[524] | 1 | ! |
---|
| 2 | ! $Header$ |
---|
| 3 | ! |
---|
| 4 | SUBROUTINE advx(limit,dtx,pbaru,sm,s0, |
---|
| 5 | $ sx,sy,sz,lati,latf) |
---|
| 6 | IMPLICIT NONE |
---|
| 7 | |
---|
| 8 | CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC |
---|
| 9 | C C |
---|
| 10 | C first-order moments (FOM) advection of tracer in X direction C |
---|
| 11 | C C |
---|
| 12 | C Source : Pascal Simon (Meteo,CNRM) C |
---|
| 13 | C Adaptation : A.Armengaud (LGGE) juin 94 C |
---|
| 14 | C C |
---|
| 15 | C limit,dtx,pbaru,pbarv,sm,s0,sx,sy,sz C |
---|
| 16 | C sont des arguments d'entree pour le s-pg... C |
---|
| 17 | C C |
---|
| 18 | C sm,s0,sx,sy,sz C |
---|
| 19 | C sont les arguments de sortie pour le s-pg C |
---|
[2600] | 20 | C C |
---|
[524] | 21 | CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC |
---|
| 22 | C |
---|
| 23 | C parametres principaux du modele |
---|
| 24 | C |
---|
[2600] | 25 | include "dimensions.h" |
---|
| 26 | include "paramet.h" |
---|
[524] | 27 | |
---|
| 28 | C Arguments : |
---|
| 29 | C ----------- |
---|
| 30 | C dtx : frequence fictive d'appel du transport |
---|
| 31 | C pbaru, pbarv : flux de masse en x et y en Pa.m2.s-1 |
---|
| 32 | |
---|
| 33 | INTEGER ntra |
---|
| 34 | PARAMETER (ntra = 1) |
---|
| 35 | |
---|
| 36 | C ATTENTION partout ou on trouve ntra, insertion de boucle |
---|
| 37 | C possible dans l'avenir. |
---|
| 38 | |
---|
| 39 | REAL dtx |
---|
| 40 | REAL pbaru ( iip1,jjp1,llm ) |
---|
| 41 | |
---|
| 42 | C moments: SM total mass in each grid box |
---|
| 43 | C S0 mass of tracer in each grid box |
---|
| 44 | C Si 1rst order moment in i direction |
---|
| 45 | C |
---|
| 46 | REAL SM(iip1,jjp1,llm),S0(iip1,jjp1,llm,ntra) |
---|
| 47 | REAL sx(iip1,jjp1,llm,ntra) |
---|
| 48 | $ ,sy(iip1,jjp1,llm,ntra) |
---|
| 49 | REAL sz(iip1,jjp1,llm,ntra) |
---|
| 50 | |
---|
| 51 | C Local : |
---|
| 52 | C ------- |
---|
| 53 | |
---|
| 54 | C mass fluxes across the boundaries (UGRI,VGRI,WGRI) |
---|
| 55 | C mass fluxes in kg |
---|
| 56 | C declaration : |
---|
| 57 | |
---|
| 58 | REAL UGRI(iip1,jjp1,llm) |
---|
| 59 | |
---|
| 60 | C Rem : VGRI et WGRI ne sont pas utilises dans |
---|
| 61 | C cette subroutine ( advection en x uniquement ) |
---|
| 62 | C |
---|
| 63 | C Ti are the moments for the current latitude and level |
---|
| 64 | C |
---|
| 65 | REAL TM(iim) |
---|
| 66 | REAL T0(iim,ntra),TX(iim,ntra) |
---|
| 67 | REAL TY(iim,ntra),TZ(iim,ntra) |
---|
| 68 | REAL TEMPTM ! just a temporary variable |
