[4951] | 1 | MODULE lmdz_lscp_condensation |
---|
| 2 | !---------------------------------------------------------------- |
---|
| 3 | ! Module for condensation of clouds routines |
---|
| 4 | ! that are called in LSCP |
---|
| 5 | |
---|
| 6 | |
---|
| 7 | IMPLICIT NONE |
---|
| 8 | |
---|
| 9 | CONTAINS |
---|
| 10 | |
---|
| 11 | !********************************************************************************** |
---|
| 12 | SUBROUTINE condensation_lognormal( & |
---|
| 13 | klon, temp, qtot, qsat, gamma_cond, ratqs, & |
---|
| 14 | keepgoing, cldfra, qincld, qvc) |
---|
| 15 | |
---|
| 16 | !---------------------------------------------------------------------- |
---|
| 17 | ! This subroutine calculates the formation of clouds, using a |
---|
| 18 | ! statistical cloud scheme. It uses a generalised lognormal distribution |
---|
| 19 | ! of total water in the gridbox |
---|
| 20 | ! See Bony and Emanuel, 2001 |
---|
| 21 | !---------------------------------------------------------------------- |
---|
| 22 | |
---|
| 23 | USE lmdz_lscp_ini, ONLY: eps |
---|
| 24 | |
---|
| 25 | IMPLICIT NONE |
---|
| 26 | |
---|
| 27 | ! |
---|
| 28 | ! Input |
---|
| 29 | ! |
---|
| 30 | INTEGER, INTENT(IN) :: klon ! number of horizontal grid points |
---|
| 31 | ! |
---|
| 32 | REAL, INTENT(IN) , DIMENSION(klon) :: temp ! temperature [K] |
---|
| 33 | REAL, INTENT(IN) , DIMENSION(klon) :: qtot ! total specific humidity (without precip) [kg/kg] |
---|
| 34 | REAL, INTENT(IN) , DIMENSION(klon) :: qsat ! saturation specific humidity [kg/kg] |
---|
| 35 | REAL, INTENT(IN) , DIMENSION(klon) :: gamma_cond ! condensation threshold w.r.t. qsat [-] |
---|
| 36 | REAL, INTENT(IN) , DIMENSION(klon) :: ratqs ! ratio between the variance of the total water distribution and its average [-] |
---|
| 37 | LOGICAL, INTENT(IN) , DIMENSION(klon) :: keepgoing ! .TRUE. if a new condensation loop should be computed |
---|
| 38 | ! |
---|
| 39 | ! Output |
---|
| 40 | ! NB. those are in INOUT because of the convergence loop on temperature |
---|
| 41 | ! (in some cases, the values are not re-computed) but the values |
---|
| 42 | ! are never used explicitely |
---|
| 43 | ! |
---|
| 44 | REAL, INTENT(INOUT), DIMENSION(klon) :: cldfra ! cloud fraction [-] |
---|
| 45 | REAL, INTENT(INOUT), DIMENSION(klon) :: qincld ! cloud-mean in-cloud total specific water [kg/kg] |
---|
| 46 | REAL, INTENT(INOUT), DIMENSION(klon) :: qvc ! gridbox-mean vapor in the cloud [kg/kg] |
---|
| 47 | ! |
---|
| 48 | ! Local |
---|
| 49 | ! |
---|
| 50 | INTEGER :: i |
---|
| 51 | REAL :: pdf_std, pdf_k, pdf_delta |
---|
| 52 | REAL :: pdf_a, pdf_b, pdf_e1, pdf_e2 |
---|
| 53 | ! |
---|
| 54 | !--Loop on klon |
---|
| 55 | ! |
---|
| 56 | DO i = 1, klon |
---|
| 57 | |
---|
| 58 | !--If a new calculation of the condensation is needed, |
---|
| 59 | !--i.e., temperature has not yet converged (or the cloud is |
---|
| 60 | !--formed elsewhere) |
---|
| 61 | IF (keepgoing(i)) THEN |
---|
| 62 | |
---|
| 63 | pdf_std = ratqs(i) * qtot(i) |
---|
[5240] | 64 | pdf_k = -SQRT( LOG( 1. + (pdf_std / qtot(i))**2 ) ) |
---|
[4951] | 65 | pdf_delta = LOG( qtot(i) / ( gamma_cond(i) * qsat(i) ) ) |
---|
| 66 | pdf_a = pdf_delta / ( pdf_k * SQRT(2.) ) |
---|
| 67 | pdf_b = pdf_k / (2. * SQRT(2.)) |
---|
| 68 | pdf_e1 = pdf_a - pdf_b |
---|
| 69 | pdf_e1 = SIGN( MIN(ABS(pdf_e1), 5.), pdf_e1 ) |
---|
| 70 | pdf_e1 = 1. - ERF(pdf_e1) |
---|
| 71 | pdf_e2 = pdf_a + pdf_b |
---|
| 72 | pdf_e2 = SIGN( MIN(ABS(pdf_e2), 5.), pdf_e2 ) |
---|
| 73 | pdf_e2 = 1. - ERF(pdf_e2) |
---|
| 74 | |
---|
| 75 | |
---|
| 76 | IF ( pdf_e1 .LT. eps ) THEN |
---|
| 77 | cldfra(i) = 0. |
---|
| 78 | qincld(i) = qsat(i) |
---|
| 79 | !--AB grid-mean vapor in the cloud - we assume saturation adjustment |
---|
| 80 | qvc(i) = 0. |
---|
| 81 | ELSE |
---|
| 82 | cldfra(i) = 0.5 * pdf_e1 |
---|
| 83 | qincld(i) = qtot(i) * pdf_e2 / pdf_e1 |
---|
| 84 | !--AB grid-mean vapor in the cloud - we assume saturation adjustment |
---|
| 85 | qvc(i) = qsat(i) * cldfra(i) |
---|
| 86 | ENDIF |
---|
| 87 | |
---|
| 88 | ENDIF ! end keepgoing |
---|
| 89 | |
---|
| 90 | ENDDO ! end loop on i |
---|
| 91 | END SUBROUTINE condensation_lognormal |
---|
| 92 | !********************************************************************************** |
---|
| 93 | |
---|
| 94 | !********************************************************************************** |
---|
| 95 | SUBROUTINE condensation_ice_supersat( & |
---|
| 96 | klon, dtime, missing_val, pplay, paprsdn, paprsup, & |
---|
[5396] | 97 | cf_seri, rvc_seri, ql_seri, qi_seri, shear, pbl_eps, cell_area, & |
---|
[4951] | 98 | temp, qtot, qsat, gamma_cond, ratqs, keepgoing, & |
---|
| 99 | cldfra, qincld, qvc, issrfra, qissr, dcf_sub, dcf_con, dcf_mix, & |
---|
| 100 | dqi_adj, dqi_sub, dqi_con, dqi_mix, dqvc_adj, dqvc_sub, dqvc_con, dqvc_mix, & |
---|
[5452] | 101 | rcont_seri, flight_dist, flight_h2o, contfra, & |
---|
| 102 | Tcritcont, qcritcont, potcontfraP, potcontfraNP, dcf_avi, dqi_avi, dqvc_avi) |
---|
[4951] | 103 | |
---|
| 104 | !---------------------------------------------------------------------- |
---|
| 105 | ! This subroutine calculates the formation, evolution and dissipation |
---|
| 106 | ! of clouds, using a process-oriented treatment of the cloud properties |
---|
| 107 | ! (cloud fraction, vapor in the cloud, condensed water in the cloud). |
---|
| 108 | ! It allows for ice supersaturation in cold regions, in clear sky. |
---|
| 109 | ! If ok_unadjusted_clouds, it also allows for sub- and supersaturated |
---|
| 110 | ! cloud water vapors. |
---|
| 111 | ! It also allows for the formation and evolution of condensation trails |
---|
| 112 | ! (contrails) from aviation. |
---|
| 113 | ! Authors: Audran Borella, Etienne Vignon, Olivier Boucher |
---|
| 114 | ! April 2024 |
---|
| 115 | !---------------------------------------------------------------------- |
---|
| 116 | |
---|
| 117 | USE lmdz_lscp_tools, ONLY: calc_qsat_ecmwf, calc_gammasat, GAMMAINC |
---|
| 118 | USE lmdz_lscp_ini, ONLY: RCPD, RLSTT, RLVTT, RLMLT, RVTMP2, RTT, RD, RG, RV, RPI, EPS_W |
---|
| 119 | USE lmdz_lscp_ini, ONLY: eps, temp_nowater, ok_weibull_warm_clouds |
---|
| 120 | USE lmdz_lscp_ini, ONLY: ok_unadjusted_clouds, iflag_cloud_sublim_pdf |
---|
[5452] | 121 | USE lmdz_lscp_ini, ONLY: ok_plane_contrail |
---|
[4951] | 122 | |
---|
[5406] | 123 | USE lmdz_lscp_ini, ONLY: depo_coef_cirrus, capa_cond_cirrus, std_subl_pdf_lscp, & |
---|
[5165] | 124 | mu_subl_pdf_lscp, beta_pdf_lscp, temp_thresh_pdf_lscp, & |
---|
[5406] | 125 | std100_pdf_lscp, k0_pdf_lscp, kappa_pdf_lscp, & |
---|
[5452] | 126 | coef_mixing_lscp, coef_shear_lscp, chi_mixing_lscp |
---|
[4951] | 127 | |
---|
[5452] | 128 | USE lmdz_aviation, ONLY: contrails_mixing, contrails_formation_evolution |
---|
| 129 | |
---|
