| 1 | MODULE lmdz_lscp_condensation |
|---|
| 2 | !---------------------------------------------------------------- |
|---|
| 3 | ! Module for condensation of clouds routines |
|---|
| 4 | ! that are called in LSCP |
|---|
| 5 | |
|---|
| 6 | |
|---|
| 7 | IMPLICIT NONE |
|---|
| 8 | |
|---|
| 9 | CONTAINS |
|---|
| 10 | |
|---|
| 11 | !********************************************************************************** |
|---|
| 12 | SUBROUTINE condensation_lognormal( & |
|---|
| 13 | klon, temp, qtot, qsat, gamma_cond, ratqs, & |
|---|
| 14 | keepgoing, cldfra, qincld, qvc) |
|---|
| 15 | |
|---|
| 16 | !---------------------------------------------------------------------- |
|---|
| 17 | ! This subroutine calculates the formation of clouds, using a |
|---|
| 18 | ! statistical cloud scheme. It uses a generalised lognormal distribution |
|---|
| 19 | ! of total water in the gridbox |
|---|
| 20 | ! See Bony and Emanuel, 2001 |
|---|
| 21 | !---------------------------------------------------------------------- |
|---|
| 22 | |
|---|
| 23 | USE lmdz_lscp_ini, ONLY: eps |
|---|
| 24 | |
|---|
| 25 | IMPLICIT NONE |
|---|
| 26 | |
|---|
| 27 | ! |
|---|
| 28 | ! Input |
|---|
| 29 | ! |
|---|
| 30 | INTEGER, INTENT(IN) :: klon ! number of horizontal grid points |
|---|
| 31 | ! |
|---|
| 32 | REAL, INTENT(IN) , DIMENSION(klon) :: temp ! temperature [K] |
|---|
| 33 | REAL, INTENT(IN) , DIMENSION(klon) :: qtot ! total specific humidity (without precip) [kg/kg] |
|---|
| 34 | REAL, INTENT(IN) , DIMENSION(klon) :: qsat ! saturation specific humidity [kg/kg] |
|---|
| 35 | REAL, INTENT(IN) , DIMENSION(klon) :: gamma_cond ! condensation threshold w.r.t. qsat [-] |
|---|
| 36 | REAL, INTENT(IN) , DIMENSION(klon) :: ratqs ! ratio between the variance of the total water distribution and its average [-] |
|---|
| 37 | LOGICAL, INTENT(IN) , DIMENSION(klon) :: keepgoing ! .TRUE. if a new condensation loop should be computed |
|---|
| 38 | ! |
|---|
| 39 | ! Output |
|---|
| 40 | ! NB. those are in INOUT because of the convergence loop on temperature |
|---|
| 41 | ! (in some cases, the values are not re-computed) but the values |
|---|
| 42 | ! are never used explicitely |
|---|
| 43 | ! |
|---|
| 44 | REAL, INTENT(INOUT), DIMENSION(klon) :: cldfra ! cloud fraction [-] |
|---|
| 45 | REAL, INTENT(INOUT), DIMENSION(klon) :: qincld ! cloud-mean in-cloud total specific water [kg/kg] |
|---|
| 46 | REAL, INTENT(INOUT), DIMENSION(klon) :: qvc ! gridbox-mean vapor in the cloud [kg/kg] |
|---|
| 47 | ! |
|---|
| 48 | ! Local |
|---|
| 49 | ! |
|---|
| 50 | INTEGER :: i |
|---|
| 51 | REAL :: pdf_std, pdf_k, pdf_delta |
|---|
| 52 | REAL :: pdf_a, pdf_b, pdf_e1, pdf_e2 |
|---|
| 53 | ! |
|---|
| 54 | !--Loop on klon |
|---|
| 55 | ! |
|---|
| 56 | DO i = 1, klon |
|---|
| 57 | |
|---|
| 58 | !--If a new calculation of the condensation is needed, |
|---|
| 59 | !--i.e., temperature has not yet converged (or the cloud is |
|---|
| 60 | !--formed elsewhere) |
|---|
| 61 | IF (keepgoing(i)) THEN |
|---|
| 62 | |
|---|
| 63 | pdf_std = ratqs(i) * qtot(i) |
|---|
| 64 | pdf_k = -SQRT( LOG( 1. + (pdf_std / qtot(i))**2 ) ) |
|---|
| 65 | pdf_delta = LOG( qtot(i) / ( gamma_cond(i) * qsat(i) ) ) |
|---|
| 66 | pdf_a = pdf_delta / ( pdf_k * SQRT(2.) ) |
|---|
| 67 | pdf_b = pdf_k / (2. * SQRT(2.)) |
|---|
| 68 | pdf_e1 = pdf_a - pdf_b |
|---|
| 69 | pdf_e1 = SIGN( MIN(ABS(pdf_e1), 5.), pdf_e1 ) |
|---|
| 70 | pdf_e1 = 1. - ERF(pdf_e1) |
|---|
| 71 | pdf_e2 = pdf_a + pdf_b |
|---|
| 72 | pdf_e2 = SIGN( MIN(ABS(pdf_e2), 5.), pdf_e2 ) |
|---|
| 73 | pdf_e2 = 1. - ERF(pdf_e2) |
|---|
| 74 | |
|---|
| 75 | |
|---|
| 76 | IF ( pdf_e1 .LT. eps ) THEN |
|---|
| 77 | cldfra(i) = 0. |
|---|
| 78 | qincld(i) = qsat(i) |
|---|
| 79 | !--AB grid-mean vapor in the cloud - we assume saturation adjustment |
|---|
| 80 | qvc(i) = 0. |
|---|
| 81 | ELSE |
|---|
| 82 | cldfra(i) = 0.5 * pdf_e1 |
|---|
| 83 | qincld(i) = qtot(i) * pdf_e2 / pdf_e1 |
|---|
| 84 | !--AB grid-mean vapor in the cloud - we assume saturation adjustment |
|---|
| 85 | qvc(i) = qsat(i) * cldfra(i) |
|---|
| 86 | ENDIF |
|---|
| 87 | |
|---|
| 88 | ENDIF ! end keepgoing |
|---|
| 89 | |
|---|
| 90 | ENDDO ! end loop on i |
|---|
| 91 | END SUBROUTINE condensation_lognormal |
|---|
| 92 | !********************************************************************************** |
|---|
| 93 | |
|---|
| 94 | !********************************************************************************** |
|---|
| 95 | SUBROUTINE condensation_ice_supersat( & |
|---|
| 96 | klon, dtime, pplay, paprsdn, paprsup, cfcon, & |
|---|
| 97 | cldfra_in, qvc_in, qliq_in, qice_in, shear, pbl_eps, cell_area, & |
|---|
| 98 | temp, qtot_in, qsat, gamma_cond, ratqs, keepgoing, pt_pron_clds, & |
|---|
| 99 | cldfra_above, icesed_flux, & |
|---|
| 100 | cldfra, qincld, qvc, issrfra, qissr, dcf_sub, dcf_con, dcf_mix, dcf_sed, & |
|---|
| 101 | dqi_adj, dqi_sub, dqi_con, dqi_mix, dqi_sed, & |
|---|
| 102 | dqvc_adj, dqvc_sub, dqvc_con, dqvc_mix, dqvc_sed, & |
|---|
| 103 | contfra_in, perscontfra_in, qva_in, qia_in, flight_dist, flight_h2o, & |
|---|
| 104 | contfra, perscontfra, qcont, Tcritcont, qcritcont, potcontfraP, potcontfraNP, & |
|---|
| 105 | dcfa_ini, dqia_ini, dqta_ini, dcfa_sub, dqia_sub, dqta_sub, & |
|---|
| 106 | dcfa_cir, dqta_cir, dcfa_mix, dqia_mix, dqta_mix) |
|---|
| 107 | |
|---|
| 108 | !---------------------------------------------------------------------- |
|---|
| 109 | ! This subroutine calculates the formation, evolution and dissipation |
|---|
| 110 | ! of clouds, using a process-oriented treatment of the cloud properties |
|---|
| 111 | ! (cloud fraction, vapor in the cloud, condensed water in the cloud). |
|---|
| 112 | ! It allows for ice supersaturation in cold regions, in clear sky. |
|---|
| 113 | ! If ok_unadjusted_clouds, it also allows for sub- and supersaturated |
|---|
| 114 | ! cloud water vapors. |
|---|
| 115 | ! It also allows for the formation and evolution of condensation trails |
|---|
| 116 | ! (contrails) from aviation. |
|---|
| 117 | ! Authors: Audran Borella, Etienne Vignon, Olivier Boucher |
|---|
| 118 | ! April 2024 |
|---|
| 119 | !---------------------------------------------------------------------- |
|---|
| 120 | |
|---|
| 121 | USE lmdz_lscp_tools, ONLY: calc_qsat_ecmwf, calc_gammasat, GAMMAINC |
|---|
| 122 | USE lmdz_lscp_ini, ONLY: RLSTT, RTT, RD, RG, RV, RPI, EPS_W |
|---|
| 123 | USE lmdz_lscp_ini, ONLY: eps, temp_nowater, ok_unadjusted_clouds |
|---|
| 124 | |
|---|
| 125 | USE lmdz_lscp_ini, ONLY: depo_coef_cirrus, capa_cond_cirrus, rho_ice |
|---|
| 126 | USE lmdz_lscp_ini, ONLY: N_ice_volume, corr_incld_depsub, nu_iwc_pdf_lscp |
|---|
| 127 | USE lmdz_lscp_ini, ONLY: beta_pdf_lscp, temp_thresh_pdf_lscp |
|---|
| 128 | USE lmdz_lscp_ini, ONLY: std100_pdf_lscp, k0_pdf_lscp, kappa_pdf_lscp |
|---|
| 129 | USE lmdz_lscp_ini, ONLY: coef_mixing_lscp, coef_shear_lscp, cooling_rate_ice_thresh |
|---|
| 130 | |
|---|
| 131 | USE lmdz_lscp_ini, ONLY: ok_plane_contrail, aspect_ratio_contrails |
|---|
| 132 | USE lmdz_lscp_ini, ONLY: coef_mixing_contrails, coef_shear_contrails |
|---|
| 133 | USE lmdz_lscp_ini, ONLY: chi_mixing_contrails, linear_contrails_lifetime |
|---|
| 134 | USE lmdz_aviation, ONLY: contrails_formation |
|---|
| 135 | |
|---|
| 136 | IMPLICIT NONE |
|---|
| 137 | |
|---|
| 138 | ! |
|---|
| 139 | ! Input |
|---|
| 140 | ! |
|---|
| 141 | INTEGER, INTENT(IN) :: klon ! number of horizontal grid points |
|---|
| 142 | REAL, INTENT(IN) :: dtime ! time step [s] |
|---|
| 143 | ! |
|---|
| 144 | REAL, INTENT(IN) , DIMENSION(klon) :: pplay ! layer pressure [Pa] |
|---|
| 145 | REAL, INTENT(IN) , DIMENSION(klon) :: paprsdn ! pressure at the lower interface [Pa] |
|---|
| 146 | REAL, INTENT(IN) , DIMENSION(klon) :: paprsup ! pressure at the upper interface [Pa] |
|---|
| 147 | REAL, INTENT(IN) , DIMENSION(klon) :: cfcon ! cloud fraction from deep convection [-] |
|---|
| 148 | REAL, INTENT(IN) , DIMENSION(klon) :: cldfra_in ! cloud fraction [-] |
|---|
| 149 | REAL, INTENT(IN) , DIMENSION(klon) :: qvc_in ! gridbox-mean water vapor in cloud [kg/kg] |
|---|
| 150 | REAL, INTENT(IN) , DIMENSION(klon) :: qliq_in ! specific liquid water content [kg/kg] |
|---|
| 151 | REAL, INTENT(IN) , DIMENSION(klon) :: qice_in ! specific ice water content [kg/kg] |
|---|
| 152 | REAL, INTENT(IN) , DIMENSION(klon) :: shear ! vertical shear [s-1] |
|---|
| 153 | REAL, INTENT(IN) , DIMENSION(klon) :: pbl_eps ! TKE dissipation [m2/s3] |
|---|
| 154 | REAL, INTENT(IN) , DIMENSION(klon) :: cell_area ! cell area [m2] |
|---|
| 155 | REAL, INTENT(IN) , DIMENSION(klon) :: temp ! temperature [K] |
|---|
| 156 | REAL, INTENT(IN) , DIMENSION(klon) :: qtot_in ! total specific humidity (without precip) [kg/kg] |
|---|
| 157 | REAL, INTENT(IN) , DIMENSION(klon) :: qsat ! saturation specific humidity [kg/kg] |
|---|
| 158 | REAL, INTENT(IN) , DIMENSION(klon) :: gamma_cond ! condensation threshold w.r.t. qsat [-] |
|---|
| 159 | REAL, INTENT(IN) , DIMENSION(klon) :: ratqs ! ratio between the variance of the total water distribution and its average [-] |
|---|
| 160 | LOGICAL, INTENT(IN) , DIMENSION(klon) :: keepgoing ! .TRUE. if a new condensation loop should be computed |
