | ! |
---|
53 | REAL :: SM(iip1,jjp1,llm) & |
---|
54 | ,S0(iip1,jjp1,llm,ntra) |
---|
55 | REAL :: SSX(iip1,jjp1,llm,ntra) & |
---|
56 | ,SY(iip1,jjp1,llm,ntra) & |
---|
57 | ,SZ(iip1,jjp1,llm,ntra) & |
---|
58 | ,SSXX(iip1,jjp1,llm,ntra) & |
---|
59 | ,SSXY(iip1,jjp1,llm,ntra) & |
---|
60 | ,SSXZ(iip1,jjp1,llm,ntra) & |
---|
61 | ,SYY(iip1,jjp1,llm,ntra) & |
---|
62 | ,SYZ(iip1,jjp1,llm,ntra) & |
---|
63 | ,SZZ(iip1,jjp1,llm,ntra) |
---|
64 | ! |
---|
65 | ! Local : |
---|
66 | ! ------- |
---|
67 | |
---|
68 | ! mass fluxes across the boundaries (UGRI,VGRI,WGRI) |
---|
69 | ! mass fluxes in kg |
---|
70 | ! declaration : |
---|
71 | |
---|
72 | REAL :: VGRI(iip1,0:jjp1,llm) |
---|
73 | |
---|
74 | ! Rem : UGRI et WGRI ne sont pas utilises dans |
---|
75 | ! cette subroutine ( advection en y uniquement ) |
---|
76 | ! Rem 2 :le dimensionnement de VGRI depend de celui de pbarv |
---|
77 | ! |
---|
78 | ! the moments F are similarly defined and used as temporary |
---|
79 | ! storage for portions of the grid boxes in transit |
---|
80 | ! |
---|
81 | ! the moments Fij are used as temporary storage for |
---|
82 | ! portions of the grid boxes in transit at the current level |
---|
83 | ! |
---|
84 | ! work arrays |
---|
85 | ! |
---|
86 | ! |
---|
87 | REAL :: F0(iim,0:jjp1,ntra),FM(iim,0:jjp1) |
---|
88 | REAL :: FX(iim,jjm,ntra),FY(iim,jjm,ntra) |
---|
89 | REAL :: FZ(iim,jjm,ntra) |
---|
90 | REAL :: FXX(iim,jjm,ntra),FXY(iim,jjm,ntra) |
---|
91 | REAL :: FXZ(iim,jjm,ntra),FYY(iim,jjm,ntra) |
---|
92 | REAL :: FYZ(iim,jjm,ntra),FZZ(iim,jjm,ntra) |
---|
93 | REAL :: S00(ntra) |
---|
94 | REAL :: SM0 ! Just temporal variable |
---|
95 | ! |
---|
96 | ! work arrays |
---|
97 | ! |
---|
98 | REAL :: ALF(iim,0:jjp1),ALF1(iim,0:jjp1) |
---|
99 | REAL :: ALFQ(iim,0:jjp1),ALF1Q(iim,0:jjp1) |
---|
100 | REAL :: ALF2(iim,0:jjp1),ALF3(iim,0:jjp1) |
---|
101 | REAL :: ALF4(iim,0:jjp1) |
---|
102 | REAL :: TEMPTM ! Just temporal variable |
---|
103 | REAL :: SLPMAX,S1MAX,S1NEW,S2NEW |
---|
104 | ! |
---|
105 | ! Special pour poles |
---|
106 | ! |
---|
107 | REAL :: sbms,sfms,sfzs,sbmn,sfmn,sfzn |
---|
108 | REAL :: sns0(ntra),snsz(ntra),snsm |
---|
109 | REAL :: qy1(iim,llm,ntra),qylat(iim,llm,ntra) |
---|
110 | REAL :: cx1(llm,ntra), cxLAT(llm,ntra) |
---|
111 | REAL :: cy1(llm,ntra), cyLAT(llm,ntra) |
---|
112 | REAL :: z1(iim), zcos(iim), zsin(iim) |
---|
113 | REAL :: SSUM |
---|
114 | EXTERNAL SSUM |
---|
115 | ! |
---|
116 | REAL :: sqi,sqf |
---|
117 | LOGICAL :: LIMIT |
---|
118 | |
---|
119 | lon = iim ! rem : Il est possible qu'un pbl. arrive ici |
---|
120 | lat = jjp1 ! a cause des dim. differentes entre les |
---|
121 | niv = llm ! tab. S et VGRI |