[4951] | 130 | IMPLICIT NONE |
---|
| 131 | |
---|
| 132 | ! |
---|
| 133 | ! Input |
---|
| 134 | ! |
---|
| 135 | INTEGER, INTENT(IN) :: klon ! number of horizontal grid points |
---|
| 136 | REAL, INTENT(IN) :: dtime ! time step [s] |
---|
| 137 | REAL, INTENT(IN) :: missing_val ! missing value for output |
---|
| 138 | ! |
---|
| 139 | REAL, INTENT(IN) , DIMENSION(klon) :: pplay ! layer pressure [Pa] |
---|
| 140 | REAL, INTENT(IN) , DIMENSION(klon) :: paprsdn ! pressure at the lower interface [Pa] |
---|
| 141 | REAL, INTENT(IN) , DIMENSION(klon) :: paprsup ! pressure at the upper interface [Pa] |
---|
| 142 | REAL, INTENT(IN) , DIMENSION(klon) :: cf_seri ! cloud fraction [-] |
---|
| 143 | REAL, INTENT(IN) , DIMENSION(klon) :: rvc_seri ! gridbox-mean water vapor in cloud [kg/kg] |
---|
[5396] | 144 | REAL, INTENT(IN) , DIMENSION(klon) :: ql_seri ! specific liquid water content [kg/kg] |
---|
| 145 | REAL, INTENT(IN) , DIMENSION(klon) :: qi_seri ! specific ice water content [kg/kg] |
---|
[4951] | 146 | REAL, INTENT(IN) , DIMENSION(klon) :: shear ! vertical shear [s-1] |
---|
[5452] | 147 | REAL, INTENT(IN) , DIMENSION(klon) :: pbl_eps ! TKE dissipation [m2/s3] |
---|
| 148 | REAL, INTENT(IN) , DIMENSION(klon) :: cell_area ! cell area [m2] |
---|
[4951] | 149 | REAL, INTENT(IN) , DIMENSION(klon) :: temp ! temperature [K] |
---|
| 150 | REAL, INTENT(IN) , DIMENSION(klon) :: qtot ! total specific humidity (without precip) [kg/kg] |
---|
| 151 | REAL, INTENT(IN) , DIMENSION(klon) :: qsat ! saturation specific humidity [kg/kg] |
---|
| 152 | REAL, INTENT(IN) , DIMENSION(klon) :: gamma_cond ! condensation threshold w.r.t. qsat [-] |
---|
[5406] | 153 | REAL, INTENT(IN) , DIMENSION(klon) :: ratqs ! ratio between the variance of the total water distribution and its average [-] |
---|
[4951] | 154 | LOGICAL, INTENT(IN) , DIMENSION(klon) :: keepgoing ! .TRUE. if a new condensation loop should be computed |
---|
| 155 | ! |
---|
| 156 | ! Input for aviation |
---|
| 157 | ! |
---|
[5452] | 158 | REAL, INTENT(INOUT), DIMENSION(klon) :: rcont_seri ! ratio of contrails fraction to total cloud fraction [-] |
---|
[4951] | 159 | REAL, INTENT(IN), DIMENSION(klon) :: flight_dist ! |
---|
| 160 | REAL, INTENT(IN), DIMENSION(klon) :: flight_h2o ! |
---|
| 161 | ! |
---|
| 162 | ! Output |
---|
| 163 | ! NB. cldfra and qincld should be outputed as cf_seri and qi_seri, |
---|
| 164 | ! or as tendencies (maybe in the future) |
---|
| 165 | ! NB. those are in INOUT because of the convergence loop on temperature |
---|
| 166 | ! (in some cases, the values are not re-computed) but the values |
---|
| 167 | ! are never used explicitely |
---|
| 168 | ! |
---|
| 169 | REAL, INTENT(INOUT), DIMENSION(klon) :: cldfra ! cloud fraction [-] |
---|
| 170 | REAL, INTENT(INOUT), DIMENSION(klon) :: qincld ! cloud-mean in-cloud total specific water [kg/kg] |
---|
| 171 | REAL, INTENT(INOUT), DIMENSION(klon) :: qvc ! gridbox-mean vapor in the cloud [kg/kg] |
---|
| 172 | REAL, INTENT(INOUT), DIMENSION(klon) :: issrfra ! ISSR fraction [-] |
---|
| 173 | REAL, INTENT(INOUT), DIMENSION(klon) :: qissr ! gridbox-mean ISSR specific water [kg/kg] |
---|
| 174 | ! |
---|
| 175 | ! Diagnostics for condensation and ice supersaturation |
---|
| 176 | ! NB. idem for the INOUT |
---|
| 177 | ! |
---|
| 178 | REAL, INTENT(INOUT), DIMENSION(klon) :: dcf_sub ! cloud fraction tendency because of sublimation [s-1] |
---|
| 179 | REAL, INTENT(INOUT), DIMENSION(klon) :: dcf_con ! cloud fraction tendency because of condensation [s-1] |
---|
| 180 | REAL, INTENT(INOUT), DIMENSION(klon) :: dcf_mix ! cloud fraction tendency because of cloud mixing [s-1] |
---|
| 181 | REAL, INTENT(INOUT), DIMENSION(klon) :: dqi_adj ! specific ice content tendency because of temperature adjustment [kg/kg/s] |
---|
| 182 | REAL, INTENT(INOUT), DIMENSION(klon) :: dqi_sub ! specific ice content tendency because of sublimation [kg/kg/s] |
---|
| 183 | REAL, INTENT(INOUT), DIMENSION(klon) :: dqi_con ! specific ice content tendency because of condensation [kg/kg/s] |
---|
| 184 | REAL, INTENT(INOUT), DIMENSION(klon) :: dqi_mix ! specific ice content tendency because of cloud mixing [kg/kg/s] |
---|
| 185 | REAL, INTENT(INOUT), DIMENSION(klon) :: dqvc_adj ! specific cloud water vapor tendency because of temperature adjustment [kg/kg/s] |
---|
| 186 | REAL, INTENT(INOUT), DIMENSION(klon) :: dqvc_sub ! specific cloud water vapor tendency because of sublimation [kg/kg/s] |
---|
| 187 | REAL, INTENT(INOUT), DIMENSION(klon) :: dqvc_con ! specific cloud water vapor tendency because of condensation [kg/kg/s] |
---|
| 188 | REAL, INTENT(INOUT), DIMENSION(klon) :: dqvc_mix ! specific cloud water vapor tendency because of cloud mixing [kg/kg/s] |
---|
| 189 | ! |
---|
| 190 | ! Diagnostics for aviation |
---|
| 191 | ! NB. idem for the INOUT |
---|
| 192 | ! |
---|
[5452] | 193 | REAL, INTENT(INOUT), DIMENSION(klon) :: contfra ! contrail fraction [-] |
---|
| 194 | REAL, INTENT(INOUT), DIMENSION(klon) :: Tcritcont ! critical temperature for contrail formation [K] |
---|
| 195 | REAL, INTENT(INOUT), DIMENSION(klon) :: qcritcont ! critical specific humidity for contrail formation [kg/kg] |
---|
| 196 | REAL, INTENT(INOUT), DIMENSION(klon) :: potcontfraP ! potential persistent contrail fraction [-] |
---|
| 197 | REAL, INTENT(INOUT), DIMENSION(klon) :: potcontfraNP ! potential non-persistent contrail fraction [-] |
---|
| 198 | REAL, INTENT(INOUT), DIMENSION(klon) :: dcf_avi ! cloud fraction tendency because of aviation [s-1] |
---|
| 199 | REAL, INTENT(INOUT), DIMENSION(klon) :: dqi_avi ! specific ice content tendency because of aviation [kg/kg/s] |
---|
| 200 | REAL, INTENT(INOUT), DIMENSION(klon) :: dqvc_avi ! specific cloud water vapor tendency because of aviation [kg/kg/s] |
---|
[4951] | 201 | ! |
---|
| 202 | ! Local |
---|
| 203 | ! |
---|
| 204 | INTEGER :: i |
---|
| 205 | LOGICAL :: ok_warm_cloud |
---|
| 206 | REAL, DIMENSION(klon) :: qcld, qzero |
---|
| 207 | ! |
---|
| 208 | ! for lognormal |
---|
| 209 | REAL :: pdf_std, pdf_k, pdf_delta |
---|
| 210 | REAL :: pdf_a, pdf_b, pdf_e1, pdf_e2 |
---|
| 211 | ! |
---|
| 212 | ! for unadjusted clouds |
---|
| 213 | REAL :: qvapincld, qvapincld_new |
---|
[5406] | 214 | REAL :: qiceincld |
---|
[4951] | 215 | ! |
---|
| 216 | ! for sublimation |
---|
| 217 | REAL :: pdf_alpha |
---|
| 218 | REAL :: dqt_sub |
---|
| 219 | ! |
---|
| 220 | ! for condensation |
---|
| 221 | REAL, DIMENSION(klon) :: qsatl, dqsatl |
---|
| 222 | REAL :: clrfra, qclr, sl_clr, rhl_clr |
---|
| 223 | REAL :: pdf_ratqs, pdf_skew, pdf_scale, pdf_loc |
---|
| 224 | REAL :: pdf_x, pdf_y, pdf_T |
---|
| 225 | REAL :: pdf_e3, pdf_e4 |
---|
| 226 | REAL :: cf_cond, qt_cond, dqt_con |
---|
| 227 | ! |
---|
| 228 | ! for mixing |
---|
| 229 | REAL, DIMENSION(klon) :: subfra, qsub |
---|
