1 | MODULE lmdz_lscp_condensation |
---|
2 | !---------------------------------------------------------------- |
---|
3 | ! Module for condensation of clouds routines |
---|
4 | ! that are called in LSCP |
---|
5 | |
---|
6 | |
---|
7 | IMPLICIT NONE |
---|
8 | |
---|
9 | CONTAINS |
---|
10 | |
---|
11 | !********************************************************************************** |
---|
12 | SUBROUTINE condensation_lognormal( & |
---|
13 | klon, temp, qtot, qsat, gamma_cond, ratqs, & |
---|
14 | keepgoing, cldfra, qincld, qvc) |
---|
15 | |
---|
16 | !---------------------------------------------------------------------- |
---|
17 | ! This subroutine calculates the formation of clouds, using a |
---|
18 | ! statistical cloud scheme. It uses a generalised lognormal distribution |
---|
19 | ! of total water in the gridbox |
---|
20 | ! See Bony and Emanuel, 2001 |
---|
21 | !---------------------------------------------------------------------- |
---|
22 | |
---|
23 | USE lmdz_lscp_ini, ONLY: eps |
---|
24 | |
---|
25 | IMPLICIT NONE |
---|
26 | |
---|
27 | ! |
---|
28 | ! Input |
---|
29 | ! |
---|
30 | INTEGER, INTENT(IN) :: klon ! number of horizontal grid points |
---|
31 | ! |
---|
32 | REAL, INTENT(IN) , DIMENSION(klon) :: temp ! temperature [K] |
---|
33 | REAL, INTENT(IN) , DIMENSION(klon) :: qtot ! total specific humidity (without precip) [kg/kg] |
---|
34 | REAL, INTENT(IN) , DIMENSION(klon) :: qsat ! saturation specific humidity [kg/kg] |
---|
35 | REAL, INTENT(IN) , DIMENSION(klon) :: gamma_cond ! condensation threshold w.r.t. qsat [-] |
---|
36 | REAL, INTENT(IN) , DIMENSION(klon) :: ratqs ! ratio between the variance of the total water distribution and its average [-] |
---|
37 | LOGICAL, INTENT(IN) , DIMENSION(klon) :: keepgoing ! .TRUE. if a new condensation loop should be computed |
---|
38 | ! |
---|
39 | ! Output |
---|
40 | ! NB. those are in INOUT because of the convergence loop on temperature |
---|
41 | ! (in some cases, the values are not re-computed) but the values |
---|
42 | ! are never used explicitely |
---|
43 | ! |
---|
44 | REAL, INTENT(INOUT), DIMENSION(klon) :: cldfra ! cloud fraction [-] |
---|
45 | REAL, INTENT(INOUT), DIMENSION(klon) :: qincld ! cloud-mean in-cloud total specific water [kg/kg] |
---|
46 | REAL, INTENT(INOUT), DIMENSION(klon) :: qvc ! gridbox-mean vapor in the cloud [kg/kg] |
---|
47 | ! |
---|
48 | ! Local |
---|
49 | ! |
---|
50 | INTEGER :: i |
---|
51 | REAL :: pdf_std, pdf_k, pdf_delta |
---|
52 | REAL :: pdf_a, pdf_b, pdf_e1, pdf_e2 |
---|
53 | ! |
---|
54 | !--Loop on klon |
---|
55 | ! |
---|
56 | DO i = 1, klon |
---|
57 | |
---|
58 | !--If a new calculation of the condensation is needed, |
---|
59 | !--i.e., temperature has not yet converged (or the cloud is |
---|
60 | !--formed elsewhere) |
---|
61 | IF (keepgoing(i)) THEN |
---|
62 | |
---|
63 | pdf_std = ratqs(i) * qtot(i) |
---|
64 | pdf_k = -SQRT( LOG( 1. + (pdf_std / qtot(i))**2 ) ) |
---|
65 | pdf_delta = LOG( qtot(i) / ( gamma_cond(i) * qsat(i) ) ) |
---|
66 | pdf_a = pdf_delta / ( pdf_k * SQRT(2.) ) |
---|
67 | pdf_b = pdf_k / (2. * SQRT(2.)) |
---|
68 | pdf_e1 = pdf_a - pdf_b |
---|
69 | pdf_e1 = SIGN( MIN(ABS(pdf_e1), 5.), pdf_e1 ) |
---|
70 | pdf_e1 = 1. - ERF(pdf_e1) |
---|
71 | pdf_e2 = pdf_a + pdf_b |
---|
72 | pdf_e2 = SIGN( MIN(ABS(pdf_e2), 5.), pdf_e2 ) |
---|
73 | pdf_e2 = 1. - ERF(pdf_e2) |
---|
74 | |
---|
75 | |
---|
76 | IF ( pdf_e1 .LT. eps ) THEN |
---|
77 | cldfra(i) = 0. |
---|
78 | qincld(i) = qsat(i) |
---|
79 | !--AB grid-mean vapor in the cloud - we assume saturation adjustment |
---|
80 | qvc(i) = 0. |
---|
81 | ELSE |
---|
82 | cldfra(i) = 0.5 * pdf_e1 |
---|
83 | qincld(i) = qtot(i) * pdf_e2 / pdf_e1 |
---|
84 | !--AB grid-mean vapor in the cloud - we assume saturation adjustment |
---|
85 | qvc(i) = qsat(i) * cldfra(i) |
---|
86 | ENDIF |
---|
87 | |
---|
88 | ENDIF ! end keepgoing |
---|
89 | |
---|
90 | ENDDO ! end loop on i |
---|
91 | END SUBROUTINE condensation_lognormal |
---|
92 | !********************************************************************************** |
---|
93 | |
---|
94 | !********************************************************************************** |
---|
95 | SUBROUTINE condensation_ice_supersat( & |
---|
96 | klon, dtime, pplay, paprsdn, paprsup, totfra_in, & |
---|
97 | cldfra_in, qvc_in, qliq_in, qice_in, shear, pbl_eps, cell_area, & |
---|
98 | temp, qtot_in, qsat, gamma_cond, ratqs, keepgoing, pt_pron_clds, & |
---|
99 | cldfra_above, icesed_flux, & |
---|
100 | cldfra, qincld, qvc, issrfra, qissr, dcf_sub, dcf_con, dcf_mix, dcf_sed, & |
---|
101 | dqi_adj, dqi_sub, dqi_con, dqi_mix, dqi_sed, & |
---|
102 | dqvc_adj, dqvc_sub, dqvc_con, dqvc_mix, dqvc_sed, & |
---|
103 | lincontfra_in, circontfra_in, qtl_in, qtc_in, flight_dist, flight_h2o, & |
---|
104 | lincontfra, circontfra, qlincont, qcircont, & |
---|
105 | Tcritcont, qcritcont, potcontfraP, potcontfraNP, & |
---|
106 | dcfl_ini, dqil_ini, dqtl_ini, dcfl_sub, dqil_sub, dqtl_sub, & |
---|
107 | dcfl_cir, dqtl_cir, dcfl_mix, dqil_mix, dqtl_mix, & |
---|
108 | dcfc_sub, dqic_sub, dqtc_sub, dcfc_mix, dqic_mix, dqtc_mix) |
---|
109 | |
---|
110 | !---------------------------------------------------------------------- |
---|
111 | ! This subroutine calculates the formation, evolution and dissipation |
---|
112 | ! of clouds, using a process-oriented treatment of the cloud properties |
---|
113 | ! (cloud fraction, vapor in the cloud, condensed water in the cloud). |
---|
114 | ! It allows for ice supersaturation in cold regions, in clear sky. |
---|
115 | ! If ok_unadjusted_clouds, it also allows for sub- and supersaturated |
---|
116 | ! cloud water vapors. |
---|
117 | ! It also allows for the formation and evolution of condensation trails |
---|
118 | ! (contrails) from aviation. |
---|
119 | ! Authors: Audran Borella, Etienne Vignon, Olivier Boucher |
---|
120 | ! April 2024 |
---|
121 | !---------------------------------------------------------------------- |
---|
122 | |
---|
123 | USE lmdz_lscp_tools, ONLY: calc_qsat_ecmwf, calc_gammasat, GAMMAINC |
---|
124 | USE lmdz_lscp_ini, ONLY: RLSTT, RTT, RD, RG, RV, RPI, EPS_W |
---|
125 | USE lmdz_lscp_ini, ONLY: eps, temp_nowater, ok_unadjusted_clouds |
---|
126 | |
---|
127 | USE lmdz_lscp_ini, ONLY: depo_coef_cirrus, capa_cond_cirrus, rho_ice |
---|
128 | USE lmdz_lscp_ini, ONLY: N_ice_volume, corr_incld_depsub, nu_iwc_pdf_lscp |
---|
129 | USE lmdz_lscp_ini, ONLY: beta_pdf_lscp, temp_thresh_pdf_lscp |
---|
130 | USE lmdz_lscp_ini, ONLY: std100_pdf_lscp, k0_pdf_lscp, kappa_pdf_lscp |
---|
131 | USE lmdz_lscp_ini, ONLY: coef_mixing_lscp, coef_shear_lscp |
---|
132 | USE lmdz_lscp_ini, ONLY: aspect_ratio_cirrus, cooling_rate_ice_thresh |
---|
133 | |
---|
134 | USE lmdz_lscp_ini, ONLY: ok_plane_contrail, aspect_ratio_lincontrails |
---|
135 | USE lmdz_lscp_ini, ONLY: coef_mixing_lincontrails, coef_shear_lincontrails |
---|
136 | USE lmdz_lscp_ini, ONLY: chi_mixing_lincontrails, linear_contrails_lifetime |
---|
137 | USE lmdz_aviation, ONLY: contrails_formation |
---|
138 | |
---|
139 | IMPLICIT NONE |
---|
140 | |
---|
141 | ! |
---|
142 | ! Input |
---|
143 | ! |
---|
144 | INTEGER, INTENT(IN) :: klon ! number of horizontal grid points |
---|
145 | REAL, INTENT(IN) :: dtime ! time step [s] |
---|
146 | ! |
---|
147 | REAL, INTENT(IN) , DIMENSION(klon) :: pplay ! layer pressure [Pa] |
---|
148 | REAL, INTENT(IN) , DIMENSION(klon) :: paprsdn ! pressure at the lower interface [Pa] |
---|
149 | REAL, INTENT(IN) , DIMENSION(klon) :: paprsup ! pressure at the upper interface [Pa] |
---|
150 | REAL, INTENT(IN) , DIMENSION(klon) :: totfra_in ! total available fraction for stratiform clouds [-] |
---|
151 | REAL, INTENT(IN) , DIMENSION(klon) :: cldfra_in ! cloud fraction [-] |
---|
152 | REAL, INTENT(IN) , DIMENSION(klon) :: qvc_in ! gridbox-mean water vapor in cloud [kg/kg] |
---|
153 | REAL, INTENT(IN) , DIMENSION(klon) :: qliq_in ! specific liquid water content [kg/kg] |
---|
154 | REAL, INTENT(IN) , DIMENSION(klon) :: qice_in ! specific ice water content [kg/kg] |
---|
155 | REAL, INTENT(IN) , DIMENSION(klon) :: shear ! vertical shear [s-1] |
---|
156 | REAL, INTENT(IN) , DIMENSION(klon) :: pbl_eps ! TKE dissipation [m2/s3] |
---|
157 | REAL, INTENT(IN) , DIMENSION(klon) :: cell_area ! cell area [m2] |
---|
158 | REAL, INTENT(IN) , DIMENSION(klon) :: temp ! temperature [K] |
---|
159 | REAL, INTENT(IN) , DIMENSION(klon) :: qtot_in ! total specific humidity (without precip) [kg/kg] |
---|
160 | REAL, INTENT(IN) , DIMENSION(klon) :: qsat ! saturation specific humidity [kg/kg] |
---|
161 | REAL, INTENT(IN) , DIMENSION(klon) :: gamma_cond ! condensation threshold w.r.t. qsat [-] |
---|
162 | REAL, INTENT(IN) , DIMENSION(klon) :: ratqs ! ratio between the variance of the total water distribution and its average [-] |
---|
163 | LOGICAL, INTENT(IN) , DIMENSION(klon) :: keepgoing ! .TRUE. if a new condensation loop should be computed |
---|
164 | LOGICAL, INTENT(IN) , DIMENSION(klon) :: pt_pron_clds ! .TRUE. if clouds are prognostic in this mesh |
---|
165 | REAL, INTENT(IN) , DIMENSION(klon) :: cldfra_above ! cloud fraction IN THE LAYER ABOVE [-] |
---|
166 | REAL, INTENT(IN) , DIMENSION(klon) :: icesed_flux ! sedimentated ice flux [kg/s/m2] |
---|
167 | ! |
---|
168 | ! Input for aviation |
---|
169 | ! |
---|
170 | REAL, INTENT(IN) , DIMENSION(klon) :: lincontfra_in ! input linear contrails fraction [-] |
---|
171 | REAL, INTENT(IN) , DIMENSION(klon) :: circontfra_in ! input contrail cirrus fraction [-] |
---|
172 | REAL, INTENT(IN) , DIMENSION(klon) :: qtl_in ! input linear contrails total specific humidity [kg/kg] |
---|
173 | REAL, INTENT(IN) , DIMENSION(klon) :: qtc_in ! input contrail cirrus total specific humidity [kg/kg] |
---|
174 | REAL, INTENT(IN) , DIMENSION(klon) :: flight_dist ! aviation distance flown concentration [m/s/m3] |
---|
175 | REAL, INTENT(IN) , DIMENSION(klon) :: flight_h2o ! aviation emitted H2O concentration [kgH2O/s/m3] |
---|
176 | ! |
---|
177 | ! Output |
---|
178 | ! NB. cldfra and qincld should be outputed as cf_seri and qi_seri, |
---|
179 | ! or as tendencies (maybe in the future) |
---|
180 | ! NB. those are in INOUT because of the convergence loop on temperature |
---|
181 | ! (in some cases, the values are not re-computed) but the values |
---|
182 | ! are never used explicitely |
---|
183 | ! |
---|
184 | REAL, INTENT(INOUT), DIMENSION(klon) :: cldfra ! cloud fraction [-] |
---|
185 | REAL, INTENT(INOUT), DIMENSION(klon) :: qincld ! cloud-mean in-cloud total specific water [kg/kg] |
---|
186 | REAL, INTENT(INOUT), DIMENSION(klon) :: qvc ! gridbox-mean vapor in the cloud [kg/kg] |
---|
187 | REAL, INTENT(INOUT), DIMENSION(klon) :: issrfra ! ISSR fraction [-] |
---|