---|
122 | |
---|
123 | !----------------------------------------------------------------- |
---|
124 | ! initialisations |
---|
125 | |
---|
126 | sbms = 0. |
---|
127 | sfms = 0. |
---|
128 | sfzs = 0. |
---|
129 | sbmn = 0. |
---|
130 | sfmn = 0. |
---|
131 | sfzn = 0. |
---|
132 | |
---|
133 | !----------------------------------------------------------------- |
---|
134 | ! *** Test : diag de la qtite totale de traceur dans |
---|
135 | ! l'atmosphere avant l'advection en Y |
---|
136 | ! |
---|
137 | sqi = 0. |
---|
138 | sqf = 0. |
---|
139 | |
---|
140 | DO l = 1,llm |
---|
141 | DO j = 1,jjp1 |
---|
142 | DO i = 1,iim |
---|
143 | sqi = sqi + S0(i,j,l,ntra) |
---|
144 | END DO |
---|
145 | END DO |
---|
146 | END DO |
---|
147 | PRINT*,'---------- DIAG DANS ADVY - ENTREE --------' |
---|
148 | PRINT*,'sqi=',sqi |
---|
149 | |
---|
150 | !----------------------------------------------------------------- |
---|
151 | ! Interface : adaptation nouveau modele |
---|
152 | ! ------------------------------------- |
---|
153 | ! |
---|
154 | ! Conversion des flux de masses en kg |
---|
155 | !-AA 20/10/94 le signe -1 est necessaire car indexation opposee |
---|
156 | |
---|
157 | DO l = 1,llm |
---|
158 | DO j = 1,jjm |
---|
159 | DO i = 1,iip1 |
---|
160 | vgri (i,j,llm+1-l)=-1.*pbarv (i,j,l) |
---|
161 | END DO |
---|
162 | END DO |
---|
163 | END DO |
---|
164 | |
---|
165 | !AA Initialisation de flux fictifs aux bords sup. des boites pol. |
---|
166 | |
---|
167 | DO l = 1,llm |
---|
168 | DO i = 1,iip1 |
---|
169 | vgri(i,0,l) = 0. |
---|
170 | vgri(i,jjp1,l) = 0. |
---|
171 | ENDDO |
---|
172 | ENDDO |
---|
173 | ! |
---|
174 | !----------------- START HERE ----------------------- |
---|
175 | ! boucle sur les niveaux |
---|
176 | ! |
---|
177 | DO L=1,NIV |
---|
178 | ! |
---|
179 | ! place limits on appropriate moments before transport |
---|
180 | ! (if flux-limiting is to be applied) |
---|
181 | ! |
---|
182 | IF(.NOT.LIMIT) GO TO 11 |
---|
183 | ! |
---|
184 | DO JV=1,NTRA |
---|
185 | DO K=1,LAT |
---|
186 | DO I=1,LON |
---|
187 | IF(S0(I,K,L,JV).GT.0.) THEN |
---|
188 | SLPMAX=AMAX1(S0(I,K,L,JV),0.) |
---|
189 | S1MAX=1.5*SLPMAX |
---|
190 | S1NEW=AMIN1(S1MAX,AMAX1(-S1MAX,SY(I,K,L,JV))) |
---|
191 | S2NEW=AMIN1( 2.*SLPMAX-ABS(S1NEW)/3. , & |
---|
192 | AMAX1(ABS(S1NEW)-SLPMAX,SYY(I,K,L,JV)) ) |
---|
193 | SY (I,K,L,JV)=S1NEW |
---|
194 | SYY(I,K,L,JV)=S2NEW |
---|
195 | SSXY(I,K,L,JV)=AMIN1(SLPMAX,AMAX1(-SLPMAX,SSXY(I,K,L,JV))) |
---|
196 | SYZ(I,K,L,JV)=AMIN1(SLPMAX,AMAX1(-SLPMAX,SYZ(I,K,L,JV))) |
---|
197 | ELSE |
---|
198 | SY (I,K,L,JV)=0. |
---|
199 | SYY(I,K,L,JV)=0. |
---|
200 | SSXY(I,K,L,JV)=0. |
---|
201 | SYZ(I,K,L,JV)=0. |
