| 1 | MODULE lmdz_lscp |
|---|
| 2 | |
|---|
| 3 | IMPLICIT NONE |
|---|
| 4 | |
|---|
| 5 | CONTAINS |
|---|
| 6 | |
|---|
| 7 | !++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ |
|---|
| 8 | SUBROUTINE lscp(klon,klev,dtime,missing_val, & |
|---|
| 9 | paprs, pplay, omega, temp, qt, ql_seri, qi_seri, & |
|---|
| 10 | ratqs, sigma_qtherm, ptconv, cfcon_old, qvcon_old, & |
|---|
| 11 | qccon_old, cfcon, qvcon, qccon, & |
|---|
| 12 | d_t, d_q, d_ql, d_qi, rneb, rneblsvol, & |
|---|
| 13 | pfraclr, pfracld, & |
|---|
| 14 | cldfraliq, sigma2_icefracturb,mean_icefracturb, & |
|---|
| 15 | radocond, radicefrac, rain, snow, & |
|---|
| 16 | frac_impa, frac_nucl, beta, & |
|---|
| 17 | prfl, psfl, rhcl, qta, fraca, & |
|---|
| 18 | tv, pspsk, tla, thl, iflag_cld_th, & |
|---|
| 19 | iflag_ice_thermo, distcltop, temp_cltop, & |
|---|
| 20 | tke, tke_dissip, & |
|---|
| 21 | cell_area, stratomask, & |
|---|
| 22 | cf_seri, qvc_seri, u_seri, v_seri, & |
|---|
| 23 | qsub, qissr, qcld, subfra, issrfra, gamma_cond, & |
|---|
| 24 | dcf_sub, dcf_con, dcf_mix, & |
|---|
| 25 | dqi_adj, dqi_sub, dqi_con, dqi_mix, dqvc_adj, & |
|---|
| 26 | dqvc_sub, dqvc_con, dqvc_mix, qsatl, qsati, & |
|---|
| 27 | cfa_seri, pcf_seri, qva_seri, qia_seri,flight_dist,& |
|---|
| 28 | flight_h2o, qice_perscont, Tcritcont, & |
|---|
| 29 | qcritcont, potcontfraP, potcontfraNP, & |
|---|
| 30 | cloudth_sth, & |
|---|
| 31 | cloudth_senv, cloudth_sigmath, cloudth_sigmaenv, & |
|---|
| 32 | qraindiag, qsnowdiag, dqreva, dqssub, dqrauto, & |
|---|
| 33 | dqrcol, dqrmelt, dqrfreez, dqsauto, dqsagg, dqsrim,& |
|---|
| 34 | dqsmelt, dqsfreez, dqised, dcfsed, dqvcsed) |
|---|
| 35 | |
|---|
| 36 | !++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ |
|---|
| 37 | ! Authors: Z.X. Li (LMD), J-L Dufresne (LMD), C. Rio (LMD), J-Y Grandpeix (LMD) |
|---|
| 38 | ! A. JAM (LMD), J-B Madeleine (LMD), E. Vignon (LMD), L. Touzze-Peiffert (LMD) |
|---|
| 39 | !-------------------------------------------------------------------------------- |
|---|
| 40 | ! Date: 01/2021 |
|---|
| 41 | !-------------------------------------------------------------------------------- |
|---|
| 42 | ! Aim: Large Scale Clouds and Precipitation (LSCP) |
|---|
| 43 | ! |
|---|
| 44 | ! This code is a new version of the fisrtilp.F90 routine, which is itself a |
|---|
| 45 | ! merge of 'first' (superrsaturation physics, P. LeVan K. Laval) |
|---|
| 46 | ! and 'ilp' (il pleut, L. Li) |
|---|
| 47 | ! |
|---|
| 48 | ! Compared to the original fisrtilp code, lscp |
|---|
| 49 | ! -> assumes thermcep = .TRUE. all the time (fisrtilp inconsistent when .FALSE.) |
|---|
| 50 | ! -> consider always precipitation thermalisation (fl_cor_ebil>0) |
|---|
| 51 | ! -> option iflag_fisrtilp_qsat<0 no longer possible (qsat does not evolve with T) |
|---|
| 52 | ! -> option "oldbug" by JYG has been removed |
|---|
| 53 | ! -> iflag_t_glace >0 always |
|---|
| 54 | ! -> the 'all or nothing' cloud approach is no longer available (cpartiel=T always) |
|---|
| 55 | ! -> rectangular distribution from L. Li no longer available |
|---|
| 56 | ! -> We always account for the Wegener-Findeisen-Bergeron process (iflag_bergeron = 2 in fisrt) |
|---|
| 57 | !-------------------------------------------------------------------------------- |
|---|
| 58 | ! References: |
|---|
| 59 | ! |
|---|
| 60 | ! - Bony, S., & Emanuel, K. A. 2001, JAS, doi: 10.1175/1520-0469(2001)058<3158:APOTCA>2.0.CO;2 |
|---|
| 61 | ! - Hourdin et al. 2013, Clim Dyn, doi:10.1007/s00382-012-1343-y |
|---|
| 62 | ! - Jam et al. 2013, Boundary-Layer Meteorol, doi:10.1007/s10546-012-9789-3 |
|---|
| 63 | ! - Jouhaud, et al. 2018. JAMES, doi:10.1029/2018MS001379 |
|---|
| 64 | ! - Madeleine et al. 2020, JAMES, doi:10.1029/2020MS002046 |
|---|
| 65 | ! - Touzze-Peifert Ludo, PhD thesis, p117-124 |
|---|
| 66 | ! ------------------------------------------------------------------------------- |
|---|
| 67 | ! Code structure: |
|---|
| 68 | ! |
|---|
| 69 | ! P0> Thermalization of the precipitation coming from the overlying layer |
|---|
| 70 | ! P1> Evaporation of the precipitation (falling from the k+1 level) |
|---|
| 71 | ! P2> Cloud formation (at the k level) |
|---|
| 72 | ! P2.A.1> With the PDFs, calculation of cloud properties using the inital |
|---|
| 73 | ! values of T and Q |
|---|
| 74 | ! P2.A.2> Coupling between condensed water and temperature |
|---|
| 75 | ! P2.A.3> Calculation of final quantities associated with cloud formation |
|---|
| 76 | ! P2.B> Release of Latent heat after cloud formation |
|---|
| 77 | ! P3> Autoconversion to precipitation (k-level) |
|---|
| 78 | ! P4> Wet scavenging |
|---|
| 79 | !------------------------------------------------------------------------------ |
|---|
| 80 | ! Some preliminary comments (JBM) : |
|---|
| 81 | ! |
|---|
| 82 | ! The cloud water that the radiation scheme sees is not the same that the cloud |
|---|
| 83 | ! water used in the physics and the dynamics |
|---|
| 84 | ! |
|---|
| 85 | ! During the autoconversion to precipitation (P3 step), radocond (cloud water used |
|---|
| 86 | ! by the radiation scheme) is calculated as an average of the water that remains |
|---|
| 87 | ! in the cloud during the precipitation and not the water remaining at the end |
|---|
| 88 | ! of the time step. The latter is used in the rest of the physics and advected |
|---|
| 89 | ! by the dynamics. |
|---|
| 90 | ! |
|---|
| 91 | ! In summary: |
|---|
| 92 | ! |
|---|
| 93 | ! Radiation: |
|---|
| 94 | ! xflwc(newmicro)+xfiwc(newmicro) = |
|---|
| 95 | ! radocond=lwcon(nc)+iwcon(nc) |
|---|
| 96 | ! |
|---|
| 97 | ! Notetheless, be aware of: |
|---|
| 98 | ! |
|---|
| 99 | ! radocond .NE. ocond(nc) |
|---|
| 100 | ! i.e.: |
|---|
| 101 | ! lwcon(nc)+iwcon(nc) .NE. ocond(nc) |
|---|
| 102 | ! but oliq+(ocond-oliq) .EQ. ocond |
|---|
| 103 | ! (which is not trivial) |
|---|
| 104 | !++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ |
|---|
| 105 | ! |
|---|
| 106 | |
|---|
| 107 | ! USE de modules contenant des fonctions. |
|---|
| 108 | USE lmdz_cloudth, ONLY : cloudth, cloudth_v3, cloudth_v6, cloudth_mpc |
|---|
| 109 | USE lmdz_lscp_tools, ONLY : calc_qsat_ecmwf, calc_gammasat |
|---|
| 110 | USE lmdz_lscp_tools, ONLY : icefrac_lscp, icefrac_lscp_turb, distance_to_cloud_top |
|---|
| 111 | USE lmdz_lscp_condensation, ONLY : condensation_lognormal, condensation_ice_supersat |
|---|
| 112 | USE lmdz_lscp_precip, ONLY : histprecip_precld, histprecip_postcld |
|---|
| 113 | USE lmdz_lscp_precip, ONLY : poprecip_precld, poprecip_postcld |
|---|
| 114 | |
|---|
| 115 | ! Use du module lmdz_lscp_ini contenant les constantes |
|---|
| 116 | USE lmdz_lscp_ini, ONLY : prt_level, lunout, eps |
|---|
| 117 | USE lmdz_lscp_ini, ONLY : seuil_neb, iflag_evap_prec, DDT0 |
|---|
| 118 | USE lmdz_lscp_ini, ONLY : ok_radocond_snow, a_tr_sca |
|---|
| 119 | USE lmdz_lscp_ini, ONLY : iflag_cloudth_vert, iflag_t_glace, iflag_fisrtilp_qsat |
|---|
| 120 | USE lmdz_lscp_ini, ONLY : t_glace_min, temp_nowater, min_frac_th_cld |
|---|
| 121 | USE lmdz_lscp_ini, ONLY : RCPD, RLSTT, RLVTT, RVTMP2, RTT, RD, RG |
|---|
| 122 | USE lmdz_lscp_ini, ONLY : ok_poprecip, ok_bug_phase_lscp |
|---|
| 123 | USE lmdz_lscp_ini, ONLY : ok_ice_supersat, ok_unadjusted_clouds, iflag_icefrac |
|---|
| 124 | USE lmdz_lscp_ini, ONLY : ok_weibull_warm_clouds, ok_no_issr_strato |
|---|
| 125 | USE lmdz_lscp_ini, ONLY : ok_plane_contrail, ok_ice_sedim |
|---|
| 126 | |
|---|
| 127 | ! Temporary call for Lamquin et al (2012) diagnostics |
|---|
| 128 | USE phys_local_var_mod, ONLY : issrfra100to150, issrfra150to200, issrfra200to250 |
|---|
| 129 | USE phys_local_var_mod, ONLY : issrfra250to300, issrfra300to400, issrfra400to500 |
|---|
| 130 | USE phys_local_var_mod, ONLY : dcfa_ini, dqia_ini, dqta_ini, dcfa_sub, dqia_sub, dqta_sub |
|---|
| 131 | USE phys_local_var_mod, ONLY : dcfa_cir, dqta_cir, dcfa_mix, dqia_mix, dqta_mix |
|---|
| 132 | |
|---|
| 133 | IMPLICIT NONE |
|---|
| 134 | |
|---|
| 135 | !=============================================================================== |
|---|
| 136 | ! VARIABLES DECLARATION |
|---|
| 137 | !=============================================================================== |
|---|
| 138 | |
|---|
| 139 | ! INPUT VARIABLES: |
|---|
| 140 | !----------------- |
|---|
| 141 | |
|---|
| 142 | INTEGER, INTENT(IN) :: klon,klev ! number of horizontal grid points and vertical levels |
|---|
| 143 | REAL, INTENT(IN) :: dtime ! time step [s] |
|---|
| 144 | REAL, INTENT(IN) :: missing_val ! missing value for output |
|---|
| 145 | |
|---|
| 146 | REAL, DIMENSION(klon,klev+1), INTENT(IN) :: paprs ! inter-layer pressure [Pa] |
|---|