|---|
| 161 | LOGICAL, INTENT(IN) , DIMENSION(klon) :: pt_pron_clds ! .TRUE. if clouds are prognostic in this mesh |
|---|
| 162 | REAL, INTENT(IN) , DIMENSION(klon) :: cldfra_above ! cloud fraction IN THE LAYER ABOVE [-] |
|---|
| 163 | REAL, INTENT(IN) , DIMENSION(klon) :: icesed_flux ! sedimentated ice flux [kg/s/m2] |
|---|
| 164 | ! |
|---|
| 165 | ! Input for aviation |
|---|
| 166 | ! |
|---|
| 167 | REAL, INTENT(IN) , DIMENSION(klon) :: contfra_in ! input linear contrails fraction [-] |
|---|
| 168 | REAL, INTENT(IN) , DIMENSION(klon) :: perscontfra_in! input contrail induced cirrus fraction [-] |
|---|
| 169 | REAL, INTENT(IN) , DIMENSION(klon) :: qva_in ! input linear contrails total specific humidity [kg/kg] |
|---|
| 170 | REAL, INTENT(IN) , DIMENSION(klon) :: qia_in ! input linear contrails total specific humidity [kg/kg] |
|---|
| 171 | REAL, INTENT(IN) , DIMENSION(klon) :: flight_dist ! aviation distance flown concentration [m/s/m3] |
|---|
| 172 | REAL, INTENT(IN) , DIMENSION(klon) :: flight_h2o ! aviation emitted H2O concentration [kgH2O/s/m3] |
|---|
| 173 | ! |
|---|
| 174 | ! Output |
|---|
| 175 | ! NB. cldfra and qincld should be outputed as cf_seri and qi_seri, |
|---|
| 176 | ! or as tendencies (maybe in the future) |
|---|
| 177 | ! NB. those are in INOUT because of the convergence loop on temperature |
|---|
| 178 | ! (in some cases, the values are not re-computed) but the values |
|---|
| 179 | ! are never used explicitely |
|---|
| 180 | ! |
|---|
| 181 | REAL, INTENT(INOUT), DIMENSION(klon) :: cldfra ! cloud fraction [-] |
|---|
| 182 | REAL, INTENT(INOUT), DIMENSION(klon) :: qincld ! cloud-mean in-cloud total specific water [kg/kg] |
|---|
| 183 | REAL, INTENT(INOUT), DIMENSION(klon) :: qvc ! gridbox-mean vapor in the cloud [kg/kg] |
|---|
| 184 | REAL, INTENT(INOUT), DIMENSION(klon) :: issrfra ! ISSR fraction [-] |
|---|
| 185 | REAL, INTENT(INOUT), DIMENSION(klon) :: qissr ! gridbox-mean ISSR specific water [kg/kg] |
|---|
| 186 | ! |
|---|
| 187 | ! Diagnostics for condensation and ice supersaturation |
|---|
| 188 | ! NB. idem for the INOUT |
|---|
| 189 | ! |
|---|
| 190 | REAL, INTENT(INOUT), DIMENSION(klon) :: dcf_sub ! cloud fraction tendency because of sublimation [s-1] |
|---|
| 191 | REAL, INTENT(INOUT), DIMENSION(klon) :: dcf_con ! cloud fraction tendency because of condensation [s-1] |
|---|
| 192 | REAL, INTENT(INOUT), DIMENSION(klon) :: dcf_mix ! cloud fraction tendency because of cloud mixing [s-1] |
|---|
| 193 | REAL, INTENT(INOUT), DIMENSION(klon) :: dcf_sed ! cloud fraction tendency because of sedimentation [s-1] |
|---|
| 194 | REAL, INTENT(INOUT), DIMENSION(klon) :: dqi_adj ! specific ice content tendency because of temperature adjustment [kg/kg/s] |
|---|
| 195 | REAL, INTENT(INOUT), DIMENSION(klon) :: dqi_sub ! specific ice content tendency because of sublimation [kg/kg/s] |
|---|
| 196 | REAL, INTENT(INOUT), DIMENSION(klon) :: dqi_con ! specific ice content tendency because of condensation [kg/kg/s] |
|---|
| 197 | REAL, INTENT(INOUT), DIMENSION(klon) :: dqi_mix ! specific ice content tendency because of cloud mixing [kg/kg/s] |
|---|
| 198 | REAL, INTENT(INOUT), DIMENSION(klon) :: dqi_sed ! specific ice content tendency because of sedimentation [kg/kg/s] |
|---|
| 199 | REAL, INTENT(INOUT), DIMENSION(klon) :: dqvc_adj ! specific cloud water vapor tendency because of temperature adjustment [kg/kg/s] |
|---|
| 200 | REAL, INTENT(INOUT), DIMENSION(klon) :: dqvc_sub ! specific cloud water vapor tendency because of sublimation [kg/kg/s] |
|---|
| 201 | REAL, INTENT(INOUT), DIMENSION(klon) :: dqvc_con ! specific cloud water vapor tendency because of condensation [kg/kg/s] |
|---|
| 202 | REAL, INTENT(INOUT), DIMENSION(klon) :: dqvc_mix ! specific cloud water vapor tendency because of cloud mixing [kg/kg/s] |
|---|
| 203 | REAL, INTENT(INOUT), DIMENSION(klon) :: dqvc_sed ! specific cloud water vapor tendency because of sedimentation [kg/kg/s] |
|---|
| 204 | ! |
|---|
| 205 | ! Diagnostics for aviation |
|---|
| 206 | ! NB. idem for the INOUT |
|---|
| 207 | ! |
|---|
| 208 | REAL, INTENT(INOUT), DIMENSION(klon) :: contfra ! linear contrail fraction [-] |
|---|
| 209 | REAL, INTENT(INOUT), DIMENSION(klon) :: perscontfra ! linear contrail induced cirrus fraction [-] |
|---|
| 210 | REAL, INTENT(INOUT), DIMENSION(klon) :: qcont ! linear contrail specific humidity [kg/kg] |
|---|
| 211 | REAL, INTENT(INOUT), DIMENSION(klon) :: Tcritcont ! critical temperature for contrail formation [K] |
|---|
| 212 | REAL, INTENT(INOUT), DIMENSION(klon) :: qcritcont ! critical specific humidity for contrail formation [kg/kg] |
|---|
| 213 | REAL, INTENT(INOUT), DIMENSION(klon) :: potcontfraP ! potential persistent contrail fraction [-] |
|---|
| 214 | REAL, INTENT(INOUT), DIMENSION(klon) :: potcontfraNP ! potential non-persistent contrail fraction [-] |
|---|
| 215 | REAL, INTENT(INOUT), DIMENSION(klon) :: dcfa_ini ! contrails cloud fraction tendency because of initial formation [s-1] |
|---|
| 216 | REAL, INTENT(INOUT), DIMENSION(klon) :: dqia_ini ! contrails ice specific humidity tendency because of initial formation [kg/kg/s] |
|---|
| 217 | REAL, INTENT(INOUT), DIMENSION(klon) :: dqta_ini ! contrails total specific humidity tendency because of initial formation [kg/kg/s] |
|---|
| 218 | REAL, INTENT(INOUT), DIMENSION(klon) :: dcfa_sub ! contrails cloud fraction tendency because of sublimation [s-1] |
|---|
| 219 | REAL, INTENT(INOUT), DIMENSION(klon) :: dqia_sub ! contrails ice specific humidity tendency because of sublimation [kg/kg/s] |
|---|
| 220 | REAL, INTENT(INOUT), DIMENSION(klon) :: dqta_sub ! contrails total specific humidity tendency because of sublimation [kg/kg/s] |
|---|
| 221 | REAL, INTENT(INOUT), DIMENSION(klon) :: dcfa_cir ! contrails cloud fraction tendency because of conversion in cirrus [s-1] |
|---|
| 222 | REAL, INTENT(INOUT), DIMENSION(klon) :: dqta_cir ! contrails total specific humidity tendency because of conversion in cirrus [kg/kg/s] |
|---|
| 223 | REAL, INTENT(INOUT), DIMENSION(klon) :: dcfa_mix ! contrails cloud fraction tendency because of mixing [s-1] |
|---|
| 224 | REAL, INTENT(INOUT), DIMENSION(klon) :: dqia_mix ! contrails ice specific humidity tendency because of mixing [kg/kg/s] |
|---|
| 225 | REAL, INTENT(INOUT), DIMENSION(klon) :: dqta_mix ! contrails total specific humidity tendency because of mixing [kg/kg/s] |
|---|
| 226 | ! |
|---|
| 227 | ! Local |
|---|
| 228 | ! |
|---|
| 229 | INTEGER :: i |
|---|
| 230 | LOGICAL :: ok_warm_cloud |
|---|
| 231 | REAL, DIMENSION(klon) :: qcld, qzero |
|---|
| 232 | REAL, DIMENSION(klon) :: clrfra, qclr |
|---|
| 233 | ! |
|---|
| 234 | ! for lognormal |
|---|
| 235 | REAL :: pdf_std, pdf_k, pdf_delta |
|---|
| 236 | REAL :: pdf_a, pdf_b, pdf_e1, pdf_e2 |
|---|
| 237 | ! |
|---|
| 238 | ! for unadjusted clouds |
|---|
| 239 | REAL :: qiceincld, qvapincld, qvapincld_new |
|---|
| 240 | ! |
|---|
| 241 | ! for deposition / sublimation |
|---|
| 242 | REAL :: pres_sat, kappa_depsub, tauinv_depsub |
|---|
| 243 | REAL :: air_thermal_conduct, water_vapor_diff |
|---|
| 244 | ! |
|---|
| 245 | ! for dissipation |
|---|
| 246 | REAL, DIMENSION(klon) :: temp_diss, qsati_diss |
|---|
| 247 | REAL :: pdf_shape, qiceincld_min |
|---|
| 248 | ! |
|---|
| 249 | ! for condensation |
|---|
| 250 | REAL, DIMENSION(klon) :: qsatl, dqsat_tmp |
|---|
| 251 | REAL, DIMENSION(klon) :: pdf_alpha, pdf_scale, pdf_gamma |
|---|
| 252 | REAL :: rhl_clr, pdf_loc |
|---|
| 253 | REAL :: pdf_e3, pdf_x, pdf_y |
|---|
| 254 | REAL :: dqt_con |
|---|
| 255 | ! |
|---|
| 256 | ! for sedimentation |
|---|
| 257 | REAL, DIMENSION(klon) :: qice_sedim |
|---|
| 258 | REAL :: clrfra_sed |
|---|
| 259 | ! |
|---|
| 260 | ! for mixing |
|---|
| 261 | REAL :: a_mix, bovera, Povera, N_cld_mix, L_mix |
|---|
| 262 | REAL :: cldfra_mix, clrfra_mix, sigma_mix |
|---|
| 263 | REAL :: L_shear, shear_fra |
|---|
| 264 | REAL :: qiceinmix, qvapinmix_lim, qvapinclr_lim |
|---|
| 265 | REAL :: pdf_fra_above_nuc, pdf_q_above_nuc |
|---|
| 266 | REAL :: pdf_fra_above_lim, pdf_q_above_lim |
|---|
| 267 | REAL :: pdf_fra_below_lim |
|---|
| 268 | REAL :: mixed_fraction |
|---|
| 269 | ! |
|---|
| 270 | ! for cell properties |
|---|
| 271 | REAL :: rho, rhodz, dz |
|---|
| 272 | ! |
|---|
| 273 | ! for contrails |
|---|
| 274 | REAL :: perscontfra_ratio |
|---|
| 275 | REAL :: contrails_conversion_factor |
|---|
| 276 | |
|---|
| 277 | qzero(:) = 0. |
|---|
| 278 | |
|---|
| 279 | !--Calculation of qsat w.r.t. liquid |
|---|
| 280 | CALL calc_qsat_ecmwf(klon, temp, qzero, pplay, RTT, 1, .FALSE., qsatl, dqsat_tmp) |
|---|
| 281 | !--Calculation of qsat max for dissipation |
|---|
| 282 | temp_diss(:) = temp(:) + cooling_rate_ice_thresh * dtime |
|---|
| 283 | CALL calc_qsat_ecmwf(klon, temp_diss, qzero, pplay, RTT, 2, .FALSE., qsati_diss, dqsat_tmp) |
|---|
| 284 | |
|---|
| 285 | ! |
|---|
| 286 | !--Loop on klon |
|---|
| 287 | ! |
|---|
| 288 | DO i = 1, klon |
|---|
| 289 | |
|---|
| 290 | !--If a new calculation of the condensation is needed, |
|---|
| 291 | !--i.e., temperature has not yet converged (or the cloud is |
|---|
| 292 | !--formed elsewhere) |
|---|
| 293 | IF (keepgoing(i)) THEN |
|---|
| 294 | |
|---|