| 230 | REAL :: dqt_mix_sub, dqt_mix_issr |
---|
| 231 | REAL :: dcf_mix_sub, dcf_mix_issr |
---|
| 232 | REAL :: dqvc_mix_sub, dqvc_mix_issr |
---|
| 233 | REAL :: dqt_mix |
---|
[5450] | 234 | REAL :: a_mix, bovera, Povera, N_cld_mix, L_mix |
---|
[4951] | 235 | REAL :: envfra_mix, cldfra_mix |
---|
| 236 | REAL :: L_shear, shear_fra |
---|
| 237 | REAL :: sigma_mix, issrfra_mix, subfra_mix, qvapinmix |
---|
| 238 | ! |
---|
| 239 | ! for cell properties |
---|
| 240 | REAL :: rho, rhodz, dz |
---|
[5452] | 241 | REAL :: V_cell, M_cell |
---|
[4951] | 242 | |
---|
| 243 | qzero(:) = 0. |
---|
| 244 | |
---|
| 245 | !--Calculation of qsat w.r.t. liquid |
---|
| 246 | CALL calc_qsat_ecmwf(klon, temp, qzero, pplay, RTT, 1, .FALSE., qsatl, dqsatl) |
---|
| 247 | |
---|
| 248 | ! |
---|
| 249 | !--Loop on klon |
---|
| 250 | ! |
---|
| 251 | DO i = 1, klon |
---|
| 252 | |
---|
| 253 | !--If a new calculation of the condensation is needed, |
---|
| 254 | !--i.e., temperature has not yet converged (or the cloud is |
---|
| 255 | !--formed elsewhere) |
---|
| 256 | IF (keepgoing(i)) THEN |
---|
| 257 | |
---|
[5450] | 258 | !--Initialisation |
---|
| 259 | issrfra(i) = 0. |
---|
| 260 | qissr(i) = 0. |
---|
| 261 | |
---|
[4951] | 262 | !--If the temperature is higher than the threshold below which |
---|
| 263 | !--there is no liquid in the gridbox, we activate the usual scheme |
---|
| 264 | !--(generalised lognormal from Bony and Emanuel 2001) |
---|
| 265 | !--If ok_weibull_warm_clouds = .TRUE., the Weibull law is used for |
---|
| 266 | !--all clouds, and the lognormal scheme is not activated |
---|
| 267 | IF ( ( temp(i) .GT. temp_nowater ) .AND. .NOT. ok_weibull_warm_clouds ) THEN |
---|
| 268 | |
---|
| 269 | pdf_std = ratqs(i) * qtot(i) |
---|
[5406] | 270 | pdf_k = -SQRT( LOG( 1. + (pdf_std / qtot(i))**2 ) ) |
---|
[4951] | 271 | pdf_delta = LOG( qtot(i) / ( gamma_cond(i) * qsat(i) ) ) |
---|
| 272 | pdf_a = pdf_delta / ( pdf_k * SQRT(2.) ) |
---|
| 273 | pdf_b = pdf_k / (2. * SQRT(2.)) |
---|
| 274 | pdf_e1 = pdf_a - pdf_b |
---|
| 275 | pdf_e1 = SIGN( MIN(ABS(pdf_e1), 5.), pdf_e1 ) |
---|
| 276 | pdf_e1 = 1. - ERF(pdf_e1) |
---|
| 277 | pdf_e2 = pdf_a + pdf_b |
---|
| 278 | pdf_e2 = SIGN( MIN(ABS(pdf_e2), 5.), pdf_e2 ) |
---|
| 279 | pdf_e2 = 1. - ERF(pdf_e2) |
---|
| 280 | |
---|
| 281 | |
---|
| 282 | IF ( pdf_e1 .LT. eps ) THEN |
---|
| 283 | cldfra(i) = 0. |
---|
| 284 | qincld(i) = qsat(i) |
---|
| 285 | qvc(i) = 0. |
---|
| 286 | ELSE |
---|
| 287 | cldfra(i) = 0.5 * pdf_e1 |
---|
| 288 | qincld(i) = qtot(i) * pdf_e2 / pdf_e1 |
---|
| 289 | qvc(i) = qsat(i) * cldfra(i) |
---|
| 290 | ENDIF |
---|
| 291 | |
---|
| 292 | !--If the temperature is lower than temp_nowater, we use the new |
---|
| 293 | !--condensation scheme that allows for ice supersaturation |
---|
| 294 | ELSE |
---|
| 295 | |
---|
| 296 | !--Initialisation |
---|
| 297 | IF ( temp(i) .GT. temp_nowater ) THEN |
---|
| 298 | !--If the air mass is warm (liquid water can exist), |
---|
| 299 | !--all the memory is lost and the scheme becomes statistical, |
---|
| 300 | !--i.e., the sublimation and mixing processes are deactivated, |
---|
| 301 | !--and the condensation process is slightly adapted |
---|
| 302 | !--This can happen only if ok_weibull_warm_clouds = .TRUE. |
---|
[5406] | 303 | cldfra(i) = MAX(0., MIN(1., cf_seri(i))) |
---|
| 304 | qcld(i) = MAX(0., MIN(qtot(i), ql_seri(i) + qi_seri(i) + rvc_seri(i) * qtot(i))) |
---|
| 305 | qvc(i) = MAX(0., MIN(qcld(i), rvc_seri(i) * qtot(i))) |
---|
[4951] | 306 | ok_warm_cloud = .TRUE. |
---|
| 307 | ELSE |
---|
| 308 | !--The following barriers ensure that the traced cloud properties |
---|
| 309 | !--are consistent. In some rare cases, i.e. the cloud water vapor |
---|
| 310 | !--can be greater than the total water in the gridbox |
---|
| 311 | cldfra(i) = MAX(0., MIN(1., cf_seri(i))) |
---|
[5396] | 312 | qcld(i) = MAX(0., MIN(qtot(i), rvc_seri(i) * qtot(i) + qi_seri(i))) |
---|
[4951] | 313 | qvc(i) = MAX(0., MIN(qcld(i), rvc_seri(i) * qtot(i))) |
---|
| 314 | ok_warm_cloud = .FALSE. |
---|
| 315 | ENDIF |
---|
| 316 | |
---|
| 317 | dcf_sub(i) = 0. |
---|
| 318 | dqi_sub(i) = 0. |
---|
| 319 | dqvc_sub(i) = 0. |
---|
| 320 | dqi_adj(i) = 0. |
---|
| 321 | dqvc_adj(i) = 0. |
---|
| 322 | dcf_con(i) = 0. |
---|
| 323 | dqi_con(i) = 0. |
---|
| 324 | dqvc_con(i) = 0. |
---|
| 325 | dcf_mix(i) = 0. |
---|
| 326 | dqi_mix(i) = 0. |
---|
| 327 | dqvc_mix(i) = 0. |
---|
| 328 | |
---|
| 329 | !--Initialisation of the cell properties |
---|
| 330 | !--Dry density [kg/m3] |
---|
| 331 | rho = pplay(i) / temp(i) / RD |
---|
| 332 | !--Dry air mass [kg/m2] |
---|
| 333 | rhodz = ( paprsdn(i) - paprsup(i) ) / RG |
---|
| 334 | !--Cell thickness [m] |
---|
| 335 | dz = rhodz / rho |
---|
| 336 | !--Cell volume [m3] |
---|
[5452] | 337 | V_cell = dz * cell_area(i) |
---|
[4951] | 338 | !--Cell dry air mass [kg] |
---|
[5452] | 339 | M_cell = rhodz * cell_area(i) |
---|
[4951] | 340 | |
---|
| 341 | |
---|
| 342 | !------------------------------------------------------------------- |
---|
| 343 | !-- SUBLIMATION OF ICE AND DEPOSITION OF VAPOR IN THE CLOUD -- |
---|
| 344 | !------------------------------------------------------------------- |
---|
| 345 | |
---|
| 346 | !--If there is a cloud |
---|
| 347 | IF ( cldfra(i) .GT. eps ) THEN |
---|
| 348 | |
---|
| 349 | qvapincld = qvc(i) / cldfra(i) |
---|
| 350 | qiceincld = ( qcld(i) / cldfra(i) - qvapincld ) |
---|
| 351 | |
---|
| 352 | !--If the ice water content is too low, the cloud is purely sublimated |
---|
[4974] | 353 | !--Most probably, we advected a cloud with no ice water content (possible |
---|
| 354 | !--if the entire cloud precipited for example) |
---|
[4951] | 355 | IF ( qiceincld .LT. eps ) THEN |
---|
| 356 | dcf_sub(i) = - cldfra(i) |
---|
| 357 | dqvc_sub(i) = - qvc(i) |
---|
| 358 | dqi_sub(i) = - ( qcld(i) - qvc(i) ) |
---|
| 359 | |
---|
| 360 | cldfra(i) = 0. |
---|
| 361 | qcld(i) = 0. |
---|
| 362 | qvc(i) = 0. |
---|
| 363 | |
---|
| 364 | !--Else, the cloud is adjusted and sublimated |
---|
| 365 | ELSE |
---|
| 366 | |
---|
[4974] | 367 | !--The vapor in cloud cannot be higher than the |
---|
| 368 | !--condensation threshold |
---|
| 369 | qvapincld = MIN(qvapincld, gamma_cond(i) * qsat(i)) |
---|
| 370 | qiceincld = ( qcld(i) / cldfra(i) - qvapincld ) |
---|
| 371 | |
---|
[5406] | 372 | IF ( ok_unadjusted_clouds .AND. .NOT. ok_warm_cloud ) THEN |
---|
| 373 | CALL deposition_sublimation(qvapincld, qiceincld, temp(i), qsat(i), & |
---|
| 374 | pplay(i), dtime, qvapincld_new) |
---|
| 375 | IF ( qvapincld_new .EQ. 0. ) THEN |
---|
| 376 | !--If all the ice has been sublimated, we sublimate |
---|
| 377 | !--completely the cloud and do not activate the sublimation |
---|
| 378 | !--process |
---|
| 379 | !--Tendencies and diagnostics |
---|