188 | REAL, INTENT(INOUT), DIMENSION(klon) :: qissr ! gridbox-mean ISSR specific water [kg/kg] |
---|
189 | ! |
---|
190 | ! Diagnostics for condensation and ice supersaturation |
---|
191 | ! NB. idem for the INOUT |
---|
192 | ! |
---|
193 | REAL, INTENT(INOUT), DIMENSION(klon) :: dcf_sub ! cloud fraction tendency because of sublimation [s-1] |
---|
194 | REAL, INTENT(INOUT), DIMENSION(klon) :: dcf_con ! cloud fraction tendency because of condensation [s-1] |
---|
195 | REAL, INTENT(INOUT), DIMENSION(klon) :: dcf_mix ! cloud fraction tendency because of cloud mixing [s-1] |
---|
196 | REAL, INTENT(INOUT), DIMENSION(klon) :: dcf_sed ! cloud fraction tendency because of sedimentation [s-1] |
---|
197 | REAL, INTENT(INOUT), DIMENSION(klon) :: dqi_adj ! specific ice content tendency because of temperature adjustment [kg/kg/s] |
---|
198 | REAL, INTENT(INOUT), DIMENSION(klon) :: dqi_sub ! specific ice content tendency because of sublimation [kg/kg/s] |
---|
199 | REAL, INTENT(INOUT), DIMENSION(klon) :: dqi_con ! specific ice content tendency because of condensation [kg/kg/s] |
---|
200 | REAL, INTENT(INOUT), DIMENSION(klon) :: dqi_mix ! specific ice content tendency because of cloud mixing [kg/kg/s] |
---|
201 | REAL, INTENT(INOUT), DIMENSION(klon) :: dqi_sed ! specific ice content tendency because of sedimentation [kg/kg/s] |
---|
202 | REAL, INTENT(INOUT), DIMENSION(klon) :: dqvc_adj ! specific cloud water vapor tendency because of temperature adjustment [kg/kg/s] |
---|
203 | REAL, INTENT(INOUT), DIMENSION(klon) :: dqvc_sub ! specific cloud water vapor tendency because of sublimation [kg/kg/s] |
---|
204 | REAL, INTENT(INOUT), DIMENSION(klon) :: dqvc_con ! specific cloud water vapor tendency because of condensation [kg/kg/s] |
---|
205 | REAL, INTENT(INOUT), DIMENSION(klon) :: dqvc_mix ! specific cloud water vapor tendency because of cloud mixing [kg/kg/s] |
---|
206 | REAL, INTENT(INOUT), DIMENSION(klon) :: dqvc_sed ! specific cloud water vapor tendency because of sedimentation [kg/kg/s] |
---|
207 | ! |
---|
208 | ! Diagnostics for aviation |
---|
209 | ! NB. idem for the INOUT |
---|
210 | ! |
---|
211 | REAL, INTENT(INOUT), DIMENSION(klon) :: lincontfra ! linear contrail fraction [-] |
---|
212 | REAL, INTENT(INOUT), DIMENSION(klon) :: circontfra ! contrail cirrus fraction [-] |
---|
213 | REAL, INTENT(INOUT), DIMENSION(klon) :: qlincont ! linear contrail specific humidity [kg/kg] |
---|
214 | REAL, INTENT(INOUT), DIMENSION(klon) :: qcircont ! contrail cirrus specific humidity [kg/kg] |
---|
215 | REAL, INTENT(INOUT), DIMENSION(klon) :: Tcritcont ! critical temperature for contrail formation [K] |
---|
216 | REAL, INTENT(INOUT), DIMENSION(klon) :: qcritcont ! critical specific humidity for contrail formation [kg/kg] |
---|
217 | REAL, INTENT(INOUT), DIMENSION(klon) :: potcontfraP ! potential persistent contrail fraction [-] |
---|
218 | REAL, INTENT(INOUT), DIMENSION(klon) :: potcontfraNP ! potential non-persistent contrail fraction [-] |
---|
219 | REAL, INTENT(INOUT), DIMENSION(klon) :: dcfl_ini ! linear contrails cloud fraction tendency because of initial formation [s-1] |
---|
220 | REAL, INTENT(INOUT), DIMENSION(klon) :: dqil_ini ! linear contrails ice specific humidity tendency because of initial formation [kg/kg/s] |
---|
221 | REAL, INTENT(INOUT), DIMENSION(klon) :: dqtl_ini ! linear contrails total specific humidity tendency because of initial formation [kg/kg/s] |
---|
222 | REAL, INTENT(INOUT), DIMENSION(klon) :: dcfl_sub ! linear contrails cloud fraction tendency because of sublimation [s-1] |
---|
223 | REAL, INTENT(INOUT), DIMENSION(klon) :: dqil_sub ! linear contrails ice specific humidity tendency because of sublimation [kg/kg/s] |
---|
224 | REAL, INTENT(INOUT), DIMENSION(klon) :: dqtl_sub ! linear contrails total specific humidity tendency because of sublimation [kg/kg/s] |
---|
225 | REAL, INTENT(INOUT), DIMENSION(klon) :: dcfl_cir ! linear contrails cloud fraction tendency because of conversion in cirrus [s-1] |
---|
226 | REAL, INTENT(INOUT), DIMENSION(klon) :: dqtl_cir ! linear contrails total specific humidity tendency because of conversion in cirrus [kg/kg/s] |
---|
227 | REAL, INTENT(INOUT), DIMENSION(klon) :: dcfl_mix ! linear contrails cloud fraction tendency because of mixing [s-1] |
---|
228 | REAL, INTENT(INOUT), DIMENSION(klon) :: dqil_mix ! linear contrails ice specific humidity tendency because of mixing [kg/kg/s] |
---|
229 | REAL, INTENT(INOUT), DIMENSION(klon) :: dqtl_mix ! linear contrails total specific humidity tendency because of mixing [kg/kg/s] |
---|
230 | REAL, INTENT(INOUT), DIMENSION(klon) :: dcfc_sub ! contrail cirrus cloud fraction tendency because of sublimation [s-1] |
---|
231 | REAL, INTENT(INOUT), DIMENSION(klon) :: dqic_sub ! contrail cirrus ice specific humidity tendency because of sublimation [kg/kg/s] |
---|
232 | REAL, INTENT(INOUT), DIMENSION(klon) :: dqtc_sub ! contrail cirrus total specific humidity tendency because of sublimation [kg/kg/s] |
---|
233 | REAL, INTENT(INOUT), DIMENSION(klon) :: dcfc_mix ! contrail cirrus cloud fraction tendency because of mixing [s-1] |
---|
234 | REAL, INTENT(INOUT), DIMENSION(klon) :: dqic_mix ! contrail cirrus ice specific humidity tendency because of mixing [kg/kg/s] |
---|
235 | REAL, INTENT(INOUT), DIMENSION(klon) :: dqtc_mix ! contrail cirrus total specific humidity tendency because of mixing [kg/kg/s] |
---|
236 | ! |
---|
237 | ! Local |
---|
238 | ! |
---|
239 | INTEGER :: i |
---|
240 | LOGICAL :: ok_warm_cloud |
---|
241 | REAL, DIMENSION(klon) :: qcld, qzero |
---|
242 | REAL, DIMENSION(klon) :: clrfra, qclr |
---|
243 | ! |
---|
244 | ! for lognormal |
---|
245 | REAL :: pdf_std, pdf_k, pdf_delta |
---|
246 | REAL :: pdf_a, pdf_b, pdf_e1, pdf_e2 |
---|
247 | ! |
---|
248 | ! for unadjusted clouds |
---|
249 | REAL :: qiceincld, qvapincld, qvapincld_new |
---|
250 | REAL :: qice_ratio |
---|
251 | ! |
---|
252 | ! for deposition / sublimation |
---|
253 | REAL :: pres_sat, kappa_depsub, tauinv_depsub |
---|
254 | REAL :: air_thermal_conduct, water_vapor_diff |
---|
255 | ! |
---|
256 | ! for dissipation |
---|
257 | REAL, DIMENSION(klon) :: temp_diss, qsati_diss |
---|
258 | REAL :: pdf_shape, qiceincld_min |
---|
259 | ! |
---|
260 | ! for condensation |
---|
261 | REAL, DIMENSION(klon) :: qsatl, dqsat_tmp |
---|
262 | REAL, DIMENSION(klon) :: pdf_alpha, pdf_scale, pdf_gamma |
---|
263 | REAL :: rhl_clr, pdf_loc |
---|
264 | REAL :: pdf_e3, pdf_x, pdf_y |
---|
265 | REAL :: dqt_con |
---|
266 | ! |
---|
267 | ! for sedimentation |
---|
268 | REAL, DIMENSION(klon) :: qice_sedim |
---|
269 | REAL :: clrfra_sed |
---|
270 | ! |
---|
271 | ! for mixing |
---|
272 | REAL :: a_mix, bovera, Povera, N_cld_mix, L_mix |
---|
273 | REAL :: cldfra_mix, clrfra_mix, sigma_mix |
---|
274 | REAL :: L_shear, shear_fra |
---|
275 | REAL :: qvapinmix, qiceinmix, qvapinmix_lim, qvapinclr_lim |
---|
276 | REAL :: pdf_fra_above_nuc, pdf_q_above_nuc |
---|
277 | REAL :: pdf_fra_above_lim, pdf_q_above_lim |
---|
278 | REAL :: pdf_fra_below_lim |
---|
279 | REAL :: mixed_fraction |
---|
280 | ! |
---|
281 | ! for cell properties |
---|
282 | REAL :: rho, rhodz, dz |
---|
283 | ! |
---|
284 | ! for contrails |
---|
285 | REAL :: contrails_conversion_factor |
---|
286 | |
---|
287 | qzero(:) = 0. |
---|
288 | |
---|
289 | !--Calculation of qsat w.r.t. liquid |
---|
290 | CALL calc_qsat_ecmwf(klon, temp, qzero, pplay, RTT, 1, .FALSE., qsatl, dqsat_tmp) |
---|
291 | !--Calculation of qsat max for dissipation |
---|
292 | temp_diss(:) = temp(:) + cooling_rate_ice_thresh * dtime |
---|
293 | CALL calc_qsat_ecmwf(klon, temp_diss, qzero, pplay, RTT, 2, .FALSE., qsati_diss, dqsat_tmp) |
---|
294 | |
---|
295 | ! |
---|
296 | !--Loop on klon |
---|
297 | ! |
---|
298 | DO i = 1, klon |
---|
299 | |
---|
300 | !--If a new calculation of the condensation is needed, |
---|
301 | !--i.e., temperature has not yet converged (or the cloud is |
---|
302 | !--formed elsewhere) |
---|
303 | IF (keepgoing(i)) THEN |
---|
304 | |
---|
305 | !--If the temperature is higher than the threshold below which |
---|
306 | !--there is no liquid in the gridbox, we activate the usual scheme |
---|
307 | !--(generalised lognormal from Bony and Emanuel 2001) |
---|
308 | !--If ok_weibull_warm_clouds = .TRUE., the Weibull law is used for |
---|
309 | !--all clouds, and the lognormal scheme is not activated |
---|
310 | IF ( .NOT. pt_pron_clds(i) ) THEN |
---|
311 | |
---|
312 | pdf_std = ratqs(i) * qtot_in(i) |
---|
313 | pdf_k = -SQRT( LOG( 1. + (pdf_std / qtot_in(i))**2 ) ) |
---|
314 | pdf_delta = LOG( qtot_in(i) / ( gamma_cond(i) * qsat(i) ) ) |
---|
315 | pdf_a = pdf_delta / ( pdf_k * SQRT(2.) ) |
---|
316 | pdf_b = pdf_k / (2. * SQRT(2.)) |
---|
317 | pdf_e1 = pdf_a - pdf_b |
---|
318 | pdf_e1 = SIGN( MIN(ABS(pdf_e1), 5.), pdf_e1 ) |
---|
319 | pdf_e1 = 1. - ERF(pdf_e1) |
---|
320 | pdf_e2 = pdf_a + pdf_b |
---|
321 | pdf_e2 = SIGN( MIN(ABS(pdf_e2), 5.), pdf_e2 ) |
---|
322 | pdf_e2 = 1. - ERF(pdf_e2) |
---|
323 | |
---|
324 | |
---|
325 | IF ( pdf_e1 .LT. eps ) THEN |
---|
326 | cldfra(i) = 0. |
---|
327 | qincld(i) = qsat(i) |
---|
328 | qvc(i) = 0. |
---|
329 | ELSE |
---|
330 | cldfra(i) = 0.5 * pdf_e1 |
---|
331 | qincld(i) = qtot_in(i) * pdf_e2 / pdf_e1 |
---|
332 | qvc(i) = qsat(i) * cldfra(i) |
---|
333 | ENDIF |
---|
334 | |
---|
335 | !--If the temperature is lower than temp_nowater, we use the new |
---|
336 | !--condensation scheme that allows for ice supersaturation |
---|
337 | ELSE |
---|
338 | |
---|
339 | !--Initialisation |
---|
340 | !--If the air mass is warm (liquid water can exist), |
---|
341 | !--all the memory is lost and the scheme becomes statistical, |
---|
342 | !--i.e., the sublimation and mixing processes are deactivated, |
---|
343 | !--and the condensation process is slightly adapted |
---|
344 | !--This can happen only if ok_weibull_warm_clouds = .TRUE. |
---|
345 | ok_warm_cloud = ( temp(i) .GT. temp_nowater ) |
---|
346 | |
---|
347 | !--The following barriers ensure that the traced cloud properties |
---|
348 | !--are consistent. In some rare cases, i.e. the cloud water vapor |
---|
349 | !--can be greater than the total water in the gridbox |
---|
350 | cldfra(i) = MAX(0., MIN(totfra_in(i), cldfra_in(i))) |
---|
351 | qcld(i) = MAX(0., MIN(qtot_in(i), qliq_in(i) + qice_in(i) + qvc_in(i))) |
---|
352 | qvc(i) = MAX(0., MIN(qcld(i), qvc_in(i))) |
---|
353 | |
---|
354 | !--Initialise clear fraction properties |
---|
355 | clrfra(i) = totfra_in(i) - cldfra(i) |
---|
356 | qclr(i) = qtot_in(i) - qcld(i) |
---|
357 | |
---|
358 | dcf_sub(i) = 0. |
---|
359 | dqi_sub(i) = 0. |
---|
360 | dqvc_sub(i) = 0. |
---|
361 | dqi_adj(i) = 0. |
---|
362 | dqvc_adj(i) = 0. |
---|
363 | dcf_con(i) = 0. |
---|
364 | dqi_con(i) = 0. |
---|
365 | dqvc_con(i) = 0. |