| 295 | !--If the temperature is higher than the threshold below which |
|---|
| 296 | !--there is no liquid in the gridbox, we activate the usual scheme |
|---|
| 297 | !--(generalised lognormal from Bony and Emanuel 2001) |
|---|
| 298 | !--If ok_weibull_warm_clouds = .TRUE., the Weibull law is used for |
|---|
| 299 | !--all clouds, and the lognormal scheme is not activated |
|---|
| 300 | IF ( .NOT. pt_pron_clds(i) ) THEN |
|---|
| 301 | |
|---|
| 302 | pdf_std = ratqs(i) * qtot_in(i) |
|---|
| 303 | pdf_k = -SQRT( LOG( 1. + (pdf_std / qtot_in(i))**2 ) ) |
|---|
| 304 | pdf_delta = LOG( qtot_in(i) / ( gamma_cond(i) * qsat(i) ) ) |
|---|
| 305 | pdf_a = pdf_delta / ( pdf_k * SQRT(2.) ) |
|---|
| 306 | pdf_b = pdf_k / (2. * SQRT(2.)) |
|---|
| 307 | pdf_e1 = pdf_a - pdf_b |
|---|
| 308 | pdf_e1 = SIGN( MIN(ABS(pdf_e1), 5.), pdf_e1 ) |
|---|
| 309 | pdf_e1 = 1. - ERF(pdf_e1) |
|---|
| 310 | pdf_e2 = pdf_a + pdf_b |
|---|
| 311 | pdf_e2 = SIGN( MIN(ABS(pdf_e2), 5.), pdf_e2 ) |
|---|
| 312 | pdf_e2 = 1. - ERF(pdf_e2) |
|---|
| 313 | |
|---|
| 314 | |
|---|
| 315 | IF ( pdf_e1 .LT. eps ) THEN |
|---|
| 316 | cldfra(i) = 0. |
|---|
| 317 | qincld(i) = qsat(i) |
|---|
| 318 | qvc(i) = 0. |
|---|
| 319 | ELSE |
|---|
| 320 | cldfra(i) = 0.5 * pdf_e1 |
|---|
| 321 | qincld(i) = qtot_in(i) * pdf_e2 / pdf_e1 |
|---|
| 322 | qvc(i) = qsat(i) * cldfra(i) |
|---|
| 323 | ENDIF |
|---|
| 324 | |
|---|
| 325 | !--If the temperature is lower than temp_nowater, we use the new |
|---|
| 326 | !--condensation scheme that allows for ice supersaturation |
|---|
| 327 | ELSE |
|---|
| 328 | |
|---|
| 329 | !--Initialisation |
|---|
| 330 | !--If the air mass is warm (liquid water can exist), |
|---|
| 331 | !--all the memory is lost and the scheme becomes statistical, |
|---|
| 332 | !--i.e., the sublimation and mixing processes are deactivated, |
|---|
| 333 | !--and the condensation process is slightly adapted |
|---|
| 334 | !--This can happen only if ok_weibull_warm_clouds = .TRUE. |
|---|
| 335 | ok_warm_cloud = ( temp(i) .GT. temp_nowater ) |
|---|
| 336 | |
|---|
| 337 | !--The following barriers ensure that the traced cloud properties |
|---|
| 338 | !--are consistent. In some rare cases, i.e. the cloud water vapor |
|---|
| 339 | !--can be greater than the total water in the gridbox |
|---|
| 340 | cldfra(i) = MAX(0., MIN(1. - cfcon(i), cldfra_in(i))) |
|---|
| 341 | qcld(i) = MAX(0., MIN(qtot_in(i), qliq_in(i) + qice_in(i) + qvc_in(i))) |
|---|
| 342 | qvc(i) = MAX(0., MIN(qcld(i), qvc_in(i))) |
|---|
| 343 | |
|---|
| 344 | !--Initialise clear fraction properties |
|---|
| 345 | clrfra(i) = MAX(0., MIN(1., ( 1. - cfcon(i) ) - cldfra(i))) |
|---|
| 346 | qclr(i) = qtot_in(i) - qcld(i) |
|---|
| 347 | |
|---|
| 348 | dcf_sub(i) = 0. |
|---|
| 349 | dqi_sub(i) = 0. |
|---|
| 350 | dqvc_sub(i) = 0. |
|---|
| 351 | dqi_adj(i) = 0. |
|---|
| 352 | dqvc_adj(i) = 0. |
|---|
| 353 | dcf_con(i) = 0. |
|---|
| 354 | dqi_con(i) = 0. |
|---|
| 355 | dqvc_con(i) = 0. |
|---|
| 356 | dcf_mix(i) = 0. |
|---|
| 357 | dqi_mix(i) = 0. |
|---|
| 358 | dqvc_mix(i) = 0. |
|---|
| 359 | dcf_sed(i) = 0. |
|---|
| 360 | dqi_sed(i) = 0. |
|---|
| 361 | dqvc_sed(i) = 0. |
|---|
| 362 | |
|---|
| 363 | IF ( icesed_flux(i) .GT. 0. ) THEN |
|---|
| 364 | !--If ice sedimentation is activated, the quantity of sedimentated ice was added |
|---|
| 365 | !--to the total water vapor in the precipitation routine. Here we remove it |
|---|
| 366 | !--(it will be reincluded later) |
|---|
| 367 | qice_sedim(i) = icesed_flux(i) / ( paprsdn(i) - paprsup(i) ) * RG * dtime |
|---|
| 368 | qclr(i) = qclr(i) - qice_sedim(i) |
|---|
| 369 | ENDIF |
|---|
| 370 | |
|---|
| 371 | !--Initialisation of the cell properties |
|---|
| 372 | !--Dry density [kg/m3] |
|---|
| 373 | rho = pplay(i) / temp(i) / RD |
|---|
| 374 | !--Dry air mass [kg/m2] |
|---|
| 375 | rhodz = ( paprsdn(i) - paprsup(i) ) / RG |
|---|
| 376 | !--Cell thickness [m] |
|---|
| 377 | dz = rhodz / rho |
|---|
| 378 | |
|---|
| 379 | !--If ok_unadjusted_clouds is set to TRUE, then the saturation adjustment |
|---|
| 380 | !--hypothesis is lost, and the vapor in the cloud is purely prognostic. |
|---|
| 381 | ! |
|---|
| 382 | !--The deposition equation is |
|---|
| 383 | !-- dmi/dt = alpha*4pi*C*Svi / ( R_v*T/esi/Dv + Ls/ka/T * (Ls/R_v/T - 1) ) |
|---|
| 384 | !--from Lohmann et al. (2016), where |
|---|
| 385 | !--alpha is the deposition coefficient [-] |
|---|
| 386 | !--mi is the mass of one ice crystal [kg] |
|---|
| 387 | !--C is the capacitance of an ice crystal [m] |
|---|
| 388 | !--Svi is the supersaturation ratio equal to (qvc - qsat)/qsat [-] |
|---|
| 389 | !--R_v is the specific gas constant for humid air [J/kg/K] |
|---|
| 390 | !--T is the temperature [K] |
|---|
| 391 | !--esi is the saturation pressure w.r.t. ice [Pa] |
|---|
| 392 | !--Dv is the diffusivity of water vapor [m2/s] |
|---|
| 393 | !--Ls is the specific latent heat of sublimation [J/kg/K] |
|---|
| 394 | !--ka is the thermal conductivity of dry air [J/m/s/K] |
|---|
| 395 | ! |
|---|
| 396 | !--alpha is a coefficient to take into account the fact that during deposition, a water |
|---|
| 397 | !--molecule cannot join the crystal from everywhere, it must do so that the crystal stays |
|---|
| 398 | !--coherent (with the same structure). It has no impact for sublimation. |
|---|
| 399 | !--We fix alpha = depo_coef_cirrus (=0.5 by default following Lohmann et al. (2016)) |
|---|
| 400 | !--during deposition, and alpha = 1. during sublimation. |
|---|
| 401 | !--The capacitance of the ice crystals is proportional to a parameter capa_cond_cirrus |
|---|
| 402 | !-- C = capa_cond_cirrus * rm_ice |
|---|
| 403 | ! |
|---|
| 404 | !--We have qice = Nice * mi, where Nice is the ice crystal |
|---|
| 405 | !--number concentration per kg of moist air |
|---|
| 406 | !--HYPOTHESIS 1: the ice crystals are spherical, therefore |
|---|
| 407 | !-- mi = 4/3 * pi * rm_ice**3 * rho_ice |
|---|
| 408 | !--HYPOTHESIS 2: the ice crystals concentration is constant in the cloud |
|---|
| 409 | ! |
|---|
| 410 | !--The equation in terms of q_ice is valide locally, and the local ice water content |
|---|
| 411 | !--follows a Gamma distribution with a factor nu_iwc_pdf_lscp. Therefore, by |
|---|
| 412 | !--integrating the local equation over the PDF (entire cloud), a correcting factor |
|---|
| 413 | !--must be included, equal to |
|---|
| 414 | !-- corr_incld_depsub = GAMMA(nu + 1/3) / GAMMA(nu) / nu**(1/3) |
|---|
| 415 | !--NB. this is equal to about 0.9, hence the correction is not big |
|---|
| 416 | !--NB. to lighten the calculated, corr_incld_depsub is calculated in lmdz_lscp_ini |
|---|
| 417 | ! |
|---|
| 418 | !--As the deposition process does not create new ice crystals, |
|---|
| 419 | !--and because we assume a same rm_ice value for all crystals |
|---|
| 420 | !--therefore the sublimation process does not destroy ice crystals |
|---|
| 421 | !--(or, in a limit case, it destroys all ice crystals), then |
|---|
| 422 | !--Nice is a constant during the sublimation/deposition process |
|---|
| 423 | !--hence dmi = dqi |
|---|
| 424 | ! |
|---|
| 425 | !--The deposition equation then reads for qi the in-cloud ice water content: |
|---|
| 426 | !-- dqi/dt = alpha*4pi*capa_cond_cirrus*rm_ice*(qvc-qsat)/qsat * corr_incld_depsub & |
|---|
| 427 | !-- / ( R_v*T/esi/Dv + Ls/ka/T * (Ls/R_v/T - 1) ) * Nice |
|---|
| 428 | !-- dqi/dt = alpha*4pi*capa_cond_cirrus*Nice*corr_incld_depsub & |
|---|
| 429 | !-- / ( 4pi/3 N_ice rho_ice )**(1/3) & |
|---|
| 430 | !-- / ( R_v*T/esi/Dv + Ls/ka/T * (Ls*R_v/T - 1) ) & |
|---|
| 431 | !-- qi**(1/3) * (qvc - qsat) / qsat |
|---|
| 432 | !--and we have |
|---|
| 433 | !-- dqvc/dt = - alpha * kappa(T) * qi**(1/3) * (qvc - qsat) |
|---|
| 434 | !-- dqi/dt = alpha * kappa(T) * qi**(1/3) * (qvc - qsat) |
|---|
| 435 | ! |
|---|
| 436 | !--This system of equations can be resolved with an exact |
|---|
| 437 | !--explicit numerical integration, having one variable resolved |
|---|
| 438 | !--explicitly, the other exactly. qvc is always the variable solved exactly. |
|---|
| 439 | ! |
|---|
| 440 | !--kappa is computed as an initialisation constant, as it depends only |
|---|
| 441 | !--on temperature and other pre-computed values |
|---|
| 442 | pres_sat = qsat(i) / ( EPS_W + ( 1. - EPS_W ) * qsat(i) ) * pplay(i) |
|---|
| 443 | !--This formula for air thermal conductivity comes from Beard and Pruppacher (1971) |
|---|
| 444 | air_thermal_conduct = ( 5.69 + 0.017 * ( temp(i) - RTT ) ) * 1.e-3 * 4.184 |
|---|
| 445 | !--This formula for water vapor diffusivity comes from Hall and Pruppacher (1976) |
|---|
| 446 | water_vapor_diff = 0.211 * ( temp(i) / RTT )**1.94 * ( 101325. / pplay(i) ) * 1.e-4 |
|---|
| 447 | !--NB. the greater kappa_depsub, the more efficient is the |
|---|
| 448 | !--deposition/sublimation process |
|---|
| 449 | kappa_depsub = 4. * RPI * capa_cond_cirrus * N_ice_volume / rho * corr_incld_depsub & |
|---|
| 450 | / qsat(i) / ( 4. / 3. * RPI * N_ice_volume / rho * rho_ice )**(1./3.) & |
|---|
| 451 | / ( RV * temp(i) / water_vapor_diff / pres_sat & |
|---|
| 452 | + RLSTT / air_thermal_conduct / temp(i) * ( RLSTT / RV / temp(i) - 1. ) ) |
|---|
| 453 | |
|---|
| 454 | !--If contrails are activated |