---|
202 | ENDIF |
---|
203 | END DO |
---|
204 | END DO |
---|
205 | END DO |
---|
206 | ! |
---|
207 | 11 CONTINUE |
---|
208 | ! |
---|
209 | ! le flux a travers le pole Nord est traite separement |
---|
210 | ! |
---|
211 | SM0=0. |
---|
212 | DO JV=1,NTRA |
---|
213 | S00(JV)=0. |
---|
214 | END DO |
---|
215 | ! |
---|
216 | DO I=1,LON |
---|
217 | ! |
---|
218 | IF(VGRI(I,0,L).LE.0.) THEN |
---|
219 | FM(I,0)=-VGRI(I,0,L)*DTY |
---|
220 | ALF(I,0)=FM(I,0)/SM(I,1,L) |
---|
221 | SM(I,1,L)=SM(I,1,L)-FM(I,0) |
---|
222 | SM0=SM0+FM(I,0) |
---|
223 | ENDIF |
---|
224 | ! |
---|
225 | ALFQ(I,0)=ALF(I,0)*ALF(I,0) |
---|
226 | ALF1(I,0)=1.-ALF(I,0) |
---|
227 | ALF1Q(I,0)=ALF1(I,0)*ALF1(I,0) |
---|
228 | ALF2(I,0)=ALF1(I,0)-ALF(I,0) |
---|
229 | ALF3(I,0)=ALF(I,0)*ALFQ(I,0) |
---|
230 | ALF4(I,0)=ALF1(I,0)*ALF1Q(I,0) |
---|
231 | ! |
---|
232 | END DO |
---|
233 | ! print*,'ADVYP 21' |
---|
234 | ! |
---|
235 | DO JV=1,NTRA |
---|
236 | DO I=1,LON |
---|
237 | ! |
---|
238 | IF(VGRI(I,0,L).LE.0.) THEN |
---|
239 | ! |
---|
240 | F0(I,0,JV)=ALF(I,0)* ( S0(I,1,L,JV)-ALF1(I,0)* & |
---|
241 | ( SY(I,1,L,JV)-ALF2(I,0)*SYY(I,1,L,JV) ) ) |
---|
242 | ! |
---|
243 | S00(JV)=S00(JV)+F0(I,0,JV) |
---|
244 | S0 (I,1,L,JV)=S0(I,1,L,JV)-F0(I,0,JV) |
---|
245 | SY (I,1,L,JV)=ALF1Q(I,0)* & |
---|
246 | (SY(I,1,L,JV)+3.*ALF(I,0)*SYY(I,1,L,JV)) |
---|
247 | SYY(I,1,L,JV)=ALF4 (I,0)*SYY(I,1,L,JV) |
---|
248 | SSX (I,1,L,JV)=ALF1 (I,0)* & |
---|
249 | (SSX(I,1,L,JV)+ALF(I,0)*SSXY(I,1,L,JV) ) |
---|
250 | SZ (I,1,L,JV)=ALF1 (I,0)* & |
---|
251 | (SZ(I,1,L,JV)+ALF(I,0)*SSXZ(I,1,L,JV) ) |
---|
252 | SSXX(I,1,L,JV)=ALF1 (I,0)*SSXX(I,1,L,JV) |
---|
253 | SSXZ(I,1,L,JV)=ALF1 (I,0)*SSXZ(I,1,L,JV) |
---|
254 | SZZ(I,1,L,JV)=ALF1 (I,0)*SZZ(I,1,L,JV) |
---|
255 | SSXY(I,1,L,JV)=ALF1Q(I,0)*SSXY(I,1,L,JV) |
---|
256 | SYZ(I,1,L,JV)=ALF1Q(I,0)*SYZ(I,1,L,JV) |
---|
257 | ! |
---|
258 | ENDIF |
---|
259 | ! |
---|
260 | END DO |
---|
261 | END DO |
---|
262 | ! |
---|
263 | DO I=1,LON |
---|
264 | IF(VGRI(I,0,L).GT.0.) THEN |
---|
265 | FM(I,0)=VGRI(I,0,L)*DTY |
---|
266 | ALF(I,0)=FM(I,0)/SM0 |
---|
267 | ENDIF |
---|
268 | END DO |
---|
269 | ! |
---|
270 | DO JV=1,NTRA |
---|
271 | DO I=1,LON |
---|
272 | IF(VGRI(I,0,L).GT.0.) THEN |
---|
273 | F0(I,0,JV)=ALF(I,0)*S00(JV) |
---|
274 | ENDIF |
---|
275 | END DO |
---|
276 | END DO |
---|
277 | ! |
---|
278 | ! puts the temporary moments Fi into appropriate neighboring boxes |
---|
279 | ! |
---|
280 | ! print*,'av ADVYP 25' |
---|
281 | DO I=1,LON |
---|
282 | ! |
---|
283 | IF(VGRI(I,0,L).GT.0.) THEN |
---|
284 | SM(I,1,L)=SM(I,1,L)+FM(I,0) |
---|
285 | ALF(I,0)=FM(I,0)/SM(I,1,L) |
---|
286 | ENDIF |
---|
287 | ! |