---|
366 | dcf_mix(i) = 0. |
---|
367 | dqi_mix(i) = 0. |
---|
368 | dqvc_mix(i) = 0. |
---|
369 | dcf_sed(i) = 0. |
---|
370 | dqi_sed(i) = 0. |
---|
371 | dqvc_sed(i) = 0. |
---|
372 | |
---|
373 | IF ( icesed_flux(i) .GT. 0. ) THEN |
---|
374 | !--If ice sedimentation is activated, the quantity of sedimentated ice was added |
---|
375 | !--to the total water vapor in the precipitation routine. Here we remove it |
---|
376 | !--(it will be reincluded later) |
---|
377 | qice_sedim(i) = icesed_flux(i) / ( paprsdn(i) - paprsup(i) ) * RG * dtime |
---|
378 | qclr(i) = qclr(i) - qice_sedim(i) |
---|
379 | ENDIF |
---|
380 | |
---|
381 | !--Initialisation of the cell properties |
---|
382 | !--Dry density [kg/m3] |
---|
383 | rho = pplay(i) / temp(i) / RD |
---|
384 | !--Dry air mass [kg/m2] |
---|
385 | rhodz = ( paprsdn(i) - paprsup(i) ) / RG |
---|
386 | !--Cell thickness [m] |
---|
387 | dz = rhodz / rho |
---|
388 | |
---|
389 | !--If ok_unadjusted_clouds is set to TRUE, then the saturation adjustment |
---|
390 | !--hypothesis is lost, and the vapor in the cloud is purely prognostic. |
---|
391 | ! |
---|
392 | !--The deposition equation is |
---|
393 | !-- dmi/dt = alpha*4pi*C*Svi / ( R_v*T/esi/Dv + Ls/ka/T * (Ls/R_v/T - 1) ) |
---|
394 | !--from Lohmann et al. (2016), where |
---|
395 | !--alpha is the deposition coefficient [-] |
---|
396 | !--mi is the mass of one ice crystal [kg] |
---|
397 | !--C is the capacitance of an ice crystal [m] |
---|
398 | !--Svi is the supersaturation ratio equal to (qvc - qsat)/qsat [-] |
---|
399 | !--R_v is the specific gas constant for humid air [J/kg/K] |
---|
400 | !--T is the temperature [K] |
---|
401 | !--esi is the saturation pressure w.r.t. ice [Pa] |
---|
402 | !--Dv is the diffusivity of water vapor [m2/s] |
---|
403 | !--Ls is the specific latent heat of sublimation [J/kg/K] |
---|
404 | !--ka is the thermal conductivity of dry air [J/m/s/K] |
---|
405 | ! |
---|
406 | !--alpha is a coefficient to take into account the fact that during deposition, a water |
---|
407 | !--molecule cannot join the crystal from everywhere, it must do so that the crystal stays |
---|
408 | !--coherent (with the same structure). It has no impact for sublimation. |
---|
409 | !--We fix alpha = depo_coef_cirrus (=0.5 by default following Lohmann et al. (2016)) |
---|
410 | !--during deposition, and alpha = 1. during sublimation. |
---|
411 | !--The capacitance of the ice crystals is proportional to a parameter capa_cond_cirrus |
---|
412 | !-- C = capa_cond_cirrus * rm_ice |
---|
413 | ! |
---|
414 | !--We have qice = Nice * mi, where Nice is the ice crystal |
---|
415 | !--number concentration per kg of moist air |
---|
416 | !--HYPOTHESIS 1: the ice crystals are spherical, therefore |
---|
417 | !-- mi = 4/3 * pi * rm_ice**3 * rho_ice |
---|
418 | !--HYPOTHESIS 2: the ice crystals concentration is constant in the cloud |
---|
419 | ! |
---|
420 | !--The equation in terms of q_ice is valide locally, and the local ice water content |
---|
421 | !--follows a Gamma distribution with a factor nu_iwc_pdf_lscp. Therefore, by |
---|
422 | !--integrating the local equation over the PDF (entire cloud), a correcting factor |
---|
423 | !--must be included, equal to |
---|
424 | !-- corr_incld_depsub = GAMMA(nu + 1/3) / GAMMA(nu) / nu**(1/3) |
---|
425 | !--NB. this is equal to about 0.9, hence the correction is not big |
---|
426 | !--NB. to lighten the calculated, corr_incld_depsub is calculated in lmdz_lscp_ini |
---|
427 | ! |
---|
428 | !--As the deposition process does not create new ice crystals, |
---|
429 | !--and because we assume a same rm_ice value for all crystals |
---|
430 | !--therefore the sublimation process does not destroy ice crystals |
---|
431 | !--(or, in a limit case, it destroys all ice crystals), then |
---|
432 | !--Nice is a constant during the sublimation/deposition process |
---|
433 | !--hence dmi = dqi |
---|
434 | ! |
---|
435 | !--The deposition equation then reads for qi the in-cloud ice water content: |
---|
436 | !-- dqi/dt = alpha*4pi*capa_cond_cirrus*rm_ice*(qvc-qsat)/qsat * corr_incld_depsub & |
---|
437 | !-- / ( R_v*T/esi/Dv + Ls/ka/T * (Ls/R_v/T - 1) ) * Nice |
---|
438 | !-- dqi/dt = alpha*4pi*capa_cond_cirrus*Nice*corr_incld_depsub & |
---|
439 | !-- / ( 4pi/3 N_ice rho_ice )**(1/3) & |
---|
440 | !-- / ( R_v*T/esi/Dv + Ls/ka/T * (Ls*R_v/T - 1) ) & |
---|
441 | !-- qi**(1/3) * (qvc - qsat) / qsat |
---|
442 | !--and we have |
---|
443 | !-- dqvc/dt = - alpha * kappa(T) * qi**(1/3) * (qvc - qsat) |
---|
444 | !-- dqi/dt = alpha * kappa(T) * qi**(1/3) * (qvc - qsat) |
---|
445 | ! |
---|
446 | !--This system of equations can be resolved with an exact |
---|
447 | !--explicit numerical integration, having one variable resolved |
---|
448 | !--explicitly, the other exactly. qvc is always the variable solved exactly. |
---|
449 | ! |
---|
450 | !--kappa is computed as an initialisation constant, as it depends only |
---|
451 | !--on temperature and other pre-computed values |
---|
452 | pres_sat = qsat(i) / ( EPS_W + ( 1. - EPS_W ) * qsat(i) ) * pplay(i) |
---|
453 | !--This formula for air thermal conductivity comes from Beard and Pruppacher (1971) |
---|
454 | air_thermal_conduct = ( 5.69 + 0.017 * ( temp(i) - RTT ) ) * 1.e-3 * 4.184 |
---|
455 | !--This formula for water vapor diffusivity comes from Hall and Pruppacher (1976) |
---|
456 | water_vapor_diff = 0.211 * ( temp(i) / RTT )**1.94 * ( 101325. / pplay(i) ) * 1.e-4 |
---|
457 | !--NB. the greater kappa_depsub, the more efficient is the |
---|
458 | !--deposition/sublimation process |
---|
459 | kappa_depsub = 4. * RPI * capa_cond_cirrus * N_ice_volume / rho * corr_incld_depsub & |
---|
460 | / qsat(i) / ( 4. / 3. * RPI * N_ice_volume / rho * rho_ice )**(1./3.) & |
---|
461 | / ( RV * temp(i) / water_vapor_diff / pres_sat & |
---|
462 | + RLSTT / air_thermal_conduct / temp(i) * ( RLSTT / RV / temp(i) - 1. ) ) |
---|
463 | |
---|
464 | !--If contrails are activated |
---|
465 | IF ( ok_plane_contrail ) THEN |
---|
466 | lincontfra(i) = MAX(0., lincontfra_in(i)) |
---|
467 | circontfra(i) = MAX(0., circontfra_in(i)) |
---|
468 | qlincont(i) = MAX(0., qtl_in(i)) |
---|
469 | qcircont(i) = MAX(0., qtc_in(i)) |
---|
470 | !--The following barriers are needed since the advection scheme does not |
---|
471 | !--conserve order relations |
---|
472 | mixed_fraction = lincontfra(i) + circontfra(i) |
---|
473 | IF ( mixed_fraction .GT. cldfra(i) ) THEN |
---|
474 | mixed_fraction = cldfra(i) / mixed_fraction |
---|
475 | lincontfra(i) = lincontfra(i) * mixed_fraction |
---|
476 | circontfra(i) = circontfra(i) * mixed_fraction |
---|
477 | qlincont(i) = qlincont(i) * mixed_fraction |
---|
478 | qcircont(i) = qcircont(i) * mixed_fraction |
---|
479 | ENDIF |
---|
480 | mixed_fraction = qlincont(i) + qcircont(i) |
---|
481 | IF ( mixed_fraction .GT. qcld(i) ) THEN |
---|
482 | mixed_fraction = qcld(i) / mixed_fraction |
---|
483 | lincontfra(i) = lincontfra(i) * mixed_fraction |
---|
484 | circontfra(i) = circontfra(i) * mixed_fraction |
---|
485 | qlincont(i) = qlincont(i) * mixed_fraction |
---|
486 | qcircont(i) = qcircont(i) * mixed_fraction |
---|
487 | ENDIF |
---|
488 | |
---|
489 | |
---|
490 | dcfl_ini(i) = 0. |
---|
491 | dqil_ini(i) = 0. |
---|
492 | dqtl_ini(i) = 0. |
---|
493 | dcfl_sub(i) = 0. |
---|
494 | dqil_sub(i) = 0. |
---|
495 | dqtl_sub(i) = 0. |
---|
496 | dcfl_cir(i) = 0. |
---|
497 | dqtl_cir(i) = 0. |
---|
498 | dcfl_mix(i) = 0. |
---|
499 | dqil_mix(i) = 0. |
---|
500 | dqtl_mix(i) = 0. |
---|
501 | dcfc_sub(i) = 0. |
---|
502 | dqic_sub(i) = 0. |
---|
503 | dqtc_sub(i) = 0. |
---|
504 | dcfc_mix(i) = 0. |
---|
505 | dqic_mix(i) = 0. |
---|
506 | dqtc_mix(i) = 0. |
---|
507 | ELSE |
---|
508 | lincontfra(i) = 0. |
---|
509 | circontfra(i) = 0. |
---|
510 | qlincont(i) = 0. |
---|
511 | qcircont(i) = 0. |
---|
512 | ENDIF |
---|
513 | |
---|
514 | |
---|
515 | !---------------------------------------------------------------------- |
---|
516 | !-- SUBLIMATION OF ICE AND DEPOSITION OF VAPOR IN THE CONTRAIL -- |
---|
517 | !---------------------------------------------------------------------- |
---|
518 | |
---|
519 | !--If there is a linear contrail |
---|
520 | IF ( lincontfra(i) .GT. eps ) THEN |
---|
521 | |
---|
522 | !--The contrail is always adjusted to saturation |
---|
523 | qiceincld = ( qlincont(i) / lincontfra(i) - qsat(i) ) |
---|
524 | !--If the ice water content is too low, the cloud is purely sublimated |
---|
525 | IF ( qiceincld .LT. qiceincld_min ) THEN |
---|
526 | dcfl_sub(i) = - lincontfra(i) |
---|
527 | dqil_sub(i) = - qiceincld * lincontfra(i) |
---|
528 | dqtl_sub(i) = - qlincont(i) |
---|
529 | lincontfra(i) = 0. |
---|
530 | qlincont(i) = 0. |
---|
531 | clrfra(i) = MIN(totfra_in(i), clrfra(i) - dcfl_sub(i)) |
---|
532 | qclr(i) = qclr(i) - dqtl_sub(i) |
---|
533 | ENDIF ! qiceincld .LT. eps |
---|
534 | |
---|
535 | !--We remove contrails from the main class |
---|
536 | cldfra(i) = MAX(0., cldfra(i) - lincontfra(i)) |
---|
537 | qcld(i) = MAX(0., qcld(i) - qlincont(i)) |
---|
538 | qvc(i) = MAX(0., qvc(i) - qsat(i) * lincontfra(i)) |
---|
539 | ENDIF ! lincontfra(i) .GT. eps |
---|
540 | |
---|
541 | !--If there is a contrail cirrus |
---|
542 | IF ( circontfra(i) .GT. eps ) THEN |
---|
543 | |
---|
544 | !--The contrail is always adjusted to saturation |
---|
545 | qiceincld = ( qcircont(i) / circontfra(i) - qsat(i) ) |
---|
546 | !--If the ice water content is too low, the cloud is purely sublimated |
---|
547 | IF ( qiceincld .LT. qiceincld_min ) THEN |
---|
548 | dcfc_sub(i) = - circontfra(i) |
---|
549 | dqic_sub(i) = - qiceincld * circontfra(i) |
---|
550 | dqtc_sub(i) = - qcircont(i) |
---|
551 | circontfra(i) = 0. |
---|
552 | qcircont(i) = 0. |
---|
553 | clrfra(i) = MIN(totfra_in(i), clrfra(i) - dcfc_sub(i)) |
---|
554 | qclr(i) = qclr(i) - dqtc_sub(i) |
---|
555 | ENDIF ! qiceincld .LT. eps |
---|
556 | |
---|
557 | !--We remove contrails from the main class |
---|
558 | cldfra(i) = MAX(0., cldfra(i) - circontfra(i)) |
---|
559 | qcld(i) = MAX(0., qcld(i) - qcircont(i)) |
---|
560 | qvc(i) = MAX(0., qvc(i) - qsat(i) * circontfra(i)) |
---|
561 | ENDIF ! circontfra(i) .GT. eps |
---|
562 | |
---|
563 | |
---|
564 | !------------------------------------------------------------------- |
---|
565 | !-- SUBLIMATION OF ICE AND DEPOSITION OF VAPOR IN THE CLOUD -- |
---|
566 | !------------------------------------------------------------------- |
---|
567 | |
---|
568 | !--If there is a cloud |
---|
569 | IF ( cldfra(i) .GT. eps ) THEN |
---|
570 | |
---|
571 | qvapincld = qvc(i) / cldfra(i) |
---|
572 | IF ( qvapincld .GT. gamma_cond(i) * qsat(i) ) THEN |
---|
573 | qvapincld = gamma_cond(i) * qsat(i) |
---|
574 | qvc(i) = qvapincld * cldfra(i) |
---|
