source: LMDZ6/trunk/libf/dyn3d/top_bound.F90 @ 5258

Last change on this file since 5258 was 5246, checked in by abarral, 6 weeks ago

Convert fixed-form to free-form sources .F -> .{f,F}90
(WIP: some .F remain, will be handled in subsequent commits)

  • Property copyright set to
    Name of program: LMDZ
    Creation date: 1984
    Version: LMDZ5
    License: CeCILL version 2
    Holder: Laboratoire de m\'et\'eorologie dynamique, CNRS, UMR 8539
    See the license file in the root directory
  • Property svn:eol-style set to native
  • Property svn:keywords set to Author Date Id Revision
File size: 5.6 KB
Line 
1!
2! $Id: top_bound.F90 5246 2024-10-21 12:58:45Z abarral $
3!
4SUBROUTINE top_bound(vcov,ucov,teta,masse,dt)
5
6  USE comconst_mod, ONLY: iflag_top_bound, mode_top_bound, &
7        tau_top_bound
8  USE comvert_mod, ONLY: presnivs, preff, scaleheight
9
10  IMPLICIT NONE
11  !
12  include "dimensions.h"
13  include "paramet.h"
14  include "comgeom2.h"
15
16
17  ! ..  DISSIPATION LINEAIRE A HAUT NIVEAU, RUN MESO,
18  ! F. LOTT DEC. 2006
19  !                             (  10/12/06  )
20
21  !=======================================================================
22  !
23  !   Auteur:  F. LOTT
24  !   -------
25  !
26  !   Objet:
27  !   ------
28  !
29  !   Dissipation linéaire (ex top_bound de la physique)
30  !
31  !=======================================================================
32
33  ! top_bound sponge layer model:
34  ! Quenching is modeled as: A(t)=Am+A0*exp(-lambda*t)
35  ! where Am is the zonal average of the field (or zero), and lambda the inverse
36  ! of the characteristic quenching/relaxation time scale
37  ! Thus, assuming Am to be time-independent, field at time t+dt is given by:
38  ! A(t+dt)=A(t)-(A(t)-Am)*(1-exp(-lambda*t))
39  ! Moreover lambda can be a function of model level (see below), and relaxation
40  ! can be toward the average zonal field or just zero (see below).
41
42  ! NB: top_bound sponge is only called from leapfrog if ok_strato=.true.
43
44  ! sponge parameters: (loaded/set in conf_gcm.F ; stored in comconst_mod)
45  !    iflag_top_bound=0 for no sponge
46  !    iflag_top_bound=1 for sponge over 4 topmost layers
47  !    iflag_top_bound=2 for sponge from top to ~1% of top layer pressure
48  !    mode_top_bound=0: no relaxation
49  !    mode_top_bound=1: u and v relax towards 0
50  !    mode_top_bound=2: u and v relax towards their zonal mean
51  !    mode_top_bound=3: u,v and pot. temp. relax towards their zonal mean
52  !    tau_top_bound : inverse of charactericstic relaxation time scale at
53  !                   the topmost layer (Hz)
54
55
56#include "comdissipn.h"
57#include "iniprint.h"
58
59  !   Arguments:
60  !   ----------
61
62  real,intent(inout) :: ucov(iip1,jjp1,llm) ! covariant zonal wind
63  real,intent(inout) :: vcov(iip1,jjm,llm) ! covariant meridional wind
64  real,intent(inout) :: teta(iip1,jjp1,llm) ! potential temperature
65  real,intent(in) :: masse(iip1,jjp1,llm) ! mass of atmosphere
66  real,intent(in) :: dt ! time step (s) of sponge model
67
68  !   Local:
69  !   ------
70
71  REAL :: massebx(iip1,jjp1,llm),masseby(iip1,jjm,llm),zm
72  REAL :: uzon(jjp1,llm),vzon(jjm,llm),tzon(jjp1,llm)
73
74  integer :: i
75  REAL,SAVE :: rdamp(llm) ! quenching coefficient
76  real,save :: lambda(llm) ! inverse or quenching time scale (Hz)
77
78  LOGICAL,SAVE :: first=.true.
79
80  INTEGER :: j,l
81
82  if (iflag_top_bound.eq.0) return
83
84  if (first) then