| 147 | REAL, DIMENSION(klon,klev), INTENT(IN) :: pplay ! mid-layer pressure [Pa] |
|---|
| 148 | REAL, DIMENSION(klon,klev), INTENT(IN) :: temp ! temperature (K) |
|---|
| 149 | REAL, DIMENSION(klon,klev), INTENT(IN) :: omega ! vertical velocity [Pa/s] |
|---|
| 150 | REAL, DIMENSION(klon,klev), INTENT(IN) :: qt ! total specific humidity (in vapor phase in input) [kg/kg] |
|---|
| 151 | REAL, DIMENSION(klon,klev), INTENT(IN) :: ql_seri ! liquid specific content [kg/kg] |
|---|
| 152 | REAL, DIMENSION(klon,klev), INTENT(IN) :: qi_seri ! ice specific content [kg/kg] |
|---|
| 153 | INTEGER, INTENT(IN) :: iflag_cld_th ! flag that determines the distribution of convective clouds |
|---|
| 154 | INTEGER, INTENT(IN) :: iflag_ice_thermo! flag to activate the ice thermodynamics |
|---|
| 155 | ! CR: if iflag_ice_thermo=2, only convection is active |
|---|
| 156 | LOGICAL, DIMENSION(klon,klev), INTENT(IN) :: ptconv ! grid points where deep convection scheme is active |
|---|
| 157 | REAL, DIMENSION(klon,klev), INTENT(IN) :: cfcon_old ! cloud fraction from deep convection from previous timestep [-] |
|---|
| 158 | REAL, DIMENSION(klon,klev), INTENT(IN) :: qvcon_old ! in-cloud vapor specific humidity from deep convection from previous timestep [kg/kg] |
|---|
| 159 | REAL, DIMENSION(klon,klev), INTENT(IN) :: qccon_old ! in-cloud condensed specific humidity from deep convection from previous timestep [kg/kg] |
|---|
| 160 | REAL, DIMENSION(klon,klev), INTENT(IN) :: cfcon ! cloud fraction from deep convection [-] |
|---|
| 161 | REAL, DIMENSION(klon,klev), INTENT(IN) :: qvcon ! in-cloud vapor specific humidity from deep convection [kg/kg] |
|---|
| 162 | REAL, DIMENSION(klon,klev), INTENT(IN) :: qccon ! in-cloud condensed specific humidity from deep convection [kg/kg] |
|---|
| 163 | |
|---|
| 164 | !Inputs associated with thermal plumes |
|---|
| 165 | |
|---|
| 166 | REAL, DIMENSION(klon,klev), INTENT(IN) :: tv ! virtual potential temperature [K] |
|---|
| 167 | REAL, DIMENSION(klon,klev), INTENT(IN) :: qta ! specific humidity within thermals [kg/kg] |
|---|
| 168 | REAL, DIMENSION(klon,klev), INTENT(IN) :: fraca ! fraction of thermals within the mesh [-] |
|---|
| 169 | REAL, DIMENSION(klon,klev), INTENT(IN) :: pspsk ! exner potential (p/100000)**(R/cp) |
|---|
| 170 | REAL, DIMENSION(klon,klev), INTENT(IN) :: tla ! liquid temperature within thermals [K] |
|---|
| 171 | REAL, DIMENSION(klon,klev+1), INTENT(IN) :: tke !--turbulent kinetic energy [m2/s2] |
|---|
| 172 | REAL, DIMENSION(klon,klev+1), INTENT(IN) :: tke_dissip !--TKE dissipation [m2/s3] |
|---|
| 173 | |
|---|
| 174 | ! INPUT/OUTPUT variables |
|---|
| 175 | !------------------------ |
|---|
| 176 | |
|---|
| 177 | REAL, DIMENSION(klon,klev), INTENT(INOUT) :: thl ! liquid potential temperature [K] |
|---|
| 178 | REAL, DIMENSION(klon,klev), INTENT(INOUT) :: ratqs,sigma_qtherm ! function of pressure that sets the large-scale |
|---|
| 179 | |
|---|
| 180 | |
|---|
| 181 | ! INPUT/OUTPUT condensation and ice supersaturation |
|---|
| 182 | !-------------------------------------------------- |
|---|
| 183 | REAL, DIMENSION(klon,klev), INTENT(INOUT):: cf_seri ! cloud fraction [-] |
|---|
| 184 | REAL, DIMENSION(klon,klev), INTENT(INOUT):: qvc_seri ! cloudy water vapor [kg/kg] |
|---|
| 185 | REAL, DIMENSION(klon,klev), INTENT(IN) :: u_seri ! eastward wind [m/s] |
|---|
| 186 | REAL, DIMENSION(klon,klev), INTENT(IN) :: v_seri ! northward wind [m/s] |
|---|
| 187 | REAL, DIMENSION(klon), INTENT(IN) :: cell_area ! area of each cell [m2] |
|---|
| 188 | REAL, DIMENSION(klon,klev), INTENT(IN) :: stratomask ! fraction of stratosphere (0 or 1) |
|---|
| 189 | |
|---|
| 190 | ! INPUT/OUTPUT aviation |
|---|
| 191 | !-------------------------------------------------- |
|---|
| 192 | REAL, DIMENSION(klon,klev), INTENT(INOUT):: cfa_seri ! linear contrails fraction [-] |
|---|
| 193 | REAL, DIMENSION(klon,klev), INTENT(INOUT):: pcf_seri ! contrails induced cirrus fraction [-] |
|---|
| 194 | REAL, DIMENSION(klon,klev), INTENT(INOUT):: qva_seri ! linear contrails total specific humidity [kg/kg] |
|---|
| 195 | REAL, DIMENSION(klon,klev), INTENT(INOUT):: qia_seri ! linear contrails total specific humidity [kg/kg] |
|---|
| 196 | REAL, DIMENSION(klon,klev), INTENT(IN) :: flight_dist ! aviation distance flown within the mesh [m/s/mesh] |
|---|
| 197 | REAL, DIMENSION(klon,klev), INTENT(IN) :: flight_h2o ! aviation H2O emitted within the mesh [kgH2O/s/mesh] |
|---|
| 198 | |
|---|
| 199 | ! OUTPUT variables |
|---|
| 200 | !----------------- |
|---|
| 201 | |
|---|
| 202 | REAL, DIMENSION(klon,klev), INTENT(OUT) :: d_t ! temperature increment [K] |
|---|
| 203 | REAL, DIMENSION(klon,klev), INTENT(OUT) :: d_q ! specific humidity increment [kg/kg] |
|---|
| 204 | REAL, DIMENSION(klon,klev), INTENT(OUT) :: d_ql ! liquid water increment [kg/kg] |
|---|
| 205 | REAL, DIMENSION(klon,klev), INTENT(OUT) :: d_qi ! cloud ice mass increment [kg/kg] |
|---|
| 206 | REAL, DIMENSION(klon,klev), INTENT(OUT) :: rneb ! cloud fraction [-] |
|---|
| 207 | REAL, DIMENSION(klon,klev), INTENT(OUT) :: rneblsvol ! cloud fraction per unit volume [-] |
|---|
| 208 | REAL, DIMENSION(klon,klev), INTENT(OUT) :: pfraclr ! precip fraction clear-sky part [-] |
|---|
| 209 | REAL, DIMENSION(klon,klev), INTENT(OUT) :: pfracld ! precip fraction cloudy part [-] |
|---|
| 210 | REAL, DIMENSION(klon,klev), INTENT(OUT) :: cldfraliq ! liquid fraction of cloud [-] |
|---|
| 211 | REAL, DIMENSION(klon,klev), INTENT(OUT) :: sigma2_icefracturb ! Variance of the diagnostic supersaturation distribution (icefrac_turb) [-] |
|---|
| 212 | REAL, DIMENSION(klon,klev), INTENT(OUT) :: mean_icefracturb ! Mean of the diagnostic supersaturation distribution (icefrac_turb) [-] |
|---|
| 213 | REAL, DIMENSION(klon,klev), INTENT(OUT) :: radocond ! condensed water used in the radiation scheme [kg/kg] |
|---|
| 214 | REAL, DIMENSION(klon,klev), INTENT(OUT) :: radicefrac ! ice fraction of condensed water for radiation scheme |
|---|
| 215 | REAL, DIMENSION(klon,klev), INTENT(OUT) :: rhcl ! clear-sky relative humidity [-] |
|---|
| 216 | REAL, DIMENSION(klon), INTENT(OUT) :: rain ! surface large-scale rainfall [kg/s/m2] |
|---|
| 217 | REAL, DIMENSION(klon), INTENT(OUT) :: snow ! surface large-scale snowfall [kg/s/m2] |
|---|
| 218 | REAL, DIMENSION(klon,klev+1), INTENT(OUT) :: prfl ! large-scale rainfall flux in the column [kg/s/m2] |
|---|
| 219 | REAL, DIMENSION(klon,klev+1), INTENT(OUT) :: psfl ! large-scale snowfall flux in the column [kg/s/m2] |
|---|
| 220 | REAL, DIMENSION(klon,klev), INTENT(OUT) :: distcltop ! distance to cloud top [m] |
|---|
| 221 | REAL, DIMENSION(klon,klev), INTENT(OUT) :: temp_cltop ! temperature of cloud top [K] |
|---|
| 222 | REAL, DIMENSION(klon,klev), INTENT(OUT) :: beta ! conversion rate of condensed water |
|---|
| 223 | |
|---|
| 224 | ! fraction of aerosol scavenging through impaction and nucleation (for on-line) |
|---|
| 225 | |
|---|
| 226 | REAL, DIMENSION(klon,klev), INTENT(OUT) :: frac_impa ! scavenging fraction due tu impaction [-] |
|---|
| 227 | REAL, DIMENSION(klon,klev), INTENT(OUT) :: frac_nucl ! scavenging fraction due tu nucleation [-] |
|---|
| 228 | |
|---|
| 229 | ! for condensation and ice supersaturation |
|---|
| 230 | |
|---|
| 231 | REAL, DIMENSION(klon,klev), INTENT(OUT) :: qsub !--specific total water content in sub-saturated clear sky region [kg/kg] |
|---|
| 232 | REAL, DIMENSION(klon,klev), INTENT(OUT) :: qissr !--specific total water content in supersat region [kg/kg] |
|---|
| 233 | REAL, DIMENSION(klon,klev), INTENT(OUT) :: qcld !--specific total water content in cloudy region [kg/kg] |
|---|
| 234 | REAL, DIMENSION(klon,klev), INTENT(OUT) :: subfra !--mesh fraction of subsaturated clear sky [-] |
|---|
| 235 | REAL, DIMENSION(klon,klev), INTENT(OUT) :: issrfra !--mesh fraction of ISSR [-] |
|---|
| 236 | REAL, DIMENSION(klon,klev), INTENT(OUT) :: gamma_cond !--coefficient governing the ice nucleation RHi threshold [-] |
|---|
| 237 | REAL, DIMENSION(klon,klev), INTENT(OUT) :: dcf_sub !--cloud fraction tendency because of sublimation [s-1] |
|---|
| 238 | REAL, DIMENSION(klon,klev), INTENT(OUT) :: dcf_con !--cloud fraction tendency because of condensation [s-1] |
|---|
| 239 | REAL, DIMENSION(klon,klev), INTENT(OUT) :: dcf_mix !--cloud fraction tendency because of cloud mixing [s-1] |
|---|
| 240 | REAL, DIMENSION(klon,klev), INTENT(OUT) :: dqi_adj !--specific ice content tendency because of temperature adjustment [kg/kg/s] |
|---|
| 241 | REAL, DIMENSION(klon,klev), INTENT(OUT) :: dqi_sub !--specific ice content tendency because of sublimation [kg/kg/s] |
|---|
| 242 | REAL, DIMENSION(klon,klev), INTENT(OUT) :: dqi_con !--specific ice content tendency because of condensation [kg/kg/s] |