---|
288 | ALFQ(I,0)=ALF(I,0)*ALF(I,0) |
---|
289 | ALF1(I,0)=1.-ALF(I,0) |
---|
290 | ALF1Q(I,0)=ALF1(I,0)*ALF1(I,0) |
---|
291 | ALF2(I,0)=ALF1(I,0)-ALF(I,0) |
---|
292 | ALF3(I,0)=ALF1(I,0)*ALF(I,0) |
---|
293 | ! |
---|
294 | END DO |
---|
295 | ! print*,'av ADVYP 25' |
---|
296 | ! |
---|
297 | DO JV=1,NTRA |
---|
298 | DO I=1,LON |
---|
299 | ! |
---|
300 | IF(VGRI(I,0,L).GT.0.) THEN |
---|
301 | ! |
---|
302 | TEMPTM=ALF(I,0)*S0(I,1,L,JV)-ALF1(I,0)*F0(I,0,JV) |
---|
303 | S0 (I,1,L,JV)=S0(I,1,L,JV)+F0(I,0,JV) |
---|
304 | SYY(I,1,L,JV)=ALF1Q(I,0)*SYY(I,1,L,JV) & |
---|
305 | +5.*( ALF3 (I,0)*SY (I,1,L,JV)-ALF2(I,0)*TEMPTM ) |
---|
306 | SY (I,1,L,JV)=ALF1 (I,0)*SY (I,1,L,JV)+3.*TEMPTM |
---|
307 | SSXY(I,1,L,JV)=ALF1 (I,0)*SSXY(I,1,L,JV)+3.*ALF(I,0)*SSX(I,1,L,JV) |
---|
308 | SYZ(I,1,L,JV)=ALF1 (I,0)*SYZ(I,1,L,JV)+3.*ALF(I,0)*SZ(I,1,L,JV) |
---|
309 | ! |
---|
310 | ENDIF |
---|
311 | ! |
---|
312 | END DO |
---|
313 | END DO |
---|
314 | ! |
---|
315 | ! calculate flux and moments between adjacent boxes |
---|
316 | ! 1- create temporary moments/masses for partial boxes in transit |
---|
317 | ! 2- reajusts moments remaining in the box |
---|
318 | ! |
---|
319 | ! flux from KP to K if V(K).lt.0 and from K to KP if V(K).gt.0 |
---|
320 | ! |
---|
321 | ! print*,'av ADVYP 30' |
---|
322 | DO K=1,LAT-1 |
---|
323 | KP=K+1 |
---|
324 | DO I=1,LON |
---|
325 | ! |
---|
326 | IF(VGRI(I,K,L).LT.0.) THEN |
---|
327 | FM(I,K)=-VGRI(I,K,L)*DTY |
---|
328 | ALF(I,K)=FM(I,K)/SM(I,KP,L) |
---|
329 | SM(I,KP,L)=SM(I,KP,L)-FM(I,K) |
---|
330 | ELSE |
---|
331 | FM(I,K)=VGRI(I,K,L)*DTY |
---|
332 | ALF(I,K)=FM(I,K)/SM(I,K,L) |
---|
333 | SM(I,K,L)=SM(I,K,L)-FM(I,K) |
---|
334 | ENDIF |
---|
335 | ! |
---|
336 | ALFQ(I,K)=ALF(I,K)*ALF(I,K) |
---|
337 | ALF1(I,K)=1.-ALF(I,K) |
---|
338 | ALF1Q(I,K)=ALF1(I,K)*ALF1(I,K) |
---|
339 | ALF2(I,K)=ALF1(I,K)-ALF(I,K) |
---|
340 | ALF3(I,K)=ALF(I,K)*ALFQ(I,K) |
---|
341 | ALF4(I,K)=ALF1(I,K)*ALF1Q(I,K) |
---|
342 | ! |
---|
343 | END DO |
---|
344 | END DO |
---|
345 | ! print*,'ap ADVYP 30' |
---|
346 | ! |
---|
347 | DO JV=1,NTRA |
---|
348 | DO K=1,LAT-1 |
---|
349 | KP=K+1 |
---|
350 | DO I=1,LON |
---|
351 | ! |
---|
352 | IF(VGRI(I,K,L).LT.0.) THEN |
---|
353 | ! |
---|
354 | F0 (I,K,JV)=ALF (I,K)* ( S0(I,KP,L,JV)-ALF1(I,K)* & |
---|
355 | ( SY(I,KP,L,JV)-ALF2(I,K)*SYY(I,KP,L,JV) ) ) |
---|
356 | FY (I,K,JV)=ALFQ(I,K)* & |
---|
357 | (SY(I,KP,L,JV)-3.*ALF1(I,K)*SYY(I,KP,L,JV)) |
---|
358 | FYY(I,K,JV)=ALF3(I,K)*SYY(I,KP,L,JV) |
---|
359 | FX (I,K,JV)=ALF (I,K)* & |
---|
360 | (SSX(I,KP,L,JV)-ALF1(I,K)*SSXY(I,KP,L,JV)) |
---|
361 | FZ (I,K,JV)=ALF (I,K)* & |
---|
362 | (SZ(I,KP,L,JV)-ALF1(I,K)*SYZ(I,KP,L,JV)) |