|---|
| 455 | IF ( ok_plane_contrail ) THEN |
|---|
| 456 | contfra(i) = MAX(0., MIN(cldfra(i), contfra_in(i))) |
|---|
| 457 | perscontfra(i) = MAX(0., MIN(cldfra(i), perscontfra_in(i))) |
|---|
| 458 | qcont(i) = MAX(0., MIN(qcld(i), qva_in(i) + qia_in(i))) |
|---|
| 459 | |
|---|
| 460 | dcfa_ini(i) = 0. |
|---|
| 461 | dqia_ini(i) = 0. |
|---|
| 462 | dqta_ini(i) = 0. |
|---|
| 463 | dcfa_sub(i) = 0. |
|---|
| 464 | dqia_sub(i) = 0. |
|---|
| 465 | dqta_sub(i) = 0. |
|---|
| 466 | dcfa_cir(i) = 0. |
|---|
| 467 | dqta_cir(i) = 0. |
|---|
| 468 | dcfa_mix(i) = 0. |
|---|
| 469 | dqia_mix(i) = 0. |
|---|
| 470 | dqta_mix(i) = 0. |
|---|
| 471 | ELSE |
|---|
| 472 | contfra(i) = 0. |
|---|
| 473 | perscontfra(i) = 0. |
|---|
| 474 | qcont(i) = 0. |
|---|
| 475 | ENDIF |
|---|
| 476 | |
|---|
| 477 | |
|---|
| 478 | !---------------------------------------------------------------------- |
|---|
| 479 | !-- SUBLIMATION OF ICE AND DEPOSITION OF VAPOR IN THE CONTRAIL -- |
|---|
| 480 | !---------------------------------------------------------------------- |
|---|
| 481 | |
|---|
| 482 | !--If there is a contrail |
|---|
| 483 | IF ( contfra(i) .GT. eps ) THEN |
|---|
| 484 | !--We remove contrails from the main class |
|---|
| 485 | cldfra(i) = cldfra(i) - contfra(i) |
|---|
| 486 | qcld(i) = qcld(i) - qcont(i) |
|---|
| 487 | qvc(i) = qvc(i) - qsat(i) * contfra(i) |
|---|
| 488 | |
|---|
| 489 | !--The contrail is always adjusted to saturation |
|---|
| 490 | qiceincld = ( qcont(i) / contfra(i) - qsat(i) ) |
|---|
| 491 | |
|---|
| 492 | !--If the ice water content is too low, the cloud is purely sublimated |
|---|
| 493 | IF ( qiceincld .LT. eps ) THEN |
|---|
| 494 | dcfa_sub(i) = - contfra(i) |
|---|
| 495 | dqia_sub(i) = - qiceincld * contfra(i) |
|---|
| 496 | dqta_sub(i) = - qcont(i) |
|---|
| 497 | contfra(i) = 0. |
|---|
| 498 | qcont(i) = 0. |
|---|
| 499 | clrfra(i) = MIN(1., clrfra(i) - dcfa_sub(i)) |
|---|
| 500 | qclr(i) = qclr(i) - dqta_sub(i) |
|---|
| 501 | ENDIF ! qiceincld .LT. eps |
|---|
| 502 | ENDIF ! contfra(i) .GT. eps |
|---|
| 503 | |
|---|
| 504 | !--If there is a contrail induced cirrus, we save the ratio |
|---|
| 505 | perscontfra_ratio = perscontfra(i) / MAX(eps, cldfra(i)) |
|---|
| 506 | |
|---|
| 507 | |
|---|
| 508 | !------------------------------------------------------------------- |
|---|
| 509 | !-- SUBLIMATION OF ICE AND DEPOSITION OF VAPOR IN THE CLOUD -- |
|---|
| 510 | !------------------------------------------------------------------- |
|---|
| 511 | |
|---|
| 512 | !--If there is a cloud |
|---|
| 513 | IF ( cldfra(i) .GT. eps ) THEN |
|---|
| 514 | |
|---|
| 515 | qvapincld = qvc(i) / cldfra(i) |
|---|
| 516 | qiceincld = ( qcld(i) / cldfra(i) - qvapincld ) |
|---|
| 517 | |
|---|
| 518 | !--If the ice water content is too low, the cloud is purely sublimated |
|---|
| 519 | !--Most probably, we advected a cloud with no ice water content (possible |
|---|
| 520 | !--if the entire cloud precipited for example) |
|---|
| 521 | IF ( qiceincld .LT. eps ) THEN |
|---|
| 522 | dcf_sub(i) = - cldfra(i) |
|---|
| 523 | dqvc_sub(i) = - qvc(i) |
|---|
| 524 | dqi_sub(i) = - ( qcld(i) - qvc(i) ) |
|---|
| 525 | |
|---|
| 526 | cldfra(i) = 0. |
|---|
| 527 | qcld(i) = 0. |
|---|
| 528 | qvc(i) = 0. |
|---|
| 529 | clrfra(i) = MIN(1., clrfra(i) - dcf_sub(i)) |
|---|
| 530 | qclr(i) = qclr(i) - dqvc_sub(i) - dqi_sub(i) |
|---|
| 531 | |
|---|
| 532 | !--Else, the cloud is adjusted and sublimated |
|---|
| 533 | ELSE |
|---|
| 534 | |
|---|
| 535 | IF ( ok_unadjusted_clouds .AND. .NOT. ok_warm_cloud ) THEN |
|---|
| 536 | IF ( qvapincld .GE. qsat(i) ) THEN |
|---|
| 537 | !--If the cloud is initially supersaturated |
|---|
| 538 | !--Exact explicit integration (qvc exact, qice explicit) |
|---|
| 539 | tauinv_depsub = depo_coef_cirrus * qiceincld**(1./3.) * kappa_depsub |
|---|
| 540 | ELSE |
|---|
| 541 | !--If the cloud is initially subsaturated |
|---|
| 542 | !--Exact explicit integration (qvc exact, qice explicit) |
|---|
| 543 | !--Same but depo_coef_cirrus = 1 |
|---|
| 544 | tauinv_depsub = qiceincld**(1./3.) * kappa_depsub |
|---|
| 545 | ENDIF ! qvapincld .GT. qsat |
|---|
| 546 | qvapincld_new = qsat(i) + ( qvapincld - qsat(i) ) * EXP( - dtime * tauinv_depsub ) |
|---|
| 547 | !--If all the ice is sublimated |
|---|
| 548 | IF ( qvapincld_new .GE. ( qvapincld + qiceincld ) ) qvapincld_new = 0. |
|---|
| 549 | ELSE |
|---|
| 550 | !--We keep the saturation adjustment hypothesis, and the vapor in the |
|---|
| 551 | !--cloud is set equal to the saturation vapor |
|---|
| 552 | IF ( ( qvapincld + qiceincld ) .GT. qsat(i) ) THEN |
|---|
| 553 | qvapincld_new = qsat(i) |
|---|
| 554 | ELSE |
|---|
| 555 | qvapincld_new = 0. |
|---|
| 556 | ENDIF |
|---|
| 557 | ENDIF ! ok_unadjusted_clouds |
|---|
| 558 | |
|---|
| 559 | |
|---|
| 560 | !------------------------------------ |
|---|
| 561 | !-- DISSIPATION OF THE CLOUD -- |
|---|
| 562 | !------------------------------------ |
|---|
| 563 | !--Additionally to a minimum in cloud water vapor, we impose a minimum |
|---|
| 564 | !--in in-cloud ice water content. It is calculated following |
|---|
| 565 | !--Marti and Mauersberger (1993), see also Schiller et al. (2008) |
|---|
| 566 | qiceincld_min = qsati_diss(i) - qsat(i) |
|---|
| 567 | |
|---|
| 568 | !--If the dissipation process must be activated |
|---|
| 569 | IF ( ( qvapincld_new + qiceincld_min ) .GT. qvapincld ) THEN |
|---|
| 570 | !--Gamma distribution starting at qvapincld |
|---|
| 571 | pdf_shape = nu_iwc_pdf_lscp / qiceincld |
|---|
| 572 | pdf_y = pdf_shape * ( qvapincld_new + qiceincld_min - qvapincld ) |
|---|
| 573 | pdf_e1 = GAMMAINC ( nu_iwc_pdf_lscp , pdf_y ) |
|---|
| 574 | pdf_e2 = GAMMAINC ( nu_iwc_pdf_lscp + 1. , pdf_y ) |
|---|
| 575 | |
|---|
| 576 | !--Tendencies and diagnostics |
|---|
| 577 | dcf_sub(i) = - cldfra(i) * pdf_e1 |
|---|
| 578 | dqi_sub(i) = - cldfra(i) * pdf_e2 / pdf_shape |
|---|
| 579 | dqvc_sub(i) = dcf_sub(i) * qvapincld |
|---|
| 580 | |
|---|
| 581 | !--Add tendencies |
|---|
| 582 | cldfra(i) = MAX(0., cldfra(i) + dcf_sub(i)) |
|---|
| 583 | qcld(i) = qcld(i) + dqvc_sub(i) + dqi_sub(i) |
|---|
| 584 | qvc(i) = qvc(i) + dqvc_sub(i) |
|---|
| 585 | clrfra(i) = MIN(1., clrfra(i) - dcf_sub(i)) |
|---|
| 586 | qclr(i) = qclr(i) - dqvc_sub(i) - dqi_sub(i) |
|---|
| 587 | ELSEIF ( qvapincld_new .EQ. 0. ) THEN |
|---|
| 588 | !--If all the ice has been sublimated, we sublimate |
|---|
| 589 | !--completely the cloud and do not activate the dissipation |
|---|
| 590 | !--process |
|---|
| 591 | !--Tendencies and diagnostics |
|---|
| 592 | dcf_sub(i) = - cldfra(i) |
|---|
| 593 | dqvc_sub(i) = - qvc(i) |
|---|
| 594 | dqi_sub(i) = - ( qcld(i) - qvc(i) ) |
|---|
| 595 | |
|---|
| 596 | !--Add tendencies |
|---|
| 597 | cldfra(i) = 0. |
|---|
| 598 | qcld(i) = 0. |
|---|
| 599 | qvc(i) = 0. |
|---|
| 600 | clrfra(i) = MIN(1., clrfra(i) - dcf_sub(i)) |
|---|
| 601 | qclr(i) = qclr(i) - dqvc_sub(i) - dqi_sub(i) |
|---|
| 602 | ENDIF ! qvapincld_new .GT. qvapincld |
|---|
| 603 | |
|---|
| 604 | |
|---|
| 605 | !------------------------------------ |
|---|
| 606 | !-- PHASE ADJUSTMENT -- |
|---|
| 607 | !------------------------------------ |
|---|
| 608 | |
|---|
| 609 | IF ( qvapincld_new .GT. 0. ) THEN |
|---|
| 610 | !--Adjustment of the IWC to the new vapor in cloud |
|---|
| 611 | !--(this can be either positive or negative) |
|---|
| 612 | dqvc_adj(i) = ( qvapincld_new * cldfra(i) - qvc(i) ) |
|---|
| 613 | dqi_adj(i) = - dqvc_adj(i) |
|---|
| 614 | |
|---|
| 615 | !--Add tendencies |
|---|
| 616 | !--The vapor in the cloud is updated, but not qcld as it is constant |
|---|
| 617 | !--through this process, as well as cldfra which is unmodified |
|---|
| 618 | qvc(i) = MAX(0., MIN(qcld(i), qvc(i) + dqvc_adj(i))) |
|---|
| 619 | ENDIF |
|---|
| 620 | |
|---|
| 621 | ENDIF ! qiceincld .LT. eps |
|---|
| 622 | ENDIF ! cldfra(i) .GT. eps |
|---|
| 623 | |
|---|
| 624 | !--If there is a contrail induced cirrus, we restore it |
|---|
| 625 | perscontfra(i) = perscontfra_ratio * cldfra(i) |
|---|
| 626 | |
|---|
| 627 | |
|---|
| 628 | !-------------------------------------------------------------------------- |
|---|
| 629 | !-- CONDENSATION AND DIAGNOTICS OF SUB- AND SUPERSATURATED REGIONS -- |
|---|
| 630 | !-------------------------------------------------------------------------- |
|---|
| 631 | !--This section relies on a distribution of water in the clear-sky region of |
|---|
| 632 | !--the mesh. |
|---|
| 633 | |
|---|
| 634 | !--If there is a clear-sky region |
|---|
| 635 | IF ( clrfra(i) .GT. eps ) THEN |
|---|
| 636 | |
|---|
| 637 | !--New PDF |
|---|
| 638 | rhl_clr = qclr(i) / clrfra(i) / qsatl(i) * 100. |
|---|
| 639 | rhl_clr = MAX(0., MIN(150., rhl_clr)) |
|---|
| 640 | |
|---|
| 641 | !--Calculation of the properties of the PDF |
|---|
| 642 | !--Parameterization from IAGOS observations |
|---|
| 643 | !--pdf_alpha, pdf_scale and pdf_gamma will be reused below |
|---|
| 644 | |
|---|
| 645 | !--Coefficient for standard deviation: |
|---|
| 646 | !-- tuning coef * (clear sky area**0.25) * (function of temperature) |
|---|
| 647 | pdf_e1 = beta_pdf_lscp * ( clrfra(i) * cell_area(i) )**0.25 & |