| 380 | dcf_sub(i) = - cldfra(i) |
---|
| 381 | dqvc_sub(i) = - qvc(i) |
---|
| 382 | dqi_sub(i) = - ( qcld(i) - qvc(i) ) |
---|
[4951] | 383 | |
---|
[5406] | 384 | cldfra(i) = 0. |
---|
| 385 | qcld(i) = 0. |
---|
| 386 | qvc(i) = 0. |
---|
| 387 | ENDIF |
---|
[4951] | 388 | ELSE |
---|
| 389 | !--We keep the saturation adjustment hypothesis, and the vapor in the |
---|
| 390 | !--cloud is set equal to the saturation vapor |
---|
| 391 | qvapincld_new = qsat(i) |
---|
| 392 | ENDIF ! ok_unadjusted_clouds |
---|
[5210] | 393 | |
---|
| 394 | !--Adjustment of the IWC to the new vapor in cloud |
---|
| 395 | !--(this can be either positive or negative) |
---|
| 396 | dqvc_adj(i) = ( qvapincld_new * cldfra(i) - qvc(i) ) |
---|
| 397 | dqi_adj(i) = - dqvc_adj(i) |
---|
[4951] | 398 | |
---|
[5210] | 399 | !--Add tendencies |
---|
| 400 | !--The vapor in the cloud is updated, but not qcld as it is constant |
---|
| 401 | !--through this process, as well as cldfra which is unmodified |
---|
| 402 | qvc(i) = MAX(0., MIN(qcld(i), qvc(i) + dqvc_adj(i))) |
---|
| 403 | |
---|
| 404 | |
---|
| 405 | !------------------------------------ |
---|
| 406 | !-- DISSIPATION OF THE CLOUD -- |
---|
| 407 | !------------------------------------ |
---|
| 408 | |
---|
[4951] | 409 | !--If the vapor in cloud is below vapor needed for the cloud to survive |
---|
[5406] | 410 | IF ( ( qvapincld .LT. qvapincld_new ) .OR. ( iflag_cloud_sublim_pdf .GE. 4 ) ) THEN |
---|
[4951] | 411 | !--Sublimation of the subsaturated cloud |
---|
| 412 | !--iflag_cloud_sublim_pdf selects the PDF of the ice water content |
---|
| 413 | !--to use. |
---|
| 414 | !--iflag = 1 --> uniform distribution |
---|
| 415 | !--iflag = 2 --> exponential distribution |
---|
| 416 | !--iflag = 3 --> gamma distribution (Karcher et al 2018) |
---|
| 417 | |
---|
| 418 | IF ( iflag_cloud_sublim_pdf .EQ. 1 ) THEN |
---|
| 419 | !--Uniform distribution starting at qvapincld |
---|
| 420 | pdf_e1 = 1. / ( 2. * qiceincld ) |
---|
| 421 | |
---|
| 422 | dcf_sub(i) = - cldfra(i) * ( qvapincld_new - qvapincld ) * pdf_e1 |
---|
[5406] | 423 | dqt_sub = - cldfra(i) * ( qvapincld_new**2 - qvapincld**2 ) & |
---|
[4951] | 424 | * pdf_e1 / 2. |
---|
| 425 | |
---|
| 426 | ELSEIF ( iflag_cloud_sublim_pdf .EQ. 2 ) THEN |
---|
| 427 | !--Exponential distribution starting at qvapincld |
---|
| 428 | pdf_alpha = 1. / qiceincld |
---|
| 429 | pdf_e1 = EXP( - pdf_alpha * ( qvapincld_new - qvapincld ) ) |
---|
| 430 | |
---|
| 431 | dcf_sub(i) = - cldfra(i) * ( 1. - pdf_e1 ) |
---|
| 432 | dqt_sub = - cldfra(i) * ( ( 1. - pdf_e1 ) / pdf_alpha & |
---|
| 433 | + qvapincld - qvapincld_new * pdf_e1 ) |
---|
| 434 | |
---|
[5406] | 435 | ELSEIF ( iflag_cloud_sublim_pdf .EQ. 3 ) THEN |
---|
[4951] | 436 | !--Gamma distribution starting at qvapincld |
---|
| 437 | pdf_alpha = ( mu_subl_pdf_lscp + 1. ) / qiceincld |
---|
| 438 | pdf_y = pdf_alpha * ( qvapincld_new - qvapincld ) |
---|
| 439 | pdf_e1 = GAMMAINC ( mu_subl_pdf_lscp + 1. , pdf_y ) |
---|
| 440 | pdf_e2 = GAMMAINC ( mu_subl_pdf_lscp + 2. , pdf_y ) |
---|
| 441 | |
---|
| 442 | dcf_sub(i) = - cldfra(i) * pdf_e1 |
---|
| 443 | dqt_sub = - cldfra(i) * ( pdf_e2 / pdf_alpha + qvapincld * pdf_e1 ) |
---|
[5406] | 444 | |
---|
| 445 | ELSEIF ( iflag_cloud_sublim_pdf .EQ. 4 ) THEN |
---|
| 446 | !--Normal distribution around qvapincld + qiceincld with width |
---|
| 447 | !--constant in the RHi space |
---|
| 448 | pdf_y = ( qvapincld_new - qvapincld - qiceincld ) & |
---|
| 449 | / ( std_subl_pdf_lscp / 100. * qsat(i)) |
---|
| 450 | pdf_e1 = 0.5 * ( 1. + ERF( pdf_y / SQRT(2.) ) ) |
---|
| 451 | pdf_e2 = EXP( - pdf_y**2 / 2. ) / SQRT( 2. * RPI ) |
---|
| 452 | |
---|
| 453 | dcf_sub(i) = - cldfra(i) * pdf_e1 |
---|
| 454 | dqt_sub = - cldfra(i) * ( ( qvapincld + qiceincld ) * pdf_e1 & |
---|
| 455 | - std_subl_pdf_lscp / 100. * qsat(i) * pdf_e2 ) |
---|
| 456 | |
---|
[4951] | 457 | ENDIF |
---|
| 458 | |
---|
| 459 | !--Tendencies and diagnostics |
---|
[5210] | 460 | dqvc_sub(i) = dqt_sub |
---|
[4951] | 461 | |
---|
| 462 | !--Add tendencies |
---|
| 463 | cldfra(i) = MAX(0., cldfra(i) + dcf_sub(i)) |
---|
| 464 | qcld(i) = MAX(0., qcld(i) + dqt_sub) |
---|
| 465 | qvc(i) = MAX(0., qvc(i) + dqvc_sub(i)) |
---|
| 466 | |
---|
| 467 | ENDIF ! qvapincld .LT. qvapincld_new |
---|
| 468 | |
---|
| 469 | ENDIF ! qiceincld .LT. eps |
---|
| 470 | ENDIF ! cldfra(i) .GT. eps |
---|
| 471 | |
---|
| 472 | |
---|
| 473 | !-------------------------------------------------------------------------- |
---|
| 474 | !-- CONDENSATION AND DIAGNOTICS OF SUB- AND SUPERSATURATED REGIONS -- |
---|
| 475 | !-------------------------------------------------------------------------- |
---|
| 476 | !--This section relies on a distribution of water in the clear-sky region of |
---|
| 477 | !--the mesh. |
---|
| 478 | |
---|
| 479 | !--If there is a clear-sky region |
---|
| 480 | IF ( ( 1. - cldfra(i) ) .GT. eps ) THEN |
---|
| 481 | |
---|
| 482 | !--Water quantity in the clear-sky + potential liquid cloud (gridbox average) |
---|
| 483 | qclr = qtot(i) - qcld(i) |
---|
| 484 | |
---|
| 485 | !--New PDF |
---|
| 486 | rhl_clr = qclr / ( 1. - cldfra(i) ) / qsatl(i) * 100. |
---|
| 487 | |
---|
| 488 | !--Calculation of the properties of the PDF |
---|
| 489 | !--Parameterization from IAGOS observations |
---|
| 490 | !--pdf_e1 and pdf_e2 will be reused below |
---|
| 491 | |
---|
[5161] | 492 | !--Coefficient for standard deviation: |
---|
| 493 | !-- tuning coef * (clear sky area**0.25) * (function of temperature) |
---|
[5406] | 494 | !pdf_e1 = beta_pdf_lscp & |
---|
| 495 | ! * ( ( 1. - cldfra(i) ) * cell_area(i) )**( 1. / 4. ) & |
---|
| 496 | ! * MAX( temp(i) - temp_thresh_pdf_lscp, 0. ) |
---|
| 497 | !-- tuning coef * (cell area**0.25) * (function of temperature) |
---|
| 498 | pdf_e1 = beta_pdf_lscp * ( ( 1. - cldfra(i) ) * cell_area(i) )**0.25 & |
---|
| 499 | * MAX( temp(i) - temp_thresh_pdf_lscp, 0. ) |
---|
| 500 | IF ( rhl_clr .GT. 50. ) THEN |
---|
| 501 | pdf_std = ( pdf_e1 - std100_pdf_lscp ) * ( 100. - rhl_clr ) / 50. + std100_pdf_lscp |
---|
[4951] | 502 | ELSE |
---|
[5406] | 503 | pdf_std = pdf_e1 * rhl_clr / 50. |
---|
[4951] | 504 | ENDIF |
---|
| 505 | pdf_e3 = k0_pdf_lscp + kappa_pdf_lscp * MAX( temp_nowater - temp(i), 0. ) |
---|
[5406] | 506 | pdf_alpha = EXP( rhl_clr / 100. ) * pdf_e3 |
---|
| 507 | pdf_alpha = MIN(10., pdf_alpha) |
---|
| 508 | |
---|
| 509 | IF ( ok_warm_cloud ) THEN |
---|
| 510 | !--If the statistical scheme is activated, the standard deviation is adapted |
---|
| 511 | !--to depend on the pressure level. It is multiplied by ratqs, so that near the |
---|
| 512 | !--surface std is almost 0, and upper than about 450 hPa the std is left untouched |
---|
| 513 | pdf_std = pdf_std * ratqs(i) |
---|
| 514 | ENDIF |
---|
[4951] | 515 | |