---|
363 | FXY(I,K,JV)=ALFQ(I,K)*SSXY(I,KP,L,JV) |
---|
364 | FYZ(I,K,JV)=ALFQ(I,K)*SYZ(I,KP,L,JV) |
---|
365 | FXX(I,K,JV)=ALF (I,K)*SSXX(I,KP,L,JV) |
---|
366 | FXZ(I,K,JV)=ALF (I,K)*SSXZ(I,KP,L,JV) |
---|
367 | FZZ(I,K,JV)=ALF (I,K)*SZZ(I,KP,L,JV) |
---|
368 | ! |
---|
369 | S0 (I,KP,L,JV)=S0(I,KP,L,JV)-F0(I,K,JV) |
---|
370 | SY (I,KP,L,JV)=ALF1Q(I,K)* & |
---|
371 | (SY(I,KP,L,JV)+3.*ALF(I,K)*SYY(I,KP,L,JV)) |
---|
372 | SYY(I,KP,L,JV)=ALF4(I,K)*SYY(I,KP,L,JV) |
---|
373 | SSX (I,KP,L,JV)=SSX (I,KP,L,JV)-FX (I,K,JV) |
---|
374 | SZ (I,KP,L,JV)=SZ (I,KP,L,JV)-FZ (I,K,JV) |
---|
375 | SSXX(I,KP,L,JV)=SSXX(I,KP,L,JV)-FXX(I,K,JV) |
---|
376 | SSXZ(I,KP,L,JV)=SSXZ(I,KP,L,JV)-FXZ(I,K,JV) |
---|
377 | SZZ(I,KP,L,JV)=SZZ(I,KP,L,JV)-FZZ(I,K,JV) |
---|
378 | SSXY(I,KP,L,JV)=ALF1Q(I,K)*SSXY(I,KP,L,JV) |
---|
379 | SYZ(I,KP,L,JV)=ALF1Q(I,K)*SYZ(I,KP,L,JV) |
---|
380 | ! |
---|
381 | ELSE |
---|
382 | ! |
---|
383 | F0 (I,K,JV)=ALF (I,K)* ( S0(I,K,L,JV)+ALF1(I,K)* & |
---|
384 | ( SY(I,K,L,JV)+ALF2(I,K)*SYY(I,K,L,JV) ) ) |
---|
385 | FY (I,K,JV)=ALFQ(I,K)* & |
---|
386 | (SY(I,K,L,JV)+3.*ALF1(I,K)*SYY(I,K,L,JV)) |
---|
387 | FYY(I,K,JV)=ALF3(I,K)*SYY(I,K,L,JV) |
---|
388 | FX (I,K,JV)=ALF (I,K)*(SSX(I,K,L,JV)+ALF1(I,K)*SSXY(I,K,L,JV)) |
---|
389 | FZ (I,K,JV)=ALF (I,K)*(SZ(I,K,L,JV)+ALF1(I,K)*SYZ(I,K,L,JV)) |
---|
390 | FXY(I,K,JV)=ALFQ(I,K)*SSXY(I,K,L,JV) |
---|
391 | FYZ(I,K,JV)=ALFQ(I,K)*SYZ(I,K,L,JV) |
---|
392 | FXX(I,K,JV)=ALF (I,K)*SSXX(I,K,L,JV) |
---|
393 | FXZ(I,K,JV)=ALF (I,K)*SSXZ(I,K,L,JV) |
---|
394 | FZZ(I,K,JV)=ALF (I,K)*SZZ(I,K,L,JV) |
---|
395 | ! |
---|
396 | S0 (I,K,L,JV)=S0 (I,K,L,JV)-F0 (I,K,JV) |
---|
397 | SY (I,K,L,JV)=ALF1Q(I,K)* & |
---|
398 | (SY(I,K,L,JV)-3.*ALF(I,K)*SYY(I,K,L,JV)) |
---|
399 | SYY(I,K,L,JV)=ALF4(I,K)*SYY(I,K,L,JV) |
---|
400 | SSX (I,K,L,JV)=SSX (I,K,L,JV)-FX (I,K,JV) |
---|
401 | SZ (I,K,L,JV)=SZ (I,K,L,JV)-FZ (I,K,JV) |
---|
402 | SSXX(I,K,L,JV)=SSXX(I,K,L,JV)-FXX(I,K,JV) |
---|
403 | SSXZ(I,K,L,JV)=SSXZ(I,K,L,JV)-FXZ(I,K,JV) |
---|
404 | SZZ(I,K,L,JV)=SZZ(I,K,L,JV)-FZZ(I,K,JV) |
---|
405 | SSXY(I,K,L,JV)=ALF1Q(I,K)*SSXY(I,K,L,JV) |
---|
406 | SYZ(I,K,L,JV)=ALF1Q(I,K)*SYZ(I,K,L,JV) |
---|
407 | ! |
---|
408 | ENDIF |
---|
409 | ! |
---|
410 | END DO |
---|
411 | END DO |
---|
412 | END DO |
---|
413 | ! print*,'ap ADVYP 31' |
---|
414 | ! |
---|
415 | ! puts the temporary moments Fi into appropriate neighboring boxes |
---|
416 | ! |
---|
417 | DO K=1,LAT-1 |
---|
418 | KP=K+1 |
---|
419 | DO I=1,LON |
---|
420 | ! |
---|
421 | IF(VGRI(I,K,L).LT.0.) THEN |
---|
422 | SM(I,K,L)=SM(I,K,L)+FM(I,K) |
---|
423 | ALF(I,K)=FM(I,K)/SM(I,K,L) |
---|
424 | ELSE |
---|
425 | SM(I,KP,L)=SM(I,KP,L)+FM(I,K) |
---|