575 | ENDIF |
---|
576 | qiceincld = ( qcld(i) / cldfra(i) - qvapincld ) |
---|
577 | |
---|
578 | !--If the ice water content is too low, the cloud is purely sublimated |
---|
579 | !--Most probably, we advected a cloud with no ice water content (possible |
---|
580 | !--if the entire cloud precipited for example) |
---|
581 | IF ( qiceincld .LT. eps ) THEN |
---|
582 | dcf_sub(i) = - cldfra(i) |
---|
583 | dqvc_sub(i) = - qvc(i) |
---|
584 | dqi_sub(i) = - ( qcld(i) - qvc(i) ) |
---|
585 | |
---|
586 | cldfra(i) = 0. |
---|
587 | qcld(i) = 0. |
---|
588 | qvc(i) = 0. |
---|
589 | clrfra(i) = MIN(totfra_in(i), clrfra(i) - dcf_sub(i)) |
---|
590 | qclr(i) = qclr(i) - dqvc_sub(i) - dqi_sub(i) |
---|
591 | |
---|
592 | !--Else, the cloud is adjusted and sublimated |
---|
593 | ELSE |
---|
594 | |
---|
595 | IF ( ok_unadjusted_clouds .AND. .NOT. ok_warm_cloud ) THEN |
---|
596 | IF ( qvapincld .GE. qsat(i) ) THEN |
---|
597 | !--If the cloud is initially supersaturated |
---|
598 | !--Exact explicit integration (qvc exact, qice explicit) |
---|
599 | tauinv_depsub = depo_coef_cirrus * qiceincld**(1./3.) * kappa_depsub |
---|
600 | qvapincld_new = qsat(i) + ( qvapincld - qsat(i) ) * EXP( - dtime * tauinv_depsub ) |
---|
601 | ELSE |
---|
602 | !--If the cloud is initially subsaturated |
---|
603 | !!--Exact explicit integration (qvc exact, qice explicit) |
---|
604 | !!--Same but depo_coef_cirrus = 1 |
---|
605 | !tauinv_depsub = qiceincld**(1./3.) * kappa_depsub |
---|
606 | !qvapincld_new = qsat(i) + ( qvapincld - qsat(i) ) * EXP( - dtime * tauinv_depsub ) |
---|
607 | !--Exact explicit integration (qice exact, qvc explicit) |
---|
608 | !--The barrier is set so that the resulting vapor in cloud |
---|
609 | !--cannot be greater than qsat |
---|
610 | !--qice_ratio is the ratio between the new ice content and |
---|
611 | !--the old one, it is comprised between 0 and 1 |
---|
612 | tauinv_depsub = qiceincld**(1./3.) * kappa_depsub |
---|
613 | qice_ratio = tauinv_depsub * dtime / 1.5 / qiceincld * ( qsat(i) - qvapincld ) |
---|
614 | !--The new vapor in the cloud is increased with the |
---|
615 | !--sublimated ice |
---|
616 | qvapincld_new = qvapincld + qiceincld * ( 1. - MAX(0., 1. - qice_ratio)**1.5 ) |
---|
617 | !--The new vapor in the cloud cannot be greater than qsat |
---|
618 | qvapincld_new = MIN(qvapincld_new, qsat(i)) |
---|
619 | !--If all the ice is sublimated |
---|
620 | IF ( qvapincld_new .GE. ( qvapincld + qiceincld ) ) qvapincld_new = 0. |
---|
621 | ENDIF ! qvapincld .GT. qsat |
---|
622 | ELSE |
---|
623 | !--We keep the saturation adjustment hypothesis, and the vapor in the |
---|
624 | !--cloud is set equal to the saturation vapor |
---|
625 | IF ( ( qvapincld + qiceincld ) .GT. qsat(i) ) THEN |
---|
626 | qvapincld_new = qsat(i) |
---|
627 | ELSE |
---|
628 | qvapincld_new = 0. |
---|
629 | ENDIF |
---|
630 | ENDIF ! ok_unadjusted_clouds |
---|
631 | |
---|
632 | |
---|
633 | !------------------------------------ |
---|
634 | !-- DISSIPATION OF THE CLOUD -- |
---|
635 | !------------------------------------ |
---|
636 | !--Additionally to a minimum in cloud water vapor, we impose a minimum |
---|
637 | !--on the in-cloud ice water content. It is calculated following |
---|
638 | !--Marti and Mauersberger (1993), see also Schiller et al. (2008) |
---|
639 | qiceincld_min = qsati_diss(i) - qsat(i) |
---|
640 | |
---|
641 | !--If the dissipation process must be activated |
---|
642 | IF ( ( qvapincld_new + qiceincld_min ) .GT. qvapincld ) THEN |
---|
643 | !--Gamma distribution starting at qvapincld |
---|
644 | pdf_shape = nu_iwc_pdf_lscp / qiceincld |
---|
645 | pdf_y = pdf_shape * ( qvapincld_new + qiceincld_min - qvapincld ) |
---|
646 | pdf_e1 = GAMMAINC ( nu_iwc_pdf_lscp , pdf_y ) |
---|
647 | pdf_e2 = GAMMAINC ( nu_iwc_pdf_lscp + 1. , pdf_y ) |
---|
648 | |
---|
649 | !--Tendencies and diagnostics |
---|
650 | dcf_sub(i) = - cldfra(i) * pdf_e1 |
---|
651 | dqi_sub(i) = - cldfra(i) * pdf_e2 / pdf_shape |
---|
652 | dqvc_sub(i) = dcf_sub(i) * qvapincld |
---|
653 | |
---|
654 | !--Add tendencies |
---|
655 | cldfra(i) = MAX(0., cldfra(i) + dcf_sub(i)) |
---|
656 | qcld(i) = qcld(i) + dqvc_sub(i) + dqi_sub(i) |
---|
657 | qvc(i) = qvc(i) + dqvc_sub(i) |
---|
658 | clrfra(i) = MIN(totfra_in(i), clrfra(i) - dcf_sub(i)) |
---|
659 | qclr(i) = qclr(i) - dqvc_sub(i) - dqi_sub(i) |
---|
660 | ELSEIF ( qvapincld_new .EQ. 0. ) THEN |
---|
661 | !--If all the ice has been sublimated, we sublimate |
---|
662 | !--completely the cloud and do not activate the dissipation |
---|
663 | !--process |
---|
664 | !--Tendencies and diagnostics |
---|
665 | dcf_sub(i) = - cldfra(i) |
---|
666 | dqvc_sub(i) = - qvc(i) |
---|
667 | dqi_sub(i) = - ( qcld(i) - qvc(i) ) |
---|
668 | |
---|
669 | !--Add tendencies |
---|
670 | cldfra(i) = 0. |
---|
671 | qcld(i) = 0. |
---|
672 | qvc(i) = 0. |
---|
673 | clrfra(i) = MIN(totfra_in(i), clrfra(i) - dcf_sub(i)) |
---|
674 | qclr(i) = qclr(i) - dqvc_sub(i) - dqi_sub(i) |
---|
675 | ENDIF ! qvapincld_new .GT. qvapincld |
---|
676 | |
---|
677 | |
---|
678 | !------------------------------------ |
---|
679 | !-- PHASE ADJUSTMENT -- |
---|
680 | !------------------------------------ |
---|
681 | |
---|
682 | IF ( qvapincld_new .GT. 0. ) THEN |
---|
683 | !--Adjustment of the IWC to the new vapor in cloud |
---|
684 | !--(this can be either positive or negative) |
---|
685 | dqvc_adj(i) = ( qvapincld_new * cldfra(i) - qvc(i) ) |
---|
686 | dqi_adj(i) = - dqvc_adj(i) |
---|
687 | |
---|
688 | !--Add tendencies |
---|
689 | !--The vapor in the cloud is updated, but not qcld as it is constant |
---|
690 | !--through this process, as well as cldfra which is unmodified |
---|
691 | qvc(i) = MAX(0., MIN(qcld(i), qvc(i) + dqvc_adj(i))) |
---|
692 | ENDIF |
---|
693 | |
---|
694 | ENDIF ! qiceincld .LT. eps |
---|
695 | ENDIF ! cldfra(i) .GT. eps |
---|
696 | |
---|
697 | |
---|
698 | !-------------------------------------------------------------------------- |
---|
699 | !-- CONDENSATION AND DIAGNOTICS OF SUB- AND SUPERSATURATED REGIONS -- |
---|
700 | !-------------------------------------------------------------------------- |
---|
701 | !--This section relies on a distribution of water in the clear-sky region of |
---|
702 | !--the mesh. |
---|
703 | |
---|
704 | !--If there is a clear-sky region |
---|
705 | IF ( clrfra(i) .GT. eps ) THEN |
---|
706 | |
---|
707 | !--New PDF |
---|
708 | rhl_clr = qclr(i) / clrfra(i) / qsatl(i) * 100. |
---|
709 | rhl_clr = MAX(0., MIN(150., rhl_clr)) |
---|
710 | |
---|
711 | !--Calculation of the properties of the PDF |
---|
712 | !--Parameterization from IAGOS observations |
---|
713 | !--pdf_alpha, pdf_scale and pdf_gamma will be reused below |
---|
714 | |
---|
715 | !--Coefficient for standard deviation: |
---|
716 | !-- tuning coef * (clear sky area**0.25) * (function of temperature) |
---|
717 | pdf_e1 = beta_pdf_lscp * ( clrfra(i) * cell_area(i) )**0.25 & |
---|
718 | * MAX( temp(i) - temp_thresh_pdf_lscp, 0. ) |
---|
719 | IF ( rhl_clr .GT. 50. ) THEN |
---|
720 | pdf_std = ( pdf_e1 - std100_pdf_lscp ) * ( 100. - rhl_clr ) / 50. + std100_pdf_lscp |
---|
721 | ELSE |
---|
722 | pdf_std = pdf_e1 * rhl_clr / 50. |
---|
723 | ENDIF |
---|
724 | pdf_e3 = k0_pdf_lscp + kappa_pdf_lscp * MAX( temp_nowater - temp(i), 0. ) |
---|
725 | pdf_alpha(i) = EXP( rhl_clr / 100. ) * pdf_e3 |
---|
726 | pdf_alpha(i) = MIN(10., pdf_alpha(i)) !--Avoid overflows |
---|
727 | |
---|
728 | !IF ( ok_warm_cloud ) THEN |
---|
729 | ! !--If the statistical scheme is activated, the standard deviation is adapted |
---|
730 | ! !--to depend on the pressure level. It is multiplied by ratqs, so that near the |
---|
731 | ! !--surface std is almost 0, and upper than about 450 hPa the std is left untouched |
---|
732 | ! pdf_std = pdf_std * ratqs(i) |
---|
733 | !ENDIF |
---|
734 | |
---|
735 | pdf_gamma(i) = GAMMA(1. + 1. / pdf_alpha(i)) |
---|
736 | !--Barrier to avoid overflows |
---|
737 | pdf_scale(i) = MAX(eps, MIN(rhl_clr / pdf_gamma(i), pdf_std / SQRT( & |
---|
738 | GAMMA(1. + 2. / pdf_alpha(i)) - pdf_gamma(i)**2 ))) |
---|
739 | pdf_loc = rhl_clr - pdf_scale(i) * pdf_gamma(i) |
---|
740 | |
---|
741 | !--Calculation of the newly condensed water and fraction (pronostic) |
---|
742 | !--Integration of the clear sky PDF between gamma_cond*qsat and +inf |
---|
743 | !--NB. the calculated values are clear-sky averaged |
---|
744 | |
---|
745 | pdf_x = gamma_cond(i) * qsat(i) / qsatl(i) * 100. |
---|
746 | pdf_y = LOG( MAX( ( pdf_x - pdf_loc ) / pdf_scale(i), eps) ) * pdf_alpha(i) |
---|
747 | IF ( pdf_y .GT. 10. ) THEN !--Avoid overflows |
---|
748 | pdf_fra_above_nuc = 0. |
---|
749 | pdf_q_above_nuc = 0. |
---|
750 | ELSEIF ( pdf_y .LT. -10. ) THEN |
---|
751 | pdf_fra_above_nuc = 1. |
---|
752 | pdf_q_above_nuc = qclr(i) / clrfra(i) |
---|
753 | ELSE |
---|
754 | pdf_y = EXP( pdf_y ) |
---|
755 | pdf_e3 = GAMMAINC ( 1. + 1. / pdf_alpha(i) , pdf_y ) |
---|
756 | pdf_e3 = pdf_scale(i) * ( 1. - pdf_e3 ) * pdf_gamma(i) |
---|
757 | pdf_fra_above_nuc = EXP( - pdf_y ) |
---|
758 | pdf_q_above_nuc = ( pdf_e3 + pdf_loc * pdf_fra_above_nuc ) * qsatl(i) / 100. |
---|
759 | ENDIF |
---|
760 | |
---|
761 | IF ( pdf_fra_above_nuc .GT. eps ) THEN |
---|
762 | |
---|
763 | dcf_con(i) = clrfra(i) * pdf_fra_above_nuc |
---|
764 | dqt_con = clrfra(i) * pdf_q_above_nuc |
---|
765 | |
---|
766 | !--Barriers (should be useless |
---|
767 | dcf_con(i) = MIN(dcf_con(i), clrfra(i)) |
---|
768 | dqt_con = MIN(dqt_con, qclr(i)) |
---|
769 | |
---|
770 | IF ( ok_unadjusted_clouds .AND. .NOT. ok_warm_cloud ) THEN |
---|
771 | !--Here, the initial vapor in the cloud is gamma_cond*qsat, and we compute |
---|
772 | !--the new vapor qvapincld. The timestep is divided by two because we do not |
---|
773 | !--know when the condensation occurs |
---|
774 | qvapincld = gamma_cond(i) * qsat(i) |
---|
775 | qiceincld = dqt_con / dcf_con(i) - gamma_cond(i) * qsat(i) |
---|
776 | tauinv_depsub = depo_coef_cirrus * qiceincld**(1./3.) * kappa_depsub |
---|
777 | qvapincld_new = qsat(i) + ( qvapincld - qsat(i) ) & |
---|
778 | * EXP( - dtime / 2. * tauinv_depsub ) |
---|
779 | ELSE |
---|
780 | !--We keep the saturation adjustment hypothesis, and the vapor in the |
---|
781 | !--newly formed cloud is set equal to the saturation vapor. |
---|
782 | qvapincld_new = qsat(i) |
---|
783 | ENDIF |
---|
784 | |
---|
785 | !--Tendency on cloud vapor and diagnostic |
---|
786 | dqvc_con(i) = qvapincld_new * dcf_con(i) |
---|
787 | dqi_con(i) = dqt_con - dqvc_con(i) |
---|
788 | |
---|
789 | !--Add tendencies |
---|
790 | cldfra(i) = cldfra(i) + dcf_con(i) |
---|
791 | qcld(i) = qcld(i) + dqt_con |
---|
792 | qvc(i) = qvc(i) + dqvc_con(i) |
---|
793 | clrfra(i) = clrfra(i) - dcf_con(i) |
---|