---|
| 69 | C |
---|
| 70 | C the moments F are similarly defined and used as temporary |
---|
| 71 | C storage for portions of the grid boxes in transit |
---|
| 72 | C |
---|
| 73 | REAL FM(iim) |
---|
| 74 | REAL F0(iim,ntra),FX(iim,ntra) |
---|
| 75 | REAL FY(iim,ntra),FZ(iim,ntra) |
---|
| 76 | C |
---|
| 77 | C work arrays |
---|
| 78 | C |
---|
| 79 | REAL ALF(iim),ALF1(iim),ALFQ(iim),ALF1Q(iim) |
---|
| 80 | C |
---|
| 81 | REAL SMNEW(iim),UEXT(iim) |
---|
| 82 | C |
---|
| 83 | REAL sqi,sqf |
---|
| 84 | |
---|
| 85 | LOGICAL LIMIT |
---|
| 86 | INTEGER NUM(jjp1),LONK,NUMK |
---|
| 87 | INTEGER lon,lati,latf,niv |
---|
| 88 | INTEGER i,i2,i3,j,jv,l,k,itrac |
---|
| 89 | |
---|
| 90 | lon = iim |
---|
| 91 | niv = llm |
---|
| 92 | |
---|
| 93 | C *** Test de passage d'arguments ****** |
---|
| 94 | |
---|
| 95 | |
---|
| 96 | C ------------------------------------- |
---|
[5084] | 97 | DO 300 j = 1,jjp1 |
---|
[524] | 98 | NUM(j) = 1 |
---|
[5084] | 99 | 300 CONTINUE |
---|
[524] | 100 | sqi = 0. |
---|
| 101 | sqf = 0. |
---|
| 102 | |
---|
| 103 | DO l = 1,llm |
---|
| 104 | DO j = 1,jjp1 |
---|
| 105 | DO i = 1,iim |
---|
[644] | 106 | cIM 240305 sqi = sqi + S0(i,j,l,9) |
---|
| 107 | sqi = sqi + S0(i,j,l,ntra) |
---|
[524] | 108 | ENDDO |
---|
| 109 | ENDDO |
---|
| 110 | ENDDO |
---|
| 111 | PRINT*,'-------- DIAG DANS ADVX - ENTREE ---------' |
---|
| 112 | PRINT*,'sqi=',sqi |
---|
| 113 | |
---|
| 114 | |
---|
| 115 | C Interface : adaptation nouveau modele |
---|
| 116 | C ------------------------------------- |
---|
| 117 | C |
---|
| 118 | C --------------------------------------------------------- |
---|
| 119 | C Conversion des flux de masses en kg/s |
---|
| 120 | C pbaru est en N/s d'ou : |
---|
| 121 | C ugri est en kg/s |
---|
| 122 | |
---|
[5084] | 123 | DO 500 l = 1,llm |
---|
| 124 | DO 500 j = 1,jjm+1 |
---|
| 125 | DO 500 i = 1,iip1 |
---|
[524] | 126 | C ugri (i,j,llm+1-l) = pbaru (i,j,l) * ( dsig(l) / g ) |
---|
| 127 | ugri (i,j,llm+1-l) = pbaru (i,j,l) |
---|
[5084] | 128 | 500 CONTINUE |
---|
[524] | 129 | |
---|
| 130 | |
---|
| 131 | C --------------------------------------------------------- |
---|
| 132 | C --------------------------------------------------------- |
---|
| 133 | C --------------------------------------------------------- |
---|
| 134 | |
---|
| 135 | C start here |
---|
| 136 | C |
---|
| 137 | C boucle principale sur les niveaux et les latitudes |
---|
| 138 | C |
---|