---|
| 516 | pdf_e2 = GAMMA(1. + 1. / pdf_alpha) |
---|
[5406] | 517 | pdf_scale = MAX(eps, pdf_std / SQRT( GAMMA(1. + 2. / pdf_alpha) - pdf_e2**2 )) |
---|
[4951] | 518 | pdf_loc = rhl_clr - pdf_scale * pdf_e2 |
---|
| 519 | |
---|
| 520 | !--Calculation of the newly condensed water and fraction (pronostic) |
---|
| 521 | !--Integration of the clear sky PDF between gamma_cond*qsat and +inf |
---|
| 522 | !--NB. the calculated values are clear-sky averaged |
---|
| 523 | |
---|
| 524 | pdf_x = gamma_cond(i) * qsat(i) / qsatl(i) * 100. |
---|
| 525 | pdf_y = ( MAX( pdf_x - pdf_loc, 0. ) / pdf_scale ) ** pdf_alpha |
---|
| 526 | pdf_e3 = GAMMAINC ( 1. + 1. / pdf_alpha , pdf_y ) |
---|
| 527 | pdf_e3 = pdf_scale * ( 1. - pdf_e3 ) * pdf_e2 |
---|
| 528 | cf_cond = EXP( - pdf_y ) |
---|
| 529 | qt_cond = ( pdf_e3 + pdf_loc * cf_cond ) * qsatl(i) / 100. |
---|
| 530 | |
---|
[5406] | 531 | IF ( cf_cond .GT. eps ) THEN |
---|
[4951] | 532 | |
---|
[5210] | 533 | dcf_con(i) = ( 1. - cldfra(i) ) * cf_cond |
---|
| 534 | dqt_con = ( 1. - cldfra(i) ) * qt_cond |
---|
[4951] | 535 | |
---|
| 536 | !--Barriers |
---|
| 537 | dcf_con(i) = MIN(dcf_con(i), 1. - cldfra(i)) |
---|
| 538 | dqt_con = MIN(dqt_con, qclr) |
---|
| 539 | |
---|
[5406] | 540 | IF ( ok_unadjusted_clouds .AND. .NOT. ok_warm_cloud ) THEN |
---|
[4951] | 541 | !--Here, the initial vapor in the cloud is gamma_cond*qsat, and we compute |
---|
| 542 | !--the new vapor qvapincld. The timestep is divided by two because we do not |
---|
| 543 | !--know when the condensation occurs |
---|
| 544 | qvapincld = gamma_cond(i) * qsat(i) |
---|
| 545 | qiceincld = dqt_con / dcf_con(i) - gamma_cond(i) * qsat(i) |
---|
[5406] | 546 | CALL deposition_sublimation(qvapincld, qiceincld, temp(i), qsat(i), & |
---|
| 547 | pplay(i), dtime / 2., qvapincld_new) |
---|
| 548 | qvapincld = qvapincld_new |
---|
[4951] | 549 | ELSE |
---|
| 550 | !--We keep the saturation adjustment hypothesis, and the vapor in the |
---|
| 551 | !--newly formed cloud is set equal to the saturation vapor. |
---|
| 552 | qvapincld = qsat(i) |
---|
| 553 | ENDIF |
---|
| 554 | |
---|
| 555 | !--Tendency on cloud vapor and diagnostic |
---|
| 556 | dqvc_con(i) = qvapincld * dcf_con(i) |
---|
| 557 | dqi_con(i) = dqt_con - dqvc_con(i) |
---|
| 558 | |
---|
[5406] | 559 | !--Add tendencies |
---|
| 560 | cldfra(i) = MIN(1., cldfra(i) + dcf_con(i)) |
---|
| 561 | qcld(i) = MIN(qtot(i), qcld(i) + dqt_con) |
---|
| 562 | qvc(i) = MIN(qcld(i), qvc(i) + dqvc_con(i)) |
---|
[4951] | 563 | |
---|
[5210] | 564 | ENDIF ! ok_warm_cloud, cf_cond .GT. eps |
---|
[5406] | 565 | |
---|
[4951] | 566 | !--We then calculate the part that is greater than qsat |
---|
[5406] | 567 | !--and lower than gamma_cond * qsat, which is the ice supersaturated region |
---|
[4951] | 568 | pdf_x = qsat(i) / qsatl(i) * 100. |
---|
| 569 | pdf_y = ( MAX( pdf_x - pdf_loc, 0. ) / pdf_scale ) ** pdf_alpha |
---|
| 570 | pdf_e3 = GAMMAINC ( 1. + 1. / pdf_alpha , pdf_y ) |
---|
| 571 | pdf_e3 = pdf_scale * ( 1. - pdf_e3 ) * pdf_e2 |
---|
[5406] | 572 | issrfra(i) = EXP( - pdf_y ) * ( 1. - cldfra(i) ) |
---|
| 573 | qissr(i) = ( pdf_e3 * ( 1. - cldfra(i) ) + pdf_loc * issrfra(i) ) * qsatl(i) / 100. |
---|
[4951] | 574 | |
---|
[5406] | 575 | issrfra(i) = issrfra(i) - dcf_con(i) |
---|
| 576 | qissr(i) = qissr(i) - dqvc_con(i) - dqi_con(i) |
---|
| 577 | |
---|
| 578 | ENDIF ! ( 1. - cldfra(i) ) .GT. eps |
---|
| 579 | |
---|
[4951] | 580 | !--Calculation of the subsaturated clear sky fraction and water |
---|
[5406] | 581 | subfra(i) = 1. - cldfra(i) - issrfra(i) |
---|
| 582 | qsub(i) = qtot(i) - qcld(i) - qissr(i) |
---|
[4951] | 583 | |
---|
| 584 | |
---|
| 585 | !-------------------------------------- |
---|
| 586 | !-- CLOUD MIXING -- |
---|
| 587 | !-------------------------------------- |
---|
| 588 | !--This process mixes the cloud with its surroundings: the subsaturated clear sky, |
---|
| 589 | !--and the supersaturated clear sky. It is activated if the cloud is big enough, |
---|
| 590 | !--but does not cover the entire mesh. |
---|
| 591 | ! |
---|
[5406] | 592 | IF ( ( cldfra(i) .LT. ( 1. - eps ) ) .AND. ( cldfra(i) .GT. eps ) ) THEN |
---|
[4951] | 593 | !--Initialisation |
---|
| 594 | dcf_mix_sub = 0. |
---|
| 595 | dqt_mix_sub = 0. |
---|
| 596 | dqvc_mix_sub = 0. |
---|
| 597 | dcf_mix_issr = 0. |
---|
| 598 | dqt_mix_issr = 0. |
---|
| 599 | dqvc_mix_issr = 0. |
---|
| 600 | |
---|
| 601 | !-- PART 1 - TURBULENT DIFFUSION |
---|
| 602 | |
---|
| 603 | !--Clouds within the mesh are assumed to be ellipses. The length of the |
---|
| 604 | !--semi-major axis is a and the length of the semi-minor axis is b. |
---|
[5450] | 605 | !--N_cld_mix is the number of clouds in contact with clear sky, and can be non-integer. |
---|
| 606 | !--In particular, it is 0 if cldfra = 1. |
---|
[4951] | 607 | !--clouds_perim is the total perimeter of the clouds within the mesh, |
---|
| 608 | !--not considering interfaces with other meshes (only the interfaces with clear |
---|
| 609 | !--sky are taken into account). |
---|
| 610 | !-- |
---|
| 611 | !--The area of each cloud is A = a * b * RPI, |
---|
| 612 | !--and the perimeter of each cloud is |
---|
| 613 | !-- P ~= RPI * ( 3 * (a + b) - SQRT( (3 * a + b) * (a + 3 * b) ) ) |
---|
| 614 | !-- |
---|
| 615 | !--With cell_area the area of the cell, we have: |
---|
| 616 | !-- cldfra = A * N_cld_mix / cell_area |
---|
| 617 | !-- clouds_perim = P * N_cld_mix |
---|
| 618 | !-- |
---|
| 619 | !--We assume that the ratio between b and a is a function of |
---|
| 620 | !--cldfra such that it is 1 for cldfra = 1 and it is low for little cldfra, because |
---|
| 621 | !--if cldfra is low the clouds are linear, and if cldfra is high, the clouds |
---|
| 622 | !--are spherical. |
---|
| 623 | !-- b / a = bovera = MAX(0.1, cldfra) |
---|
| 624 | bovera = MAX(0.1, cldfra(i)) |
---|
[5450] | 625 | !--P / a is a function of b / a only, that we can calculate |
---|
| 626 | !-- P / a = RPI * ( 3. * ( 1. + b / a ) - SQRT( (3. + b / a) * (1. + 3. * b / a) ) ) |
---|
| 627 | Povera = RPI * ( 3. * (1. + bovera) - SQRT( (3. + bovera) * (1. + 3. * bovera) ) ) |
---|
[4951] | 628 | !--The clouds perimeter is imposed using the formula from Morcrette 2012, |
---|
| 629 | !--based on observations. |
---|
[5450] | 630 | !-- clouds_perim / cell_area = N_cld_mix * ( P / a * a ) / cell_area = coef_mix_lscp * cldfra * ( 1. - cldfra ) |
---|
| 631 | !--With cldfra = a * ( b / a * a ) * RPI * N_cld_mix / cell_area, we have: |
---|
| 632 | !-- cldfra = a * b / a * RPI / (P / a) * coef_mix_lscp * cldfra * ( 1. - cldfra ) |
---|
| 633 | !-- a = (P / a) / ( coef_mix_lscp * RPI * ( 1. - cldfra ) * (b / a) ) |
---|
| 634 | a_mix = Povera / coef_mixing_lscp / RPI / ( 1. - cldfra(i) ) / bovera |
---|
| 635 | !--and finally, |
---|