|---|
| 243 | REAL, DIMENSION(klon,klev), INTENT(OUT) :: dqi_mix !--specific ice content tendency because of cloud mixing [kg/kg/s] |
|---|
| 244 | REAL, DIMENSION(klon,klev), INTENT(OUT) :: dqvc_adj !--specific cloud water vapor tendency because of temperature adjustment [kg/kg/s] |
|---|
| 245 | REAL, DIMENSION(klon,klev), INTENT(OUT) :: dqvc_sub !--specific cloud water vapor tendency because of sublimation [kg/kg/s] |
|---|
| 246 | REAL, DIMENSION(klon,klev), INTENT(OUT) :: dqvc_con !--specific cloud water vapor tendency because of condensation [kg/kg/s] |
|---|
| 247 | REAL, DIMENSION(klon,klev), INTENT(OUT) :: dqvc_mix !--specific cloud water vapor tendency because of cloud mixing [kg/kg/s] |
|---|
| 248 | REAL, DIMENSION(klon,klev), INTENT(OUT) :: qsatl !--saturation specific humidity wrt liquid [kg/kg] |
|---|
| 249 | REAL, DIMENSION(klon,klev), INTENT(OUT) :: qsati !--saturation specific humidity wrt ice [kg/kg] |
|---|
| 250 | |
|---|
| 251 | ! for contrails and aviation |
|---|
| 252 | |
|---|
| 253 | REAL, DIMENSION(klon,klev), INTENT(OUT) :: qice_perscont !--condensed water in contrail induced cirrus used in the radiation scheme [kg/kg] |
|---|
| 254 | REAL, DIMENSION(klon,klev), INTENT(OUT) :: Tcritcont !--critical temperature for contrail formation [K] |
|---|
| 255 | REAL, DIMENSION(klon,klev), INTENT(OUT) :: qcritcont !--critical specific humidity for contrail formation [kg/kg] |
|---|
| 256 | REAL, DIMENSION(klon,klev), INTENT(OUT) :: potcontfraP !--potential persistent contrail fraction [-] |
|---|
| 257 | REAL, DIMENSION(klon,klev), INTENT(OUT) :: potcontfraNP !--potential non-persistent contrail fraction [-] |
|---|
| 258 | |
|---|
| 259 | |
|---|
| 260 | ! for POPRECIP |
|---|
| 261 | |
|---|
| 262 | REAL, DIMENSION(klon,klev), INTENT(OUT) :: qraindiag !--DIAGNOSTIC specific rain content [kg/kg] |
|---|
| 263 | REAL, DIMENSION(klon,klev), INTENT(OUT) :: qsnowdiag !--DIAGNOSTIC specific snow content [kg/kg] |
|---|
| 264 | REAL, DIMENSION(klon,klev), INTENT(OUT) :: dqreva !--rain tendendy due to evaporation [kg/kg/s] |
|---|
| 265 | REAL, DIMENSION(klon,klev), INTENT(OUT) :: dqssub !--snow tendency due to sublimation [kg/kg/s] |
|---|
| 266 | REAL, DIMENSION(klon,klev), INTENT(OUT) :: dqrcol !--rain tendendy due to collection by rain of liquid cloud droplets [kg/kg/s] |
|---|
| 267 | REAL, DIMENSION(klon,klev), INTENT(OUT) :: dqsagg !--snow tendency due to collection of lcoud ice by aggregation [kg/kg/s] |
|---|
| 268 | REAL, DIMENSION(klon,klev), INTENT(OUT) :: dqrauto !--rain tendency due to autoconversion of cloud liquid [kg/kg/s] |
|---|
| 269 | REAL, DIMENSION(klon,klev), INTENT(OUT) :: dqsauto !--snow tendency due to autoconversion of cloud ice [kg/kg/s] |
|---|
| 270 | REAL, DIMENSION(klon,klev), INTENT(OUT) :: dqsrim !--snow tendency due to riming [kg/kg/s] |
|---|
| 271 | REAL, DIMENSION(klon,klev), INTENT(OUT) :: dqsmelt !--snow tendency due to melting [kg/kg/s] |
|---|
| 272 | REAL, DIMENSION(klon,klev), INTENT(OUT) :: dqrmelt !--rain tendency due to melting [kg/kg/s] |
|---|
| 273 | REAL, DIMENSION(klon,klev), INTENT(OUT) :: dqsfreez !--snow tendency due to freezing [kg/kg/s] |
|---|
| 274 | REAL, DIMENSION(klon,klev), INTENT(OUT) :: dqrfreez !--rain tendency due to freezing [kg/kg/s] |
|---|
| 275 | REAL, DIMENSION(klon,klev), INTENT(OUT) :: dqised !--ice water content tendency due to sedmentation of ice crystals [kg/kg/s] |
|---|
| 276 | REAL, DIMENSION(klon,klev), INTENT(OUT) :: dcfsed !--cloud fraction tendency due to sedimentation of ice crystals [kg/kg/s] |
|---|
| 277 | REAL, DIMENSION(klon,klev), INTENT(OUT) :: dqvcsed !--cloud water vapor tendency due to sedimentation of ice crystals [kg/kg/s] |
|---|
| 278 | |
|---|
| 279 | ! for thermals |
|---|
| 280 | |
|---|
| 281 | REAL, DIMENSION(klon,klev), INTENT(OUT) :: cloudth_sth !--mean saturation deficit in thermals |
|---|
| 282 | REAL, DIMENSION(klon,klev), INTENT(OUT) :: cloudth_senv !--mean saturation deficit in environment |
|---|
| 283 | REAL, DIMENSION(klon,klev), INTENT(OUT) :: cloudth_sigmath !--std of saturation deficit in thermals |
|---|
| 284 | REAL, DIMENSION(klon,klev), INTENT(OUT) :: cloudth_sigmaenv !--std of saturation deficit in environment |
|---|
| 285 | |
|---|
| 286 | |
|---|
| 287 | ! LOCAL VARIABLES: |
|---|
| 288 | !---------------- |
|---|
| 289 | REAL, DIMENSION(klon) :: qliq_in, qice_in, qvc_in, cldfra_in |
|---|
| 290 | REAL, DIMENSION(klon,klev) :: ctot |
|---|
| 291 | REAL, DIMENSION(klon,klev) :: ctot_vol |
|---|
| 292 | REAL, DIMENSION(klon) :: zqs, zdqs, zqsl, zdqsl, zqsi, zdqsi |
|---|
| 293 | REAL :: zdelta |
|---|
| 294 | REAL, DIMENSION(klon) :: zdqsdT_raw |
|---|
| 295 | REAL, DIMENSION(klon) :: gammasat,dgammasatdt ! coefficient to make cold condensation at the correct RH and derivative wrt T |
|---|
| 296 | REAL, DIMENSION(klon) :: Tbef,qlbef,DT ! temperature, humidity and temp. variation during lognormal iteration |
|---|
| 297 | REAL :: num,denom |
|---|
| 298 | REAL :: cste |
|---|
| 299 | REAL, DIMENSION(klon) :: zfice_th |
|---|
| 300 | REAL, DIMENSION(klon) :: qcloud, qincloud_mpc |
|---|
| 301 | REAL, DIMENSION(klon) :: zrfl, zifl |
|---|
| 302 | REAL, DIMENSION(klon) :: zoliq, zcond, zq, zqn, zqnl |
|---|
| 303 | REAL, DIMENSION(klon) :: zoliql, zoliqi |
|---|
| 304 | REAL, DIMENSION(klon) :: zt |
|---|
| 305 | REAL, DIMENSION(klon) :: zfice,zneb, znebl |
|---|
| 306 | REAL, DIMENSION(klon) :: dzfice |
|---|
| 307 | REAL, DIMENSION(klon) :: zfice_turb, dzfice_turb |
|---|
| 308 | REAL, DIMENSION(klon) :: qtot, qzero |
|---|
| 309 | ! Variables precipitation energy conservation |
|---|
| 310 | REAL, DIMENSION(klon) :: zmqc |
|---|
| 311 | REAL :: zalpha_tr |
|---|
| 312 | REAL :: zfrac_lessi |
|---|
| 313 | REAL, DIMENSION(klon) :: zprec_cond |
|---|
| 314 | REAL, DIMENSION(klon) :: zlh_solid |
|---|
| 315 | REAL, DIMENSION(klon) :: ztupnew |
|---|
| 316 | REAL, DIMENSION(klon) :: zqvapclr, zqupnew ! for poprecip evap / subl |
|---|
| 317 | REAL, DIMENSION(klon) :: cldfra_above, icesed_flux ! for sedimentation of ice crystals |
|---|
| 318 | REAL, DIMENSION(klon) :: zrflclr, zrflcld |
|---|
| 319 | REAL, DIMENSION(klon) :: ziflclr, ziflcld |
|---|
| 320 | REAL, DIMENSION(klon) :: znebprecip, znebprecipclr, znebprecipcld |
|---|
| 321 | REAL, DIMENSION(klon) :: tot_zneb |
|---|
| 322 | REAL :: qlmpc, qimpc, rnebmpc |
|---|
| 323 | REAL, DIMENSION(klon) :: zdistcltop, ztemp_cltop |
|---|
| 324 | REAL, DIMENSION(klon) :: zqliq, zqice, zqvapcl ! for icefrac_lscp_turb |
|---|
| 325 | |
|---|
| 326 | ! for quantity of condensates seen by radiation |
|---|
| 327 | REAL, DIMENSION(klon) :: zradocond, zradoice |
|---|
| 328 | REAL, DIMENSION(klon) :: zrho_up, zvelo_up |
|---|
| 329 | |
|---|
| 330 | ! for condensation and ice supersaturation |
|---|
| 331 | REAL, DIMENSION(klon) :: qvc, qvcl, shear |
|---|
| 332 | REAL :: delta_z |
|---|
| 333 | ! for contrails |
|---|
| 334 | REAL, DIMENSION(klon) :: contfra, perscontfra, qcont |
|---|
| 335 | LOGICAL, DIMENSION(klon) :: pt_pron_clds |
|---|
| 336 | !--for Lamquin et al 2012 diagnostics |
|---|
| 337 | REAL, DIMENSION(klon) :: issrfra100to150UP, issrfra150to200UP, issrfra200to250UP |
|---|
| 338 | REAL, DIMENSION(klon) :: issrfra250to300UP, issrfra300to400UP, issrfra400to500UP |
|---|
| 339 | |
|---|
| 340 | INTEGER i, k, kk, iter |
|---|
| 341 | INTEGER, DIMENSION(klon) :: n_i |
|---|
| 342 | INTEGER ncoreczq |
|---|
| 343 | INTEGER, DIMENSION(klon,klev) :: mpc_bl_points |
|---|
| 344 | LOGICAL iftop |
|---|
| 345 | |
|---|
| 346 | LOGICAL, DIMENSION(klon) :: lognormale |
|---|
| 347 | LOGICAL, DIMENSION(klon) :: keepgoing |
|---|
| 348 | |
|---|
| 349 | CHARACTER (len = 20) :: modname = 'lscp' |
|---|
| 350 | CHARACTER (len = 80) :: abort_message |
|---|
| 351 | |
|---|
| 352 | |
|---|
| 353 | !=============================================================================== |
|---|
| 354 | ! INITIALISATION |
|---|
| 355 | !=============================================================================== |
|---|
| 356 | |
|---|
| 357 | ! Few initial checks |
|---|
| 358 | |
|---|
| 359 | |
|---|
| 360 | IF (iflag_fisrtilp_qsat .LT. 0) THEN |
|---|
| 361 | abort_message = 'lscp cannot be used with iflag_fisrtilp<0' |
|---|
| 362 | CALL abort_physic(modname,abort_message,1) |
|---|
| 363 | ENDIF |
|---|
| 364 | |
|---|
| 365 | ! Few initialisations |
|---|
| 366 | |
|---|
| 367 | ctot_vol(1:klon,1:klev)=0.0 |
|---|
| 368 | rneblsvol(1:klon,1:klev)=0.0 |
|---|
| 369 | znebprecip(:)=0.0 |
|---|
| 370 | znebprecipclr(:)=0.0 |
|---|
| 371 | znebprecipcld(:)=0.0 |
|---|
| 372 | mpc_bl_points(:,:)=0 |
|---|
| 373 | |
|---|
| 374 | IF (prt_level>9) WRITE(lunout,*) 'NUAGES4 A. JAM' |