85     if (iflag_top_bound.eq.1) then
86  ! sponge quenching over the topmost 4 atmospheric layers
87         lambda(:)=0.
88         lambda(llm)=tau_top_bound
89         lambda(llm-1)=tau_top_bound/2.
90         lambda(llm-2)=tau_top_bound/4.
91         lambda(llm-3)=tau_top_bound/8.
92     else if (iflag_top_bound.eq.2) then
93  ! sponge quenching over topmost layers down to pressures which are
94  ! higher than 100 times the topmost layer pressure
95         lambda(:)=tau_top_bound &
96               *max(presnivs(llm)/presnivs(:)-0.01,0.)
97     endif
98
99  ! quenching coefficient rdamp(:)
100      ! rdamp(:)=dt*lambda(:) ! Explicit Euler approx.
101     rdamp(:)=1.-exp(-lambda(:)*dt)
102
103     write(lunout,*)'TOP_BOUND mode',mode_top_bound
104     write(lunout,*)'Sponge layer coefficients'
105     write(lunout,*)'p (Pa)  z(km)  tau(s)   1./tau (Hz)'
106     do l=1,llm
107       if (rdamp(l).ne.0.) then
108         write(lunout,'(6(1pe12.4,1x))') &
109               presnivs(l),log(preff/presnivs(l))*scaleheight, &
110               1./lambda(l),lambda(l)
111       endif
112     enddo
113     first=.false.
114  endif ! of if (first)
115
116  CALL massbar(masse,massebx,masseby)
117
118  ! ! compute zonal average of vcov and u
119  if (mode_top_bound.ge.2) then
120   do l=1,llm
121    do j=1,jjm
122      vzon(j,l)=0.
123      zm=0.
124      do i=1,iim
125  ! NB: we can work using vcov zonal mean rather than v since the
126  ! cv coefficient (which relates the two) only varies with latitudes
127        vzon(j,l)=vzon(j,l)+vcov(i,j,l)*masseby(i,j,l)
128        zm=zm+masseby(i,j,l)
129      enddo
130      vzon(j,l)=vzon(j,l)/zm
131    enddo
132   enddo
133
134   do l=1,llm
135    do j=2,jjm ! excluding poles
136      uzon(j,l)=0.
137      zm=0.
138      do i=1,iim
139        uzon(j,l)=uzon(j,l)+massebx(i,j,l)*ucov(i,j,l)/cu(i,j)
140        zm=zm+massebx(i,j,l)
141      enddo
142      uzon(j,l)=uzon(j,l)/zm
143    enddo
144   enddo
145  else ! ucov and vcov will relax towards 0
146    vzon(:,:)=0.
147    uzon(:,:)=0.
148  endif ! of if (mode_top_bound.ge.2)
149
150  ! ! compute zonal average of potential temperature, if necessary
151  if (mode_top_bound.ge.3) then
152   do l=1,llm
153    do j=2,jjm ! excluding poles
154      zm=0.
155      tzon(j,l)=0.
156      do i=1,iim
157        tzon(j,l)=tzon(j,l)+teta(i,j,l)*masse(i,j,l)
158        zm=zm+masse(i,j,l)
159      enddo
160      tzon(j,l)=tzon(j,l)/zm
161    enddo
162   enddo
163  endif ! of if (mode_top_bound.ge.3)
164
165  if (mode_top_bound.ge.1) then
166   ! ! Apply sponge quenching on vcov:
167   do l=1,llm
168    do i=1,iip1
169      do j=1,jjm
170        vcov(i,j,l)=vcov(i,j,l) &
171              -rdamp(l)*(vcov(i,j,l)-vzon(j,l))
172      enddo
173    enddo
174   enddo
175
176   ! ! Apply sponge quenching on ucov:
177   do l=1,llm
178    do i=1,iip1
179      do j=2,jjm ! excluding poles
180        ucov(i,j,l)=ucov(i,j,l) &
181              -rdamp(l)*(ucov(i,j,l)-cu(i,j)*uzon(j,l))
182      enddo
183    enddo
184   enddo
185  endif ! of if (mode_top_bound.ge.1)
186
187  if (mode_top_bound.ge.3) then
188   ! ! Apply sponge quenching on teta:
189   do l=1,llm
190    do i=1,iip1
191      do j=2,jjm ! excluding poles
192        teta(i,j,l)=teta(i,j,l) &
193              -rdamp(l)*(teta(i,j,l)-tzon(j,l))
194      enddo
195    enddo
196   enddo
197  endif ! of if (mode_top_bound.ge.3)
198
199END SUBROUTINE top_bound
Note: See TracBrowser for help on using the repository browser.