|---|
| 648 | * MAX( temp(i) - temp_thresh_pdf_lscp, 0. ) |
|---|
| 649 | IF ( rhl_clr .GT. 50. ) THEN |
|---|
| 650 | pdf_std = ( pdf_e1 - std100_pdf_lscp ) * ( 100. - rhl_clr ) / 50. + std100_pdf_lscp |
|---|
| 651 | ELSE |
|---|
| 652 | pdf_std = pdf_e1 * rhl_clr / 50. |
|---|
| 653 | ENDIF |
|---|
| 654 | pdf_e3 = k0_pdf_lscp + kappa_pdf_lscp * MAX( temp_nowater - temp(i), 0. ) |
|---|
| 655 | pdf_alpha(i) = EXP( rhl_clr / 100. ) * pdf_e3 |
|---|
| 656 | pdf_alpha(i) = MIN(10., pdf_alpha(i)) !--Avoid overflows |
|---|
| 657 | |
|---|
| 658 | !IF ( ok_warm_cloud ) THEN |
|---|
| 659 | ! !--If the statistical scheme is activated, the standard deviation is adapted |
|---|
| 660 | ! !--to depend on the pressure level. It is multiplied by ratqs, so that near the |
|---|
| 661 | ! !--surface std is almost 0, and upper than about 450 hPa the std is left untouched |
|---|
| 662 | ! pdf_std = pdf_std * ratqs(i) |
|---|
| 663 | !ENDIF |
|---|
| 664 | |
|---|
| 665 | pdf_gamma(i) = GAMMA(1. + 1. / pdf_alpha(i)) |
|---|
| 666 | !--Barrier to avoid overflows |
|---|
| 667 | pdf_scale(i) = MAX(0.01, pdf_std / SQRT( & |
|---|
| 668 | GAMMA(1. + 2. / pdf_alpha(i)) - pdf_gamma(i)**2 )) |
|---|
| 669 | pdf_loc = rhl_clr - pdf_scale(i) * pdf_gamma(i) |
|---|
| 670 | |
|---|
| 671 | !--Calculation of the newly condensed water and fraction (pronostic) |
|---|
| 672 | !--Integration of the clear sky PDF between gamma_cond*qsat and +inf |
|---|
| 673 | !--NB. the calculated values are clear-sky averaged |
|---|
| 674 | |
|---|
| 675 | pdf_x = gamma_cond(i) * qsat(i) / qsatl(i) * 100. |
|---|
| 676 | pdf_y = LOG( MAX( pdf_x - pdf_loc, eps ) / pdf_scale(i) ) * pdf_alpha(i) |
|---|
| 677 | IF ( pdf_y .GT. 10. ) THEN !--Avoid overflows |
|---|
| 678 | pdf_fra_above_nuc = 0. |
|---|
| 679 | pdf_q_above_nuc = 0. |
|---|
| 680 | ELSEIF ( pdf_y .LT. -10. ) THEN |
|---|
| 681 | pdf_fra_above_nuc = 1. |
|---|
| 682 | pdf_q_above_nuc = qclr(i) / clrfra(i) |
|---|
| 683 | ELSE |
|---|
| 684 | pdf_y = EXP( pdf_y ) |
|---|
| 685 | pdf_e3 = GAMMAINC ( 1. + 1. / pdf_alpha(i) , pdf_y ) |
|---|
| 686 | pdf_e3 = pdf_scale(i) * ( 1. - pdf_e3 ) * pdf_gamma(i) |
|---|
| 687 | pdf_fra_above_nuc = EXP( - pdf_y ) |
|---|
| 688 | pdf_q_above_nuc = ( pdf_e3 + pdf_loc * pdf_fra_above_nuc ) * qsatl(i) / 100. |
|---|
| 689 | ENDIF |
|---|
| 690 | |
|---|
| 691 | IF ( pdf_fra_above_nuc .GT. eps ) THEN |
|---|
| 692 | |
|---|
| 693 | dcf_con(i) = clrfra(i) * pdf_fra_above_nuc |
|---|
| 694 | dqt_con = clrfra(i) * pdf_q_above_nuc |
|---|
| 695 | |
|---|
| 696 | !--Barriers (should be useless |
|---|
| 697 | dcf_con(i) = MIN(dcf_con(i), clrfra(i)) |
|---|
| 698 | dqt_con = MIN(dqt_con, qclr(i)) |
|---|
| 699 | |
|---|
| 700 | IF ( ok_unadjusted_clouds .AND. .NOT. ok_warm_cloud ) THEN |
|---|
| 701 | !--Here, the initial vapor in the cloud is gamma_cond*qsat, and we compute |
|---|
| 702 | !--the new vapor qvapincld. The timestep is divided by two because we do not |
|---|
| 703 | !--know when the condensation occurs |
|---|
| 704 | qvapincld = gamma_cond(i) * qsat(i) |
|---|
| 705 | qiceincld = dqt_con / dcf_con(i) - gamma_cond(i) * qsat(i) |
|---|
| 706 | tauinv_depsub = depo_coef_cirrus * qiceincld**(1./3.) * kappa_depsub |
|---|
| 707 | qvapincld_new = qsat(i) + ( qvapincld - qsat(i) ) & |
|---|
| 708 | * EXP( - dtime / 2. * tauinv_depsub ) |
|---|
| 709 | ELSE |
|---|
| 710 | !--We keep the saturation adjustment hypothesis, and the vapor in the |
|---|
| 711 | !--newly formed cloud is set equal to the saturation vapor. |
|---|
| 712 | qvapincld_new = qsat(i) |
|---|
| 713 | ENDIF |
|---|
| 714 | |
|---|
| 715 | !--Tendency on cloud vapor and diagnostic |
|---|
| 716 | dqvc_con(i) = qvapincld_new * dcf_con(i) |
|---|
| 717 | dqi_con(i) = dqt_con - dqvc_con(i) |
|---|
| 718 | |
|---|
| 719 | !--Add tendencies |
|---|
| 720 | cldfra(i) = MIN(1., cldfra(i) + dcf_con(i)) |
|---|
| 721 | qcld(i) = qcld(i) + dqt_con |
|---|
| 722 | qvc(i) = qvc(i) + dqvc_con(i) |
|---|
| 723 | clrfra(i) = MAX(0., clrfra(i) - dcf_con(i)) |
|---|
| 724 | qclr(i) = qclr(i) - dqt_con |
|---|
| 725 | |
|---|
| 726 | ENDIF ! pdf_fra_above_nuc .GT. eps |
|---|
| 727 | ELSE |
|---|
| 728 | !--Default value for the clear sky distribution: homogeneous distribution |
|---|
| 729 | pdf_alpha(i) = 1. |
|---|
| 730 | pdf_gamma(i) = 1. |
|---|
| 731 | pdf_scale(i) = 0.01 |
|---|
| 732 | ENDIF ! clrfra(i) .GT. eps |
|---|
| 733 | |
|---|
| 734 | |
|---|
| 735 | !--If there is a contrail induced cirrus, we save the ratio |
|---|
| 736 | perscontfra_ratio = perscontfra(i) / MAX(eps, cldfra(i)) |
|---|
| 737 | |
|---|
| 738 | !-------------------------------------- |
|---|
| 739 | !-- CLOUD MIXING -- |
|---|
| 740 | !-------------------------------------- |
|---|
| 741 | !--This process mixes the cloud with its surroundings: the subsaturated clear sky, |
|---|
| 742 | !--and the supersaturated clear sky. It is activated if the cloud is big enough, |
|---|
| 743 | !--but does not cover the entire mesh. |
|---|
| 744 | ! |
|---|
| 745 | IF ( ( cldfra(i) .GT. eps ) .AND. ( clrfra(i) .GT. eps ) ) THEN |
|---|
| 746 | |
|---|
| 747 | !-- PART 1 - TURBULENT DIFFUSION |
|---|
| 748 | |
|---|
| 749 | !--Clouds within the mesh are assumed to be ellipses. The length of the |
|---|
| 750 | !--semi-major axis is a and the length of the semi-minor axis is b. |
|---|
| 751 | !--N_cld_mix is the number of clouds in contact with clear sky, and can be non-integer. |
|---|
| 752 | !--In particular, it is 0 if cldfra = 1. |
|---|
| 753 | !--clouds_perim is the total perimeter of the clouds within the mesh, |
|---|
| 754 | !--not considering interfaces with other meshes (only the interfaces with clear |
|---|
| 755 | !--sky are taken into account). |
|---|
| 756 | !-- |
|---|
| 757 | !--The area of each cloud is A = a * b * RPI, |
|---|
| 758 | !--and the perimeter of each cloud is |
|---|
| 759 | !-- P ~= RPI * ( 3 * (a + b) - SQRT( (3 * a + b) * (a + 3 * b) ) ) |
|---|
| 760 | !-- |
|---|
| 761 | !--With cell_area the area of the cell, we have: |
|---|
| 762 | !-- cldfra = A * N_cld_mix / cell_area |
|---|
| 763 | !-- clouds_perim = P * N_cld_mix |
|---|
| 764 | !-- |
|---|
| 765 | !--We assume that the ratio between b and a is a function of |
|---|
| 766 | !--cldfra such that it is 1 for cldfra = 1 and it is low for little cldfra, because |
|---|
| 767 | !--if cldfra is low the clouds are linear, and if cldfra is high, the clouds |
|---|
| 768 | !--are spherical. |
|---|
| 769 | !-- b / a = bovera = MAX(0.1, cldfra) |
|---|
| 770 | bovera = MAX(0.1, cldfra(i)) |
|---|
| 771 | !--P / a is a function of b / a only, that we can calculate |
|---|
| 772 | !-- P / a = RPI * ( 3. * ( 1. + b / a ) - SQRT( (3. + b / a) * (1. + 3. * b / a) ) ) |
|---|
| 773 | Povera = RPI * ( 3. * (1. + bovera) - SQRT( (3. + bovera) * (1. + 3. * bovera) ) ) |
|---|
| 774 | !--The clouds perimeter is imposed using the formula from Morcrette 2012, |
|---|
| 775 | !--based on observations. |
|---|
| 776 | !-- clouds_perim / cell_area = N_cld_mix * ( P / a * a ) / cell_area = coef_mix_lscp * cldfra * ( 1. - cldfra ) |
|---|
| 777 | !--With cldfra = a * ( b / a * a ) * RPI * N_cld_mix / cell_area, we have: |
|---|
| 778 | !-- cldfra = a * b / a * RPI / (P / a) * coef_mix_lscp * cldfra * ( 1. - cldfra ) |
|---|
| 779 | !-- a = (P / a) / ( coef_mix_lscp * RPI * ( 1. - cldfra ) * (b / a) ) |
|---|
| 780 | a_mix = Povera / coef_mixing_lscp / RPI / ( 1. - cldfra(i) ) / bovera |
|---|
| 781 | !--and finally, |
|---|
| 782 | !-- N_cld_mix = coef_mix_lscp * cldfra * ( 1. - cldfra ) * cell_area / ( P / a * a ) |
|---|
| 783 | N_cld_mix = coef_mixing_lscp * cldfra(i) * ( 1. - cldfra(i) ) * cell_area(i) & |
|---|
| 784 | / Povera / a_mix |
|---|
| 785 | |
|---|
| 786 | !--The time required for turbulent diffusion to homogenize a region of size |
|---|
| 787 | !--L_mix is defined as (L_mix**2/tke_dissip)**(1./3.) (Pope, 2000; Field et al., 2014) |
|---|
| 788 | !--We compute L_mix and assume that the cloud is mixed over this length |
|---|
| 789 | L_mix = SQRT( dtime**3 * pbl_eps(i) ) |
|---|
| 790 | !--The mixing length cannot be greater than the semi-minor axis. In this case, |
|---|
| 791 | !--the entire cloud is mixed. |
|---|
| 792 | L_mix = MIN(L_mix, a_mix * bovera) |
|---|
| 793 | |
|---|
| 794 | !--The fraction of clear sky mixed is |
|---|
| 795 | !-- N_cld_mix * ( (a + L_mix) * (b + L_mix) - a * b ) * RPI / cell_area |
|---|
| 796 | clrfra_mix = N_cld_mix * RPI / cell_area(i) & |
|---|
| 797 | * ( a_mix * ( 1. + bovera ) * L_mix + L_mix**2 ) |
|---|
| 798 | !--The fraction of clear sky mixed is |
|---|
| 799 | !-- N_cld_mix * ( a * b - (a - L_mix) * (b - L_mix) ) * RPI / cell_area |
|---|
| 800 | cldfra_mix = N_cld_mix * RPI / cell_area(i) & |
|---|
| 801 | * ( a_mix * ( 1. + bovera ) * L_mix - L_mix**2 ) |
|---|
| 802 | |
|---|
| 803 | |
|---|
| 804 | !-- PART 2 - SHEARING |
|---|
| 805 | |
|---|
| 806 | !--The clouds are then sheared. We keep the shape and number |
|---|
| 807 | !--assumptions from before. The clouds are sheared along their |
|---|
| 808 | !--semi-major axis (a_mix), on the entire cell heigh dz. |
|---|
| 809 | !--The increase in size is |
|---|
| 810 | L_shear = coef_shear_lscp * shear(i) * dz * dtime |