|---|
| 375 | |
|---|
| 376 | ! AA for 'safety' reasons |
|---|
| 377 | zalpha_tr = 0. |
|---|
| 378 | zfrac_lessi = 0. |
|---|
| 379 | beta(:,:)= 0. |
|---|
| 380 | |
|---|
| 381 | ! Initialisation of variables: |
|---|
| 382 | |
|---|
| 383 | prfl(:,:) = 0.0 |
|---|
| 384 | psfl(:,:) = 0.0 |
|---|
| 385 | d_t(:,:) = 0.0 |
|---|
| 386 | d_q(:,:) = 0.0 |
|---|
| 387 | d_ql(:,:) = 0.0 |
|---|
| 388 | d_qi(:,:) = 0.0 |
|---|
| 389 | rneb(:,:) = 0.0 |
|---|
| 390 | pfraclr(:,:)=0.0 |
|---|
| 391 | pfracld(:,:)=0.0 |
|---|
| 392 | cldfraliq(:,:)=0. |
|---|
| 393 | sigma2_icefracturb(:,:)=0. |
|---|
| 394 | mean_icefracturb(:,:)=0. |
|---|
| 395 | radocond(:,:) = 0.0 |
|---|
| 396 | radicefrac(:,:) = 0.0 |
|---|
| 397 | frac_nucl(:,:) = 1.0 |
|---|
| 398 | frac_impa(:,:) = 1.0 |
|---|
| 399 | rain(:) = 0.0 |
|---|
| 400 | snow(:) = 0.0 |
|---|
| 401 | zfice(:)=1.0 ! initialized at 1 as by default we assume mpc to be at ice saturation |
|---|
| 402 | dzfice(:)=0.0 |
|---|
| 403 | zfice_turb(:)=0.0 |
|---|
| 404 | dzfice_turb(:)=0.0 |
|---|
| 405 | zrfl(:) = 0.0 |
|---|
| 406 | zifl(:) = 0.0 |
|---|
| 407 | zneb(:) = seuil_neb |
|---|
| 408 | zrflclr(:) = 0.0 |
|---|
| 409 | ziflclr(:) = 0.0 |
|---|
| 410 | zrflcld(:) = 0.0 |
|---|
| 411 | ziflcld(:) = 0.0 |
|---|
| 412 | tot_zneb(:) = 0.0 |
|---|
| 413 | qzero(:) = 0.0 |
|---|
| 414 | zdistcltop(:)=0.0 |
|---|
| 415 | ztemp_cltop(:) = 0.0 |
|---|
| 416 | ztupnew(:)=0.0 |
|---|
| 417 | |
|---|
| 418 | distcltop(:,:)=0. |
|---|
| 419 | temp_cltop(:,:)=0. |
|---|
| 420 | |
|---|
| 421 | !--Ice supersaturation |
|---|
| 422 | gamma_cond(:,:) = 1. |
|---|
| 423 | qissr(:,:) = 0. |
|---|
| 424 | issrfra(:,:) = 0. |
|---|
| 425 | dcf_sub(:,:) = 0. |
|---|
| 426 | dcf_con(:,:) = 0. |
|---|
| 427 | dcf_mix(:,:) = 0. |
|---|
| 428 | dcfsed(:,:) = 0. |
|---|
| 429 | dqi_adj(:,:) = 0. |
|---|
| 430 | dqi_sub(:,:) = 0. |
|---|
| 431 | dqi_con(:,:) = 0. |
|---|
| 432 | dqi_mix(:,:) = 0. |
|---|
| 433 | dqised(:,:) = 0. |
|---|
| 434 | dqvc_adj(:,:) = 0. |
|---|
| 435 | dqvc_sub(:,:) = 0. |
|---|
| 436 | dqvc_con(:,:) = 0. |
|---|
| 437 | dqvc_mix(:,:) = 0. |
|---|
| 438 | dqvcsed(:,:) = 0. |
|---|
| 439 | qvc(:) = 0. |
|---|
| 440 | shear(:) = 0. |
|---|
| 441 | pt_pron_clds(:) = .FALSE. |
|---|
| 442 | |
|---|
| 443 | !--for Lamquin et al (2012) diagnostics |
|---|
| 444 | issrfra100to150(:) = 0. |
|---|
| 445 | issrfra100to150UP(:) = 0. |
|---|
| 446 | issrfra150to200(:) = 0. |
|---|
| 447 | issrfra150to200UP(:) = 0. |
|---|
| 448 | issrfra200to250(:) = 0. |
|---|
| 449 | issrfra200to250UP(:) = 0. |
|---|
| 450 | issrfra250to300(:) = 0. |
|---|
| 451 | issrfra250to300UP(:) = 0. |
|---|
| 452 | issrfra300to400(:) = 0. |
|---|
| 453 | issrfra300to400UP(:) = 0. |
|---|
| 454 | issrfra400to500(:) = 0. |
|---|
| 455 | issrfra400to500UP(:) = 0. |
|---|
| 456 | |
|---|
| 457 | !-- poprecip |
|---|
| 458 | qraindiag(:,:)= 0. |
|---|
| 459 | qsnowdiag(:,:)= 0. |
|---|
| 460 | dqreva(:,:) = 0. |
|---|
| 461 | dqrauto(:,:) = 0. |
|---|
| 462 | dqrmelt(:,:) = 0. |
|---|
| 463 | dqrfreez(:,:) = 0. |
|---|
| 464 | dqrcol(:,:) = 0. |
|---|
| 465 | dqssub(:,:) = 0. |
|---|
| 466 | dqsauto(:,:) = 0. |
|---|
| 467 | dqsrim(:,:) = 0. |
|---|
| 468 | dqsagg(:,:) = 0. |
|---|
| 469 | dqsfreez(:,:) = 0. |
|---|
| 470 | dqsmelt(:,:) = 0. |
|---|
| 471 | zqupnew(:) = 0. |
|---|
| 472 | zqvapclr(:) = 0. |
|---|
| 473 | cldfra_above(:)= 0. |
|---|
| 474 | icesed_flux(:)= 0. |
|---|
| 475 | |
|---|
| 476 | |
|---|
| 477 | |
|---|
| 478 | !c_iso: variable initialisation for iso |
|---|
| 479 | |
|---|
| 480 | !=============================================================================== |
|---|
| 481 | ! BEGINNING OF VERTICAL LOOP FROM TOP TO BOTTOM |
|---|
| 482 | !=============================================================================== |
|---|
| 483 | |
|---|
| 484 | ncoreczq=0 |
|---|
| 485 | |
|---|
| 486 | DO k = klev, 1, -1 |
|---|
| 487 | |
|---|
| 488 | IF (k.LE.klev-1) THEN |
|---|
| 489 | iftop=.false. |
|---|
| 490 | ELSE |
|---|
| 491 | iftop=.true. |
|---|
| 492 | ENDIF |
|---|
| 493 | |
|---|
| 494 | ! Initialisation temperature and specific humidity |
|---|
| 495 | ! temp(klon,klev) is not modified by the routine, instead all changes in temperature are made on zt |
|---|
| 496 | ! at the end of the klon loop, a temperature incremtent d_t due to all processes |
|---|
| 497 | ! (thermalization, evap/sub incoming precip, cloud formation, precipitation processes) is calculated |
|---|
| 498 | ! d_t = temperature tendency due to lscp |
|---|
| 499 | ! The temperature of the overlying layer is updated here because needed for thermalization |
|---|
| 500 | DO i = 1, klon |
|---|
| 501 | zt(i)=temp(i,k) |
|---|
| 502 | zq(i)=qt(i,k) |
|---|
| 503 | qliq_in(i) = ql_seri(i,k) |
|---|
| 504 | qice_in(i) = qi_seri(i,k) |
|---|
| 505 | IF (.not. iftop) THEN |
|---|
| 506 | ztupnew(i) = temp(i,k+1) + d_t(i,k+1) |
|---|
| 507 | zqupnew(i) = qt(i,k+1) + d_q(i,k+1) + d_ql(i,k+1) + d_qi(i,k+1) |
|---|
| 508 | !--zqs(i) is the saturation specific humidity in the layer above |
|---|
| 509 | zqvapclr(i) = MAX(0., qt(i,k+1) + d_q(i,k+1) - rneb(i,k+1) * zqs(i)) |
|---|
| 510 | ENDIF |
|---|
| 511 | !c_iso init of iso |
|---|
| 512 | ENDDO |
|---|
| 513 | IF ( ok_ice_supersat ) THEN |
|---|
| 514 | cldfra_in(:) = cf_seri(:,k) |
|---|
| 515 | qvc_in(:) = qvc_seri(:,k) |
|---|
| 516 | ENDIF |
|---|
| 517 | |
|---|
| 518 | ! -------------------------------------------------------------------- |
|---|
| 519 | ! P1> Precipitation processes, before cloud formation: |
|---|
| 520 | ! Thermalization of precipitation falling from the overlying layer AND |
|---|
| 521 | ! Precipitation evaporation/sublimation/melting |
|---|
| 522 | !--------------------------------------------------------------------- |
|---|
| 523 | |
|---|
| 524 | !================================================================ |
|---|
| 525 | ! Flag for the new and more microphysical treatment of precipitation from Atelier Nuage (R) |
|---|
| 526 | IF ( ok_poprecip ) THEN |
|---|
| 527 | |
|---|
| 528 | CALL poprecip_precld(klon, dtime, iftop, paprs(:,k), paprs(:,k+1), pplay(:,k), & |
|---|
| 529 | zt, ztupnew, zq, zmqc, znebprecipclr, znebprecipcld, & |
|---|
| 530 | zqvapclr, zqupnew, icesed_flux, & |
|---|
| 531 | cldfra_in, qvc_in, qliq_in, qice_in, & |
|---|
| 532 | zrfl, zrflclr, zrflcld, & |
|---|
| 533 | zifl, ziflclr, ziflcld, & |
|---|
| 534 | dqreva(:,k), dqssub(:,k) & |
|---|
| 535 | ) |
|---|
| 536 | |
|---|
| 537 | !================================================================ |
|---|
| 538 | ELSE |
|---|
| 539 | |
|---|
| 540 | CALL histprecip_precld(klon, dtime, iftop, paprs(:,k), paprs(:,k+1), pplay(:,k), & |
|---|
| 541 | zt, ztupnew, zq, zmqc, zneb, znebprecip, znebprecipclr, icesed_flux, & |
|---|
| 542 | zrfl, zrflclr, zrflcld, & |
|---|
| 543 | zifl, ziflclr, ziflcld, & |
|---|
| 544 | dqreva(:,k), dqssub(:,k) & |
|---|
| 545 | ) |
|---|
| 546 | |
|---|
| 547 | ENDIF ! (ok_poprecip) |
|---|
| 548 | |
|---|
| 549 | ! Calculation of qsat, L/Cp*dqsat/dT and ncoreczq counter |
|---|
| 550 | !------------------------------------------------------- |
|---|
| 551 | |
|---|
| 552 | qtot(:)=zq(:)+zmqc(:) |
|---|
| 553 | CALL calc_qsat_ecmwf(klon,zt,qtot,pplay(:,k),RTT,0,.false.,zqs,zdqs) |
|---|
| 554 | DO i = 1, klon |
|---|
| 555 | zdelta = MAX(0.,SIGN(1.,RTT-zt(i))) |
|---|
| 556 | zdqsdT_raw(i) = zdqs(i)*RCPD*(1.0+RVTMP2*zq(i)) / (RLVTT*(1.-zdelta) + RLSTT*zdelta) |
|---|
| 557 | IF (zq(i) .LT. 1.e-15) THEN |
|---|
| 558 | ncoreczq=ncoreczq+1 |
|---|
| 559 | zq(i)=1.e-15 |
|---|
| 560 | ENDIF |
|---|
| 561 | ! c_iso: do something similar for isotopes |
|---|
| 562 | |
|---|
| 563 | ENDDO |
|---|
| 564 | |
|---|
| 565 | ! -------------------------------------------------------------------- |
|---|
| 566 | ! P2> Cloud formation |
|---|
| 567 | !--------------------------------------------------------------------- |
|---|
| 568 | ! |
|---|
| 569 | ! Unlike fisrtilp, we always assume a 'fractional cloud' approach |
|---|
| 570 | ! i.e. clouds occupy only a fraction of the mesh (the subgrid distribution |
|---|
| 571 | ! is prescribed and depends on large scale variables and boundary layer |
|---|
| 572 | ! properties) |
|---|
| 573 | ! The decrease in condensed part due tu latent heating is taken into |
|---|
| 574 | ! account |
|---|
| 575 | ! ------------------------------------------------------------------- |
|---|
| 576 | |
|---|
| 577 | ! P2.1> With the PDFs (log-normal, bigaussian) |
|---|
| 578 | ! cloud properties calculation with the initial values of t and q |
|---|
| 579 | ! ---------------------------------------------------------------- |
|---|
| 580 | |
|---|