| 636 | !-- N_cld_mix = coef_mix_lscp * cldfra * ( 1. - cldfra ) * cell_area / ( P / a * a ) |
---|
| 637 | N_cld_mix = coef_mixing_lscp * cldfra(i) * ( 1. - cldfra(i) ) * cell_area(i) & |
---|
| 638 | / Povera / a_mix |
---|
[4951] | 639 | |
---|
| 640 | !--The time required for turbulent diffusion to homogenize a region of size |
---|
[5406] | 641 | !--L_mix is defined as (L_mix**2/tke_dissip)**(1./3.) (Pope, 2000; Field et al., 2014) |
---|
[4951] | 642 | !--We compute L_mix and assume that the cloud is mixed over this length |
---|
[5406] | 643 | L_mix = SQRT( dtime**3 * pbl_eps(i) ) |
---|
[4951] | 644 | !--The mixing length cannot be greater than the semi-minor axis. In this case, |
---|
| 645 | !--the entire cloud is mixed. |
---|
| 646 | L_mix = MIN(L_mix, a_mix * bovera) |
---|
| 647 | |
---|
| 648 | !--The fraction of clear sky mixed is |
---|
| 649 | !-- N_cld_mix * ( (a + L_mix) * (b + L_mix) - a * b ) * RPI / cell_area |
---|
[5406] | 650 | envfra_mix = N_cld_mix * RPI / cell_area(i) & |
---|
| 651 | * ( a_mix * ( 1. + bovera ) * L_mix + L_mix**2 ) |
---|
[4951] | 652 | !--The fraction of cloudy sky mixed is |
---|
| 653 | !-- N_cld_mix * ( a * b - (a - L_mix) * (b - L_mix) ) * RPI / cell_area |
---|
[5406] | 654 | cldfra_mix = N_cld_mix * RPI / cell_area(i) & |
---|
| 655 | * ( a_mix * ( 1. + bovera ) * L_mix - L_mix**2 ) |
---|
[4951] | 656 | |
---|
| 657 | |
---|
| 658 | !-- PART 2 - SHEARING |
---|
| 659 | |
---|
| 660 | !--The clouds are then sheared. We keep the shape and number |
---|
| 661 | !--assumptions from before. The clouds are sheared along their |
---|
| 662 | !--semi-major axis (a_mix), on the entire cell heigh dz. |
---|
| 663 | !--The increase in size is |
---|
| 664 | L_shear = coef_shear_lscp * shear(i) * dz * dtime |
---|
[5406] | 665 | !--therefore, the fraction of clear sky mixed is |
---|
[5210] | 666 | !-- N_cld_mix * ( (a + L_shear) * b - a * b ) * RPI / 2. / cell_area |
---|
[5406] | 667 | !--and the fraction of cloud mixed is |
---|
| 668 | !-- N_cld_mix * ( (a * b) - (a - L_shear) * b ) * RPI / 2. / cell_area |
---|
| 669 | !--(note that they are equal) |
---|
| 670 | shear_fra = RPI * L_shear * a_mix * bovera / 2. * N_cld_mix / cell_area(i) |
---|
[4951] | 671 | !--and the environment and cloud mixed fractions are the same, |
---|
| 672 | !--which we add to the previous calculated mixed fractions. |
---|
| 673 | !--We therefore assume that the sheared clouds and the turbulent |
---|
| 674 | !--mixed clouds are different. |
---|
| 675 | envfra_mix = envfra_mix + shear_fra |
---|
| 676 | cldfra_mix = cldfra_mix + shear_fra |
---|
| 677 | |
---|
| 678 | |
---|
| 679 | !-- PART 3 - CALCULATION OF THE MIXING PROPERTIES |
---|
| 680 | |
---|
| 681 | !--The environment fraction is allocated to subsaturated sky or supersaturated sky, |
---|
| 682 | !--according to the factor sigma_mix. This is computed as the ratio of the |
---|
| 683 | !--subsaturated sky fraction to the environment fraction, corrected by a factor |
---|
| 684 | !--chi_mixing_lscp for the supersaturated part. If chi is greater than 1, the |
---|
| 685 | !--supersaturated sky is favoured. Physically, this means that it is more likely |
---|
| 686 | !--to have supersaturated sky around the cloud than subsaturated sky. |
---|
| 687 | sigma_mix = subfra(i) / ( subfra(i) + chi_mixing_lscp * issrfra(i) ) |
---|
| 688 | subfra_mix = MIN( sigma_mix * envfra_mix, subfra(i) ) |
---|
| 689 | issrfra_mix = MIN( ( 1. - sigma_mix ) * envfra_mix, issrfra(i) ) |
---|
| 690 | cldfra_mix = MIN( cldfra_mix, cldfra(i) ) |
---|
| 691 | |
---|
| 692 | !--First, we mix the subsaturated sky (subfra_mix) and the cloud close |
---|
| 693 | !--to this fraction (sigma_mix * cldfra_mix). |
---|
| 694 | IF ( subfra(i) .GT. eps ) THEN |
---|
[5406] | 695 | !--We compute the total humidity in the mixed air, which |
---|
| 696 | !--can be either sub- or supersaturated. |
---|
| 697 | qvapinmix = ( qsub(i) * subfra_mix / subfra(i) & |
---|
| 698 | + qcld(i) * cldfra_mix * sigma_mix / cldfra(i) ) & |
---|
| 699 | / ( subfra_mix + cldfra_mix * sigma_mix ) |
---|
[4951] | 700 | |
---|
[5406] | 701 | IF ( ok_unadjusted_clouds .AND. .NOT. ok_warm_cloud ) THEN |
---|
| 702 | qiceincld = ( qcld(i) - qvc(i) ) * cldfra_mix * sigma_mix / cldfra(i) & |
---|
| 703 | / ( subfra_mix + cldfra_mix * sigma_mix ) |
---|
| 704 | CALL deposition_sublimation(qvapinmix, qiceincld, temp(i), qsat(i), & |
---|
| 705 | pplay(i), dtime, qvapincld_new) |
---|
| 706 | IF ( qvapincld_new .EQ. 0. ) THEN |
---|
| 707 | !--If all the ice has been sublimated, we sublimate |
---|
| 708 | !--completely the cloud and do not activate the sublimation |
---|
| 709 | !--process |
---|
| 710 | !--Tendencies and diagnostics |
---|
| 711 | dcf_mix_sub = - sigma_mix * cldfra_mix |
---|
| 712 | dqt_mix_sub = dcf_mix_sub * qcld(i) / cldfra(i) |
---|
| 713 | dqvc_mix_sub = dcf_mix_sub * qvc(i) / cldfra(i) |
---|
| 714 | ELSE |
---|
| 715 | dcf_mix_sub = subfra_mix |
---|
| 716 | dqt_mix_sub = dcf_mix_sub * qsub(i) / subfra(i) |
---|
| 717 | dqvc_mix_sub = dcf_mix_sub * qvapincld_new |
---|
| 718 | ENDIF |
---|
[4951] | 719 | ELSE |
---|
| 720 | IF ( qvapinmix .GT. qsat(i) ) THEN |
---|
| 721 | !--If the mixed air is supersaturated, we condense the subsaturated |
---|
| 722 | !--region which was mixed. |
---|
| 723 | dcf_mix_sub = subfra_mix |
---|
| 724 | dqt_mix_sub = dcf_mix_sub * qsub(i) / subfra(i) |
---|
| 725 | dqvc_mix_sub = dcf_mix_sub * qsat(i) |
---|
| 726 | ELSE |
---|
| 727 | !--Else, we sublimate the cloud which was mixed. |
---|
| 728 | dcf_mix_sub = - sigma_mix * cldfra_mix |
---|
| 729 | dqt_mix_sub = dcf_mix_sub * qcld(i) / cldfra(i) |
---|
| 730 | dqvc_mix_sub = dcf_mix_sub * qsat(i) |
---|
| 731 | ENDIF |
---|
| 732 | ENDIF ! ok_unadjusted_clouds |
---|
| 733 | ENDIF ! subfra .GT. eps |
---|
| 734 | |
---|
| 735 | !--We then mix the supersaturated sky (issrfra_mix) and the cloud, |
---|
| 736 | !--for which the mixed air is always supersatured, therefore |
---|
| 737 | !--the cloud necessarily expands |
---|
| 738 | IF ( issrfra(i) .GT. eps ) THEN |
---|
| 739 | |
---|
[5406] | 740 | IF ( ok_unadjusted_clouds .AND. .NOT. ok_warm_cloud ) THEN |
---|
| 741 | qvapinmix = ( qissr(i) * issrfra_mix / issrfra(i) & |
---|
| 742 | + qcld(i) * cldfra_mix * (1. - sigma_mix) / cldfra(i) ) & |
---|
| 743 | / ( issrfra_mix + cldfra_mix * (1. - sigma_mix) ) |
---|
| 744 | qiceincld = ( qcld(i) - qvc(i) ) * cldfra_mix * (1. - sigma_mix) / cldfra(i) & |
---|
| 745 | / ( issrfra_mix + cldfra_mix * (1. - sigma_mix) ) |
---|
| 746 | CALL deposition_sublimation(qvapinmix, qiceincld, temp(i), qsat(i), & |
---|
| 747 | pplay(i), dtime, qvapincld_new) |
---|
[4951] | 748 | dcf_mix_issr = issrfra_mix |
---|
| 749 | dqt_mix_issr = dcf_mix_issr * qissr(i) / issrfra(i) |
---|
[5406] | 750 | dqvc_mix_issr = dcf_mix_issr * qvapincld_new |