|---|
| 811 | !--therefore, the fraction of clear sky mixed is |
|---|
| 812 | !-- N_cld_mix * ( (a + L_shear) * b - a * b ) * RPI / 2. / cell_area |
|---|
| 813 | !--and the fraction of cloud mixed is |
|---|
| 814 | !-- N_cld_mix * ( (a * b) - (a - L_shear) * b ) * RPI / 2. / cell_area |
|---|
| 815 | !--(note that they are equal) |
|---|
| 816 | shear_fra = RPI * L_shear * a_mix * bovera / 2. * N_cld_mix / cell_area(i) |
|---|
| 817 | !--and the environment and cloud mixed fractions are the same, |
|---|
| 818 | !--which we add to the previous calculated mixed fractions. |
|---|
| 819 | !--We therefore assume that the sheared clouds and the turbulent |
|---|
| 820 | !--mixed clouds are different. |
|---|
| 821 | clrfra_mix = clrfra_mix + shear_fra |
|---|
| 822 | cldfra_mix = cldfra_mix + shear_fra |
|---|
| 823 | |
|---|
| 824 | !-- PART 3 - CALCULATION OF THE MIXING PROPERTIES |
|---|
| 825 | |
|---|
| 826 | clrfra_mix = MAX(eps, MIN(clrfra(i), clrfra_mix)) |
|---|
| 827 | cldfra_mix = MAX(eps, MIN(cldfra(i), cldfra_mix)) |
|---|
| 828 | |
|---|
| 829 | !--We compute the limit vapor in clear sky where the mixed cloud could not |
|---|
| 830 | !--survive if all the ice crystals were sublimated. Note that here we assume, |
|---|
| 831 | !--for growth or reduction of the cloud, that the mixed cloud is adjusted |
|---|
| 832 | !--to saturation, ie the vapor in the mixed cloud is qsat. This is only a |
|---|
| 833 | !--diagnostic, and if the cloud size is increased, we add the new vapor to the |
|---|
| 834 | !--cloud's vapor without condensing or sublimating ice crystals |
|---|
| 835 | IF ( ok_unadjusted_clouds .AND. .NOT. ok_warm_cloud ) THEN |
|---|
| 836 | qiceinmix = ( qcld(i) - qvc(i) ) / cldfra(i) / ( 1. + clrfra_mix / cldfra_mix ) |
|---|
| 837 | tauinv_depsub = qiceinmix**(1./3.) * kappa_depsub |
|---|
| 838 | qvapinmix_lim = qsat(i) - qiceinmix / ( 1. - EXP( - dtime * tauinv_depsub ) ) |
|---|
| 839 | qvapinclr_lim = qvapinmix_lim * ( 1. + cldfra_mix / clrfra_mix ) & |
|---|
| 840 | - qvc(i) / cldfra(i) * cldfra_mix / clrfra_mix |
|---|
| 841 | ELSE |
|---|
| 842 | !--NB. if tau_depsub = 0 (ie tauinv_depsub = inf), we get the same result as above |
|---|
| 843 | qvapinclr_lim = qsat(i) * ( 1. + cldfra_mix / clrfra_mix ) & |
|---|
| 844 | - qcld(i) / cldfra(i) * cldfra_mix / clrfra_mix |
|---|
| 845 | ENDIF |
|---|
| 846 | |
|---|
| 847 | IF ( qvapinclr_lim .LT. 0. ) THEN |
|---|
| 848 | !--Whatever we do, the cloud will increase in size |
|---|
| 849 | dcf_mix(i) = clrfra_mix |
|---|
| 850 | dqvc_mix(i) = clrfra_mix * qclr(i) / clrfra(i) |
|---|
| 851 | ELSE |
|---|
| 852 | !--We then calculate the clear sky part where the humidity is lower than |
|---|
| 853 | !--qvapinclr_lim, and the part where it is higher than qvapinclr_lim |
|---|
| 854 | !--This is the clear-sky PDF calculated in the condensation section. Note |
|---|
| 855 | !--that if we are here, we necessarily went through the condensation part |
|---|
| 856 | !--because the clear sky fraction can only be reduced by condensation. |
|---|
| 857 | !--Thus the `pdf_xxx` variables are well defined. |
|---|
| 858 | |
|---|
| 859 | rhl_clr = qclr(i) / clrfra(i) / qsatl(i) * 100. |
|---|
| 860 | pdf_loc = rhl_clr - pdf_scale(i) * pdf_gamma(i) |
|---|
| 861 | pdf_x = qvapinclr_lim / qsatl(i) * 100. |
|---|
| 862 | pdf_y = LOG( MAX( pdf_x - pdf_loc, eps ) / pdf_scale(i) ) * pdf_alpha(i) |
|---|
| 863 | IF ( pdf_y .GT. 10. ) THEN !--Avoid overflows |
|---|
| 864 | pdf_fra_above_lim = 0. |
|---|
| 865 | pdf_q_above_lim = 0. |
|---|
| 866 | ELSEIF ( pdf_y .LT. -10. ) THEN |
|---|
| 867 | pdf_fra_above_lim = clrfra(i) |
|---|
| 868 | pdf_q_above_lim = qclr(i) |
|---|
| 869 | ELSE |
|---|
| 870 | pdf_y = EXP( pdf_y ) |
|---|
| 871 | pdf_e3 = GAMMAINC ( 1. + 1. / pdf_alpha(i) , pdf_y ) |
|---|
| 872 | pdf_e3 = pdf_scale(i) * ( 1. - pdf_e3 ) * pdf_gamma(i) |
|---|
| 873 | pdf_fra_above_lim = EXP( - pdf_y ) * clrfra(i) |
|---|
| 874 | pdf_q_above_lim = ( pdf_e3 * clrfra(i) & |
|---|
| 875 | + pdf_loc * pdf_fra_above_lim ) * qsatl(i) / 100. |
|---|
| 876 | ENDIF |
|---|
| 877 | |
|---|
| 878 | pdf_fra_below_lim = clrfra(i) - pdf_fra_above_lim |
|---|
| 879 | |
|---|
| 880 | !--sigma_mix is the ratio of the surroundings of the clouds where mixing |
|---|
| 881 | !--increases the size of the cloud, to the total surroundings of the clouds. |
|---|
| 882 | !--This implies that ( 1. - sigma_mix ) quantifies the ratio where mixing |
|---|
| 883 | !--decreases the size of the clouds |
|---|
| 884 | sigma_mix = pdf_fra_above_lim / ( pdf_fra_below_lim + pdf_fra_above_lim ) |
|---|
| 885 | |
|---|
| 886 | IF ( pdf_fra_above_lim .GT. eps ) THEN |
|---|
| 887 | dcf_mix(i) = clrfra_mix * sigma_mix |
|---|
| 888 | dqvc_mix(i) = clrfra_mix * sigma_mix * pdf_q_above_lim / pdf_fra_above_lim |
|---|
| 889 | ENDIF |
|---|
| 890 | |
|---|
| 891 | IF ( pdf_fra_below_lim .GT. eps ) THEN |
|---|
| 892 | dcf_mix(i) = dcf_mix(i) - cldfra_mix * ( 1. - sigma_mix ) |
|---|
| 893 | dqvc_mix(i) = dqvc_mix(i) - cldfra_mix * ( 1. - sigma_mix ) & |
|---|
| 894 | * qvc(i) / cldfra(i) |
|---|
| 895 | dqi_mix(i) = dqi_mix(i) - cldfra_mix * ( 1. - sigma_mix ) & |
|---|
| 896 | * ( qcld(i) - qvc(i) ) / cldfra(i) |
|---|
| 897 | ENDIF |
|---|
| 898 | |
|---|
| 899 | ENDIF |
|---|
| 900 | ENDIF ! ( cldfra(i) .GT. eps ) .AND. ( clrfra(i) .GT. eps ) |
|---|
| 901 | |
|---|
| 902 | !-------------------------------------- |
|---|
| 903 | !-- CONTRAIL MIXING -- |
|---|
| 904 | !-------------------------------------- |
|---|
| 905 | |
|---|
| 906 | IF ( ( contfra(i) .GT. eps ) .AND. ( clrfra(i) .GT. eps ) ) THEN |
|---|
| 907 | |
|---|
| 908 | !-- PART 1 - TURBULENT DIFFUSION |
|---|
| 909 | |
|---|
| 910 | !--Clouds within the mesh are assumed to be ellipses. The length of the |
|---|
| 911 | !--semi-major axis is a and the length of the semi-minor axis is b. |
|---|
| 912 | !--N_cld_mix is the number of clouds in contact with clear sky, and can be non-integer. |
|---|
| 913 | !--In particular, it is 0 if cldfra = 1. |
|---|
| 914 | !--clouds_perim is the total perimeter of the clouds within the mesh, |
|---|
| 915 | !--not considering interfaces with other meshes (only the interfaces with clear |
|---|
| 916 | !--sky are taken into account). |
|---|
| 917 | !-- |
|---|
| 918 | !--The area of each cloud is A = a * b * RPI, |
|---|
| 919 | !--and the perimeter of each cloud is |
|---|
| 920 | !-- P ~= RPI * ( 3 * (a + b) - SQRT( (3 * a + b) * (a + 3 * b) ) ) |
|---|
| 921 | !-- |
|---|
| 922 | !--With cell_area the area of the cell, we have: |
|---|
| 923 | !-- cldfra = A * N_cld_mix / cell_area |
|---|
| 924 | !-- clouds_perim = P * N_cld_mix |
|---|
| 925 | !-- |
|---|
| 926 | !--We assume that the ratio between b and a is a function of |
|---|
| 927 | !--cldfra such that it is 1 for cldfra = 1 and it is low for little cldfra, because |
|---|
| 928 | !--if cldfra is low the clouds are linear, and if cldfra is high, the clouds |
|---|
| 929 | !--are spherical. |
|---|
| 930 | !-- b / a = bovera = MAX(0.1, cldfra) |
|---|
| 931 | bovera = aspect_ratio_contrails |
|---|
| 932 | !--P / a is a function of b / a only, that we can calculate |
|---|
| 933 | !-- P / a = RPI * ( 3. * ( 1. + b / a ) - SQRT( (3. + b / a) * (1. + 3. * b / a) ) ) |
|---|
| 934 | Povera = RPI * ( 3. * (1. + bovera) - SQRT( (3. + bovera) * (1. + 3. * bovera) ) ) |
|---|
| 935 | |
|---|
| 936 | !--The clouds perimeter is imposed using the formula from Morcrette 2012, |
|---|
| 937 | !--based on observations. |
|---|
| 938 | !-- clouds_perim / cell_area = N_cld_mix * ( P / a * a ) / cell_area = coef_mix_lscp * cldfra * ( 1. - cldfra ) |
|---|
| 939 | !--With cldfra = a * ( b / a * a ) * RPI * N_cld_mix / cell_area, we have: |
|---|
| 940 | !-- cldfra = a * b / a * RPI / (P / a) * coef_mix_lscp * cldfra * ( 1. - cldfra ) |
|---|
| 941 | !-- a = (P / a) / ( coef_mix_lscp * RPI * ( 1. - cldfra ) * (b / a) ) |
|---|
| 942 | a_mix = Povera / coef_mixing_contrails / RPI / ( 1. - contfra(i) ) / bovera |
|---|
| 943 | !--and finally, |
|---|
| 944 | !-- N_cld_mix = coef_mix_lscp * cldfra * ( 1. - cldfra ) * cell_area / ( P / a * a ) |
|---|
| 945 | N_cld_mix = coef_mixing_contrails * contfra(i) * ( 1. - contfra(i) ) * cell_area(i) & |
|---|
| 946 | / Povera / a_mix |
|---|
| 947 | |
|---|
| 948 | !--The time required for turbulent diffusion to homogenize a region of size |
|---|
| 949 | !--L_mix is defined as (L_mix**2/tke_dissip)**(1./3.) (Pope, 2000; Field et al., 2014) |
|---|
| 950 | !--We compute L_mix and assume that the cloud is mixed over this length |
|---|
| 951 | L_mix = SQRT( dtime**3 * pbl_eps(i) ) |
|---|
| 952 | !--The mixing length cannot be greater than the semi-minor axis. In this case, |
|---|
| 953 | !--the entire cloud is mixed. |
|---|
| 954 | L_mix = MIN(L_mix, a_mix * bovera) |
|---|
| 955 | |
|---|
| 956 | !--The fraction of clear sky mixed is |
|---|
| 957 | !-- N_cld_mix * ( (a + L_mix) * (b + L_mix) - a * b ) * RPI / cell_area |
|---|
| 958 | clrfra_mix = N_cld_mix * RPI / cell_area(i) & |
|---|
| 959 | * ( a_mix * ( 1. + bovera ) * L_mix + L_mix**2 ) |
|---|
| 960 | !--The fraction of clear sky mixed is |
|---|
| 961 | !-- N_cld_mix * ( a * b - (a - L_mix) * (b - L_mix) ) * RPI / cell_area |
|---|