| 581 | ! initialise gammasat and qincloud_mpc |
|---|
| 582 | gammasat(:)=1. |
|---|
| 583 | qincloud_mpc(:)=0. |
|---|
| 584 | |
|---|
| 585 | IF (iflag_cld_th.GE.5) THEN |
|---|
| 586 | ! Cloud cover and content in meshes affected by shallow convection, |
|---|
| 587 | ! are retrieved from a bi-gaussian distribution of the saturation deficit |
|---|
| 588 | ! following Jam et al. 2013 |
|---|
| 589 | |
|---|
| 590 | IF (iflag_cloudth_vert.LE.2) THEN |
|---|
| 591 | ! Old version of Arnaud Jam |
|---|
| 592 | |
|---|
| 593 | CALL cloudth(klon,klev,k,tv, & |
|---|
| 594 | zq,qta,fraca, & |
|---|
| 595 | qcloud,ctot,pspsk,paprs,pplay,tla,thl, & |
|---|
| 596 | ratqs,zqs,temp, & |
|---|
| 597 | cloudth_sth,cloudth_senv,cloudth_sigmath,cloudth_sigmaenv) |
|---|
| 598 | |
|---|
| 599 | |
|---|
| 600 | ELSEIF (iflag_cloudth_vert.GE.3 .AND. iflag_cloudth_vert.LE.5) THEN |
|---|
| 601 | ! Default version of Arnaud Jam |
|---|
| 602 | |
|---|
| 603 | CALL cloudth_v3(klon,klev,k,tv, & |
|---|
| 604 | zq,qta,fraca, & |
|---|
| 605 | qcloud,ctot,ctot_vol,pspsk,paprs,pplay,tla,thl, & |
|---|
| 606 | ratqs,sigma_qtherm,zqs,temp, & |
|---|
| 607 | cloudth_sth,cloudth_senv,cloudth_sigmath,cloudth_sigmaenv) |
|---|
| 608 | |
|---|
| 609 | |
|---|
| 610 | ELSEIF (iflag_cloudth_vert.EQ.6) THEN |
|---|
| 611 | ! Jean Jouhaud's version, with specific separation between surface and volume |
|---|
| 612 | ! cloud fraction Decembre 2018 |
|---|
| 613 | |
|---|
| 614 | CALL cloudth_v6(klon,klev,k,tv, & |
|---|
| 615 | zq,qta,fraca, & |
|---|
| 616 | qcloud,ctot,ctot_vol,pspsk,paprs,pplay,tla,thl, & |
|---|
| 617 | ratqs,zqs,temp, & |
|---|
| 618 | cloudth_sth,cloudth_senv,cloudth_sigmath,cloudth_sigmaenv) |
|---|
| 619 | |
|---|
| 620 | ELSEIF (iflag_cloudth_vert .EQ. 7) THEN |
|---|
| 621 | ! Updated version of Arnaud Jam (correction by E. Vignon) + adapted treatment |
|---|
| 622 | ! for boundary-layer mixed phase clouds |
|---|
| 623 | CALL cloudth_mpc(klon,klev,k,mpc_bl_points,zt,zq,qta(:,k),fraca(:,k), & |
|---|
| 624 | pspsk(:,k),paprs(:,k+1),paprs(:,k),pplay(:,k), tla(:,k), & |
|---|
| 625 | ratqs(:,k),qcloud,qincloud_mpc,zfice_th,ctot(:,k),ctot_vol(:,k), & |
|---|
| 626 | cloudth_sth(:,k),cloudth_senv(:,k),cloudth_sigmath(:,k),cloudth_sigmaenv(:,k)) |
|---|
| 627 | |
|---|
| 628 | ENDIF |
|---|
| 629 | |
|---|
| 630 | |
|---|
| 631 | DO i=1,klon |
|---|
| 632 | rneb(i,k)=ctot(i,k) |
|---|
| 633 | rneblsvol(i,k)=ctot_vol(i,k) |
|---|
| 634 | zqn(i)=qcloud(i) |
|---|
| 635 | !--AB grid-mean vapor in the cloud - we assume saturation adjustment |
|---|
| 636 | qvc(i) = rneb(i,k) * zqs(i) |
|---|
| 637 | ENDDO |
|---|
| 638 | |
|---|
| 639 | ENDIF |
|---|
| 640 | |
|---|
| 641 | IF (iflag_cld_th .LE. 4) THEN |
|---|
| 642 | |
|---|
| 643 | ! lognormal |
|---|
| 644 | lognormale(:) = .TRUE. |
|---|
| 645 | |
|---|
| 646 | ELSEIF (iflag_cld_th .GE. 6) THEN |
|---|
| 647 | |
|---|
| 648 | ! lognormal distribution when no thermals |
|---|
| 649 | lognormale(:) = fraca(:,k) < min_frac_th_cld |
|---|
| 650 | |
|---|
| 651 | ELSE |
|---|
| 652 | ! When iflag_cld_th=5, we always assume |
|---|
| 653 | ! bi-gaussian distribution |
|---|
| 654 | lognormale(:) = .FALSE. |
|---|
| 655 | |
|---|
| 656 | ENDIF |
|---|
| 657 | |
|---|
| 658 | |
|---|
| 659 | IF ( ok_ice_supersat ) THEN |
|---|
| 660 | |
|---|
| 661 | !--Initialisation |
|---|
| 662 | IF ( ok_plane_contrail ) THEN |
|---|
| 663 | contfra(:) = 0. |
|---|
| 664 | qcont(:) = 0. |
|---|
| 665 | perscontfra(:) = 0. |
|---|
| 666 | ENDIF |
|---|
| 667 | |
|---|
| 668 | DO i = 1, klon |
|---|
| 669 | |
|---|
| 670 | pt_pron_clds(i) = ( ( ( ( zt(i) .LE. temp_nowater ) .OR. ok_weibull_warm_clouds ) & |
|---|
| 671 | .AND. ( .NOT. ok_no_issr_strato .OR. ( stratomask(i,k) .EQ. 0. ) ) ) & |
|---|
| 672 | .AND. ( cfcon(i,k) .LT. ( 1. - eps ) ) ) |
|---|
| 673 | |
|---|
| 674 | IF ( pt_pron_clds(i) ) THEN |
|---|
| 675 | |
|---|
| 676 | !--If deep convection is activated, the condensation scheme activates |
|---|
| 677 | !--only in the environment. NB. the clear sky fraction will the be |
|---|
| 678 | !--maximised by 1. - cfcon(i,k) |
|---|
| 679 | IF ( ptconv(i,k) ) zq(i) = zq(i) - ( qvcon(i,k) + qccon(i,k) ) * cfcon(i,k) |
|---|
| 680 | |
|---|
| 681 | IF ( ( cfcon(i,k) * qccon(i,k) ) .LT. ( cfcon_old(i,k) * qccon_old(i,k) ) ) THEN |
|---|
| 682 | !--If deep convection is weakening, we add the clouds that are not anymore |
|---|
| 683 | !--'in' deep convection to the advected clouds |
|---|
| 684 | cldfra_in(i) = cldfra_in(i) + MAX(0., cfcon_old(i,k) - cfcon(i,k)) |
|---|
| 685 | qvc_in(i) = qvc_in(i) + qvcon_old(i,k) * MAX(0., cfcon_old(i,k) - cfcon(i,k)) |
|---|
| 686 | qice_in(i) = qice_in(i) + ( qccon_old(i,k) * cfcon_old(i,k) & |
|---|
| 687 | - qccon(i,k) * cfcon(i,k) ) |
|---|
| 688 | ELSEIF ( cfcon(i,k) .GT. cfcon_old(i,k) ) THEN |
|---|
| 689 | !--Else if deep convection is strengthening, it consumes the existing cloud |
|---|
| 690 | !--fraction (which does not at this moment represent deep convection) |
|---|
| 691 | !--NB. if deep convection is strengthening while the fraction decreases, |
|---|
| 692 | !--clear sky water vapor will be transfered in priority |
|---|
| 693 | cldfra_in(i) = cldfra_in(i) * ( 1. & |
|---|
| 694 | - ( cfcon(i,k) - cfcon_old(i,k) ) / ( 1. - cfcon_old(i,k) ) ) |
|---|
| 695 | qvc_in(i) = qvc_in(i) * ( 1. & |
|---|
| 696 | - ( cfcon(i,k) - cfcon_old(i,k) ) / ( 1. - cfcon_old(i,k) ) ) |
|---|
| 697 | qice_in(i) = qice_in(i) * ( 1. & |
|---|
| 698 | - ( cfcon(i,k) - cfcon_old(i,k) ) / ( 1. - cfcon_old(i,k) ) ) |
|---|
| 699 | ENDIF |
|---|
| 700 | |
|---|
| 701 | !--Barriers |
|---|
| 702 | cldfra_in(i) = MAX(0., MIN(1. - cfcon(i,k), cldfra_in(i))) |
|---|
| 703 | qvc_in(i) = MAX(0., MIN(zq(i), qvc_in(i))) |
|---|
| 704 | qice_in(i) = MAX(0., MIN(zq(i) - qvc_in(i), qice_in(i))) |
|---|
| 705 | |
|---|
| 706 | !--Calculate the shear value (input for condensation and ice supersat) |
|---|
| 707 | !--Cell thickness [m] |
|---|
| 708 | delta_z = ( paprs(i,k) - paprs(i,k+1) ) / RG / pplay(i,k) * zt(i) * RD |
|---|
| 709 | IF ( iftop ) THEN |
|---|
| 710 | ! top |
|---|
| 711 | shear(i) = SQRT( ( (u_seri(i,k) - u_seri(i,k-1)) / delta_z )**2. & |
|---|
| 712 | + ( (v_seri(i,k) - v_seri(i,k-1)) / delta_z )**2. ) |
|---|
| 713 | ELSEIF ( k .EQ. 1 ) THEN |
|---|
| 714 | ! surface |
|---|
| 715 | shear(i) = SQRT( ( (u_seri(i,k+1) - u_seri(i,k)) / delta_z )**2. & |
|---|
| 716 | + ( (v_seri(i,k+1) - v_seri(i,k)) / delta_z )**2. ) |
|---|
| 717 | ELSE |
|---|
| 718 | ! other layers |
|---|
| 719 | shear(i) = SQRT( ( ( (u_seri(i,k+1) + u_seri(i,k)) / 2. & |
|---|
| 720 | - (u_seri(i,k) + u_seri(i,k-1)) / 2. ) / delta_z )**2. & |
|---|
| 721 | + ( ( (v_seri(i,k+1) + v_seri(i,k)) / 2. & |
|---|
| 722 | - (v_seri(i,k) + v_seri(i,k-1)) / 2. ) / delta_z )**2. ) |
|---|
| 723 | ENDIF |
|---|
| 724 | ENDIF |
|---|
| 725 | ENDDO |
|---|
| 726 | ENDIF |
|---|
| 727 | |
|---|
| 728 | DT(:) = 0. |
|---|
| 729 | n_i(:)=0 |
|---|
| 730 | Tbef(:)=zt(:) |
|---|
| 731 | qlbef(:)=0. |
|---|
| 732 | |
|---|
| 733 | ! Treatment of non-boundary layer clouds (lognormale) |
|---|
| 734 | ! We iterate here to take into account the change in qsat(T) and ice fraction |
|---|
| 735 | ! during the condensation process |
|---|
| 736 | ! the increment in temperature is calculated using the first principle of |
|---|
| 737 | ! thermodynamics (enthalpy conservation equation in a mesh composed of a cloud fraction |
|---|
| 738 | ! and a clear sky fraction) |
|---|
| 739 | ! note that we assume that the vapor in the cloud is at saturation for this calculation |
|---|
| 740 | |
|---|
| 741 | DO iter=1,iflag_fisrtilp_qsat+1 |
|---|
| 742 | |
|---|
| 743 | keepgoing(:) = .FALSE. |
|---|
| 744 | |
|---|
| 745 | DO i=1,klon |
|---|
| 746 | |
|---|
| 747 | ! keepgoing = .true. while convergence is not satisfied |
|---|
| 748 | |
|---|
| 749 | IF (((ABS(DT(i)).GT.DDT0) .OR. (n_i(i) .EQ. 0)) .AND. lognormale(i)) THEN |
|---|
| 750 | |
|---|
| 751 | ! if not convergence: |
|---|
| 752 | ! we calculate a new iteration |
|---|
| 753 | keepgoing(i) = .TRUE. |
|---|
| 754 | |
|---|
| 755 | ! P2.2.1> cloud fraction and condensed water mass calculation |
|---|
| 756 | ! Calculated variables: |
|---|
| 757 | ! rneb : cloud fraction |
|---|
| 758 | ! zqn : total water within the cloud |
|---|
| 759 | ! zcond: mean condensed water within the mesh |
|---|
| 760 | ! rhcl: clear-sky relative humidity |
|---|
| 761 | !--------------------------------------------------------------- |
|---|
| 762 | |
|---|
| 763 | ! new temperature that only serves in the iteration process: |
|---|
| 764 | Tbef(i)=Tbef(i)+DT(i) |
|---|
| 765 | |
|---|
| 766 | ! Rneb, qzn and zcond for lognormal PDFs |