[5084] | 139 | DO 1 L=1,NIV |
---|
| 140 | DO 1 K=lati,latf |
---|
[524] | 141 | C |
---|
| 142 | C initialisation |
---|
| 143 | C |
---|
| 144 | C program assumes periodic boundaries in X |
---|
| 145 | C |
---|
[5084] | 146 | DO 10 I=2,LON |
---|
[524] | 147 | SMNEW(I)=SM(I,K,L)+(UGRI(I-1,K,L)-UGRI(I,K,L))*DTX |
---|
[5084] | 148 | 10 CONTINUE |
---|
[524] | 149 | SMNEW(1)=SM(1,K,L)+(UGRI(LON,K,L)-UGRI(1,K,L))*DTX |
---|
| 150 | C |
---|
| 151 | C modifications for extended polar zones |
---|
| 152 | C |
---|
| 153 | NUMK=NUM(K) |
---|
| 154 | LONK=LON/NUMK |
---|
| 155 | C |
---|
[5084] | 156 | IF(NUMK.GT.1) THEN |
---|
[524] | 157 | C |
---|
[5084] | 158 | DO 111 I=1,LON |
---|
[524] | 159 | TM(I)=0. |
---|
[5084] | 160 | 111 CONTINUE |
---|
| 161 | DO 112 JV=1,NTRA |
---|
| 162 | DO 1120 I=1,LON |
---|
[524] | 163 | T0(I,JV)=0. |
---|
| 164 | TX(I,JV)=0. |
---|
| 165 | TY(I,JV)=0. |
---|
| 166 | TZ(I,JV)=0. |
---|
[5084] | 167 | 1120 CONTINUE |
---|
| 168 | 112 CONTINUE |
---|
[524] | 169 | C |
---|
[5084] | 170 | DO 11 I2=1,NUMK |
---|
[524] | 171 | C |
---|
[5084] | 172 | DO 113 I=1,LONK |
---|
[524] | 173 | I3=(I-1)*NUMK+I2 |
---|
| 174 | TM(I)=TM(I)+SM(I3,K,L) |
---|
| 175 | ALF(I)=SM(I3,K,L)/TM(I) |
---|
| 176 | ALF1(I)=1.-ALF(I) |
---|
[5084] | 177 | 113 CONTINUE |
---|
[524] | 178 | C |
---|
| 179 | DO JV=1,NTRA |
---|
| 180 | DO I=1,LONK |
---|
| 181 | I3=(I-1)*NUMK+I2 |
---|
| 182 | TEMPTM=-ALF(I)*T0(I,JV)+ALF1(I) |
---|
| 183 | $ *S0(I3,K,L,JV) |
---|
| 184 | T0(I,JV)=T0(I,JV)+S0(I3,K,L,JV) |
---|
| 185 | TX(I,JV)=ALF(I) *sx(I3,K,L,JV)+ |
---|
| 186 | $ ALF1(I)*TX(I,JV) +3.*TEMPTM |
---|
| 187 | TY(I,JV)=TY(I,JV)+sy(I3,K,L,JV) |
---|
| 188 | TZ(I,JV)=TZ(I,JV)+sz(I3,K,L,JV) |
---|
| 189 | ENDDO |
---|
| 190 | ENDDO |
---|
| 191 | C |
---|
[5084] | 192 | 11 CONTINUE |
---|
[524] | 193 | C |
---|
| 194 | ELSE |
---|
| 195 | C |
---|
[5084] | 196 | DO 115 I=1,LON |
---|
[524] | 197 | TM(I)=SM(I,K,L) |
---|
[5084] | 198 | 115 CONTINUE |
---|
| 199 | DO 116 JV=1,NTRA |
---|
| 200 | DO 1160 I=1,LON |
---|
[524] | 201 | T0(I,JV)=S0(I,K,L,JV) |
---|
| 202 | TX(I,JV)=sx(I,K,L,JV) |
---|
| 203 | TY(I,JV)=sy(I,K,L,JV) |
---|
| 204 | TZ(I,JV)=sz(I,K,L,JV) |
---|
[5084] | 205 | 1160 CONTINUE |
---|
| 206 | 116 CONTINUE |
---|
[524] | 207 | C |
---|
| 208 | ENDIF |
---|
| 209 | C |
---|
[5084] | 210 | DO 117 I=1,LONK |
---|
[524] | 211 | UEXT(I)=UGRI(I*NUMK,K,L) |
---|
[5084] | 212 | 117 CONTINUE |
---|
[524] | 213 | C |
---|
| 214 | C place limits on appropriate moments before transport |