---|
[4951] | 751 | ELSE |
---|
| 752 | !--In this case, the additionnal vapor condenses |
---|
| 753 | dcf_mix_issr = issrfra_mix |
---|
| 754 | dqt_mix_issr = dcf_mix_issr * qissr(i) / issrfra(i) |
---|
| 755 | dqvc_mix_issr = dcf_mix_issr * qsat(i) |
---|
| 756 | ENDIF ! ok_unadjusted_clouds |
---|
| 757 | |
---|
| 758 | ENDIF ! issrfra .GT. eps |
---|
| 759 | |
---|
| 760 | !--Sum up the tendencies from subsaturated sky and supersaturated sky |
---|
| 761 | dcf_mix(i) = dcf_mix_sub + dcf_mix_issr |
---|
| 762 | dqt_mix = dqt_mix_sub + dqt_mix_issr |
---|
| 763 | dqvc_mix(i) = dqvc_mix_sub + dqvc_mix_issr |
---|
| 764 | dqi_mix(i) = dqt_mix - dqvc_mix(i) |
---|
| 765 | |
---|
[5452] | 766 | IF ( ok_plane_contrail .AND. ( rcont_seri(i) .GT. eps ) ) THEN |
---|
| 767 | CALL contrails_mixing( & |
---|
| 768 | dtime, pplay(i), shear(i), pbl_eps(i), cell_area(i), dz, & |
---|
| 769 | temp(i), qtot(i), qsat(i), subfra(i), qsub(i), issrfra(i), qissr(i), & |
---|
| 770 | cldfra(i), qcld(i), qvc(i), rcont_seri(i), & |
---|
| 771 | dcf_mix(i), dqvc_mix(i), dqi_mix(i), dqt_mix, dcf_mix_issr, dqt_mix_issr) |
---|
| 772 | ENDIF |
---|
| 773 | |
---|
[4951] | 774 | !--Add tendencies |
---|
| 775 | issrfra(i) = MAX(0., issrfra(i) - dcf_mix_issr) |
---|
| 776 | qissr(i) = MAX(0., qissr(i) - dqt_mix_issr) |
---|
[5406] | 777 | cldfra(i) = MAX(0., MIN(1., cldfra(i) + dcf_mix(i))) |
---|
| 778 | qcld(i) = MAX(0., MIN(qtot(i), qcld(i) + dqt_mix)) |
---|
[4951] | 779 | qvc(i) = MAX(0., MIN(qcld(i), qvc(i) + dqvc_mix(i))) |
---|
| 780 | |
---|
[5406] | 781 | ENDIF ! ( ( cldfra(i) .LT. ( 1. - eps ) ) .AND. ( cldfra(i) .GT. eps ) ) |
---|
[4951] | 782 | |
---|
| 783 | |
---|
| 784 | !---------------------------------------- |
---|
| 785 | !-- CONTRAILS AND AVIATION -- |
---|
| 786 | !---------------------------------------- |
---|
| 787 | |
---|
[5452] | 788 | IF ( ok_plane_contrail ) THEN |
---|
| 789 | CALL contrails_formation_evolution( & |
---|
| 790 | dtime, pplay(i), temp(i), qsat(i), qsatl(i), gamma_cond(i), & |
---|
| 791 | rcont_seri(i), flight_dist(i), cldfra(i), qvc(i), & |
---|
| 792 | V_cell, M_cell, pdf_loc, pdf_scale, pdf_alpha, & |
---|
| 793 | Tcritcont(i), qcritcont(i), potcontfraP(i), potcontfraNP(i), contfra(i), & |
---|
| 794 | dcf_avi(i), dqvc_avi(i), dqi_avi(i) & |
---|
| 795 | ) |
---|
[4951] | 796 | |
---|
[5452] | 797 | !--Add tendencies |
---|
| 798 | issrfra(i) = MAX(0., issrfra(i) - dcf_avi(i)) |
---|
| 799 | qissr(i) = MAX(0., qissr(i) - dqvc_avi(i) - dqi_avi(i)) |
---|
| 800 | cldfra(i) = MIN(1., cldfra(i) + dcf_avi(i)) |
---|
| 801 | qcld(i) = MIN(qtot(i), qcld(i) + dqvc_avi(i) + dqi_avi(i)) |
---|
| 802 | qvc(i) = MIN(qcld(i), qvc(i) + dqvc_avi(i)) |
---|
| 803 | ENDIF |
---|
[4951] | 804 | |
---|
| 805 | !------------------------------------------- |
---|
| 806 | !-- FINAL BARRIERS AND OUTPUTS -- |
---|
| 807 | !------------------------------------------- |
---|
| 808 | |
---|
| 809 | IF ( cldfra(i) .LT. eps ) THEN |
---|
| 810 | !--If the cloud is too small, it is sublimated. |
---|
| 811 | cldfra(i) = 0. |
---|
| 812 | qcld(i) = 0. |
---|
| 813 | qvc(i) = 0. |
---|
| 814 | qincld(i) = qsat(i) |
---|
| 815 | ELSE |
---|
| 816 | qincld(i) = qcld(i) / cldfra(i) |
---|
| 817 | ENDIF ! cldfra .LT. eps |
---|
| 818 | |
---|
| 819 | !--Diagnostics |
---|
| 820 | dcf_sub(i) = dcf_sub(i) / dtime |
---|
| 821 | dcf_con(i) = dcf_con(i) / dtime |
---|
| 822 | dcf_mix(i) = dcf_mix(i) / dtime |
---|
| 823 | dqi_adj(i) = dqi_adj(i) / dtime |
---|
| 824 | dqi_sub(i) = dqi_sub(i) / dtime |
---|
| 825 | dqi_con(i) = dqi_con(i) / dtime |
---|
| 826 | dqi_mix(i) = dqi_mix(i) / dtime |
---|
| 827 | dqvc_adj(i) = dqvc_adj(i) / dtime |
---|
| 828 | dqvc_sub(i) = dqvc_sub(i) / dtime |
---|
| 829 | dqvc_con(i) = dqvc_con(i) / dtime |
---|
| 830 | dqvc_mix(i) = dqvc_mix(i) / dtime |
---|
[5452] | 831 | IF ( ok_plane_contrail ) THEN |
---|
| 832 | dcf_avi(i) = dcf_avi(i) / dtime |
---|
| 833 | dqi_avi(i) = dqi_avi(i) / dtime |
---|
| 834 | dqvc_avi(i) = dqvc_avi(i) / dtime |
---|
| 835 | ENDIF |
---|
[4951] | 836 | |
---|
| 837 | ENDIF ! ( temp(i) .GT. temp_nowater ) .AND. .NOT. ok_weibull_warm_clouds |
---|
| 838 | |
---|
| 839 | ENDIF ! end keepgoing |
---|
| 840 | |
---|
| 841 | ENDDO ! end loop on i |
---|
| 842 | |
---|
| 843 | END SUBROUTINE condensation_ice_supersat |
---|
| 844 | !********************************************************************************** |
---|
| 845 | |
---|
[5406] | 846 | SUBROUTINE deposition_sublimation( & |
---|
| 847 | qvapincld, qiceincld, temp, qsat, pplay, dtime, & |
---|
| 848 | qvapincld_new) |
---|
| 849 | |
---|
| 850 | USE lmdz_lscp_ini, ONLY: RV, RLSTT, RTT, RD, EPS_W |
---|
| 851 | USE lmdz_lscp_ini, ONLY: eps |
---|
| 852 | USE lmdz_lscp_ini, ONLY: depo_coef_cirrus, capa_cond_cirrus, rho_ice |
---|
| 853 | |
---|
| 854 | REAL, INTENT(IN) :: qvapincld ! |
---|
| 855 | REAL, INTENT(IN) :: qiceincld ! |
---|
| 856 | REAL, INTENT(IN) :: temp ! |
---|
| 857 | REAL, INTENT(IN) :: qsat ! |
---|
| 858 | REAL, INTENT(IN) :: pplay ! |
---|
| 859 | REAL, INTENT(IN) :: dtime ! time step [s] |
---|
| 860 | REAL, INTENT(OUT):: qvapincld_new ! |
---|
| 861 | |
---|
| 862 | ! |
---|
| 863 | ! for unadjusted clouds |
---|
| 864 | REAL :: qice_ratio |
---|
| 865 | REAL :: pres_sat, rho, kappa |
---|
| 866 | REAL :: air_thermal_conduct, water_vapor_diff |
---|
| 867 | REAL :: iwc |
---|
| 868 | REAL :: iwc_log_inf100, iwc_log_sup100 |
---|
| 869 | REAL :: iwc_inf100, alpha_inf100, coef_inf100 |
---|
| 870 | REAL :: mu_sup100, sigma_sup100, coef_sup100 |
---|
| 871 | REAL :: Dm_ice, rm_ice |
---|
| 872 | |
---|
| 873 | !--If ok_unadjusted_clouds is set to TRUE, then the saturation adjustment |
---|
| 874 | !--hypothesis is lost, and the vapor in the cloud is purely prognostic. |
---|
| 875 | ! |
---|
| 876 | !--The deposition equation is |
---|
| 877 | !-- dmi/dt = alpha*4pi*C*Svi / ( R_v*T/esi/Dv + Ls/ka/T * (Ls/R_v/T - 1) ) |
---|
| 878 | !--from Lohmann et al. (2016), where |
---|
| 879 | !--alpha is the deposition coefficient [-] |
---|
| 880 | !--mi is the mass of one ice crystal [kg] |
---|
| 881 | !--C is the capacitance of an ice crystal [m] |
---|
| 882 | !--Svi is the supersaturation ratio equal to (qvc - qsat)/qsat [-] |
---|
| 883 | !--R_v is the specific gas constant for humid air [J/kg/K] |
---|
| 884 | !--T is the temperature [K] |
---|
| 885 | !--esi is the saturation pressure w.r.t. ice [Pa] |
---|
| 886 | !--Dv is the diffusivity of water vapor [m2/s] |
---|
| 887 | !--Ls is the specific latent heat of sublimation [J/kg/K] |
---|
| 888 | !--ka is the thermal conductivity of dry air [J/m/s/K] |
---|
| 889 | ! |
---|
| 890 | !--alpha is a coefficient to take into account the fact that during deposition, a water |
---|