426 | ALF(I,K)=FM(I,K)/SM(I,KP,L) |
---|
427 | ENDIF |
---|
428 | ! |
---|
429 | ALFQ(I,K)=ALF(I,K)*ALF(I,K) |
---|
430 | ALF1(I,K)=1.-ALF(I,K) |
---|
431 | ALF1Q(I,K)=ALF1(I,K)*ALF1(I,K) |
---|
432 | ALF2(I,K)=ALF1(I,K)-ALF(I,K) |
---|
433 | ALF3(I,K)=ALF1(I,K)*ALF(I,K) |
---|
434 | ! |
---|
435 | END DO |
---|
436 | END DO |
---|
437 | ! print*,'ap ADVYP 32' |
---|
438 | ! |
---|
439 | DO JV=1,NTRA |
---|
440 | DO K=1,LAT-1 |
---|
441 | KP=K+1 |
---|
442 | DO I=1,LON |
---|
443 | ! |
---|
444 | IF(VGRI(I,K,L).LT.0.) THEN |
---|
445 | ! |
---|
446 | TEMPTM=-ALF(I,K)*S0(I,K,L,JV)+ALF1(I,K)*F0(I,K,JV) |
---|
447 | S0 (I,K,L,JV)=S0(I,K,L,JV)+F0(I,K,JV) |
---|
448 | SYY(I,K,L,JV)=ALFQ(I,K)*FYY(I,K,JV)+ALF1Q(I,K)*SYY(I,K,L,JV) & |
---|
449 | +5.*( ALF3(I,K)*(FY(I,K,JV)-SY(I,K,L,JV))+ALF2(I,K)*TEMPTM ) |
---|
450 | SY (I,K,L,JV)=ALF(I,K)*FY(I,K,JV)+ALF1(I,K)*SY(I,K,L,JV) & |
---|
451 | +3.*TEMPTM |
---|
452 | SSXY(I,K,L,JV)=ALF (I,K)*FXY(I,K,JV)+ALF1(I,K)*SSXY(I,K,L,JV) & |
---|
453 | +3.*(ALF1(I,K)*FX (I,K,JV)-ALF (I,K)*SSX (I,K,L,JV)) |
---|
454 | SYZ(I,K,L,JV)=ALF (I,K)*FYZ(I,K,JV)+ALF1(I,K)*SYZ(I,K,L,JV) & |
---|
455 | +3.*(ALF1(I,K)*FZ (I,K,JV)-ALF (I,K)*SZ (I,K,L,JV)) |
---|
456 | SSX (I,K,L,JV)=SSX (I,K,L,JV)+FX (I,K,JV) |
---|
457 | SZ (I,K,L,JV)=SZ (I,K,L,JV)+FZ (I,K,JV) |
---|
458 | SSXX(I,K,L,JV)=SSXX(I,K,L,JV)+FXX(I,K,JV) |
---|
459 | SSXZ(I,K,L,JV)=SSXZ(I,K,L,JV)+FXZ(I,K,JV) |
---|
460 | SZZ(I,K,L,JV)=SZZ(I,K,L,JV)+FZZ(I,K,JV) |
---|
461 | ! |
---|
462 | ELSE |
---|
463 | ! |
---|
464 | TEMPTM=ALF(I,K)*S0(I,KP,L,JV)-ALF1(I,K)*F0(I,K,JV) |
---|
465 | S0 (I,KP,L,JV)=S0(I,KP,L,JV)+F0(I,K,JV) |
---|
466 | SYY(I,KP,L,JV)=ALFQ(I,K)*FYY(I,K,JV)+ALF1Q(I,K)*SYY(I,KP,L,JV) & |
---|
467 | +5.*( ALF3(I,K)*(SY(I,KP,L,JV)-FY(I,K,JV))-ALF2(I,K)*TEMPTM ) |
---|
468 | SY (I,KP,L,JV)=ALF(I,K)*FY(I,K,JV)+ALF1(I,K)*SY(I,KP,L,JV) & |
---|
469 | +3.*TEMPTM |
---|
470 | SSXY(I,KP,L,JV)=ALF(I,K)*FXY(I,K,JV)+ALF1(I,K)*SSXY(I,KP,L,JV) & |
---|
471 | +3.*(ALF(I,K)*SSX(I,KP,L,JV)-ALF1(I,K)*FX(I,K,JV)) |
---|
472 | SYZ(I,KP,L,JV)=ALF(I,K)*FYZ(I,K,JV)+ALF1(I,K)*SYZ(I,KP,L,JV) & |
---|
473 | +3.*(ALF(I,K)*SZ(I,KP,L,JV)-ALF1(I,K)*FZ(I,K,JV)) |
---|
474 | SSX (I,KP,L,JV)=SSX (I,KP,L,JV)+FX (I,K,JV) |
---|
475 | SZ (I,KP,L,JV)=SZ (I,KP,L,JV)+FZ (I,K,JV) |
---|
476 | SSXX(I,KP,L,JV)=SSXX(I,KP,L,JV)+FXX(I,K,JV) |
---|
477 | SSXZ(I,KP,L,JV)=SSXZ(I,KP,L,JV)+FXZ(I,K,JV) |
---|
478 | SZZ(I,KP,L,JV)=SZZ(I,KP,L,JV)+FZZ(I,K,JV) |
---|
479 | ! |
---|
480 | ENDIF |
---|
481 | ! |
---|
482 | END DO |
---|
483 | END DO |
---|
484 | END DO |
---|
485 | ! print*,'ap ADVYP 33' |
---|
486 | ! |
---|
487 | ! traitement special pour le pole Sud (idem pole Nord) |
---|
488 | ! |
---|
489 | K=LAT |