|---|
| 767 | qtot(i)=zq(i)+zmqc(i) |
|---|
| 768 | |
|---|
| 769 | ENDIF |
|---|
| 770 | |
|---|
| 771 | ENDDO |
|---|
| 772 | |
|---|
| 773 | ! Calculation of saturation specific humidity and ice fraction |
|---|
| 774 | CALL calc_qsat_ecmwf(klon,Tbef,qtot,pplay(:,k),RTT,0,.false.,zqs,zdqs) |
|---|
| 775 | |
|---|
| 776 | IF (iflag_icefrac .GE. 3) THEN |
|---|
| 777 | ! consider a ice weighted qs to ensure that liquid clouds at T<0 have a consistent cloud fraction |
|---|
| 778 | ! and cloud condensed water content. idea following Dietlitcher et al. 2018, GMD |
|---|
| 779 | ! we make this option works only for the physically-based and tke-depdenent param (iflag_icefrac>=1) |
|---|
| 780 | DO i=1,klon |
|---|
| 781 | CALL calc_qsat_ecmwf(klon,Tbef,qtot,pplay(:,k),RTT,1,.false.,zqsl,zdqsl) |
|---|
| 782 | CALL calc_qsat_ecmwf(klon,Tbef,qtot,pplay(:,k),RTT,2,.false.,zqsi,zdqsi) |
|---|
| 783 | zqs(i)=zfice(i)*zqsi(i)+(1.-zfice(i))*zqsl(i) |
|---|
| 784 | zdqs(i)=zfice(i)*zdqsi(i)+zqsi(i)*dzfice(i)+(1.-zfice(i))*zdqsl(i)-zqsl(i)*dzfice(i) |
|---|
| 785 | ENDDO |
|---|
| 786 | ENDIF |
|---|
| 787 | |
|---|
| 788 | CALL calc_gammasat(klon,Tbef,qtot,pplay(:,k),gammasat,dgammasatdt) |
|---|
| 789 | ! saturation may occur at a humidity different from qsat (gamma qsat), so gamma correction for dqs |
|---|
| 790 | zdqs(:) = gammasat(:)*zdqs(:)+zqs(:)*dgammasatdt(:) |
|---|
| 791 | |
|---|
| 792 | ! Cloud condensation based on subgrid pdf |
|---|
| 793 | !--AB Activates a condensation scheme that allows for |
|---|
| 794 | !--ice supersaturation and contrails evolution from aviation |
|---|
| 795 | IF (ok_ice_supersat) THEN |
|---|
| 796 | |
|---|
| 797 | IF ( iftop ) THEN |
|---|
| 798 | cldfra_above(:) = 0. |
|---|
| 799 | ELSE |
|---|
| 800 | cldfra_above(:) = rneb(:,k+1) |
|---|
| 801 | ENDIF |
|---|
| 802 | |
|---|
| 803 | !--------------------------------------------- |
|---|
| 804 | !-- CONDENSATION AND ICE SUPERSATURATION -- |
|---|
| 805 | !--------------------------------------------- |
|---|
| 806 | |
|---|
| 807 | CALL condensation_ice_supersat( & |
|---|
| 808 | klon, dtime, pplay(:,k), paprs(:,k), paprs(:,k+1), & |
|---|
| 809 | cfcon(:,k), cldfra_in, qvc_in, qliq_in, qice_in, & |
|---|
| 810 | shear, tke_dissip(:,k), cell_area, Tbef, zq, zqs, & |
|---|
| 811 | gammasat, ratqs(:,k), keepgoing, pt_pron_clds, & |
|---|
| 812 | cldfra_above, icesed_flux,& |
|---|
| 813 | rneb(:,k), zqn, qvc, issrfra(:,k), qissr(:,k), & |
|---|
| 814 | dcf_sub(:,k), dcf_con(:,k), dcf_mix(:,k), dcfsed(:,k), & |
|---|
| 815 | dqi_adj(:,k), dqi_sub(:,k), dqi_con(:,k), dqi_mix(:,k), dqised(:,k), & |
|---|
| 816 | dqvc_adj(:,k), dqvc_sub(:,k), dqvc_con(:,k), dqvc_mix(:,k), dqvcsed(:,k), & |
|---|
| 817 | cfa_seri(:,k), pcf_seri(:,k), qva_seri(:,k), qia_seri(:,k), & |
|---|
| 818 | flight_dist(:,k), flight_h2o(:,k), contfra, perscontfra, qcont, & |
|---|
| 819 | Tcritcont(:,k), qcritcont(:,k), potcontfraP(:,k), potcontfraNP(:,k), & |
|---|
| 820 | dcfa_ini(:,k), dqia_ini(:,k), dqta_ini(:,k), & |
|---|
| 821 | dcfa_sub(:,k), dqia_sub(:,k), dqta_sub(:,k), & |
|---|
| 822 | dcfa_cir(:,k), dqta_cir(:,k), & |
|---|
| 823 | dcfa_mix(:,k), dqia_mix(:,k), dqta_mix(:,k)) |
|---|
| 824 | |
|---|
| 825 | |
|---|
| 826 | ELSE |
|---|
| 827 | !--generalised lognormal condensation scheme (Bony and Emanuel 2001) |
|---|
| 828 | |
|---|
| 829 | CALL condensation_lognormal( & |
|---|
| 830 | klon, Tbef, zq, zqs, gammasat, ratqs(:,k), & |
|---|
| 831 | keepgoing, rneb(:,k), zqn, qvc) |
|---|
| 832 | |
|---|
| 833 | |
|---|
| 834 | ENDIF ! .NOT. ok_ice_supersat |
|---|
| 835 | |
|---|
| 836 | ! cloud phase determination |
|---|
| 837 | IF (iflag_icefrac .GE. 2) THEN |
|---|
| 838 | ! phase partitioning depending on temperature. activates here in the iteration process if iflag_icefrac > 2 |
|---|
| 839 | CALL icefrac_lscp_turb(klon, dtime, Tbef, pplay(:,k), paprs(:,k), paprs(:,k+1), omega(:,k), qice_in, ziflcld, zqn, & |
|---|
| 840 | rneb(:,k), tke(:,k), tke_dissip(:,k), zqliq, zqvapcl, zqice, zfice, dzfice, cldfraliq(:,k),sigma2_icefracturb(:,k), mean_icefracturb(:,k)) |
|---|
| 841 | ELSE |
|---|
| 842 | ! phase partitioning depending on temperature and eventually distance to cloud top |
|---|
| 843 | IF (iflag_t_glace.GE.4) THEN |
|---|
| 844 | ! For iflag_t_glace GE 4 the phase partition function dependends on temperature AND distance to cloud top |
|---|
| 845 | CALL distance_to_cloud_top(klon,klev,k,temp,pplay,paprs,rneb,zdistcltop,ztemp_cltop) |
|---|
| 846 | ENDIF |
|---|
| 847 | CALL icefrac_lscp(klon, zt, iflag_ice_thermo, zdistcltop,ztemp_cltop,zfice,dzfice) |
|---|
| 848 | ENDIF |
|---|
| 849 | |
|---|
| 850 | |
|---|
| 851 | DO i=1,klon |
|---|
| 852 | IF (keepgoing(i)) THEN |
|---|
| 853 | |
|---|
| 854 | ! If vertical heterogeneity, change fraction by volume as well |
|---|
| 855 | IF (iflag_cloudth_vert.GE.3) THEN |
|---|
| 856 | ctot_vol(i,k)=rneb(i,k) |
|---|
| 857 | rneblsvol(i,k)=ctot_vol(i,k) |
|---|
| 858 | ENDIF |
|---|
| 859 | |
|---|
| 860 | |
|---|
| 861 | ! P2.2.2> Approximative calculation of temperature variation DT |
|---|
| 862 | ! due to condensation. |
|---|
| 863 | ! Calculated variables: |
|---|
| 864 | ! dT : temperature change due to condensation |
|---|
| 865 | !--------------------------------------------------------------- |
|---|
| 866 | |
|---|
| 867 | |
|---|
| 868 | IF (zfice(i).LT.1) THEN |
|---|
| 869 | cste=RLVTT |
|---|
| 870 | ELSE |
|---|
| 871 | cste=RLSTT |
|---|
| 872 | ENDIF |
|---|
| 873 | |
|---|
| 874 | IF ( ok_unadjusted_clouds ) THEN |
|---|
| 875 | !--AB We relax the saturation adjustment assumption |
|---|
| 876 | !-- qvc (grid-mean vapor in cloud) is calculated by the condensation scheme |
|---|
| 877 | IF ( rneb(i,k) .GT. eps ) THEN |
|---|
| 878 | qlbef(i) = MAX(0., zqn(i) - qvc(i) / rneb(i,k)) |
|---|
| 879 | ELSE |
|---|
| 880 | qlbef(i) = 0. |
|---|
| 881 | ENDIF |
|---|
| 882 | ELSE |
|---|
| 883 | qlbef(i)=max(0.,zqn(i)-zqs(i)) |
|---|
| 884 | ENDIF |
|---|
| 885 | |
|---|
| 886 | num = -Tbef(i)+zt(i)+rneb(i,k)*((1-zfice(i))*RLVTT & |
|---|
| 887 | +zfice(i)*RLSTT)/RCPD/(1.0+RVTMP2*(zq(i)+zmqc(i)))*qlbef(i) |
|---|
| 888 | denom = 1.+rneb(i,k)*((1-zfice(i))*RLVTT+zfice(i)*RLSTT)/cste*zdqs(i) & |
|---|
| 889 | -(RLSTT-RLVTT)/RCPD/(1.0+RVTMP2*(zq(i)+zmqc(i)))*rneb(i,k) & |
|---|
| 890 | *qlbef(i)*dzfice(i) |
|---|
| 891 | ! here we update a provisory temperature variable that only serves in the iteration |
|---|
| 892 | ! process |
|---|
| 893 | DT(i)=num/denom |
|---|
| 894 | n_i(i)=n_i(i)+1 |
|---|
| 895 | |
|---|
| 896 | ENDIF ! end keepgoing |
|---|
| 897 | |
|---|
| 898 | ENDDO ! end loop on i |
|---|
| 899 | |
|---|
| 900 | ENDDO ! iter=1,iflag_fisrtilp_qsat+1 |
|---|
| 901 | |
|---|
| 902 | ! P2.2> Final quantities calculation |
|---|
| 903 | ! Calculated variables: |
|---|
| 904 | ! rneb : cloud fraction |
|---|
| 905 | ! zcond: mean condensed water in the mesh |
|---|
| 906 | ! zqn : mean water vapor in the mesh |
|---|
| 907 | ! zfice: ice fraction in clouds |
|---|
| 908 | ! zt : temperature |
|---|
| 909 | ! rhcl : clear-sky relative humidity |
|---|
| 910 | ! ---------------------------------------------------------------- |
|---|
| 911 | |
|---|
| 912 | |
|---|
| 913 | ! Cloud phase final determination |
|---|
| 914 | !-------------------------------- |
|---|
| 915 | ! For iflag_t_glace GE 4 the phase partition function dependends on temperature AND distance to cloud top |
|---|
| 916 | IF (iflag_t_glace.GE.4) THEN |
|---|
| 917 | CALL distance_to_cloud_top(klon,klev,k,temp,pplay,paprs,rneb,zdistcltop,ztemp_cltop) |
|---|
| 918 | distcltop(:,k)=zdistcltop(:) |
|---|
| 919 | temp_cltop(:,k)=ztemp_cltop(:) |
|---|
| 920 | ENDIF |
|---|
| 921 | ! Partition function depending on temperature for all clouds (shallow convective and stratiform) |
|---|
| 922 | CALL icefrac_lscp(klon, zt, iflag_ice_thermo, zdistcltop, ztemp_cltop, zfice, dzfice) |
|---|
| 923 | |
|---|
| 924 | ! Partition function depending on tke for non shallow-convective clouds, erase previous estimation |
|---|
| 925 | IF (iflag_icefrac .GE. 1) THEN |
|---|
| 926 | CALL icefrac_lscp_turb(klon, dtime, Tbef, pplay(:,k), paprs(:,k), paprs(:,k+1), omega(:,k), qice_in, ziflcld, zqn, & |
|---|
| 927 | rneb(:,k), tke(:,k), tke_dissip(:,k), zqliq, zqvapcl, zqice, zfice_turb, dzfice_turb, cldfraliq(:,k),sigma2_icefracturb(:,k), mean_icefracturb(:,k)) |
|---|
| 928 | ENDIF |
|---|
| 929 | |
|---|
| 930 | ! Water vapor update, subsequent latent heat exchange for each cloud type |
|---|
| 931 | !------------------------------------------------------------------------ |
|---|
| 932 | DO i=1, klon |
|---|
| 933 | ! Overwrite phase partitioning in boundary layer mixed phase clouds when the |