| 962 | cldfra_mix = N_cld_mix * RPI / cell_area(i) & |
|---|
| 963 | * ( a_mix * ( 1. + bovera ) * L_mix - L_mix**2 ) |
|---|
| 964 | |
|---|
| 965 | |
|---|
| 966 | !-- PART 2 - SHEARING |
|---|
| 967 | |
|---|
| 968 | !--The clouds are then sheared. We keep the shape and number |
|---|
| 969 | !--assumptions from before. The clouds are sheared with a random orientation |
|---|
| 970 | !--of the wind, on average we assume that the wind and the semi-major axis |
|---|
| 971 | !--make a 45 degrees angle. Moreover, the contrails only mix |
|---|
| 972 | !--along their semi-minor axis (b), because it is easier to compute. |
|---|
| 973 | !--With this, the clouds increase in size along b only, by a factor |
|---|
| 974 | !--L_shear * SQRT(2.) / 2. (to account for the 45 degrees orientation of the wind) |
|---|
| 975 | L_shear = coef_shear_contrails * shear(i) * dz * dtime |
|---|
| 976 | !--therefore, the fraction of clear sky mixed is |
|---|
| 977 | !-- N_cld_mix * ( a * (b + L_shear * SQRT(2.) / 2.) - a * b ) * RPI / 2. / cell_area |
|---|
| 978 | !--and the fraction of cloud mixed is |
|---|
| 979 | !-- N_cld_mix * ( a * b - a * (b - L_shear * SQRT(2.) / 2.) ) * RPI / 2. / cell_area |
|---|
| 980 | !--(note that they are equal) |
|---|
| 981 | shear_fra = RPI * L_shear * a_mix * SQRT(2.) / 2. / 2. * N_cld_mix / cell_area(i) |
|---|
| 982 | !--and the environment and cloud mixed fractions are the same, |
|---|
| 983 | !--which we add to the previous calculated mixed fractions. |
|---|
| 984 | !--We therefore assume that the sheared clouds and the turbulent |
|---|
| 985 | !--mixed clouds are different. |
|---|
| 986 | clrfra_mix = clrfra_mix + shear_fra |
|---|
| 987 | cldfra_mix = cldfra_mix + shear_fra |
|---|
| 988 | |
|---|
| 989 | |
|---|
| 990 | !-- PART 3 - CALCULATION OF THE MIXING PROPERTIES |
|---|
| 991 | |
|---|
| 992 | clrfra_mix = MAX(eps, MIN(clrfra(i), clrfra_mix)) |
|---|
| 993 | cldfra_mix = MAX(eps, MIN(cldfra(i), cldfra_mix)) |
|---|
| 994 | |
|---|
| 995 | !--We compute the limit vapor in clear sky where the mixed cloud could not |
|---|
| 996 | !--survive if all the ice crystals were sublimated. Note that here we assume, |
|---|
| 997 | !--for growth or reduction of the cloud, that the mixed cloud is adjusted |
|---|
| 998 | !--to saturation, ie the vapor in the mixed cloud is qsat. This is only a |
|---|
| 999 | !--diagnostic, and if the cloud size is increased, we add the new vapor to the |
|---|
| 1000 | !--cloud's vapor without condensing or sublimating ice crystals |
|---|
| 1001 | qvapinclr_lim = qsat(i) * ( 1. + cldfra_mix / clrfra_mix ) & |
|---|
| 1002 | - qcont(i) / contfra(i) * cldfra_mix / clrfra_mix |
|---|
| 1003 | |
|---|
| 1004 | IF ( qvapinclr_lim .LT. 0. ) THEN |
|---|
| 1005 | !--Whatever we do, the cloud will increase in size |
|---|
| 1006 | dcfa_mix(i) = clrfra_mix |
|---|
| 1007 | dqta_mix(i) = clrfra_mix * qclr(i) / clrfra(i) |
|---|
| 1008 | ELSE |
|---|
| 1009 | !--We then calculate the clear sky part where the humidity is lower than |
|---|
| 1010 | !--qvapinclr_lim, and the part where it is higher than qvapinclr_lim |
|---|
| 1011 | !--This is the clear-sky PDF calculated in the condensation section. Note |
|---|
| 1012 | !--that if we are here, we necessarily went through the condensation part |
|---|
| 1013 | !--because the clear sky fraction can only be reduced by condensation. |
|---|
| 1014 | !--Thus the `pdf_xxx` variables are well defined. |
|---|
| 1015 | |
|---|
| 1016 | rhl_clr = qclr(i) / clrfra(i) / qsatl(i) * 100. |
|---|
| 1017 | pdf_loc = rhl_clr - pdf_scale(i) * pdf_gamma(i) |
|---|
| 1018 | pdf_x = qvapinclr_lim / qsatl(i) * 100. |
|---|
| 1019 | pdf_y = LOG( MAX( pdf_x - pdf_loc, eps ) / pdf_scale(i) ) * pdf_alpha(i) |
|---|
| 1020 | IF ( pdf_y .GT. 10. ) THEN !--Avoid overflows |
|---|
| 1021 | pdf_fra_above_lim = 0. |
|---|
| 1022 | pdf_q_above_lim = 0. |
|---|
| 1023 | ELSEIF ( pdf_y .LT. -10. ) THEN |
|---|
| 1024 | pdf_fra_above_lim = clrfra(i) |
|---|
| 1025 | pdf_q_above_lim = qclr(i) |
|---|
| 1026 | ELSE |
|---|
| 1027 | pdf_y = EXP( pdf_y ) |
|---|
| 1028 | pdf_e3 = GAMMAINC ( 1. + 1. / pdf_alpha(i) , pdf_y ) |
|---|
| 1029 | pdf_e3 = pdf_scale(i) * ( 1. - pdf_e3 ) * pdf_gamma(i) |
|---|
| 1030 | pdf_fra_above_lim = EXP( - pdf_y ) * clrfra(i) |
|---|
| 1031 | pdf_q_above_lim = ( pdf_e3 * clrfra(i) & |
|---|
| 1032 | + pdf_loc * pdf_fra_above_lim ) * qsatl(i) / 100. |
|---|
| 1033 | ENDIF |
|---|
| 1034 | |
|---|
| 1035 | pdf_fra_below_lim = clrfra(i) - pdf_fra_above_lim |
|---|
| 1036 | |
|---|
| 1037 | !--sigma_mix is the ratio of the surroundings of the clouds where mixing |
|---|
| 1038 | !--increases the size of the cloud, to the total surroundings of the clouds. |
|---|
| 1039 | !--This implies that ( 1. - sigma_mix ) quantifies the ratio where mixing |
|---|
| 1040 | !--decreases the size of the clouds |
|---|
| 1041 | !--For aviation, we increase the chance that the air surrounding contrails |
|---|
| 1042 | !--is moist. This is quantified with chi_mixing_contrails |
|---|
| 1043 | sigma_mix = chi_mixing_contrails * pdf_fra_above_lim & |
|---|
| 1044 | / ( pdf_fra_below_lim + chi_mixing_contrails * pdf_fra_above_lim ) |
|---|
| 1045 | |
|---|
| 1046 | IF ( pdf_fra_above_lim .GT. eps ) THEN |
|---|
| 1047 | dcfa_mix(i) = clrfra_mix * sigma_mix |
|---|
| 1048 | dqta_mix(i) = clrfra_mix * sigma_mix * pdf_q_above_lim / pdf_fra_above_lim |
|---|
| 1049 | ENDIF |
|---|
| 1050 | |
|---|
| 1051 | IF ( pdf_fra_below_lim .GT. eps ) THEN |
|---|
| 1052 | qvapincld = qcont(i) / contfra(i) |
|---|
| 1053 | qiceincld = qvapincld - qsat(i) |
|---|
| 1054 | dcfa_mix(i) = dcfa_mix(i) - cldfra_mix * ( 1. - sigma_mix ) |
|---|
| 1055 | dqta_mix(i) = dqta_mix(i) - cldfra_mix * ( 1. - sigma_mix ) * qvapincld |
|---|
| 1056 | dqia_mix(i) = dqia_mix(i) - cldfra_mix * ( 1. - sigma_mix ) * qiceincld |
|---|
| 1057 | ENDIF |
|---|
| 1058 | |
|---|
| 1059 | ENDIF |
|---|
| 1060 | ENDIF ! ( contfra(i) .GT. eps ) .AND. ( clrfra(i) .GT. eps ) |
|---|
| 1061 | |
|---|
| 1062 | IF ( contfra(i) .GT. eps ) THEN |
|---|
| 1063 | !--We balance the mixing tendencies between the different cloud classes |
|---|
| 1064 | mixed_fraction = dcf_mix(i) + dcfa_mix(i) |
|---|
| 1065 | IF ( mixed_fraction .GT. clrfra(i) ) THEN |
|---|
| 1066 | mixed_fraction = clrfra(i) / mixed_fraction |
|---|
| 1067 | dcf_mix(i) = dcf_mix(i) * mixed_fraction |
|---|
| 1068 | dqvc_mix(i) = dqvc_mix(i) * mixed_fraction |
|---|
| 1069 | dqi_mix(i) = dqi_mix(i) * mixed_fraction |
|---|
| 1070 | dcfa_mix(i) = dcfa_mix(i) * mixed_fraction |
|---|
| 1071 | dqta_mix(i) = dqta_mix(i) * mixed_fraction |
|---|
| 1072 | ENDIF |
|---|
| 1073 | |
|---|
| 1074 | !--Add tendencies |
|---|
| 1075 | contfra(i) = contfra(i) + dcfa_mix(i) |
|---|
| 1076 | qcont(i) = qcont(i) + dqta_mix(i) |
|---|
| 1077 | clrfra(i) = clrfra(i) - dcfa_mix(i) |
|---|
| 1078 | qclr(i) = qclr(i) - dqta_mix(i) |
|---|
| 1079 | ENDIF |
|---|
| 1080 | |
|---|
| 1081 | !--Add tendencies |
|---|
| 1082 | cldfra(i) = cldfra(i) + dcf_mix(i) |
|---|
| 1083 | qcld(i) = qcld(i) + dqvc_mix(i) + dqi_mix(i) |
|---|
| 1084 | qvc(i) = qvc(i) + dqvc_mix(i) |
|---|
| 1085 | clrfra(i) = clrfra(i) - dcf_mix(i) |
|---|
| 1086 | qclr(i) = qclr(i) - dqvc_mix(i) - dqi_mix(i) |
|---|
| 1087 | |
|---|
| 1088 | !--If there is a contrail induced cirrus, we restore it |
|---|
| 1089 | perscontfra(i) = perscontfra_ratio * cldfra(i) |
|---|
| 1090 | |
|---|
| 1091 | |
|---|
| 1092 | !--------------------------------------- |
|---|
| 1093 | !-- ICE SEDIMENTATION -- |
|---|
| 1094 | !--------------------------------------- |
|---|
| 1095 | ! |
|---|
| 1096 | !--If ice supersaturation is activated, the cloud properties are prognostic. |
|---|
| 1097 | !--The falling ice is then partly considered a new cloud in the gridbox. |
|---|
| 1098 | !--BEWARE with this parameterisation, we can create a new cloud with a much |
|---|
| 1099 | !--different ice water content and water vapor content than the existing cloud |
|---|
| 1100 | !--(if it exists). This implies than unphysical fluxes of ice and vapor |
|---|
| 1101 | !--occur between the existing cloud and the newly formed cloud (from sedimentation). |
|---|
| 1102 | !--Note also that currently, the precipitation scheme assume a maximum |
|---|
| 1103 | !--random overlap, meaning that the new formed clouds will not be affected |
|---|
| 1104 | !--by vertical wind shear. |
|---|
| 1105 | ! |
|---|
| 1106 | IF ( icesed_flux(i) .GT. 0. ) THEN |
|---|
| 1107 | |
|---|
| 1108 | clrfra_sed = MIN(clrfra(i), cldfra_above(i) - cldfra(i)) |
|---|
| 1109 | |
|---|
| 1110 | IF ( ( clrfra_sed .GT. eps ) .AND. ( clrfra(i) .GT. eps ) ) THEN |
|---|
| 1111 | |
|---|
| 1112 | qiceincld = qice_sedim(i) / cldfra_above(i) |
|---|
| 1113 | IF ( ok_unadjusted_clouds .AND. .NOT. ok_warm_cloud ) THEN |
|---|
| 1114 | tauinv_depsub = qiceincld**(1./3.) * kappa_depsub |
|---|
| 1115 | qvapinclr_lim = qsat(i) - qiceincld / ( 1. - EXP( - dtime * tauinv_depsub ) ) |
|---|
| 1116 | ELSE |
|---|
| 1117 | qvapinclr_lim = qsat(i) - qiceincld |
|---|
| 1118 | ENDIF |
|---|
| 1119 | |
|---|
| 1120 | rhl_clr = qclr(i) / clrfra(i) / qsatl(i) * 100. |
|---|
| 1121 | pdf_loc = rhl_clr - pdf_scale(i) * pdf_gamma(i) |
|---|