---|
490 | ! |
---|
491 | SM0=0. |
---|
492 | DO JV=1,NTRA |
---|
493 | S00(JV)=0. |
---|
494 | END DO |
---|
495 | ! |
---|
496 | DO I=1,LON |
---|
497 | ! |
---|
498 | IF(VGRI(I,K,L).GE.0.) THEN |
---|
499 | FM(I,K)=VGRI(I,K,L)*DTY |
---|
500 | ALF(I,K)=FM(I,K)/SM(I,K,L) |
---|
501 | SM(I,K,L)=SM(I,K,L)-FM(I,K) |
---|
502 | SM0=SM0+FM(I,K) |
---|
503 | ENDIF |
---|
504 | ! |
---|
505 | ALFQ(I,K)=ALF(I,K)*ALF(I,K) |
---|
506 | ALF1(I,K)=1.-ALF(I,K) |
---|
507 | ALF1Q(I,K)=ALF1(I,K)*ALF1(I,K) |
---|
508 | ALF2(I,K)=ALF1(I,K)-ALF(I,K) |
---|
509 | ALF3(I,K)=ALF(I,K)*ALFQ(I,K) |
---|
510 | ALF4(I,K)=ALF1(I,K)*ALF1Q(I,K) |
---|
511 | ! |
---|
512 | END DO |
---|
513 | ! print*,'ap ADVYP 41' |
---|
514 | ! |
---|
515 | DO JV=1,NTRA |
---|
516 | DO I=1,LON |
---|
517 | ! |
---|
518 | IF(VGRI(I,K,L).GE.0.) THEN |
---|
519 | F0 (I,K,JV)=ALF(I,K)* ( S0(I,K,L,JV)+ALF1(I,K)* & |
---|
520 | ( SY(I,K,L,JV)+ALF2(I,K)*SYY(I,K,L,JV) ) ) |
---|
521 | S00(JV)=S00(JV)+F0(I,K,JV) |
---|
522 | ! |
---|
523 | S0 (I,K,L,JV)=S0 (I,K,L,JV)-F0 (I,K,JV) |
---|
524 | SY (I,K,L,JV)=ALF1Q(I,K)* & |
---|
525 | (SY(I,K,L,JV)-3.*ALF(I,K)*SYY(I,K,L,JV)) |
---|
526 | SYY(I,K,L,JV)=ALF4 (I,K)*SYY(I,K,L,JV) |
---|
527 | SSX (I,K,L,JV)=ALF1(I,K)*(SSX(I,K,L,JV)-ALF(I,K)*SSXY(I,K,L,JV)) |
---|
528 | SZ (I,K,L,JV)=ALF1(I,K)*(SZ(I,K,L,JV)-ALF(I,K)*SYZ(I,K,L,JV)) |
---|
529 | SSXX(I,K,L,JV)=ALF1 (I,K)*SSXX(I,K,L,JV) |
---|
530 | SSXZ(I,K,L,JV)=ALF1 (I,K)*SSXZ(I,K,L,JV) |
---|
531 | SZZ(I,K,L,JV)=ALF1 (I,K)*SZZ(I,K,L,JV) |
---|
532 | SSXY(I,K,L,JV)=ALF1Q(I,K)*SSXY(I,K,L,JV) |
---|
533 | SYZ(I,K,L,JV)=ALF1Q(I,K)*SYZ(I,K,L,JV) |
---|
534 | ENDIF |
---|
535 | ! |
---|
536 | END DO |
---|
537 | END DO |
---|
538 | ! print*,'ap ADVYP 42' |
---|
539 | ! |
---|
540 | DO I=1,LON |
---|
541 | IF(VGRI(I,K,L).LT.0.) THEN |
---|
542 | FM(I,K)=-VGRI(I,K,L)*DTY |
---|
543 | ALF(I,K)=FM(I,K)/SM0 |
---|
544 | ENDIF |
---|
545 | END DO |
---|
546 | ! print*,'ap ADVYP 43' |
---|
547 | ! |
---|
548 | DO JV=1,NTRA |
---|
549 | DO I=1,LON |
---|
550 | IF(VGRI(I,K,L).LT.0.) THEN |
---|
551 | F0(I,K,JV)=ALF(I,K)*S00(JV) |
---|
552 | ENDIF |
---|
553 | END DO |
---|
554 | END DO |
---|
555 | ! |
---|
556 | ! puts the temporary moments Fi into appropriate neighboring boxes |
---|
557 | ! |
---|
558 | DO I=1,LON |
---|
559 | ! |
---|
560 | IF(VGRI(I,K,L).LT.0.) THEN |
---|
561 | SM(I,K,L)=SM(I,K,L)+FM(I,K) |
---|
562 | ALF(I,K)=FM(I,K)/SM(I,K,L) |
---|
563 | ENDIF |
---|
564 | ! |
---|
565 | ALFQ(I,K)=ALF(I,K)*ALF(I,K) |
---|
566 | ALF1(I,K)=1.-ALF(I,K) |
---|
567 | ALF1Q(I,K)=ALF1(I,K)*ALF1(I,K) |
---|
568 | ALF2(I,K)=ALF1(I,K)-ALF(I,K) |
---|
569 | ALF3(I,K)=ALF1(I,K)*ALF(I,K) |
---|
570 | ! |
---|
571 | END DO |