794 | qclr(i) = qclr(i) - dqt_con |
---|
795 | |
---|
796 | ENDIF ! pdf_fra_above_nuc .GT. eps |
---|
797 | ELSE |
---|
798 | !--Default value for the clear sky distribution: homogeneous distribution |
---|
799 | pdf_alpha(i) = 1. |
---|
800 | pdf_gamma(i) = 1. |
---|
801 | pdf_scale(i) = eps |
---|
802 | ENDIF ! clrfra(i) .GT. eps |
---|
803 | |
---|
804 | |
---|
805 | !-------------------------------------- |
---|
806 | !-- CLOUD MIXING -- |
---|
807 | !-------------------------------------- |
---|
808 | !--This process mixes the cloud with its surroundings: the subsaturated clear sky, |
---|
809 | !--and the supersaturated clear sky. It is activated if the cloud is big enough, |
---|
810 | !--but does not cover the entire mesh. |
---|
811 | ! |
---|
812 | IF ( ( cldfra(i) .GT. eps ) .AND. ( clrfra(i) .GT. eps ) ) THEN |
---|
813 | |
---|
814 | !-- PART 1 - TURBULENT DIFFUSION |
---|
815 | |
---|
816 | !--Clouds within the mesh are assumed to be ellipses. The length of the |
---|
817 | !--semi-major axis is a and the length of the semi-minor axis is b. |
---|
818 | !--N_cld_mix is the number of clouds in contact with clear sky, and can be non-integer. |
---|
819 | !--In particular, it is 0 if cldfra = 1. |
---|
820 | !--clouds_perim is the total perimeter of the clouds within the mesh, |
---|
821 | !--not considering interfaces with other meshes (only the interfaces with clear |
---|
822 | !--sky are taken into account). |
---|
823 | !-- |
---|
824 | !--The area of each cloud is A = a * b * RPI, |
---|
825 | !--and the perimeter of each cloud is |
---|
826 | !-- P ~= RPI * ( 3 * (a + b) - SQRT( (3 * a + b) * (a + 3 * b) ) ) |
---|
827 | !-- |
---|
828 | !--With cell_area the area of the cell, we have: |
---|
829 | !-- cldfra = A * N_cld_mix / cell_area |
---|
830 | !-- clouds_perim = P * N_cld_mix |
---|
831 | !-- |
---|
832 | !--We assume that the ratio between b and a is a function of |
---|
833 | !--cldfra such that it is 1 for cldfra = 1 and it is low for little cldfra, because |
---|
834 | !--if cldfra is low the clouds are linear, and if cldfra is high, the clouds |
---|
835 | !--are spherical. |
---|
836 | !-- b / a = bovera = MAX(0.1, cldfra) |
---|
837 | !bovera = MAX(0.1, cldfra(i)) |
---|
838 | bovera = aspect_ratio_cirrus |
---|
839 | !--P / a is a function of b / a only, that we can calculate |
---|
840 | !-- P / a = RPI * ( 3. * ( 1. + b / a ) - SQRT( (3. + b / a) * (1. + 3. * b / a) ) ) |
---|
841 | Povera = RPI * ( 3. * (1. + bovera) - SQRT( (3. + bovera) * (1. + 3. * bovera) ) ) |
---|
842 | !--The clouds perimeter is imposed using the formula from Morcrette 2012, |
---|
843 | !--based on observations. |
---|
844 | !-- clouds_perim / cell_area = N_cld_mix * ( P / a * a ) / cell_area = coef_mix_lscp * cldfra * ( 1. - cldfra ) |
---|
845 | !--With cldfra = a * ( b / a * a ) * RPI * N_cld_mix / cell_area, we have: |
---|
846 | !-- cldfra = a * b / a * RPI / (P / a) * coef_mix_lscp * cldfra * ( 1. - cldfra ) |
---|
847 | !-- a = (P / a) / ( coef_mix_lscp * RPI * ( 1. - cldfra ) * (b / a) ) |
---|
848 | a_mix = Povera / coef_mixing_lscp / RPI / ( 1. - cldfra(i) ) / bovera |
---|
849 | !--and finally, |
---|
850 | !-- N_cld_mix = coef_mix_lscp * cldfra * ( 1. - cldfra ) * cell_area / ( P / a * a ) |
---|
851 | N_cld_mix = coef_mixing_lscp * cldfra(i) * ( 1. - cldfra(i) ) * cell_area(i) & |
---|
852 | / Povera / a_mix |
---|
853 | |
---|
854 | !--The time required for turbulent diffusion to homogenize a region of size |
---|
855 | !--L_mix is defined as (L_mix**2/tke_dissip)**(1./3.) (Pope, 2000; Field et al., 2014) |
---|
856 | !--We compute L_mix and assume that the cloud is mixed over this length |
---|
857 | L_mix = SQRT( dtime**3 * pbl_eps(i) ) |
---|
858 | !--The mixing length cannot be greater than the semi-minor axis. In this case, |
---|
859 | !--the entire cloud is mixed. |
---|
860 | L_mix = MIN(L_mix, a_mix * bovera) |
---|
861 | |
---|
862 | !--The fraction of clear sky mixed is |
---|
863 | !-- N_cld_mix * ( (a + L_mix) * (b + L_mix) - a * b ) * RPI / cell_area |
---|
864 | clrfra_mix = N_cld_mix * RPI / cell_area(i) & |
---|
865 | * ( a_mix * ( 1. + bovera ) * L_mix + L_mix**2 ) |
---|
866 | !--The fraction of clear sky mixed is |
---|
867 | !-- N_cld_mix * ( a * b - (a - L_mix) * (b - L_mix) ) * RPI / cell_area |
---|
868 | cldfra_mix = N_cld_mix * RPI / cell_area(i) & |
---|
869 | * ( a_mix * ( 1. + bovera ) * L_mix - L_mix**2 ) |
---|
870 | |
---|
871 | |
---|
872 | !-- PART 2 - SHEARING |
---|
873 | |
---|
874 | !--The clouds are then sheared. We keep the shape and number |
---|
875 | !--assumptions from before. The clouds are sheared along their |
---|
876 | !--semi-major axis (a_mix), on the entire cell heigh dz. |
---|
877 | !--The increase in size is |
---|
878 | L_shear = coef_shear_lscp * shear(i) * dz * dtime |
---|
879 | !--therefore, the fraction of clear sky mixed is |
---|
880 | !-- N_cld_mix * ( (a + L_shear) * b - a * b ) * RPI / 2. / cell_area |
---|
881 | !--and the fraction of cloud mixed is |
---|
882 | !-- N_cld_mix * ( (a * b) - (a - L_shear) * b ) * RPI / 2. / cell_area |
---|
883 | !--(note that they are equal) |
---|
884 | shear_fra = RPI * L_shear * a_mix * bovera / 2. * N_cld_mix / cell_area(i) |
---|
885 | !--and the environment and cloud mixed fractions are the same, |
---|
886 | !--which we add to the previous calculated mixed fractions. |
---|
887 | !--We therefore assume that the sheared clouds and the turbulent |
---|
888 | !--mixed clouds are different. |
---|
889 | clrfra_mix = clrfra_mix + shear_fra |
---|
890 | cldfra_mix = cldfra_mix + shear_fra |
---|
891 | |
---|
892 | !-- PART 3 - CALCULATION OF THE MIXING PROPERTIES |
---|
893 | |
---|
894 | clrfra_mix = MIN(clrfra(i), clrfra_mix) |
---|
895 | cldfra_mix = MIN(cldfra(i), cldfra_mix) |
---|
896 | |
---|
897 | !--We compute the limit vapor in clear sky where the mixed cloud could not |
---|
898 | !--survive if all the ice crystals were sublimated. Note that here we assume, |
---|
899 | !--for growth or reduction of the cloud, that the mixed cloud is adjusted |
---|
900 | !--to saturation, ie the vapor in the mixed cloud is qsat. This is only a |
---|
901 | !--diagnostic, and if the cloud size is increased, we add the new vapor to the |
---|
902 | !--cloud's vapor without condensing or sublimating ice crystals |
---|
903 | IF ( ok_unadjusted_clouds .AND. .NOT. ok_warm_cloud ) THEN |
---|
904 | qiceinmix = ( qcld(i) - qvc(i) ) / cldfra(i) / ( 1. + clrfra_mix / cldfra_mix ) |
---|
905 | tauinv_depsub = qiceinmix**(1./3.) * kappa_depsub |
---|
906 | !qvapinmix_lim = qsat(i) - qiceinmix / ( 1. - EXP( - dtime * tauinv_depsub ) ) |
---|
907 | qvapinmix_lim = qsat(i) - qiceinmix * MAX(1., 1.5 / ( dtime * tauinv_depsub )) |
---|
908 | qvapinclr_lim = qvapinmix_lim * ( 1. + cldfra_mix / clrfra_mix ) & |
---|
909 | - qvc(i) / cldfra(i) * cldfra_mix / clrfra_mix |
---|
910 | ELSE |
---|
911 | !--NB. if tau_depsub = 0 (ie tauinv_depsub = inf), we get the same result as above |
---|
912 | qvapinclr_lim = qsat(i) * ( 1. + cldfra_mix / clrfra_mix ) & |
---|
913 | - qcld(i) / cldfra(i) * cldfra_mix / clrfra_mix |
---|
914 | ENDIF |
---|
915 | |
---|
916 | IF ( qvapinclr_lim .LT. 0. ) THEN |
---|
917 | !--Whatever we do, the cloud will increase in size |
---|
918 | dcf_mix(i) = clrfra_mix |
---|
919 | dqvc_mix(i) = clrfra_mix * qclr(i) / clrfra(i) |
---|
920 | ELSE |
---|
921 | !--We then calculate the clear sky part where the humidity is lower than |
---|
922 | !--qvapinclr_lim, and the part where it is higher than qvapinclr_lim |
---|
923 | !--This is the clear-sky PDF calculated in the condensation section. Note |
---|
924 | !--that if we are here, we necessarily went through the condensation part |
---|
925 | !--because the clear sky fraction can only be reduced by condensation. |
---|
926 | !--Thus the `pdf_xxx` variables are well defined. |
---|
927 | |
---|
928 | rhl_clr = qclr(i) / clrfra(i) / qsatl(i) * 100. |
---|
929 | pdf_x = qvapinclr_lim / qsatl(i) * 100. |
---|
930 | pdf_loc = rhl_clr - pdf_scale(i) * pdf_gamma(i) |
---|
931 | pdf_x = qsat(i) / qsatl(i) * 100. |
---|
932 | pdf_y = LOG( MAX( ( pdf_x - pdf_loc ) / pdf_scale(i), eps) ) * pdf_alpha(i) |
---|
933 | IF ( pdf_y .GT. 10. ) THEN !--Avoid overflows |
---|
934 | pdf_fra_above_lim = 0. |
---|
935 | pdf_q_above_lim = 0. |
---|
936 | ELSEIF ( pdf_y .LT. -10. ) THEN |
---|
937 | pdf_fra_above_lim = clrfra(i) |
---|
938 | pdf_q_above_lim = qclr(i) |
---|
939 | ELSE |
---|
940 | pdf_y = EXP( pdf_y ) |
---|
941 | pdf_e3 = GAMMAINC ( 1. + 1. / pdf_alpha(i) , pdf_y ) |
---|
942 | pdf_e3 = pdf_scale(i) * ( 1. - pdf_e3 ) * pdf_gamma(i) |
---|
943 | pdf_fra_above_lim = EXP( - pdf_y ) * clrfra(i) |
---|
944 | pdf_q_above_lim = ( pdf_e3 * clrfra(i) & |
---|
945 | + pdf_loc * pdf_fra_above_lim ) * qsatl(i) / 100. |
---|
946 | ENDIF |
---|
947 | |
---|
948 | pdf_fra_below_lim = clrfra(i) - pdf_fra_above_lim |
---|
949 | |
---|
950 | !--sigma_mix is the ratio of the surroundings of the clouds where mixing |
---|
951 | !--increases the size of the cloud, to the total surroundings of the clouds. |
---|
952 | !--This implies that ( 1. - sigma_mix ) quantifies the ratio where mixing |
---|
953 | !--decreases the size of the clouds |
---|
954 | sigma_mix = pdf_fra_above_lim / ( pdf_fra_below_lim + pdf_fra_above_lim ) |
---|
955 | |
---|
956 | IF ( pdf_fra_above_lim .GT. eps ) THEN |
---|
957 | dcf_mix(i) = clrfra_mix * sigma_mix |
---|
958 | dqvc_mix(i) = clrfra_mix * sigma_mix * pdf_q_above_lim / pdf_fra_above_lim |
---|
959 | ENDIF |
---|
960 | |
---|
961 | IF ( pdf_fra_below_lim .GT. eps ) THEN |
---|
962 | dcf_mix(i) = dcf_mix(i) - cldfra_mix * ( 1. - sigma_mix ) |
---|
963 | dqvc_mix(i) = dqvc_mix(i) - cldfra_mix * ( 1. - sigma_mix ) & |
---|
964 | * qvc(i) / cldfra(i) |
---|
965 | dqi_mix(i) = dqi_mix(i) - cldfra_mix * ( 1. - sigma_mix ) & |
---|
966 | * ( qcld(i) - qvc(i) ) / cldfra(i) |
---|
967 | ENDIF |
---|
968 | |
---|
969 | ENDIF |
---|
970 | ENDIF ! ( cldfra(i) .GT. eps ) .AND. ( clrfra(i) .GT. eps ) |
---|
971 | |
---|
972 | !-------------------------------------- |
---|
973 | !-- CONTRAIL MIXING -- |
---|
974 | !-------------------------------------- |
---|
975 | |
---|
976 | IF ( ( lincontfra(i) .GT. eps ) .AND. ( clrfra(i) .GT. eps ) ) THEN |
---|
977 | |
---|
978 | !-- PART 1 - TURBULENT DIFFUSION |
---|
979 | |
---|
980 | !--Clouds within the mesh are assumed to be ellipses. The length of the |
---|
981 | !--semi-major axis is a and the length of the semi-minor axis is b. |
---|
982 | !--N_cld_mix is the number of clouds in contact with clear sky, and can be non-integer. |
---|
983 | !--In particular, it is 0 if cldfra = 1. |
---|
984 | !--clouds_perim is the total perimeter of the clouds within the mesh, |
---|
985 | !--not considering interfaces with other meshes (only the interfaces with clear |