---|
| 215 | C (if flux-limiting is to be applied) |
---|
| 216 | C |
---|
| 217 | IF(.NOT.LIMIT) GO TO 13 |
---|
| 218 | C |
---|
[5084] | 219 | DO 12 JV=1,NTRA |
---|
| 220 | DO 120 I=1,LONK |
---|
[524] | 221 | TX(I,JV)=SIGN(AMIN1(AMAX1(T0(I,JV),0.),ABS(TX(I,JV))),TX(I,JV)) |
---|
[5084] | 222 | 120 CONTINUE |
---|
| 223 | 12 CONTINUE |
---|
[524] | 224 | C |
---|
| 225 | 13 CONTINUE |
---|
| 226 | C |
---|
| 227 | C calculate flux and moments between adjacent boxes |
---|
| 228 | C 1- create temporary moments/masses for partial boxes in transit |
---|
| 229 | C 2- reajusts moments remaining in the box |
---|
| 230 | C |
---|
| 231 | C flux from IP to I if U(I).lt.0 |
---|
| 232 | C |
---|
[5084] | 233 | DO 140 I=1,LONK-1 |
---|
| 234 | IF(UEXT(I).LT.0.) THEN |
---|
[524] | 235 | FM(I)=-UEXT(I)*DTX |
---|
| 236 | ALF(I)=FM(I)/TM(I+1) |
---|
| 237 | TM(I+1)=TM(I+1)-FM(I) |
---|
| 238 | ENDIF |
---|
[5084] | 239 | 140 CONTINUE |
---|
[524] | 240 | C |
---|
| 241 | I=LONK |
---|
[5084] | 242 | IF(UEXT(I).LT.0.) THEN |
---|
[524] | 243 | FM(I)=-UEXT(I)*DTX |
---|
| 244 | ALF(I)=FM(I)/TM(1) |
---|
| 245 | TM(1)=TM(1)-FM(I) |
---|
| 246 | ENDIF |
---|
| 247 | C |
---|
| 248 | C flux from I to IP if U(I).gt.0 |
---|
| 249 | C |
---|
[5084] | 250 | DO 141 I=1,LONK |
---|
| 251 | IF(UEXT(I).GE.0.) THEN |
---|
[524] | 252 | FM(I)=UEXT(I)*DTX |
---|
| 253 | ALF(I)=FM(I)/TM(I) |
---|
| 254 | TM(I)=TM(I)-FM(I) |
---|
| 255 | ENDIF |
---|
[5084] | 256 | 141 CONTINUE |
---|
[524] | 257 | C |
---|
[5084] | 258 | DO 142 I=1,LONK |
---|
[524] | 259 | ALFQ(I)=ALF(I)*ALF(I) |
---|
| 260 | ALF1(I)=1.-ALF(I) |
---|
| 261 | ALF1Q(I)=ALF1(I)*ALF1(I) |
---|
[5084] | 262 | 142 CONTINUE |
---|
[524] | 263 | C |
---|
[5084] | 264 | DO 150 JV=1,NTRA |
---|
| 265 | DO 1500 I=1,LONK-1 |
---|
[524] | 266 | C |
---|
[5084] | 267 | IF(UEXT(I).LT.0.) THEN |
---|
[524] | 268 | C |
---|
| 269 | F0(I,JV)=ALF (I)* ( T0(I+1,JV)-ALF1(I)*TX(I+1,JV) ) |
---|
| 270 | FX(I,JV)=ALFQ(I)*TX(I+1,JV) |
---|
| 271 | FY(I,JV)=ALF (I)*TY(I+1,JV) |
---|
| 272 | FZ(I,JV)=ALF (I)*TZ(I+1,JV) |
---|
| 273 | C |
---|
| 274 | T0(I+1,JV)=T0(I+1,JV)-F0(I,JV) |
---|
| 275 | TX(I+1,JV)=ALF1Q(I)*TX(I+1,JV) |
---|
| 276 | TY(I+1,JV)=TY(I+1,JV)-FY(I,JV) |
---|
| 277 | TZ(I+1,JV)=TZ(I+1,JV)-FZ(I,JV) |
---|
| 278 | C |
---|
| 279 | ENDIF |
---|
| 280 | C |
---|
[5084] | 281 | 1500 CONTINUE |
---|
| 282 | 150 CONTINUE |
---|
[524] | 283 | C |
---|
| 284 | I=LONK |
---|
[5084] | 285 | IF(UEXT(I).LT.0.) THEN |