| 891 | !--molecule cannot join the crystal from everywhere, it must do so that the crystal stays |
---|
| 892 | !--coherent (with the same structure). It has no impact for sublimation. |
---|
| 893 | !--We fix alpha = depo_coef_cirrus (=0.5 by default following Lohmann et al. (2016)) |
---|
| 894 | !--during deposition, and alpha = 1. during sublimation. |
---|
| 895 | !--The capacitance of the ice crystals is proportional to a parameter capa_cond_cirrus |
---|
| 896 | !-- C = capa_cond_cirrus * rm_ice |
---|
| 897 | ! |
---|
| 898 | !--We have qice = Nice * mi, where Nice is the ice crystal |
---|
| 899 | !--number concentration per kg of moist air |
---|
| 900 | !--HYPOTHESIS 1: the ice crystals are spherical, therefore |
---|
| 901 | !-- mi = 4/3 * pi * rm_ice**3 * rho_ice |
---|
| 902 | !--HYPOTHESIS 2: the ice crystals are monodisperse with the |
---|
| 903 | !--initial radius rm_ice_0. |
---|
| 904 | !--NB. this is notably different than the assumption |
---|
| 905 | !--of a distributed qice in the cloud made in the sublimation process; |
---|
| 906 | !--should it be consistent? |
---|
| 907 | ! |
---|
| 908 | !--As the deposition process does not create new ice crystals, |
---|
| 909 | !--and because we assume a same rm_ice value for all crystals |
---|
| 910 | !--therefore the sublimation process does not destroy ice crystals |
---|
| 911 | !--(or, in a limit case, it destroys all ice crystals), then |
---|
| 912 | !--Nice is a constant during the sublimation/deposition process. |
---|
| 913 | !-- dmi = dqi, et Nice = qi_0 / ( 4/3 RPI rm_ice_0**3 rho_ice ) |
---|
| 914 | ! |
---|
| 915 | !--The deposition equation then reads: |
---|
| 916 | !-- dqi/dt = alpha*4pi*capa_cond_cirrus*rm_ice*(qvc-qsat)/qsat / ( R_v*T/esi/Dv + Ls/ka/T * (Ls/R_v/T - 1) ) * Nice |
---|
| 917 | !-- dqi/dt = alpha*4pi*capa_cond_cirrus* (qi / qi_0)**(1/3) *rm_ice_0*(qvc-qsat)/qsat & |
---|
| 918 | !-- / ( R_v*T/esi/Dv + Ls/ka/T * (Ls*R_v/T - 1) ) & |
---|
| 919 | !-- * qi_0 / ( 4/3 RPI rm_ice_0**3 rho_ice ) |
---|
| 920 | !-- dqi/dt = qi**(1/3) * (qvc - qsat) * qi_0**(2/3) & |
---|
| 921 | !-- *alpha/qsat*capa_cond_cirrus/ (R_v*T/esi/Dv + Ls/ka/T*(Ls*R_v/T - 1)) / ( 1/3 rm_ice_0**2 rho_ice ) |
---|
| 922 | !--and we have |
---|
| 923 | !-- dqvc/dt = - qi**(1/3) * (qvc - qsat) / kappa * alpha * qi_0**(2/3) / rm_ice_0**2 |
---|
| 924 | !-- dqi/dt = qi**(1/3) * (qvc - qsat) / kappa * alpha * qi_0**(2/3) / rm_ice_0**2 |
---|
| 925 | !--where kappa = 1/3*rho_ice/capa_cond_cirrus*qsat*(R_v*T/esi/Dv + Ls/ka/T*(Ls/R_v/T - 1)) |
---|
| 926 | ! |
---|
| 927 | !--This system of equations can be resolved with an exact |
---|
| 928 | !--explicit numerical integration, having one variable resolved |
---|
| 929 | !--explicitly, the other exactly. The exactly resolved variable is |
---|
| 930 | !--the one decreasing, so it is qvc if the process is |
---|
| 931 | !--condensation, qi if it is sublimation. |
---|
| 932 | ! |
---|
| 933 | !--kappa is computed as an initialisation constant, as it depends only |
---|
| 934 | !--on temperature and other pre-computed values |
---|
| 935 | pres_sat = qsat / ( EPS_W + ( 1. - EPS_W ) * qsat ) * pplay |
---|
| 936 | !--This formula for air thermal conductivity comes from Beard and Pruppacher (1971) |
---|
| 937 | air_thermal_conduct = ( 5.69 + 0.017 * ( temp - RTT ) ) * 1.e-3 * 4.184 |
---|
| 938 | !--This formula for water vapor diffusivity comes from Hall and Pruppacher (1976) |
---|
| 939 | water_vapor_diff = 0.211 * ( temp / RTT )**1.94 * ( 101325. / pplay ) * 1.e-4 |
---|
| 940 | kappa = 1. / 3. * rho_ice / capa_cond_cirrus * qsat & |
---|
| 941 | * ( RV * temp / water_vapor_diff / pres_sat & |
---|
| 942 | + RLSTT / air_thermal_conduct / temp * ( RLSTT / RV / temp - 1. ) ) |
---|
| 943 | !--NB. the greater kappa, the lower the efficiency of the deposition/sublimation process |
---|
| 944 | |
---|
| 945 | !--Dry density [kg/m3] |
---|
| 946 | rho = pplay / temp / RD |
---|
| 947 | |
---|
| 948 | !--Here, the initial vapor in the cloud is qvapincld, and we compute |
---|
| 949 | !--the new vapor qvapincld_new |
---|
| 950 | |
---|
| 951 | !--rm_ice formula from McFarquhar and Heymsfield (1997) |
---|
| 952 | iwc = qiceincld * rho * 1e3 |
---|
| 953 | iwc_inf100 = MIN(iwc, 0.252 * iwc**0.837) |
---|
| 954 | iwc_log_inf100 = LOG10( MAX(eps, iwc_inf100) ) |
---|
| 955 | iwc_log_sup100 = LOG10( MAX(eps, iwc - iwc_inf100) ) |
---|
| 956 | |
---|
| 957 | alpha_inf100 = - 4.99E-3 - 0.0494 * iwc_log_inf100 |
---|
| 958 | coef_inf100 = iwc_inf100 * alpha_inf100**3 / 120. |
---|
| 959 | |
---|
| 960 | mu_sup100 = ( 5.2 + 0.0013 * ( temp - RTT ) ) & |
---|
| 961 | + ( 0.026 - 1.2E-3 * ( temp - RTT ) ) * iwc_log_sup100 |
---|
| 962 | sigma_sup100 = ( 0.47 + 2.1E-3 * ( temp - RTT ) ) & |
---|
| 963 | + ( 0.018 - 2.1E-4 * ( temp - RTT ) ) * iwc_log_sup100 |
---|
| 964 | coef_sup100 = ( iwc - iwc_inf100 ) / EXP( 3. * mu_sup100 + 4.5 * sigma_sup100**2 ) |
---|
| 965 | |
---|
| 966 | Dm_ice = ( 2. / alpha_inf100 * coef_inf100 + EXP( mu_sup100 + 0.5 * sigma_sup100**2 ) & |
---|
| 967 | * coef_sup100 ) / ( coef_inf100 + coef_sup100 ) |
---|
| 968 | rm_ice = Dm_ice / 2. * 1.E-6 |
---|
| 969 | |
---|
| 970 | IF ( qvapincld .GE. qsat ) THEN |
---|
| 971 | !--If the cloud is initially supersaturated |
---|
| 972 | !--Exact explicit integration (qvc exact, qice explicit) |
---|
| 973 | qvapincld_new = qsat + ( qvapincld - qsat ) & |
---|
| 974 | * EXP( - depo_coef_cirrus * dtime * qiceincld / kappa / rm_ice**2 ) |
---|
| 975 | ELSE |
---|
| 976 | !--If the cloud is initially subsaturated |
---|
| 977 | !--Exact explicit integration (qice exact, qvc explicit) |
---|
| 978 | !--The barrier is set so that the resulting vapor in cloud |
---|
| 979 | !--cannot be greater than qsat |
---|
| 980 | !--qice_ratio is the ratio between the new ice content and |
---|
| 981 | !--the old one, it is comprised between 0 and 1 |
---|
| 982 | qice_ratio = ( 1. - 2. / 3. / kappa / rm_ice**2 * dtime * ( qsat - qvapincld ) ) |
---|
| 983 | |
---|
| 984 | IF ( qice_ratio .LT. 0. ) THEN |
---|
| 985 | !--The new vapor in cloud is set to 0 so that the |
---|
| 986 | !--sublimation process does not activate |
---|
| 987 | qvapincld_new = 0. |
---|
| 988 | ELSE |
---|
| 989 | !--Else, the sublimation process is activated with the |
---|
| 990 | !--diagnosed new cloud water vapor |
---|
| 991 | !--The new vapor in the cloud is increased with the |
---|
| 992 | !--sublimated ice |
---|
| 993 | qvapincld_new = qvapincld + qiceincld * ( 1. - qice_ratio**1.5 ) |
---|
| 994 | !--The new vapor in the cloud cannot be greater than qsat |
---|
| 995 | qvapincld_new = MIN(qvapincld_new, qsat) |
---|
| 996 | ENDIF ! qice_ratio .LT. 0. |
---|
| 997 | ENDIF ! qvapincld .GT. qsat |
---|
| 998 | |
---|
| 999 | END SUBROUTINE deposition_sublimation |
---|
| 1000 | |
---|
[4951] | 1001 | END MODULE lmdz_lscp_condensation |
---|