---|
986 | !--sky are taken into account). |
---|
987 | !-- |
---|
988 | !--The area of each cloud is A = a * b * RPI, |
---|
989 | !--and the perimeter of each cloud is |
---|
990 | !-- P ~= RPI * ( 3 * (a + b) - SQRT( (3 * a + b) * (a + 3 * b) ) ) |
---|
991 | !-- |
---|
992 | !--With cell_area the area of the cell, we have: |
---|
993 | !-- cldfra = A * N_cld_mix / cell_area |
---|
994 | !-- clouds_perim = P * N_cld_mix |
---|
995 | !-- |
---|
996 | !--We assume that the ratio between b and a is a function of |
---|
997 | !--cldfra such that it is 1 for cldfra = 1 and it is low for little cldfra, because |
---|
998 | !--if cldfra is low the clouds are linear, and if cldfra is high, the clouds |
---|
999 | !--are spherical. |
---|
1000 | !-- b / a = bovera = MAX(0.1, cldfra) |
---|
1001 | bovera = aspect_ratio_lincontrails |
---|
1002 | !--P / a is a function of b / a only, that we can calculate |
---|
1003 | !-- P / a = RPI * ( 3. * ( 1. + b / a ) - SQRT( (3. + b / a) * (1. + 3. * b / a) ) ) |
---|
1004 | Povera = RPI * ( 3. * (1. + bovera) - SQRT( (3. + bovera) * (1. + 3. * bovera) ) ) |
---|
1005 | |
---|
1006 | !--The clouds perimeter is imposed using the formula from Morcrette 2012, |
---|
1007 | !--based on observations. |
---|
1008 | !-- clouds_perim / cell_area = N_cld_mix * ( P / a * a ) / cell_area = coef_mix_lscp * cldfra * ( 1. - cldfra ) |
---|
1009 | !--With cldfra = a * ( b / a * a ) * RPI * N_cld_mix / cell_area, we have: |
---|
1010 | !-- cldfra = a * b / a * RPI / (P / a) * coef_mix_lscp * cldfra * ( 1. - cldfra ) |
---|
1011 | !-- a = (P / a) / ( coef_mix_lscp * RPI * ( 1. - cldfra ) * (b / a) ) |
---|
1012 | a_mix = Povera / coef_mixing_lincontrails / RPI / ( 1. - lincontfra(i) ) / bovera |
---|
1013 | !--and finally, |
---|
1014 | !-- N_cld_mix = coef_mix_lscp * cldfra * ( 1. - cldfra ) * cell_area / ( P / a * a ) |
---|
1015 | N_cld_mix = coef_mixing_lincontrails * lincontfra(i) * ( 1. - lincontfra(i) ) & |
---|
1016 | * cell_area(i) / Povera / a_mix |
---|
1017 | |
---|
1018 | !--The time required for turbulent diffusion to homogenize a region of size |
---|
1019 | !--L_mix is defined as (L_mix**2/tke_dissip)**(1./3.) (Pope, 2000; Field et al., 2014) |
---|
1020 | !--We compute L_mix and assume that the cloud is mixed over this length |
---|
1021 | L_mix = SQRT( dtime**3 * pbl_eps(i) ) |
---|
1022 | !--The mixing length cannot be greater than the semi-minor axis. In this case, |
---|
1023 | !--the entire cloud is mixed. |
---|
1024 | L_mix = MIN(L_mix, a_mix * bovera) |
---|
1025 | |
---|
1026 | !--The fraction of clear sky mixed is |
---|
1027 | !-- N_cld_mix * ( (a + L_mix) * (b + L_mix) - a * b ) * RPI / cell_area |
---|
1028 | clrfra_mix = N_cld_mix * RPI / cell_area(i) & |
---|
1029 | * ( a_mix * ( 1. + bovera ) * L_mix + L_mix**2 ) |
---|
1030 | !--The fraction of clear sky mixed is |
---|
1031 | !-- N_cld_mix * ( a * b - (a - L_mix) * (b - L_mix) ) * RPI / cell_area |
---|
1032 | cldfra_mix = N_cld_mix * RPI / cell_area(i) & |
---|
1033 | * ( a_mix * ( 1. + bovera ) * L_mix - L_mix**2 ) |
---|
1034 | |
---|
1035 | |
---|
1036 | !-- PART 2 - SHEARING |
---|
1037 | |
---|
1038 | !--The clouds are then sheared. We keep the shape and number |
---|
1039 | !--assumptions from before. The clouds are sheared with a random orientation |
---|
1040 | !--of the wind, on average we assume that the wind and the semi-major axis |
---|
1041 | !--make a 45 degrees angle. Moreover, the contrails only mix |
---|
1042 | !--along their semi-minor axis (b), because it is easier to compute. |
---|
1043 | !--With this, the clouds increase in size along b only, by a factor |
---|
1044 | !--L_shear * SQRT(2.) / 2. (to account for the 45 degrees orientation of the wind) |
---|
1045 | L_shear = coef_shear_lincontrails * shear(i) * dz * dtime |
---|
1046 | !--therefore, the fraction of clear sky mixed is |
---|
1047 | !-- N_cld_mix * ( a * (b + L_shear * SQRT(2.) / 2.) - a * b ) * RPI / 2. / cell_area |
---|
1048 | !--and the fraction of cloud mixed is |
---|
1049 | !-- N_cld_mix * ( a * b - a * (b - L_shear * SQRT(2.) / 2.) ) * RPI / 2. / cell_area |
---|
1050 | !--(note that they are equal) |
---|
1051 | shear_fra = RPI * L_shear * a_mix * SQRT(2.) / 2. / 2. * N_cld_mix / cell_area(i) |
---|
1052 | !--and the environment and cloud mixed fractions are the same, |
---|
1053 | !--which we add to the previous calculated mixed fractions. |
---|
1054 | !--We therefore assume that the sheared clouds and the turbulent |
---|
1055 | !--mixed clouds are different. |
---|
1056 | clrfra_mix = clrfra_mix + shear_fra |
---|
1057 | cldfra_mix = cldfra_mix + shear_fra |
---|
1058 | |
---|
1059 | |
---|
1060 | !-- PART 3 - CALCULATION OF THE MIXING PROPERTIES |
---|
1061 | |
---|
1062 | clrfra_mix = MIN(clrfra(i), clrfra_mix) |
---|
1063 | cldfra_mix = MIN(lincontfra(i), cldfra_mix) |
---|
1064 | |
---|
1065 | !--We compute the limit vapor in clear sky where the mixed cloud could not |
---|
1066 | !--survive if all the ice crystals were sublimated. Note that here we assume, |
---|
1067 | !--for growth or reduction of the cloud, that the mixed cloud is adjusted |
---|
1068 | !--to saturation, ie the vapor in the mixed cloud is qsat. This is only a |
---|
1069 | !--diagnostic, and if the cloud size is increased, we add the new vapor to the |
---|
1070 | !--cloud's vapor without condensing or sublimating ice crystals |
---|
1071 | qvapinclr_lim = qsat(i) * ( 1. + cldfra_mix / clrfra_mix ) & |
---|
1072 | - qlincont(i) / lincontfra(i) * cldfra_mix / clrfra_mix |
---|
1073 | |
---|
1074 | IF ( qvapinclr_lim .LT. 0. ) THEN |
---|
1075 | !--Whatever we do, the cloud will increase in size |
---|
1076 | !--If the linear contrail increases in size, the increment is considered |
---|
1077 | !--to be a contrail cirrus |
---|
1078 | dcfc_mix(i) = dcfc_mix(i) + clrfra_mix |
---|
1079 | dqtc_mix(i) = dqtc_mix(i) + clrfra_mix * qclr(i) / clrfra(i) |
---|
1080 | dqic_mix(i) = dqic_mix(i) + clrfra_mix * sigma_mix & |
---|
1081 | * ( qclr(i) / clrfra(i) - qsat(i) ) |
---|
1082 | ELSE |
---|
1083 | !--We then calculate the clear sky part where the humidity is lower than |
---|
1084 | !--qvapinclr_lim, and the part where it is higher than qvapinclr_lim |
---|
1085 | !--This is the clear-sky PDF calculated in the condensation section. Note |
---|
1086 | !--that if we are here, we necessarily went through the condensation part |
---|
1087 | !--because the clear sky fraction can only be reduced by condensation. |
---|
1088 | !--Thus the `pdf_xxx` variables are well defined. |
---|
1089 | |
---|
1090 | rhl_clr = qclr(i) / clrfra(i) / qsatl(i) * 100. |
---|
1091 | pdf_x = qvapinclr_lim / qsatl(i) * 100. |
---|
1092 | pdf_loc = rhl_clr - pdf_scale(i) * pdf_gamma(i) |
---|
1093 | pdf_x = qsat(i) / qsatl(i) * 100. |
---|
1094 | pdf_y = LOG( MAX( ( pdf_x - pdf_loc ) / pdf_scale(i), eps) ) * pdf_alpha(i) |
---|
1095 | IF ( pdf_y .GT. 10. ) THEN !--Avoid overflows |
---|
1096 | pdf_fra_above_lim = 0. |
---|
1097 | pdf_q_above_lim = 0. |
---|
1098 | ELSEIF ( pdf_y .LT. -10. ) THEN |
---|
1099 | pdf_fra_above_lim = clrfra(i) |
---|
1100 | pdf_q_above_lim = qclr(i) |
---|
1101 | ELSE |
---|
1102 | pdf_y = EXP( pdf_y ) |
---|
1103 | pdf_e3 = GAMMAINC ( 1. + 1. / pdf_alpha(i) , pdf_y ) |
---|
1104 | pdf_e3 = pdf_scale(i) * ( 1. - pdf_e3 ) * pdf_gamma(i) |
---|
1105 | pdf_fra_above_lim = EXP( - pdf_y ) * clrfra(i) |
---|
1106 | pdf_q_above_lim = ( pdf_e3 * clrfra(i) & |
---|
1107 | + pdf_loc * pdf_fra_above_lim ) * qsatl(i) / 100. |
---|
1108 | ENDIF |
---|
1109 | |
---|
1110 | pdf_fra_below_lim = clrfra(i) - pdf_fra_above_lim |
---|
1111 | |
---|
1112 | !--sigma_mix is the ratio of the surroundings of the clouds where mixing |
---|
1113 | !--increases the size of the cloud, to the total surroundings of the clouds. |
---|
1114 | !--This implies that ( 1. - sigma_mix ) quantifies the ratio where mixing |
---|
1115 | !--decreases the size of the clouds |
---|
1116 | !--For aviation, we increase the chance that the air surrounding contrails |
---|
1117 | !--is moist. This is quantified with chi_mixing_lincontrails |
---|
1118 | sigma_mix = chi_mixing_lincontrails * pdf_fra_above_lim & |
---|
1119 | / ( pdf_fra_below_lim + chi_mixing_lincontrails * pdf_fra_above_lim ) |
---|
1120 | |
---|
1121 | IF ( pdf_fra_above_lim .GT. eps ) THEN |
---|
1122 | !--If the linear contrail increases in size, the increment is considered |
---|
1123 | !--to be a contrail cirrus |
---|
1124 | qvapinmix = ( pdf_q_above_lim / pdf_fra_above_lim * clrfra_mix & |
---|
1125 | + qlincont(i) / lincontfra(i) * cldfra_mix ) & |
---|
1126 | / ( clrfra_mix + cldfra_mix ) |
---|
1127 | qiceinmix = ( qlincont(i) / lincontfra(i) - qsat(i) ) * cldfra_mix & |
---|
1128 | / ( clrfra_mix + cldfra_mix ) |
---|
1129 | dcfc_mix(i) = dcfc_mix(i) + clrfra_mix * sigma_mix |
---|
1130 | dqtc_mix(i) = dqtc_mix(i) + clrfra_mix * sigma_mix * qvapinmix |
---|
1131 | dqtl_mix(i) = dqtl_mix(i) - cldfra_mix * sigma_mix & |
---|
1132 | * ( qlincont(i) / lincontfra(i) - qvapinmix ) |
---|
1133 | dqic_mix(i) = dqic_mix(i) + clrfra_mix * sigma_mix * qiceinmix |
---|
1134 | dqil_mix(i) = dqil_mix(i) - cldfra_mix * sigma_mix & |
---|
1135 | * ( qlincont(i) / lincontfra(i) - qsat(i) - qiceinmix ) |
---|
1136 | ENDIF |
---|
1137 | |
---|
1138 | IF ( pdf_fra_below_lim .GT. eps ) THEN |
---|
1139 | dcfl_mix(i) = dcfl_mix(i) - cldfra_mix * ( 1. - sigma_mix ) |
---|
1140 | dqtl_mix(i) = dqtl_mix(i) - cldfra_mix * ( 1. - sigma_mix ) & |
---|
1141 | * qlincont(i) / lincontfra(i) |
---|
1142 | dqil_mix(i) = dqil_mix(i) - cldfra_mix * ( 1. - sigma_mix ) & |
---|
1143 | * ( qlincont(i) / lincontfra(i) - qsat(i) ) |
---|
1144 | ENDIF |
---|
1145 | |
---|
1146 | ENDIF |
---|
1147 | ENDIF ! ( lincontfra(i) .GT. eps ) .AND. ( clrfra(i) .GT. eps ) |
---|
1148 | |
---|
1149 | IF ( ( circontfra(i) .GT. eps ) .AND. ( clrfra(i) .GT. eps ) ) THEN |
---|
1150 | |
---|
1151 | !-- PART 1 - TURBULENT DIFFUSION |
---|
1152 | |
---|
1153 | !--Clouds within the mesh are assumed to be ellipses. The length of the |
---|
1154 | !--semi-major axis is a and the length of the semi-minor axis is b. |
---|
1155 | !--N_cld_mix is the number of clouds in contact with clear sky, and can be non-integer. |
---|
1156 | !--In particular, it is 0 if cldfra = 1. |
---|
1157 | !--clouds_perim is the total perimeter of the clouds within the mesh, |
---|
1158 | !--not considering interfaces with other meshes (only the interfaces with clear |
---|
1159 | !--sky are taken into account). |
---|
1160 | !-- |
---|
1161 | !--The area of each cloud is A = a * b * RPI, |
---|
1162 | !--and the perimeter of each cloud is |
---|
1163 | !-- P ~= RPI * ( 3 * (a + b) - SQRT( (3 * a + b) * (a + 3 * b) ) ) |
---|
1164 | !-- |
---|