---|
[524] | 286 | C |
---|
[5084] | 287 | DO 151 JV=1,NTRA |
---|
[524] | 288 | C |
---|
| 289 | F0 (I,JV)=ALF (I)* ( T0(1,JV)-ALF1(I)*TX(1,JV) ) |
---|
| 290 | FX (I,JV)=ALFQ(I)*TX(1,JV) |
---|
| 291 | FY (I,JV)=ALF (I)*TY(1,JV) |
---|
| 292 | FZ (I,JV)=ALF (I)*TZ(1,JV) |
---|
| 293 | C |
---|
| 294 | T0(1,JV)=T0(1,JV)-F0(I,JV) |
---|
| 295 | TX(1,JV)=ALF1Q(I)*TX(1,JV) |
---|
| 296 | TY(1,JV)=TY(1,JV)-FY(I,JV) |
---|
| 297 | TZ(1,JV)=TZ(1,JV)-FZ(I,JV) |
---|
| 298 | C |
---|
[5084] | 299 | 151 CONTINUE |
---|
[524] | 300 | C |
---|
| 301 | ENDIF |
---|
| 302 | C |
---|
[5084] | 303 | DO 152 JV=1,NTRA |
---|
| 304 | DO 1520 I=1,LONK |
---|
[524] | 305 | C |
---|
[5084] | 306 | IF(UEXT(I).GE.0.) THEN |
---|
[524] | 307 | C |
---|
| 308 | F0(I,JV)=ALF (I)* ( T0(I,JV)+ALF1(I)*TX(I,JV) ) |
---|
| 309 | FX(I,JV)=ALFQ(I)*TX(I,JV) |
---|
| 310 | FY(I,JV)=ALF (I)*TY(I,JV) |
---|
| 311 | FZ(I,JV)=ALF (I)*TZ(I,JV) |
---|
| 312 | C |
---|
| 313 | T0(I,JV)=T0(I,JV)-F0(I,JV) |
---|
| 314 | TX(I,JV)=ALF1Q(I)*TX(I,JV) |
---|
| 315 | TY(I,JV)=TY(I,JV)-FY(I,JV) |
---|
| 316 | TZ(I,JV)=TZ(I,JV)-FZ(I,JV) |
---|
| 317 | C |
---|
| 318 | ENDIF |
---|
| 319 | C |
---|
[5084] | 320 | 1520 CONTINUE |
---|
| 321 | 152 CONTINUE |
---|
[524] | 322 | C |
---|
| 323 | C puts the temporary moments Fi into appropriate neighboring boxes |
---|
| 324 | C |
---|
[5084] | 325 | DO 160 I=1,LONK |
---|
| 326 | IF(UEXT(I).LT.0.) THEN |
---|
[524] | 327 | TM(I)=TM(I)+FM(I) |
---|
| 328 | ALF(I)=FM(I)/TM(I) |
---|
| 329 | ENDIF |
---|
[5084] | 330 | 160 CONTINUE |
---|
[524] | 331 | C |
---|
[5084] | 332 | DO 161 I=1,LONK-1 |
---|
| 333 | IF(UEXT(I).GE.0.) THEN |
---|
[524] | 334 | TM(I+1)=TM(I+1)+FM(I) |
---|
| 335 | ALF(I)=FM(I)/TM(I+1) |
---|
| 336 | ENDIF |
---|
[5084] | 337 | 161 CONTINUE |
---|
[524] | 338 | C |
---|
| 339 | I=LONK |
---|
[5084] | 340 | IF(UEXT(I).GE.0.) THEN |
---|
[524] | 341 | TM(1)=TM(1)+FM(I) |
---|
| 342 | ALF(I)=FM(I)/TM(1) |
---|
| 343 | ENDIF |
---|
| 344 | C |
---|
[5084] | 345 | DO 162 I=1,LONK |
---|
[524] | 346 | ALF1(I)=1.-ALF(I) |
---|
[5084] | 347 | 162 CONTINUE |
---|
[524] | 348 | C |
---|
[5084] | 349 | DO 170 JV=1,NTRA |
---|
| 350 | DO 1700 I=1,LONK |
---|
[524] | 351 | C |
---|
[5084] | 352 | IF(UEXT(I).LT.0.) THEN |
---|
[524] | 353 | C |
---|
| 354 | TEMPTM=-ALF(I)*T0(I,JV)+ALF1(I)*F0(I,JV) |
---|
| 355 | T0(I,JV)=T0(I,JV)+F0(I,JV) |
---|
| 356 | TX(I,JV)=ALF(I)*FX(I,JV)+ALF1(I)*TX(I,JV)+3.*TEMPTM |
---|
| 357 | TY(I,JV)=TY(I,JV)+FY(I,JV) |