|---|
| 934 | ! iflag_cloudth_vert=7 and specific param is activated |
|---|
| 935 | IF (mpc_bl_points(i,k) .GT. 0) THEN |
|---|
| 936 | zcond(i) = MAX(0.0,qincloud_mpc(i))*rneb(i,k) |
|---|
| 937 | ! following line is very strange and probably wrong |
|---|
| 938 | rhcl(i,k)= (zqs(i)+zq(i))/2./zqs(i) |
|---|
| 939 | ! water vapor update and partition function if thermals |
|---|
| 940 | zq(i) = zq(i) - zcond(i) |
|---|
| 941 | zfice(i)=zfice_th(i) |
|---|
| 942 | ELSE |
|---|
| 943 | ! Checks on rneb, rhcl and zqn |
|---|
| 944 | IF (rneb(i,k) .LE. 0.0) THEN |
|---|
| 945 | zqn(i) = 0.0 |
|---|
| 946 | rneb(i,k) = 0.0 |
|---|
| 947 | zcond(i) = 0.0 |
|---|
| 948 | rhcl(i,k)=zq(i)/zqs(i) |
|---|
| 949 | ELSE IF (rneb(i,k) .GE. 1.0) THEN |
|---|
| 950 | zqn(i) = zq(i) |
|---|
| 951 | rneb(i,k) = 1.0 |
|---|
| 952 | IF ( ok_unadjusted_clouds ) THEN |
|---|
| 953 | !--AB We relax the saturation adjustment assumption |
|---|
| 954 | !-- qvc (grid-mean vapor in cloud) is calculated by the condensation scheme |
|---|
| 955 | zcond(i) = MAX(0., zqn(i) - qvc(i)) |
|---|
| 956 | ELSE |
|---|
| 957 | zcond(i) = MAX(0.0,zqn(i)-zqs(i)) |
|---|
| 958 | ENDIF |
|---|
| 959 | rhcl(i,k)=1.0 |
|---|
| 960 | ELSE |
|---|
| 961 | IF ( ok_unadjusted_clouds ) THEN |
|---|
| 962 | !--AB We relax the saturation adjustment assumption |
|---|
| 963 | !-- qvc (grid-mean vapor in cloud) is calculated by the condensation scheme |
|---|
| 964 | zcond(i) = MAX(0., zqn(i) * rneb(i,k) - qvc(i)) |
|---|
| 965 | ELSE |
|---|
| 966 | zcond(i) = MAX(0.0,zqn(i)-zqs(i))*rneb(i,k) |
|---|
| 967 | ENDIF |
|---|
| 968 | ! following line is very strange and probably wrong: |
|---|
| 969 | rhcl(i,k)=(zqs(i)+zq(i))/2./zqs(i) |
|---|
| 970 | ! Overwrite partitioning for non shallow-convective clouds if iflag_icefrac>1 (icefrac turb param) |
|---|
| 971 | IF (iflag_icefrac .GE. 1) THEN |
|---|
| 972 | IF (lognormale(i)) THEN |
|---|
| 973 | zcond(i) = zqliq(i) + zqice(i) |
|---|
| 974 | zfice(i) = zfice_turb(i) |
|---|
| 975 | rhcl(i,k) = zqvapcl(i) * rneb(i,k) + (zq(i) - zqn(i)) * (1.-rneb(i,k)) |
|---|
| 976 | ENDIF |
|---|
| 977 | ENDIF |
|---|
| 978 | ENDIF |
|---|
| 979 | |
|---|
| 980 | ! water vapor update |
|---|
| 981 | zq(i) = zq(i) - zcond(i) |
|---|
| 982 | |
|---|
| 983 | ENDIF |
|---|
| 984 | |
|---|
| 985 | |
|---|
| 986 | ! temperature update due to phase change |
|---|
| 987 | zt(i) = zt(i) + (1.-zfice(i))*zcond(i) & |
|---|
| 988 | & * RLVTT/RCPD/(1.0+RVTMP2*(zq(i)+zmqc(i)+zcond(i))) & |
|---|
| 989 | +zfice(i)*zcond(i) * RLSTT/RCPD/(1.0+RVTMP2*(zq(i)+zmqc(i)+zcond(i))) |
|---|
| 990 | ENDDO |
|---|
| 991 | |
|---|
| 992 | ! If vertical heterogeneity, change volume fraction |
|---|
| 993 | IF (iflag_cloudth_vert .GE. 3) THEN |
|---|
| 994 | ctot_vol(1:klon,k)=min(max(ctot_vol(1:klon,k),0.),1.) |
|---|
| 995 | rneblsvol(1:klon,k)=ctot_vol(1:klon,k) |
|---|
| 996 | ENDIF |
|---|
| 997 | |
|---|
| 998 | |
|---|
| 999 | ! ---------------------------------------------------------------- |
|---|
| 1000 | ! P3> Precipitation processes, after cloud formation |
|---|
| 1001 | ! - precipitation formation, melting/freezing |
|---|
| 1002 | ! ---------------------------------------------------------------- |
|---|
| 1003 | |
|---|
| 1004 | ! Initiate the quantity of liquid and solid condensates |
|---|
| 1005 | ! Note that in the following, zcond is the total amount of condensates |
|---|
| 1006 | ! including newly formed precipitations (i.e., condensates formed by the |
|---|
| 1007 | ! condensation process), while zoliq is the total amount of condensates in |
|---|
| 1008 | ! the cloud (i.e., on which precipitation processes have applied) |
|---|
| 1009 | DO i = 1, klon |
|---|
| 1010 | zoliq(i) = zcond(i) |
|---|
| 1011 | zoliql(i) = zcond(i) * ( 1. - zfice(i) ) |
|---|
| 1012 | zoliqi(i) = zcond(i) * zfice(i) |
|---|
| 1013 | ENDDO |
|---|
| 1014 | |
|---|
| 1015 | IF (ok_plane_contrail) THEN |
|---|
| 1016 | !--Contrails precipitate as natural clouds. We save the partition of ice |
|---|
| 1017 | !--between natural clouds and contrails |
|---|
| 1018 | !--NB. we use qcont as a temporary variable to save this partition |
|---|
| 1019 | DO i = 1, klon |
|---|
| 1020 | IF ( zoliqi(i) .GT. 0. ) THEN |
|---|
| 1021 | qcont(i) = ( qcont(i) - zqs(i) * contfra(i) ) / zoliqi(i) |
|---|
| 1022 | ELSE |
|---|
| 1023 | qcont(i) = 0. |
|---|
| 1024 | ENDIF |
|---|
| 1025 | ENDDO |
|---|
| 1026 | ENDIF |
|---|
| 1027 | |
|---|
| 1028 | !================================================================ |
|---|
| 1029 | ! Flag for the new and more microphysical treatment of precipitation from Atelier Nuage (R) |
|---|
| 1030 | IF (ok_poprecip) THEN |
|---|
| 1031 | |
|---|
| 1032 | CALL poprecip_postcld(klon, dtime, paprs(:,k), paprs(:,k+1), pplay(:,k), & |
|---|
| 1033 | ctot_vol(:,k), ptconv(:,k), & |
|---|
| 1034 | zt, zq, zoliql, zoliqi, zfice, & |
|---|
| 1035 | rneb(:,k), icesed_flux, znebprecipclr, znebprecipcld, & |
|---|
| 1036 | zrfl, zrflclr, zrflcld, & |
|---|
| 1037 | zifl, ziflclr, ziflcld, & |
|---|
| 1038 | qraindiag(:,k), qsnowdiag(:,k), dqrauto(:,k), & |
|---|
| 1039 | dqrcol(:,k), dqrmelt(:,k), dqrfreez(:,k), & |
|---|
| 1040 | dqsauto(:,k), dqsagg(:,k), dqsrim(:,k), & |
|---|
| 1041 | dqsmelt(:,k), dqsfreez(:,k), dqised(:,k) & |
|---|
| 1042 | ) |
|---|
| 1043 | DO i = 1, klon |
|---|
| 1044 | zoliq(i) = zoliql(i) + zoliqi(i) |
|---|
| 1045 | ENDDO |
|---|
| 1046 | |
|---|
| 1047 | !================================================================ |
|---|
| 1048 | ELSE |
|---|
| 1049 | |
|---|
| 1050 | CALL histprecip_postcld(klon, dtime, iftop, paprs(:,k), paprs(:,k+1), pplay(:,k), & |
|---|
| 1051 | ctot_vol(:,k), ptconv(:,k), pt_pron_clds, zdqsdT_raw, & |
|---|
| 1052 | zt, zq, zoliq, zoliql, zoliqi, zcond, zfice, zmqc, icesed_flux, & |
|---|
| 1053 | rneb(:,k), znebprecipclr, znebprecipcld, & |
|---|
| 1054 | zneb, tot_zneb, zrho_up, zvelo_up, & |
|---|
| 1055 | zrfl, zrflclr, zrflcld, zifl, ziflclr, ziflcld, & |
|---|
| 1056 | zradocond, zradoice, dqrauto(:,k), dqsauto(:,k), dqised(:,k) & |
|---|
| 1057 | ) |
|---|
| 1058 | |
|---|
| 1059 | ENDIF ! ok_poprecip |
|---|
| 1060 | |
|---|
| 1061 | IF (ok_plane_contrail) THEN |
|---|
| 1062 | !--Contrails fraction is left unchanged, but contrails water has changed |
|---|
| 1063 | DO i = 1, klon |
|---|
| 1064 | IF ( zoliqi(i) .LE. 0. ) THEN |
|---|
| 1065 | contfra(i) = 0. |
|---|
| 1066 | qcont(i) = 0. |
|---|
| 1067 | ELSE |
|---|
| 1068 | qcont(i) = zqs(i) * contfra(i) + zoliqi(i) * qcont(i) |
|---|
| 1069 | ENDIF |
|---|
| 1070 | ENDDO |
|---|
| 1071 | ENDIF |
|---|
| 1072 | |
|---|
| 1073 | ! End of precipitation processes after cloud formation |
|---|
| 1074 | ! ---------------------------------------------------- |
|---|
| 1075 | |
|---|
| 1076 | !---------------------------------------------------------------------- |
|---|
| 1077 | ! P4> Calculation of cloud condensates amount seen by radiative scheme |
|---|
| 1078 | !---------------------------------------------------------------------- |
|---|
| 1079 | |
|---|
| 1080 | DO i=1,klon |
|---|
| 1081 | |
|---|
| 1082 | IF (ok_poprecip) THEN |
|---|
| 1083 | IF (ok_radocond_snow) THEN |
|---|
| 1084 | radocond(i,k) = zoliq(i) |
|---|
| 1085 | zradoice(i) = zoliqi(i) + qsnowdiag(i,k) |
|---|
| 1086 | ELSE |
|---|
| 1087 | radocond(i,k) = zoliq(i) |
|---|
| 1088 | zradoice(i) = zoliqi(i) |
|---|
| 1089 | ENDIF |
|---|
| 1090 | ELSE |
|---|
| 1091 | radocond(i,k) = zradocond(i) |
|---|
| 1092 | ENDIF |
|---|
| 1093 | |
|---|
| 1094 | ! calculate the percentage of ice in "radocond" so cloud+precip seen |
|---|
| 1095 | ! by the radiation scheme |
|---|
| 1096 | IF (radocond(i,k) .GT. 0.) THEN |
|---|
| 1097 | radicefrac(i,k)=MIN(MAX(zradoice(i)/radocond(i,k),0.),1.) |
|---|
| 1098 | ENDIF |
|---|
| 1099 | ENDDO |
|---|
| 1100 | |
|---|
| 1101 | ! ---------------------------------------------------------------- |
|---|
| 1102 | ! P5> Wet scavenging |
|---|
| 1103 | ! ---------------------------------------------------------------- |
|---|
| 1104 | |
|---|
| 1105 | !Scavenging through nucleation in the layer |
|---|
| 1106 | |
|---|
| 1107 | DO i = 1,klon |
|---|
| 1108 | |
|---|
| 1109 | IF(zcond(i).GT.zoliq(i)+1.e-10) THEN |
|---|
| 1110 | beta(i,k) = (zcond(i)-zoliq(i))/zcond(i)/dtime |
|---|
| 1111 | ELSE |
|---|
| 1112 | beta(i,k) = 0. |
|---|
| 1113 | ENDIF |
|---|
| 1114 | |
|---|
| 1115 | zprec_cond(i) = MAX(zcond(i)-zoliq(i),0.0)*(paprs(i,k)-paprs(i,k+1))/RG |
|---|
| 1116 | |
|---|
| 1117 | IF (rneb(i,k).GT.0.0.AND.zprec_cond(i).GT.0.) THEN |
|---|
| 1118 | |
|---|
| 1119 | IF (temp(i,k) .GE. t_glace_min) THEN |
|---|
| 1120 | zalpha_tr = a_tr_sca(3) |
|---|
| 1121 | ELSE |