1165 | !--With cell_area the area of the cell, we have: |
---|
1166 | !-- cldfra = A * N_cld_mix / cell_area |
---|
1167 | !-- clouds_perim = P * N_cld_mix |
---|
1168 | !-- |
---|
1169 | !--We assume that the ratio between b and a is a function of |
---|
1170 | !--cldfra such that it is 1 for cldfra = 1 and it is low for little cldfra, because |
---|
1171 | !--if cldfra is low the clouds are linear, and if cldfra is high, the clouds |
---|
1172 | !--are spherical. |
---|
1173 | !-- b / a = bovera = MAX(0.1, cldfra) |
---|
1174 | bovera = aspect_ratio_cirrus |
---|
1175 | !--P / a is a function of b / a only, that we can calculate |
---|
1176 | !-- P / a = RPI * ( 3. * ( 1. + b / a ) - SQRT( (3. + b / a) * (1. + 3. * b / a) ) ) |
---|
1177 | Povera = RPI * ( 3. * (1. + bovera) - SQRT( (3. + bovera) * (1. + 3. * bovera) ) ) |
---|
1178 | |
---|
1179 | !--The clouds perimeter is imposed using the formula from Morcrette 2012, |
---|
1180 | !--based on observations. |
---|
1181 | !-- clouds_perim / cell_area = N_cld_mix * ( P / a * a ) / cell_area = coef_mix_lscp * cldfra * ( 1. - cldfra ) |
---|
1182 | !--With cldfra = a * ( b / a * a ) * RPI * N_cld_mix / cell_area, we have: |
---|
1183 | !-- cldfra = a * b / a * RPI / (P / a) * coef_mix_lscp * cldfra * ( 1. - cldfra ) |
---|
1184 | !-- a = (P / a) / ( coef_mix_lscp * RPI * ( 1. - cldfra ) * (b / a) ) |
---|
1185 | a_mix = Povera / coef_mixing_lscp / RPI / ( 1. - circontfra(i) ) / bovera |
---|
1186 | !--and finally, |
---|
1187 | !-- N_cld_mix = coef_mix_lscp * cldfra * ( 1. - cldfra ) * cell_area / ( P / a * a ) |
---|
1188 | N_cld_mix = coef_mixing_lscp * circontfra(i) * ( 1. - circontfra(i) ) & |
---|
1189 | * cell_area(i) / Povera / a_mix |
---|
1190 | |
---|
1191 | !--The time required for turbulent diffusion to homogenize a region of size |
---|
1192 | !--L_mix is defined as (L_mix**2/tke_dissip)**(1./3.) (Pope, 2000; Field et al., 2014) |
---|
1193 | !--We compute L_mix and assume that the cloud is mixed over this length |
---|
1194 | L_mix = SQRT( dtime**3 * pbl_eps(i) ) |
---|
1195 | !--The mixing length cannot be greater than the semi-minor axis. In this case, |
---|
1196 | !--the entire cloud is mixed. |
---|
1197 | L_mix = MIN(L_mix, a_mix * bovera) |
---|
1198 | |
---|
1199 | !--The fraction of clear sky mixed is |
---|
1200 | !-- N_cld_mix * ( (a + L_mix) * (b + L_mix) - a * b ) * RPI / cell_area |
---|
1201 | clrfra_mix = N_cld_mix * RPI / cell_area(i) & |
---|
1202 | * ( a_mix * ( 1. + bovera ) * L_mix + L_mix**2 ) |
---|
1203 | !--The fraction of clear sky mixed is |
---|
1204 | !-- N_cld_mix * ( a * b - (a - L_mix) * (b - L_mix) ) * RPI / cell_area |
---|
1205 | cldfra_mix = N_cld_mix * RPI / cell_area(i) & |
---|
1206 | * ( a_mix * ( 1. + bovera ) * L_mix - L_mix**2 ) |
---|
1207 | |
---|
1208 | |
---|
1209 | !-- PART 2 - SHEARING |
---|
1210 | |
---|
1211 | !--The clouds are then sheared. We keep the shape and number |
---|
1212 | !--assumptions from before. The clouds are sheared along their |
---|
1213 | !--semi-major axis (a_mix), on the entire cell heigh dz. |
---|
1214 | !--The increase in size is |
---|
1215 | L_shear = coef_shear_lscp * shear(i) * dz * dtime |
---|
1216 | !--therefore, the fraction of clear sky mixed is |
---|
1217 | !-- N_cld_mix * ( (a + L_shear) * b - a * b ) * RPI / 2. / cell_area |
---|
1218 | !--and the fraction of cloud mixed is |
---|
1219 | !-- N_cld_mix * ( (a * b) - (a - L_shear) * b ) * RPI / 2. / cell_area |
---|
1220 | !--(note that they are equal) |
---|
1221 | shear_fra = RPI * L_shear * a_mix * bovera / 2. * N_cld_mix / cell_area(i) |
---|
1222 | !--and the environment and cloud mixed fractions are the same, |
---|
1223 | !--which we add to the previous calculated mixed fractions. |
---|
1224 | !--We therefore assume that the sheared clouds and the turbulent |
---|
1225 | !--mixed clouds are different. |
---|
1226 | clrfra_mix = clrfra_mix + shear_fra |
---|
1227 | cldfra_mix = cldfra_mix + shear_fra |
---|
1228 | |
---|
1229 | |
---|
1230 | !-- PART 3 - CALCULATION OF THE MIXING PROPERTIES |
---|
1231 | |
---|
1232 | clrfra_mix = MIN(clrfra(i), clrfra_mix) |
---|
1233 | cldfra_mix = MIN(circontfra(i), cldfra_mix) |
---|
1234 | |
---|
1235 | !--We compute the limit vapor in clear sky where the mixed cloud could not |
---|
1236 | !--survive if all the ice crystals were sublimated. Note that here we assume, |
---|
1237 | !--for growth or reduction of the cloud, that the mixed cloud is adjusted |
---|
1238 | !--to saturation, ie the vapor in the mixed cloud is qsat. This is only a |
---|
1239 | !--diagnostic, and if the cloud size is increased, we add the new vapor to the |
---|
1240 | !--cloud's vapor without condensing or sublimating ice crystals |
---|
1241 | qvapinclr_lim = qsat(i) * ( 1. + cldfra_mix / clrfra_mix ) & |
---|
1242 | - qcircont(i) / circontfra(i) * cldfra_mix / clrfra_mix |
---|
1243 | |
---|
1244 | IF ( qvapinclr_lim .LT. 0. ) THEN |
---|
1245 | !--Whatever we do, the cloud will increase in size |
---|
1246 | dcfc_mix(i) = dcfc_mix(i) + clrfra_mix |
---|
1247 | dqtc_mix(i) = dqtc_mix(i) + clrfra_mix * qclr(i) / clrfra(i) |
---|
1248 | dqic_mix(i) = dqic_mix(i) + clrfra_mix * sigma_mix & |
---|
1249 | * ( qclr(i) / clrfra(i) - qsat(i) ) |
---|
1250 | ELSE |
---|
1251 | !--We then calculate the clear sky part where the humidity is lower than |
---|
1252 | !--qvapinclr_lim, and the part where it is higher than qvapinclr_lim |
---|
1253 | !--This is the clear-sky PDF calculated in the condensation section. Note |
---|
1254 | !--that if we are here, we necessarily went through the condensation part |
---|
1255 | !--because the clear sky fraction can only be reduced by condensation. |
---|
1256 | !--Thus the `pdf_xxx` variables are well defined. |
---|
1257 | |
---|
1258 | rhl_clr = qclr(i) / clrfra(i) / qsatl(i) * 100. |
---|
1259 | pdf_x = qvapinclr_lim / qsatl(i) * 100. |
---|
1260 | pdf_loc = rhl_clr - pdf_scale(i) * pdf_gamma(i) |
---|
1261 | pdf_x = qsat(i) / qsatl(i) * 100. |
---|
1262 | pdf_y = LOG( MAX( ( pdf_x - pdf_loc ) / pdf_scale(i), eps) ) * pdf_alpha(i) |
---|
1263 | IF ( pdf_y .GT. 10. ) THEN !--Avoid overflows |
---|
1264 | pdf_fra_above_lim = 0. |
---|
1265 | pdf_q_above_lim = 0. |
---|
1266 | ELSEIF ( pdf_y .LT. -10. ) THEN |
---|
1267 | pdf_fra_above_lim = clrfra(i) |
---|
1268 | pdf_q_above_lim = qclr(i) |
---|
1269 | ELSE |
---|
1270 | pdf_y = EXP( pdf_y ) |
---|
1271 | pdf_e3 = GAMMAINC ( 1. + 1. / pdf_alpha(i) , pdf_y ) |
---|
1272 | pdf_e3 = pdf_scale(i) * ( 1. - pdf_e3 ) * pdf_gamma(i) |
---|
1273 | pdf_fra_above_lim = EXP( - pdf_y ) * clrfra(i) |
---|
1274 | pdf_q_above_lim = ( pdf_e3 * clrfra(i) & |
---|
1275 | + pdf_loc * pdf_fra_above_lim ) * qsatl(i) / 100. |
---|
1276 | ENDIF |
---|
1277 | |
---|
1278 | pdf_fra_below_lim = clrfra(i) - pdf_fra_above_lim |
---|
1279 | |
---|
1280 | !--sigma_mix is the ratio of the surroundings of the clouds where mixing |
---|
1281 | !--increases the size of the cloud, to the total surroundings of the clouds. |
---|
1282 | !--This implies that ( 1. - sigma_mix ) quantifies the ratio where mixing |
---|
1283 | !--decreases the size of the clouds |
---|
1284 | sigma_mix = pdf_fra_above_lim / ( pdf_fra_below_lim + pdf_fra_above_lim ) |
---|
1285 | |
---|
1286 | IF ( pdf_fra_above_lim .GT. eps ) THEN |
---|
1287 | dcfc_mix(i) = dcfc_mix(i) + clrfra_mix * sigma_mix |
---|
1288 | dqtc_mix(i) = dqtc_mix(i) + clrfra_mix * sigma_mix & |
---|
1289 | * pdf_q_above_lim / pdf_fra_above_lim |
---|
1290 | dqic_mix(i) = dqic_mix(i) + clrfra_mix * sigma_mix & |
---|
1291 | * ( pdf_q_above_lim / pdf_fra_above_lim - qsat(i) ) |
---|
1292 | ENDIF |
---|
1293 | |
---|
1294 | IF ( pdf_fra_below_lim .GT. eps ) THEN |
---|
1295 | dcfc_mix(i) = dcfc_mix(i) - cldfra_mix * ( 1. - sigma_mix ) |
---|
1296 | dqtc_mix(i) = dqtc_mix(i) - cldfra_mix * ( 1. - sigma_mix ) & |
---|
1297 | * qcircont(i) / circontfra(i) |
---|
1298 | dqic_mix(i) = dqic_mix(i) - cldfra_mix * ( 1. - sigma_mix ) & |
---|
1299 | * ( qcircont(i) / circontfra(i) - qsat(i) ) |
---|
1300 | ENDIF |
---|
1301 | |
---|
1302 | ENDIF |
---|
1303 | ENDIF ! ( circontfra(i) .GT. eps ) .AND. ( clrfra(i) .GT. eps ) |
---|
1304 | |
---|
1305 | !--We balance the mixing tendencies between the different cloud classes |
---|
1306 | mixed_fraction = dcf_mix(i) + dcfl_mix(i) + dcfc_mix(i) |
---|
1307 | IF ( mixed_fraction .GT. clrfra(i) ) THEN |
---|
1308 | mixed_fraction = clrfra(i) / mixed_fraction |
---|
1309 | dcf_mix(i) = dcf_mix(i) * mixed_fraction |
---|
1310 | dqvc_mix(i) = dqvc_mix(i) * mixed_fraction |
---|
1311 | dqi_mix(i) = dqi_mix(i) * mixed_fraction |
---|
1312 | dcfl_mix(i) = dcfl_mix(i) * mixed_fraction |
---|
1313 | dqtl_mix(i) = dqtl_mix(i) * mixed_fraction |
---|
1314 | dqil_mix(i) = dqil_mix(i) * mixed_fraction |
---|
1315 | dcfc_mix(i) = dcfc_mix(i) * mixed_fraction |
---|
1316 | dqtc_mix(i) = dqtc_mix(i) * mixed_fraction |
---|
1317 | dqic_mix(i) = dqic_mix(i) * mixed_fraction |
---|
1318 | ENDIF |
---|
1319 | |
---|
1320 | IF ( lincontfra(i) .GT. eps ) THEN |
---|
1321 | !--Add tendencies |
---|
1322 | lincontfra(i) = lincontfra(i) + dcfl_mix(i) |
---|
1323 | qlincont(i) = qlincont(i) + dqtl_mix(i) |
---|
1324 | clrfra(i) = clrfra(i) - dcfl_mix(i) |
---|
1325 | qclr(i) = qclr(i) - dqtl_mix(i) |
---|
1326 | ENDIF |
---|
1327 | |
---|
1328 | IF ( circontfra(i) .GT. eps ) THEN |
---|
1329 | !--Add tendencies |
---|
1330 | circontfra(i) = circontfra(i) + dcfc_mix(i) |
---|
1331 | qcircont(i) = qcircont(i) + dqtc_mix(i) |
---|
1332 | clrfra(i) = clrfra(i) - dcfc_mix(i) |
---|
1333 | qclr(i) = qclr(i) - dqtc_mix(i) |
---|
1334 | ENDIF |
---|
1335 | |
---|
1336 | !--Add tendencies |
---|
1337 | cldfra(i) = cldfra(i) + dcf_mix(i) |
---|
1338 | qcld(i) = qcld(i) + dqvc_mix(i) + dqi_mix(i) |
---|
1339 | qvc(i) = qvc(i) + dqvc_mix(i) |
---|
1340 | clrfra(i) = clrfra(i) - dcf_mix(i) |
---|
1341 | qclr(i) = qclr(i) - dqvc_mix(i) - dqi_mix(i) |
---|
1342 | |
---|
1343 | |
---|
1344 | !--------------------------------------- |
---|
1345 | !-- ICE SEDIMENTATION -- |
---|
1346 | !--------------------------------------- |
---|
1347 | ! |
---|
1348 | !--If ice supersaturation is activated, the cloud properties are prognostic. |
---|
1349 | !--The falling ice is then partly considered a new cloud in the gridbox. |
---|
1350 | !--BEWARE with this parameterisation, we can create a new cloud with a much |
---|
1351 | !--different ice water content and water vapor content than the existing cloud |
---|
1352 | !--(if it exists). This implies than unphysical fluxes of ice and vapor |
---|
1353 | !--occur between the existing cloud and the newly formed cloud (from sedimentation). |
---|
1354 | !--Note also that currently, the precipitation scheme assume a maximum |
---|
1355 | !--random overlap, meaning that the new formed clouds will not be affected |