---|
| 358 | TZ(I,JV)=TZ(I,JV)+FZ(I,JV) |
---|
| 359 | C |
---|
| 360 | ENDIF |
---|
| 361 | C |
---|
[5084] | 362 | 1700 CONTINUE |
---|
| 363 | 170 CONTINUE |
---|
[524] | 364 | C |
---|
[5084] | 365 | DO 171 JV=1,NTRA |
---|
| 366 | DO 1710 I=1,LONK-1 |
---|
[524] | 367 | C |
---|
[5084] | 368 | IF(UEXT(I).GE.0.) THEN |
---|
[524] | 369 | C |
---|
| 370 | TEMPTM=ALF(I)*T0(I+1,JV)-ALF1(I)*F0(I,JV) |
---|
| 371 | T0(I+1,JV)=T0(I+1,JV)+F0(I,JV) |
---|
| 372 | TX(I+1,JV)=ALF(I)*FX(I,JV)+ALF1(I)*TX(I+1,JV)+3.*TEMPTM |
---|
| 373 | TY(I+1,JV)=TY(I+1,JV)+FY(I,JV) |
---|
| 374 | TZ(I+1,JV)=TZ(I+1,JV)+FZ(I,JV) |
---|
| 375 | C |
---|
| 376 | ENDIF |
---|
| 377 | C |
---|
[5084] | 378 | 1710 CONTINUE |
---|
| 379 | 171 CONTINUE |
---|
[524] | 380 | C |
---|
| 381 | I=LONK |
---|
[5084] | 382 | IF(UEXT(I).GE.0.) THEN |
---|
| 383 | DO 172 JV=1,NTRA |
---|
[524] | 384 | TEMPTM=ALF(I)*T0(1,JV)-ALF1(I)*F0(I,JV) |
---|
| 385 | T0(1,JV)=T0(1,JV)+F0(I,JV) |
---|
| 386 | TX(1,JV)=ALF(I)*FX(I,JV)+ALF1(I)*TX(1,JV)+3.*TEMPTM |
---|
| 387 | TY(1,JV)=TY(1,JV)+FY(I,JV) |
---|
| 388 | TZ(1,JV)=TZ(1,JV)+FZ(I,JV) |
---|
[5084] | 389 | 172 CONTINUE |
---|
[524] | 390 | ENDIF |
---|
| 391 | C |
---|
| 392 | C retour aux mailles d'origine (passage des Tij aux Sij) |
---|
| 393 | C |
---|
[5084] | 394 | IF(NUMK.GT.1) THEN |
---|
[524] | 395 | C |
---|
[5084] | 396 | DO 180 I2=1,NUMK |
---|
[524] | 397 | C |
---|
[5084] | 398 | DO 180 I=1,LONK |
---|
[524] | 399 | C |
---|
| 400 | I3=I2+(I-1)*NUMK |
---|
| 401 | SM(I3,K,L)=SMNEW(I3) |
---|
| 402 | ALF(I)=SMNEW(I3)/TM(I) |
---|
| 403 | TM(I)=TM(I)-SMNEW(I3) |
---|
| 404 | C |
---|
| 405 | ALFQ(I)=ALF(I)*ALF(I) |
---|
| 406 | ALF1(I)=1.-ALF(I) |
---|
| 407 | ALF1Q(I)=ALF1(I)*ALF1(I) |
---|
| 408 | C |
---|
[5084] | 409 | 180 CONTINUE |
---|
[524] | 410 | C |
---|
| 411 | DO JV=1,NTRA |
---|
| 412 | DO I=1,LONK |
---|
| 413 | C |
---|
| 414 | I3=I2+(I-1)*NUMK |
---|
| 415 | S0(I3,K,L,JV)=ALF (I) |
---|
| 416 | $ * (T0(I,JV)-ALF1(I)*TX(I,JV)) |
---|
| 417 | sx(I3,K,L,JV)=ALFQ(I)*TX(I,JV) |
---|
| 418 | sy(I3,K,L,JV)=ALF (I)*TY(I,JV) |
---|
| 419 | sz(I3,K,L,JV)=ALF (I)*TZ(I,JV) |
---|
| 420 | C |
---|
| 421 | C reajusts moments remaining in the box |
---|
| 422 | C |
---|
| 423 | T0(I,JV)=T0(I,JV)-S0(I3,K,L,JV) |
---|
| 424 | TX(I,JV)=ALF1Q(I)*TX(I,JV) |
---|
| 425 | TY(I,JV)=TY(I,JV)-sy(I3,K,L,JV) |
---|
| 426 | TZ(I,JV)=TZ(I,JV)-sz(I3,K,L,JV) |
---|
| 427 | ENDDO |
---|
| 428 | ENDDO |
---|
| 429 | C |
---|
| 430 | C |