|---|
| 1122 | zalpha_tr = a_tr_sca(4) |
|---|
| 1123 | ENDIF |
|---|
| 1124 | |
|---|
| 1125 | zfrac_lessi = 1. - EXP(zalpha_tr*zprec_cond(i)/MAX(rneb(i,k),seuil_neb)) |
|---|
| 1126 | frac_nucl(i,k)= 1.-MAX(rneb(i,k),seuil_neb)*zfrac_lessi |
|---|
| 1127 | |
|---|
| 1128 | ! Nucleation with a factor of -1 instead of -0.5 |
|---|
| 1129 | zfrac_lessi = 1. - EXP(-zprec_cond(i)/MAX(rneb(i,k),seuil_neb)) |
|---|
| 1130 | |
|---|
| 1131 | ENDIF |
|---|
| 1132 | |
|---|
| 1133 | ENDDO |
|---|
| 1134 | |
|---|
| 1135 | ! Scavenging through impaction in the underlying layer |
|---|
| 1136 | |
|---|
| 1137 | DO kk = k-1, 1, -1 |
|---|
| 1138 | |
|---|
| 1139 | DO i = 1, klon |
|---|
| 1140 | |
|---|
| 1141 | IF (rneb(i,k).GT.0.0.AND.zprec_cond(i).GT.0.) THEN |
|---|
| 1142 | |
|---|
| 1143 | IF (temp(i,kk) .GE. t_glace_min) THEN |
|---|
| 1144 | zalpha_tr = a_tr_sca(1) |
|---|
| 1145 | ELSE |
|---|
| 1146 | zalpha_tr = a_tr_sca(2) |
|---|
| 1147 | ENDIF |
|---|
| 1148 | |
|---|
| 1149 | zfrac_lessi = 1. - EXP(zalpha_tr*zprec_cond(i)/MAX(rneb(i,k),seuil_neb)) |
|---|
| 1150 | frac_impa(i,kk)= 1.-MAX(rneb(i,k),seuil_neb)*zfrac_lessi |
|---|
| 1151 | |
|---|
| 1152 | ENDIF |
|---|
| 1153 | |
|---|
| 1154 | ENDDO |
|---|
| 1155 | |
|---|
| 1156 | ENDDO |
|---|
| 1157 | |
|---|
| 1158 | !------------------------------------------------------------ |
|---|
| 1159 | ! P6 > write diagnostics and outputs |
|---|
| 1160 | !------------------------------------------------------------ |
|---|
| 1161 | |
|---|
| 1162 | CALL calc_qsat_ecmwf(klon,zt,qzero,pplay(:,k),RTT,1,.false.,qsatl(:,k),zdqs) |
|---|
| 1163 | CALL calc_qsat_ecmwf(klon,zt,qzero,pplay(:,k),RTT,2,.false.,qsati(:,k),zdqs) |
|---|
| 1164 | |
|---|
| 1165 | !--AB Write diagnostics and tracers for ice supersaturation |
|---|
| 1166 | IF ( ok_plane_contrail ) THEN |
|---|
| 1167 | cfa_seri(:,k) = contfra(:) |
|---|
| 1168 | pcf_seri(:,k) = perscontfra(:) |
|---|
| 1169 | qva_seri(:,k) = zqs(:) * contfra(:) |
|---|
| 1170 | qia_seri(:,k) = qcont(:) - zqs(:) * contfra(:) |
|---|
| 1171 | DO i = 1, klon |
|---|
| 1172 | IF ( ( rneb(i,k) - cfa_seri(i,k) ) .GT. eps ) THEN |
|---|
| 1173 | qice_perscont(i,k) = ( radocond(i,k) - qia_seri(i,k) ) & |
|---|
| 1174 | * perscontfra(i) / ( rneb(i,k) - cfa_seri(i,k) ) |
|---|
| 1175 | ELSE |
|---|
| 1176 | qice_perscont(i,k) = 0. |
|---|
| 1177 | ENDIF |
|---|
| 1178 | ENDDO |
|---|
| 1179 | ENDIF |
|---|
| 1180 | |
|---|
| 1181 | IF ( ok_ice_supersat ) THEN |
|---|
| 1182 | |
|---|
| 1183 | DO i = 1, klon |
|---|
| 1184 | |
|---|
| 1185 | !--If prognostic clouds are activated, deep convection vapor is |
|---|
| 1186 | !--re-added to the total water vapor |
|---|
| 1187 | IF ( ptconv(i,k) .AND. pt_pron_clds(i) ) & |
|---|
| 1188 | zq(i) = zq(i) + ( qvcon(i,k) + qccon(i,k) ) * cfcon(i,k) |
|---|
| 1189 | |
|---|
| 1190 | cf_seri(i,k) = rneb(i,k) |
|---|
| 1191 | |
|---|
| 1192 | IF ( zoliq(i) .LE. 0. ) THEN |
|---|
| 1193 | !--If everything was precipitated, the remaining empty cloud is dissipated |
|---|
| 1194 | !--and everything is transfered to the subsaturated clear sky region |
|---|
| 1195 | !--NB. we do not change rneb, as it is a diagnostic only |
|---|
| 1196 | cf_seri(i,k) = 0. |
|---|
| 1197 | qvc(i) = 0. |
|---|
| 1198 | ENDIF |
|---|
| 1199 | |
|---|
| 1200 | qvc_seri(i,k) = qvc(i) |
|---|
| 1201 | |
|---|
| 1202 | !--Diagnostics |
|---|
| 1203 | gamma_cond(i,k) = gammasat(i) |
|---|
| 1204 | subfra(i,k) = 1. - cf_seri(i,k) - issrfra(i,k) |
|---|
| 1205 | qsub(i,k) = zq(i) - qvc(i) - qissr(i,k) |
|---|
| 1206 | qcld(i,k) = qvc(i) + zoliq(i) |
|---|
| 1207 | |
|---|
| 1208 | !--Calculation of the ice supersaturated fraction following Lamquin et al (2012) |
|---|
| 1209 | !--methodology: in each layer, we make a maximum random overlap assumption for |
|---|
| 1210 | !--ice supersaturation |
|---|
| 1211 | IF ( ( paprs(i,k) .GT. 10000. ) .AND. ( paprs(i,k) .LE. 15000. ) ) THEN |
|---|
| 1212 | IF ( issrfra100to150UP(i) .GT. ( 1. - eps ) ) THEN |
|---|
| 1213 | issrfra100to150(i) = 1. |
|---|
| 1214 | ELSE |
|---|
| 1215 | issrfra100to150(i) = 1. - ( 1. - issrfra100to150(i) ) * & |
|---|
| 1216 | ( 1. - MAX( issrfra(i,k), issrfra100to150UP(i) ) ) & |
|---|
| 1217 | / ( 1. - issrfra100to150UP(i) ) |
|---|
| 1218 | issrfra100to150UP(i) = issrfra(i,k) |
|---|
| 1219 | ENDIF |
|---|
| 1220 | ELSEIF ( ( paprs(i,k) .GT. 15000. ) .AND. ( paprs(i,k) .LE. 20000. ) ) THEN |
|---|
| 1221 | IF ( issrfra150to200UP(i) .GT. ( 1. - eps ) ) THEN |
|---|
| 1222 | issrfra150to200(i) = 1. |
|---|
| 1223 | ELSE |
|---|
| 1224 | issrfra150to200(i) = 1. - ( 1. - issrfra150to200(i) ) * & |
|---|
| 1225 | ( 1. - MAX( issrfra(i,k), issrfra150to200UP(i) ) ) & |
|---|
| 1226 | / ( 1. - issrfra150to200UP(i) ) |
|---|
| 1227 | issrfra150to200UP(i) = issrfra(i,k) |
|---|
| 1228 | ENDIF |
|---|
| 1229 | ELSEIF ( ( paprs(i,k) .GT. 20000. ) .AND. ( paprs(i,k) .LE. 25000. ) ) THEN |
|---|
| 1230 | IF ( issrfra200to250UP(i) .GT. ( 1. - eps ) ) THEN |
|---|
| 1231 | issrfra200to250(i) = 1. |
|---|
| 1232 | ELSE |
|---|
| 1233 | issrfra200to250(i) = 1. - ( 1. - issrfra200to250(i) ) * & |
|---|
| 1234 | ( 1. - MAX( issrfra(i,k), issrfra200to250UP(i) ) ) & |
|---|
| 1235 | / ( 1. - issrfra200to250UP(i) ) |
|---|
| 1236 | issrfra200to250UP(i) = issrfra(i,k) |
|---|
| 1237 | ENDIF |
|---|
| 1238 | ELSEIF ( ( paprs(i,k) .GT. 25000. ) .AND. ( paprs(i,k) .LE. 30000. ) ) THEN |
|---|
| 1239 | IF ( issrfra250to300UP(i) .GT. ( 1. - eps ) ) THEN |
|---|
| 1240 | issrfra250to300(i) = 1. |
|---|
| 1241 | ELSE |
|---|
| 1242 | issrfra250to300(i) = 1. - ( 1. - issrfra250to300(i) ) * & |
|---|
| 1243 | ( 1. - MAX( issrfra(i,k), issrfra250to300UP(i) ) ) & |
|---|
| 1244 | / ( 1. - issrfra250to300UP(i) ) |
|---|
| 1245 | issrfra250to300UP(i) = issrfra(i,k) |
|---|
| 1246 | ENDIF |
|---|
| 1247 | ELSEIF ( ( paprs(i,k) .GT. 30000. ) .AND. ( paprs(i,k) .LE. 40000. ) ) THEN |
|---|
| 1248 | IF ( issrfra300to400UP(i) .GT. ( 1. - eps ) ) THEN |
|---|
| 1249 | issrfra300to400(i) = 1. |
|---|
| 1250 | ELSE |
|---|
| 1251 | issrfra300to400(i) = 1. - ( 1. - issrfra300to400(i) ) * & |
|---|
| 1252 | ( 1. - MAX( issrfra(i,k), issrfra300to400UP(i) ) ) & |
|---|
| 1253 | / ( 1. - issrfra300to400UP(i) ) |
|---|
| 1254 | issrfra300to400UP(i) = issrfra(i,k) |
|---|
| 1255 | ENDIF |
|---|
| 1256 | ELSEIF ( ( paprs(i,k) .GT. 40000. ) .AND. ( paprs(i,k) .LE. 50000. ) ) THEN |
|---|
| 1257 | IF ( issrfra400to500UP(i) .GT. ( 1. - eps ) ) THEN |
|---|
| 1258 | issrfra400to500(i) = 1. |
|---|
| 1259 | ELSE |
|---|
| 1260 | issrfra400to500(i) = 1. - ( 1. - issrfra400to500(i) ) * & |
|---|
| 1261 | ( 1. - MAX( issrfra(i,k), issrfra400to500UP(i) ) ) & |
|---|
| 1262 | / ( 1. - issrfra400to500UP(i) ) |
|---|
| 1263 | issrfra400to500UP(i) = issrfra(i,k) |
|---|
| 1264 | ENDIF |
|---|
| 1265 | ENDIF |
|---|
| 1266 | |
|---|
| 1267 | ENDDO |
|---|
| 1268 | ENDIF |
|---|
| 1269 | |
|---|
| 1270 | ! Outputs: |
|---|
| 1271 | !------------------------------- |
|---|
| 1272 | ! Precipitation fluxes at layer interfaces |
|---|
| 1273 | ! + precipitation fractions + |
|---|
| 1274 | ! temperature and water species tendencies |
|---|
| 1275 | DO i = 1, klon |
|---|
| 1276 | psfl(i,k)=zifl(i) |
|---|
| 1277 | prfl(i,k)=zrfl(i) |
|---|
| 1278 | pfraclr(i,k)=znebprecipclr(i) |
|---|
| 1279 | pfracld(i,k)=znebprecipcld(i) |
|---|
| 1280 | d_q(i,k) = zq(i) - qt(i,k) |
|---|
| 1281 | d_t(i,k) = zt(i) - temp(i,k) |
|---|
| 1282 | |
|---|
| 1283 | IF (ok_bug_phase_lscp) THEN |
|---|
| 1284 | d_ql(i,k) = (1-zfice(i))*zoliq(i) |
|---|
| 1285 | d_qi(i,k) = zfice(i)*zoliq(i) |
|---|
| 1286 | ELSE |
|---|
| 1287 | d_ql(i,k) = zoliql(i) |
|---|
| 1288 | d_qi(i,k) = zoliqi(i) |
|---|
| 1289 | ENDIF |
|---|
| 1290 | |
|---|
| 1291 | ENDDO |
|---|
| 1292 | |
|---|
| 1293 | |
|---|
| 1294 | ENDDO ! loop on k from top to bottom |
|---|
| 1295 | |
|---|
| 1296 | |
|---|
| 1297 | ! Rain or snow at the surface (depending on the first layer temperature) |
|---|
| 1298 | DO i = 1, klon |
|---|
| 1299 | snow(i) = zifl(i) |
|---|
| 1300 | rain(i) = zrfl(i) |
|---|
| 1301 | ! c_iso final output |
|---|
| 1302 | ENDDO |
|---|
| 1303 | |
|---|
| 1304 | IF ( ok_ice_sedim ) THEN |
|---|
| 1305 | DO i = 1, klon |
|---|
| 1306 | snow(i) = snow(i) + icesed_flux(i) |
|---|
| 1307 | ENDDO |
|---|
| 1308 | ENDIF |
|---|
| 1309 | |
|---|
| 1310 | IF (ncoreczq>0) THEN |
|---|
| 1311 | WRITE(lunout,*)'WARNING : ZQ in LSCP ',ncoreczq,' val < 1.e-15.' |
|---|
| 1312 | ENDIF |
|---|
| 1313 | |
|---|
| 1314 | |
|---|
| 1315 | RETURN |
|---|
| 1316 | |
|---|
| 1317 | END SUBROUTINE lscp |
|---|
| 1318 | !+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ |
|---|
| 1319 | |
|---|
| 1320 | END MODULE lmdz_lscp |
|---|