---|
1356 | !--by vertical wind shear. |
---|
1357 | ! |
---|
1358 | IF ( icesed_flux(i) .GT. 0. ) THEN |
---|
1359 | |
---|
1360 | clrfra_sed = MIN(clrfra(i), cldfra_above(i) - cldfra(i)) |
---|
1361 | |
---|
1362 | IF ( ( clrfra_sed .GT. eps ) .AND. ( clrfra(i) .GT. eps ) ) THEN |
---|
1363 | |
---|
1364 | qiceincld = qice_sedim(i) / cldfra_above(i) |
---|
1365 | IF ( ok_unadjusted_clouds .AND. .NOT. ok_warm_cloud ) THEN |
---|
1366 | tauinv_depsub = qiceincld**(1./3.) * kappa_depsub |
---|
1367 | qvapinclr_lim = qsat(i) - qiceincld / ( 1. - EXP( - dtime * tauinv_depsub ) ) |
---|
1368 | ELSE |
---|
1369 | qvapinclr_lim = qsat(i) - qiceincld |
---|
1370 | ENDIF |
---|
1371 | |
---|
1372 | rhl_clr = qclr(i) / clrfra(i) / qsatl(i) * 100. |
---|
1373 | pdf_x = qvapinclr_lim / qsatl(i) * 100. |
---|
1374 | pdf_loc = rhl_clr - pdf_scale(i) * pdf_gamma(i) |
---|
1375 | pdf_x = qsat(i) / qsatl(i) * 100. |
---|
1376 | pdf_y = LOG( MAX( ( pdf_x - pdf_loc ) / pdf_scale(i), eps) ) * pdf_alpha(i) |
---|
1377 | IF ( pdf_y .GT. 10. ) THEN !--Avoid overflows |
---|
1378 | pdf_fra_above_lim = 0. |
---|
1379 | pdf_q_above_lim = 0. |
---|
1380 | ELSEIF ( pdf_y .LT. -10. ) THEN |
---|
1381 | pdf_fra_above_lim = clrfra(i) |
---|
1382 | pdf_q_above_lim = qclr(i) |
---|
1383 | ELSE |
---|
1384 | pdf_y = EXP( pdf_y ) |
---|
1385 | pdf_e3 = GAMMAINC ( 1. + 1. / pdf_alpha(i) , pdf_y ) |
---|
1386 | pdf_e3 = pdf_scale(i) * ( 1. - pdf_e3 ) * pdf_gamma(i) |
---|
1387 | pdf_fra_above_lim = EXP( - pdf_y ) * clrfra(i) |
---|
1388 | pdf_q_above_lim = ( pdf_e3 * clrfra(i) & |
---|
1389 | + pdf_loc * pdf_fra_above_lim ) * qsatl(i) / 100. |
---|
1390 | ENDIF |
---|
1391 | |
---|
1392 | IF ( pdf_fra_above_lim .GT. eps ) THEN |
---|
1393 | dcf_sed(i) = clrfra_sed * pdf_fra_above_lim / clrfra(i) |
---|
1394 | dqvc_sed(i) = dcf_sed(i) * pdf_q_above_lim / pdf_fra_above_lim |
---|
1395 | ENDIF |
---|
1396 | !--We include the sedimentated ice: |
---|
1397 | dqi_sed(i) = qiceincld & !--We include the sedimentated ice: |
---|
1398 | * ( dcf_sed(i) & !--the part that falls in the newly formed cloud and |
---|
1399 | + cldfra(i) ) !--the part that falls in the existing cloud |
---|
1400 | |
---|
1401 | ELSE |
---|
1402 | |
---|
1403 | dqi_sed(i) = qice_sedim(i) |
---|
1404 | |
---|
1405 | ENDIF ! ( clrfra_sed .GT. eps .AND. ( clrfra(i) .GT. eps ) |
---|
1406 | |
---|
1407 | !--Add tendencies |
---|
1408 | cldfra(i) = MIN(totfra_in(i), cldfra(i) + dcf_sed(i)) |
---|
1409 | qcld(i) = qcld(i) + dqvc_sed(i) + dqi_sed(i) |
---|
1410 | qvc(i) = qvc(i) + dqvc_sed(i) |
---|
1411 | clrfra(i) = MAX(0., clrfra(i) - dcf_sed(i)) |
---|
1412 | !--We re-include sublimated sedimentated ice into clear sky water vapor |
---|
1413 | qclr(i) = qclr(i) - dqvc_sed(i) + qice_sedim(i) - dqi_sed(i) |
---|
1414 | |
---|
1415 | ENDIF ! icesed_flux(i) .GT. 0. |
---|
1416 | |
---|
1417 | |
---|
1418 | !--We put back contrails in the clouds class |
---|
1419 | IF ( ( lincontfra(i) + circontfra(i) ) .GT. 0. ) THEN |
---|
1420 | cldfra(i) = cldfra(i) + lincontfra(i) + circontfra(i) |
---|
1421 | qcld(i) = qcld(i) + qlincont(i) + qcircont(i) |
---|
1422 | qvc(i) = qvc(i) + qsat(i) * ( lincontfra(i) + circontfra(i) ) |
---|
1423 | ENDIF |
---|
1424 | |
---|
1425 | |
---|
1426 | !--Diagnose ISSRs |
---|
1427 | IF ( clrfra(i) .GT. eps ) THEN |
---|
1428 | rhl_clr = qclr(i) / clrfra(i) / qsatl(i) * 100. |
---|
1429 | pdf_loc = rhl_clr - pdf_scale(i) * pdf_gamma(i) |
---|
1430 | pdf_x = qsat(i) / qsatl(i) * 100. |
---|
1431 | pdf_y = LOG( MAX( ( pdf_x - pdf_loc ) / pdf_scale(i), eps) ) * pdf_alpha(i) |
---|
1432 | IF ( pdf_y .GT. 10. ) THEN !--Avoid overflows |
---|
1433 | issrfra(i) = 0. |
---|
1434 | qissr(i) = 0. |
---|
1435 | ELSEIF ( pdf_y .LT. -10. ) THEN |
---|
1436 | issrfra(i) = clrfra(i) |
---|
1437 | qissr(i) = qclr(i) |
---|
1438 | ELSE |
---|
1439 | pdf_y = EXP( pdf_y ) |
---|
1440 | pdf_e3 = GAMMAINC ( 1. + 1. / pdf_alpha(i) , pdf_y ) |
---|
1441 | pdf_e3 = pdf_scale(i) * ( 1. - pdf_e3 ) * pdf_gamma(i) |
---|
1442 | issrfra(i) = EXP( - pdf_y ) * clrfra(i) |
---|
1443 | qissr(i) = ( pdf_e3 * clrfra(i) + pdf_loc * issrfra(i) ) * qsatl(i) / 100. |
---|
1444 | ENDIF |
---|
1445 | IF ( issrfra(i) .LT. eps ) THEN |
---|
1446 | issrfra(i) = 0. |
---|
1447 | qissr(i) = 0. |
---|
1448 | ENDIF |
---|
1449 | ELSE |
---|
1450 | issrfra(i) = 0. |
---|
1451 | qissr(i) = 0. |
---|
1452 | ENDIF |
---|
1453 | |
---|
1454 | !------------------------------------------- |
---|
1455 | !-- FINAL BARRIERS AND OUTPUTS -- |
---|
1456 | !------------------------------------------- |
---|
1457 | |
---|
1458 | cldfra(i) = MIN(cldfra(i), totfra_in(i)) |
---|
1459 | qcld(i) = MIN(qcld(i), qtot_in(i)) |
---|
1460 | qvc(i) = MIN(qvc(i), qcld(i)) |
---|
1461 | |
---|
1462 | IF ( cldfra(i) .LT. eps ) THEN |
---|
1463 | !--If the cloud is too small, it is sublimated. |
---|
1464 | cldfra(i) = 0. |
---|
1465 | qcld(i) = 0. |
---|
1466 | qvc(i) = 0. |
---|
1467 | qincld(i) = qsat(i) |
---|
1468 | ELSE |
---|
1469 | qincld(i) = qcld(i) / cldfra(i) |
---|
1470 | ENDIF ! cldfra .LT. eps |
---|
1471 | |
---|
1472 | !--Diagnostics |
---|
1473 | dcf_sub(i) = dcf_sub(i) / dtime |
---|
1474 | dcf_con(i) = dcf_con(i) / dtime |
---|
1475 | dcf_mix(i) = dcf_mix(i) / dtime |
---|
1476 | dcf_sed(i) = dcf_sed(i) / dtime |
---|
1477 | dqi_adj(i) = dqi_adj(i) / dtime |
---|
1478 | dqi_sub(i) = dqi_sub(i) / dtime |
---|
1479 | dqi_con(i) = dqi_con(i) / dtime |
---|
1480 | dqi_mix(i) = dqi_mix(i) / dtime |
---|
1481 | dqi_sed(i) = dqi_sed(i) / dtime |
---|
1482 | dqvc_adj(i) = dqvc_adj(i) / dtime |
---|
1483 | dqvc_sub(i) = dqvc_sub(i) / dtime |
---|
1484 | dqvc_con(i) = dqvc_con(i) / dtime |
---|
1485 | dqvc_mix(i) = dqvc_mix(i) / dtime |
---|
1486 | dqvc_sed(i) = dqvc_sed(i) / dtime |
---|
1487 | |
---|
1488 | ENDIF ! pt_pron_clds(i) |
---|
1489 | |
---|
1490 | ENDIF ! end keepgoing |
---|
1491 | |
---|
1492 | ENDDO ! end loop on i |
---|
1493 | |
---|
1494 | |
---|
1495 | !---------------------------------------- |
---|
1496 | !-- CONTRAILS AND AVIATION -- |
---|
1497 | !---------------------------------------- |
---|
1498 | IF ( ok_plane_contrail ) THEN |
---|
1499 | |
---|
1500 | CALL contrails_formation( & |
---|
1501 | klon, dtime, pplay, temp, qsat, qsatl, gamma_cond, & |
---|
1502 | flight_dist, clrfra, qclr, pdf_scale, pdf_alpha, pdf_gamma, & |
---|
1503 | keepgoing, pt_pron_clds, & |
---|
1504 | Tcritcont, qcritcont, potcontfraP, potcontfraNP, & |
---|
1505 | dcfl_ini, dqil_ini, dqtl_ini) |
---|
1506 | |
---|
1507 | DO i = 1, klon |
---|
1508 | IF ( keepgoing(i) .AND. pt_pron_clds(i) ) THEN |
---|
1509 | |
---|
1510 | !--Convert existing contrail fraction into "natural" cirrus cloud fraction |
---|
1511 | IF ( ( cldfra(i) .GE. ( totfra_in(i) - eps ) ) .OR. ( lincontfra(i) .LE. eps ) ) THEN |
---|
1512 | contrails_conversion_factor = 1. |
---|
1513 | ELSE |
---|
1514 | contrails_conversion_factor = ( 1. - & |
---|
1515 | !--First, the linear contrails are continuously degraded in induced cirrus |
---|
1516 | EXP( - dtime / linear_contrails_lifetime ) & |
---|
1517 | !--Second, if the cloud fills the entire gridbox, the linear contrails |
---|
1518 | !--cannot exist. The exponent is set so that this only happens for |
---|
1519 | !--very cloudy gridboxes |
---|
1520 | * ( 1. - cldfra(i) / totfra_in(i) )**0.1 ) |
---|
1521 | ENDIF |
---|
1522 | dcfl_cir(i) = - contrails_conversion_factor * lincontfra(i) |
---|
1523 | dqtl_cir(i) = - contrails_conversion_factor * qlincont(i) |
---|
1524 | |
---|
1525 | dcfl_ini(i) = MIN(MIN(dcfl_ini(i), issrfra(i)), totfra_in(i) - cldfra(i)) |
---|
1526 | dqtl_ini(i) = MIN(MIN(dqtl_ini(i), qissr(i)), qtot_in(i) - qcld(i)) |
---|
1527 | |
---|
1528 | !--Add tendencies |
---|
1529 | issrfra(i) = issrfra(i) - dcfl_ini(i) |
---|
1530 | qissr(i) = qissr(i) - dqtl_ini(i) |
---|
1531 | clrfra(i) = clrfra(i) - dcfl_ini(i) |
---|
1532 | qclr(i) = qclr(i) - dqtl_ini(i) |
---|
1533 | |
---|
1534 | cldfra(i) = cldfra(i) + dcfl_ini(i) |
---|
1535 | qcld(i) = qcld(i) + dqtl_ini(i) |
---|
1536 | qvc(i) = qvc(i) + dcfl_ini(i) * qsat(i) |
---|
1537 | lincontfra(i) = lincontfra(i) + dcfl_cir(i) + dcfl_ini(i) |
---|
1538 | qlincont(i) = qlincont(i) + dqtl_cir(i) + dqtl_ini(i) |
---|
1539 | circontfra(i) = circontfra(i) - dcfl_cir(i) |
---|
1540 | qcircont(i) = qcircont(i) - dqtl_cir(i) |
---|
1541 | |
---|
1542 | !--Diagnostics |
---|
1543 | dcfl_ini(i) = dcfl_ini(i) / dtime |
---|
1544 | dqil_ini(i) = dqil_ini(i) / dtime |
---|
1545 | dqtl_ini(i) = dqtl_ini(i) / dtime |
---|
1546 | dcfl_sub(i) = dcfl_sub(i) / dtime |
---|
1547 | dqil_sub(i) = dqil_sub(i) / dtime |
---|
1548 | dqtl_sub(i) = dqtl_sub(i) / dtime |
---|
1549 | dcfl_cir(i) = dcfl_cir(i) / dtime |
---|
1550 | dqtl_cir(i) = dqtl_cir(i) / dtime |
---|
1551 | dcfl_mix(i) = dcfl_mix(i) / dtime |
---|
1552 | dqil_mix(i) = dqil_mix(i) / dtime |
---|
1553 | dqtl_mix(i) = dqtl_mix(i) / dtime |
---|
1554 | dcfc_sub(i) = dcfc_sub(i) / dtime |
---|
1555 | dqic_sub(i) = dqic_sub(i) / dtime |
---|
1556 | dqtc_sub(i) = dqtc_sub(i) / dtime |
---|
1557 | dcfc_mix(i) = dcfc_mix(i) / dtime |
---|
1558 | dqic_mix(i) = dqic_mix(i) / dtime |
---|
1559 | dqtc_mix(i) = dqtc_mix(i) / dtime |
---|
1560 | |
---|
1561 | !------------------------------------------- |
---|
1562 | !-- FINAL BARRIERS AND OUTPUTS -- |
---|
1563 | !------------------------------------------- |
---|
1564 | |
---|
1565 | cldfra(i) = MIN(cldfra(i), totfra_in(i)) |
---|
1566 | qcld(i) = MIN(qcld(i), qtot_in(i)) |
---|
1567 | qvc(i) = MIN(qvc(i), qcld(i)) |
---|
1568 | |
---|
1569 | IF ( cldfra(i) .LT. eps ) THEN |
---|
1570 | !--If the cloud is too small, it is sublimated. |
---|
1571 | cldfra(i) = 0. |
---|
1572 | qcld(i) = 0. |
---|
1573 | qvc(i) = 0. |
---|
1574 | lincontfra(i) = 0. |
---|
1575 | qlincont(i) = 0. |
---|
1576 | circontfra(i) = 0. |
---|
1577 | qcircont(i) = 0. |
---|
1578 | qincld(i) = qsat(i) |
---|
1579 | ELSE |
---|
1580 | qincld(i) = qcld(i) / cldfra(i) |
---|
1581 | ENDIF ! cldfra .LT. eps |
---|
1582 | |
---|
1583 | IF ( (lincontfra(i) .LT. eps) .OR. (qlincont(i) .LT. (qsat(i) * lincontfra(i))) ) THEN |
---|
1584 | lincontfra(i) = 0. |
---|
1585 | qlincont(i) = 0. |
---|
1586 | ENDIF |
---|
1587 | |
---|
1588 | IF ( (circontfra(i) .LT. eps) .OR. (qcircont(i) .LT. (qsat(i) * circontfra(i))) ) THEN |
---|
1589 | circontfra(i) = 0. |
---|
1590 | qcircont(i) = 0. |
---|
1591 | ENDIF |
---|
1592 | |
---|
1593 | ENDIF ! keepgoing |
---|
1594 | ENDDO ! loop on klon |
---|
1595 | ENDIF ! ok_plane_contrail |
---|
1596 | |
---|
1597 | |
---|
1598 | END SUBROUTINE condensation_ice_supersat |
---|
1599 | !********************************************************************************** |
---|
1600 | |
---|
1601 | END MODULE lmdz_lscp_condensation |
---|