---|
| 431 | ELSE |
---|
| 432 | C |
---|
[5084] | 433 | DO 190 I=1,LON |
---|
[524] | 434 | SM(I,K,L)=TM(I) |
---|
[5084] | 435 | 190 CONTINUE |
---|
| 436 | DO 191 JV=1,NTRA |
---|
| 437 | DO 1910 I=1,LON |
---|
[524] | 438 | S0(I,K,L,JV)=T0(I,JV) |
---|
| 439 | sx(I,K,L,JV)=TX(I,JV) |
---|
| 440 | sy(I,K,L,JV)=TY(I,JV) |
---|
| 441 | sz(I,K,L,JV)=TZ(I,JV) |
---|
[5084] | 442 | 1910 CONTINUE |
---|
| 443 | 191 CONTINUE |
---|
[524] | 444 | C |
---|
| 445 | ENDIF |
---|
| 446 | C |
---|
[5084] | 447 | 1 CONTINUE |
---|
[524] | 448 | C |
---|
| 449 | C ----------- AA Test en fin de ADVX ------ Controle des S* |
---|
| 450 | c OK |
---|
| 451 | c DO 9998 l = 1, llm |
---|
| 452 | c DO 9998 j = 1, jjp1 |
---|
| 453 | c DO 9998 i = 1, iip1 |
---|
| 454 | c IF (S0(i,j,l,ntra).lt.0..and.LIMIT) THEN |
---|
| 455 | c PRINT*, '-------------------' |
---|
| 456 | c PRINT*, 'En fin de ADVX' |
---|
| 457 | c PRINT*,'SM(',i,j,l,')=',SM(i,j,l) |
---|
| 458 | c PRINT*,'S0(',i,j,l,')=',S0(i,j,l,ntra) |
---|
| 459 | c print*, 'sx(',i,j,l,')=',sx(i,j,l,ntra) |
---|
| 460 | c print*, 'sy(',i,j,l,')=',sy(i,j,l,ntra) |
---|
| 461 | c print*, 'sz(',i,j,l,')=',sz(i,j,l,ntra) |
---|
| 462 | c WRITE (*,*) 'On arrete !! - pbl en fin de ADVX1' |
---|
| 463 | cc STOP |
---|
| 464 | c ENDIF |
---|
| 465 | c 9998 CONTINUE |
---|
| 466 | c |
---|
| 467 | C ---------- bouclage cyclique |
---|
| 468 | DO itrac=1,ntra |
---|
| 469 | DO l = 1,llm |
---|
| 470 | DO j = lati,latf |
---|
| 471 | SM(iip1,j,l) = SM(1,j,l) |
---|
| 472 | S0(iip1,j,l,itrac) = S0(1,j,l,itrac) |
---|
| 473 | sx(iip1,j,l,itrac) = sx(1,j,l,itrac) |
---|
| 474 | sy(iip1,j,l,itrac) = sy(1,j,l,itrac) |
---|
| 475 | sz(iip1,j,l,itrac) = sz(1,j,l,itrac) |
---|
| 476 | END DO |
---|
| 477 | END DO |
---|
| 478 | ENDDO |
---|
| 479 | |
---|
| 480 | c ----------- qqtite totale de traceur dans tte l'atmosphere |
---|
| 481 | DO l = 1, llm |
---|
| 482 | DO j = 1, jjp1 |
---|
| 483 | DO i = 1, iim |
---|
[644] | 484 | cIM 240405 sqf = sqf + S0(i,j,l,9) |
---|
| 485 | sqf = sqf + S0(i,j,l,ntra) |
---|
[524] | 486 | END DO |
---|
| 487 | END DO |
---|
| 488 | END DO |
---|
| 489 | c |
---|
| 490 | PRINT*,'------ DIAG DANS ADVX - SORTIE -----' |
---|
| 491 | PRINT*,'sqf=',sqf |
---|
| 492 | c------------- |
---|
| 493 | |
---|
| 494 | RETURN |
---|
| 495 | END |
---|
| 496 | C_________________________________________________________________ |
---|
| 497 | C_________________________________________________________________ |
---|