| 1122 | pdf_x = qvapinclr_lim / qsatl(i) * 100. |
|---|
| 1123 | pdf_y = LOG( MAX( pdf_x - pdf_loc, eps ) / pdf_scale(i) ) * pdf_alpha(i) |
|---|
| 1124 | IF ( pdf_y .GT. 10. ) THEN !--Avoid overflows |
|---|
| 1125 | pdf_fra_above_lim = 0. |
|---|
| 1126 | pdf_q_above_lim = 0. |
|---|
| 1127 | ELSEIF ( pdf_y .LT. -10. ) THEN |
|---|
| 1128 | pdf_fra_above_lim = clrfra(i) |
|---|
| 1129 | pdf_q_above_lim = qclr(i) |
|---|
| 1130 | ELSE |
|---|
| 1131 | pdf_y = EXP( pdf_y ) |
|---|
| 1132 | pdf_e3 = GAMMAINC ( 1. + 1. / pdf_alpha(i) , pdf_y ) |
|---|
| 1133 | pdf_e3 = pdf_scale(i) * ( 1. - pdf_e3 ) * pdf_gamma(i) |
|---|
| 1134 | pdf_fra_above_lim = EXP( - pdf_y ) * clrfra(i) |
|---|
| 1135 | pdf_q_above_lim = ( pdf_e3 * clrfra(i) & |
|---|
| 1136 | + pdf_loc * pdf_fra_above_lim ) * qsatl(i) / 100. |
|---|
| 1137 | ENDIF |
|---|
| 1138 | |
|---|
| 1139 | IF ( pdf_fra_above_lim .GT. eps ) THEN |
|---|
| 1140 | dcf_sed(i) = clrfra_sed * pdf_fra_above_lim / clrfra(i) |
|---|
| 1141 | dqvc_sed(i) = dcf_sed(i) * pdf_q_above_lim / pdf_fra_above_lim |
|---|
| 1142 | ENDIF |
|---|
| 1143 | !--We include the sedimentated ice: |
|---|
| 1144 | dqi_sed(i) = qiceincld & !--We include the sedimentated ice: |
|---|
| 1145 | * ( dcf_sed(i) & !--the part that falls in the newly formed cloud and |
|---|
| 1146 | + cldfra(i) ) !--the part that falls in the existing cloud |
|---|
| 1147 | |
|---|
| 1148 | ELSE |
|---|
| 1149 | |
|---|
| 1150 | dqi_sed(i) = qice_sedim(i) |
|---|
| 1151 | |
|---|
| 1152 | ENDIF ! ( clrfra_sed .GT. eps .AND. ( clrfra(i) .GT. eps ) |
|---|
| 1153 | |
|---|
| 1154 | !--Add tendencies |
|---|
| 1155 | cldfra(i) = MIN(1., cldfra(i) + dcf_sed(i)) |
|---|
| 1156 | qcld(i) = qcld(i) + dqvc_sed(i) + dqi_sed(i) |
|---|
| 1157 | qvc(i) = qvc(i) + dqvc_sed(i) |
|---|
| 1158 | clrfra(i) = MAX(0., clrfra(i) - dcf_sed(i)) |
|---|
| 1159 | !--We re-include sublimated sedimentated ice into clear sky water vapor |
|---|
| 1160 | qclr(i) = qclr(i) - dqvc_sed(i) + qice_sedim(i) - dqi_sed(i) |
|---|
| 1161 | |
|---|
| 1162 | ENDIF ! icesed_flux(i) .GT. 0. |
|---|
| 1163 | |
|---|
| 1164 | |
|---|
| 1165 | !--We put back contrails in the clouds class |
|---|
| 1166 | cldfra(i) = cldfra(i) + contfra(i) |
|---|
| 1167 | qcld(i) = qcld(i) + qcont(i) |
|---|
| 1168 | qvc(i) = qvc(i) + qsat(i) * contfra(i) |
|---|
| 1169 | |
|---|
| 1170 | |
|---|
| 1171 | !--Diagnose ISSRs |
|---|
| 1172 | IF ( clrfra(i) .GT. eps ) THEN |
|---|
| 1173 | rhl_clr = qclr(i) / clrfra(i) / qsatl(i) * 100. |
|---|
| 1174 | pdf_loc = rhl_clr - pdf_scale(i) * pdf_gamma(i) |
|---|
| 1175 | pdf_x = qsat(i) / qsatl(i) * 100. |
|---|
| 1176 | pdf_y = LOG( MAX( pdf_x - pdf_loc, eps ) / pdf_scale(i) ) * pdf_alpha(i) |
|---|
| 1177 | IF ( pdf_y .GT. 10. ) THEN !--Avoid overflows |
|---|
| 1178 | issrfra(i) = 0. |
|---|
| 1179 | qissr(i) = 0. |
|---|
| 1180 | ELSEIF ( pdf_y .LT. -10. ) THEN |
|---|
| 1181 | issrfra(i) = clrfra(i) |
|---|
| 1182 | qissr(i) = qclr(i) |
|---|
| 1183 | ELSE |
|---|
| 1184 | pdf_y = EXP( pdf_y ) |
|---|
| 1185 | pdf_e3 = GAMMAINC ( 1. + 1. / pdf_alpha(i) , pdf_y ) |
|---|
| 1186 | pdf_e3 = pdf_scale(i) * ( 1. - pdf_e3 ) * pdf_gamma(i) |
|---|
| 1187 | issrfra(i) = EXP( - pdf_y ) * clrfra(i) |
|---|
| 1188 | qissr(i) = ( pdf_e3 * clrfra(i) + pdf_loc * issrfra(i) ) * qsatl(i) / 100. |
|---|
| 1189 | ENDIF |
|---|
| 1190 | ELSE |
|---|
| 1191 | issrfra(i) = 0. |
|---|
| 1192 | qissr(i) = 0. |
|---|
| 1193 | ENDIF |
|---|
| 1194 | |
|---|
| 1195 | !------------------------------------------- |
|---|
| 1196 | !-- FINAL BARRIERS AND OUTPUTS -- |
|---|
| 1197 | !------------------------------------------- |
|---|
| 1198 | |
|---|
| 1199 | IF ( cldfra(i) .LT. eps ) THEN |
|---|
| 1200 | !--If the cloud is too small, it is sublimated. |
|---|
| 1201 | cldfra(i) = 0. |
|---|
| 1202 | qcld(i) = 0. |
|---|
| 1203 | qvc(i) = 0. |
|---|
| 1204 | qincld(i) = qsat(i) |
|---|
| 1205 | ELSE |
|---|
| 1206 | qincld(i) = qcld(i) / cldfra(i) |
|---|
| 1207 | ENDIF ! cldfra .LT. eps |
|---|
| 1208 | |
|---|
| 1209 | !--Diagnostics |
|---|
| 1210 | dcf_sub(i) = dcf_sub(i) / dtime |
|---|
| 1211 | dcf_con(i) = dcf_con(i) / dtime |
|---|
| 1212 | dcf_mix(i) = dcf_mix(i) / dtime |
|---|
| 1213 | dcf_sed(i) = dcf_sed(i) / dtime |
|---|
| 1214 | dqi_adj(i) = dqi_adj(i) / dtime |
|---|
| 1215 | dqi_sub(i) = dqi_sub(i) / dtime |
|---|
| 1216 | dqi_con(i) = dqi_con(i) / dtime |
|---|
| 1217 | dqi_mix(i) = dqi_mix(i) / dtime |
|---|
| 1218 | dqi_sed(i) = dqi_sed(i) / dtime |
|---|
| 1219 | dqvc_adj(i) = dqvc_adj(i) / dtime |
|---|
| 1220 | dqvc_sub(i) = dqvc_sub(i) / dtime |
|---|
| 1221 | dqvc_con(i) = dqvc_con(i) / dtime |
|---|
| 1222 | dqvc_mix(i) = dqvc_mix(i) / dtime |
|---|
| 1223 | dqvc_sed(i) = dqvc_sed(i) / dtime |
|---|
| 1224 | |
|---|
| 1225 | ENDIF ! pt_pron_clds(i) |
|---|
| 1226 | |
|---|
| 1227 | ENDIF ! end keepgoing |
|---|
| 1228 | |
|---|
| 1229 | ENDDO ! end loop on i |
|---|
| 1230 | |
|---|
| 1231 | |
|---|
| 1232 | !---------------------------------------- |
|---|
| 1233 | !-- CONTRAILS AND AVIATION -- |
|---|
| 1234 | !---------------------------------------- |
|---|
| 1235 | IF ( ok_plane_contrail ) THEN |
|---|
| 1236 | |
|---|
| 1237 | CALL contrails_formation( & |
|---|
| 1238 | klon, dtime, pplay, temp, qsat, qsatl, gamma_cond, & |
|---|
| 1239 | flight_dist, clrfra, qclr, pdf_scale, pdf_alpha, pdf_gamma, & |
|---|
| 1240 | keepgoing, pt_pron_clds, & |
|---|
| 1241 | Tcritcont, qcritcont, potcontfraP, potcontfraNP, & |
|---|
| 1242 | dcfa_ini, dqia_ini, dqta_ini) |
|---|
| 1243 | |
|---|
| 1244 | DO i = 1, klon |
|---|
| 1245 | IF ( keepgoing(i) .AND. pt_pron_clds(i) ) THEN |
|---|
| 1246 | |
|---|
| 1247 | !--Convert existing contrail fraction into "natural" cirrus cloud fraction |
|---|
| 1248 | IF ( cldfra(i) .GE. ( 1. - cfcon(i) - eps ) ) THEN |
|---|
| 1249 | contrails_conversion_factor = 1. |
|---|
| 1250 | ELSE |
|---|
| 1251 | contrails_conversion_factor = ( 1. - & |
|---|
| 1252 | !--First, the linear contrails are continuously degraded in induced cirrus |
|---|
| 1253 | EXP( - dtime / linear_contrails_lifetime ) & |
|---|
| 1254 | !--Second, if the cloud fills the entire gridbox, the linear contrails |
|---|
| 1255 | !--cannot exist. The exponent is set so that this only happens for |
|---|
| 1256 | !--very cloudy gridboxes |
|---|
| 1257 | * ( 1. - cldfra(i) / ( 1. - cfcon(i) ) )**0.1 ) |
|---|
| 1258 | ENDIF |
|---|
| 1259 | dcfa_cir(i) = - contrails_conversion_factor * contfra(i) |
|---|
| 1260 | dqta_cir(i) = - contrails_conversion_factor * qcont(i) |
|---|
| 1261 | |
|---|
| 1262 | !--Add tendencies |
|---|
| 1263 | issrfra(i) = MAX(0., issrfra(i) - dcfa_ini(i)) |
|---|
| 1264 | qissr(i) = MAX(0., qissr(i) - dqta_ini(i)) |
|---|
| 1265 | clrfra(i) = MAX(0., clrfra(i) - dcfa_ini(i)) |
|---|
| 1266 | qclr(i) = MAX(0., qclr(i) - dqta_ini(i)) |
|---|
| 1267 | |
|---|
| 1268 | cldfra(i) = MAX(0., MIN(1. - cfcon(i), cldfra(i) + dcfa_ini(i))) |
|---|
| 1269 | qcld(i) = MAX(0., MIN(qtot_in(i), qcld(i) + dqta_ini(i))) |
|---|
| 1270 | qvc(i) = MAX(0., MIN(qcld(i), qvc(i) + dcfa_ini(i) * qsat(i))) |
|---|
| 1271 | contfra(i) = MAX(0., MIN(cldfra(i), contfra(i) + dcfa_cir(i) + dcfa_ini(i))) |
|---|
| 1272 | qcont(i) = MAX(0., MIN(qcld(i), qcont(i) + dqta_cir(i) + dqta_ini(i))) |
|---|
| 1273 | perscontfra(i) = perscontfra(i) - dcfa_cir(i) |
|---|
| 1274 | |
|---|
| 1275 | !--Diagnostics |
|---|
| 1276 | dcfa_ini(i) = dcfa_ini(i) / dtime |
|---|
| 1277 | dqia_ini(i) = dqia_ini(i) / dtime |
|---|
| 1278 | dqta_ini(i) = dqta_ini(i) / dtime |
|---|
| 1279 | dcfa_sub(i) = dcfa_sub(i) / dtime |
|---|
| 1280 | dqia_sub(i) = dqta_sub(i) / dtime |
|---|
| 1281 | dqta_sub(i) = dqta_sub(i) / dtime |
|---|
| 1282 | dcfa_cir(i) = dcfa_cir(i) / dtime |
|---|
| 1283 | dqta_cir(i) = dqta_cir(i) / dtime |
|---|
| 1284 | dcfa_mix(i) = dcfa_mix(i) / dtime |
|---|
| 1285 | dqia_mix(i) = dqia_mix(i) / dtime |
|---|
| 1286 | dqta_mix(i) = dqta_mix(i) / dtime |
|---|
| 1287 | |
|---|
| 1288 | !------------------------------------------- |
|---|
| 1289 | !-- FINAL BARRIERS AND OUTPUTS -- |
|---|
| 1290 | !------------------------------------------- |
|---|
| 1291 | |
|---|
| 1292 | IF ( cldfra(i) .LT. eps ) THEN |
|---|
| 1293 | !--If the cloud is too small, it is sublimated. |
|---|
| 1294 | cldfra(i) = 0. |
|---|
| 1295 | contfra(i)= 0. |
|---|
| 1296 | perscontfra(i) = 0. |
|---|
| 1297 | qcld(i) = 0. |
|---|
| 1298 | qvc(i) = 0. |
|---|
| 1299 | qcont(i) = 0. |
|---|
| 1300 | qincld(i) = qsat(i) |
|---|
| 1301 | ELSE |
|---|
| 1302 | qincld(i) = qcld(i) / cldfra(i) |
|---|
| 1303 | ENDIF ! cldfra .LT. eps |
|---|
| 1304 | |
|---|
| 1305 | IF ( contfra(i) .LT. eps ) THEN |
|---|
| 1306 | contfra(i) = 0. |
|---|
| 1307 | qcont(i) = 0. |
|---|
| 1308 | ENDIF |
|---|
| 1309 | |
|---|
| 1310 | IF ( perscontfra(i) .LT. eps ) perscontfra(i) = 0. |
|---|
| 1311 | |
|---|
| 1312 | ENDIF ! keepgoing |
|---|
| 1313 | ENDDO ! loop on klon |
|---|
| 1314 | ENDIF ! ok_plane_contrail |
|---|
| 1315 | |
|---|
| 1316 | |
|---|
| 1317 | END SUBROUTINE condensation_ice_supersat |
|---|
| 1318 | !********************************************************************************** |
|---|
| 1319 | |
|---|
| 1320 | END MODULE lmdz_lscp_condensation |
|---|