---|
572 | ! print*,'ap ADVYP 45' |
---|
573 | ! |
---|
574 | DO JV=1,NTRA |
---|
575 | DO I=1,LON |
---|
576 | ! |
---|
577 | IF(VGRI(I,K,L).LT.0.) THEN |
---|
578 | ! |
---|
579 | TEMPTM=-ALF(I,K)*S0(I,K,L,JV)+ALF1(I,K)*F0(I,K,JV) |
---|
580 | S0 (I,K,L,JV)=S0(I,K,L,JV)+F0(I,K,JV) |
---|
581 | SYY(I,K,L,JV)=ALF1Q(I,K)*SYY(I,K,L,JV) & |
---|
582 | +5.*(-ALF3 (I,K)*SY (I,K,L,JV)+ALF2(I,K)*TEMPTM ) |
---|
583 | SY (I,K,L,JV)=ALF1(I,K)*SY (I,K,L,JV)+3.*TEMPTM |
---|
584 | SSXY(I,K,L,JV)=ALF1(I,K)*SSXY(I,K,L,JV)-3.*ALF(I,K)*SSX(I,K,L,JV) |
---|
585 | SYZ(I,K,L,JV)=ALF1(I,K)*SYZ(I,K,L,JV)-3.*ALF(I,K)*SZ(I,K,L,JV) |
---|
586 | ! |
---|
587 | ENDIF |
---|
588 | ! |
---|
589 | END DO |
---|
590 | END DO |
---|
591 | ! print*,'ap ADVYP 46' |
---|
592 | ! |
---|
593 | END DO |
---|
594 | |
---|
595 | !-------------------------------------------------- |
---|
596 | ! bouclage cyclique horizontal . |
---|
597 | |
---|
598 | DO l = 1,llm |
---|
599 | DO jv = 1,ntra |
---|
600 | DO j = 1,jjp1 |
---|
601 | SM(iip1,j,l) = SM(1,j,l) |
---|
602 | S0(iip1,j,l,jv) = S0(1,j,l,jv) |
---|
603 | SSX(iip1,j,l,jv) = SSX(1,j,l,jv) |
---|
604 | SY(iip1,j,l,jv) = SY(1,j,l,jv) |
---|
605 | SZ(iip1,j,l,jv) = SZ(1,j,l,jv) |
---|
606 | END DO |
---|
607 | END DO |
---|
608 | END DO |
---|
609 | |
---|
610 | ! ------------------------------------------------------------------- |
---|
611 | ! *** Test negativite: |
---|
612 | |
---|
613 | ! DO jv = 1,ntra |
---|
614 | ! DO l = 1,llm |
---|
615 | ! DO j = 1,jjp1 |
---|
616 | ! DO i = 1,iip1 |
---|
617 | ! IF (s0( i,j,l,jv ).lt.0.) THEN |
---|
618 | ! PRINT*, '------ S0 < 0 en FIN ADVYP ---' |
---|
619 | ! PRINT*, 'S0(',i,j,l,jv,')=', S0(i,j,l,jv) |
---|
620 | !c STOP |
---|
621 | ! ENDIF |
---|
622 | ! ENDDO |
---|
623 | ! ENDDO |
---|
624 | ! ENDDO |
---|
625 | ! ENDDO |
---|
626 | |
---|
627 | |
---|
628 | ! ------------------------------------------------------------------- |
---|
629 | ! *** Test : diag de la qtite totale de traceur dans |
---|
630 | ! l'atmosphere avant l'advection en Y |
---|
631 | |
---|
632 | DO l = 1,llm |
---|
633 | DO j = 1,jjp1 |
---|
634 | DO i = 1,iim |
---|
635 | sqf = sqf + S0(i,j,l,ntra) |
---|
636 | END DO |
---|
637 | END DO |
---|
638 | END DO |
---|
639 | PRINT*,'---------- DIAG DANS ADVY - SORTIE --------' |
---|
640 | PRINT*,'sqf=',sqf |
---|
641 | ! print*,'ap ADVYP fin' |
---|
642 | |
---|
643 | !----------------------------------------------------------------- |
---|
644 | ! |
---|
645 | RETURN |
---|
646 | END SUBROUTINE ADVYP |
---|
647 | |
---|
648 | |
---|
649 | |
---|
650 | |
---|
651 | |
---|
652 | |
---|
653 | |
---|
654 | |
---|
655 | |
---|
656 | |
---|
657 | |
---|
658 | |
---|