[2147] | 1 | ! |
---|
| 2 | ! $Id $ |
---|
| 3 | ! |
---|
| 4 | SUBROUTINE cvltr_scav(pdtime, da, phi,phi2,d1a,dam, mpIN,epIN, & |
---|
[5450] | 5 | sigd,sij,wght_cvfd,clw,elij,epmlmMm,eplaMm, & |
---|
| 6 | pmflxrIN,pmflxsIN,ev,te,wdtrainA,wdtrainM, & |
---|
| 7 | paprs,it,tr,upd,dnd,inb,icb, & |
---|
| 8 | ccntrAA_3d,ccntrENV_3d,coefcoli_3d, & |
---|
| 9 | dtrcv,trsptd,dtrSscav,dtrsat,dtrUscav,flux_tr_wet, & |
---|
| 10 | qDi,qPr, & |
---|
| 11 | qPa,qMel,qTrdi,dtrcvMA,Mint, & |
---|
[2147] | 12 | zmfd1a,zmfphi2,zmfdam) |
---|
| 13 | ! |
---|
[5292] | 14 | USE chem_mod_h |
---|
| 15 | USE yoecumf_mod_h |
---|
[5289] | 16 | USE conema3_mod_h |
---|
[5283] | 17 | USE IOIPSL |
---|
[2147] | 18 | USE dimphy |
---|
[4046] | 19 | USE infotrac_phy, ONLY : nbtr |
---|
[5285] | 20 | USE yomcst_mod_h |
---|
[5274] | 21 | IMPLICIT NONE |
---|
[2147] | 22 | !===================================================================== |
---|
| 23 | ! Objet : convection des traceurs / KE |
---|
| 24 | ! Auteurs: M-A Filiberti and J-Y Grandpeix |
---|
| 25 | ! modifiee par R Pilon : lessivage des traceurs / KE |
---|
| 26 | !===================================================================== |
---|
| 27 | |
---|
[5274] | 28 | |
---|
[2147] | 29 | |
---|
| 30 | ! Entree |
---|
| 31 | REAL,INTENT(IN) :: pdtime |
---|
| 32 | REAL,DIMENSION(klon,klev),INTENT(IN) :: da |
---|
| 33 | REAL,DIMENSION(klon,klev,klev),INTENT(IN) :: phi |
---|
| 34 | ! RomP |
---|
| 35 | REAL,DIMENSION(klon,klev),INTENT(IN) :: d1a,dam ! matrices pour simplifier |
---|
| 36 | REAL,DIMENSION(klon,klev,klev),INTENT(IN) :: phi2 ! l'ecriture des tendances |
---|
| 37 | ! |
---|
| 38 | REAL,DIMENSION(klon,klev),INTENT(IN) :: mpIN |
---|
| 39 | REAL,DIMENSION(klon,klev+1),INTENT(IN) :: paprs ! pression aux 1/2 couches (bas en haut) |
---|
| 40 | INTEGER,INTENT(IN) :: it ! numero du traceur |
---|
| 41 | REAL,DIMENSION(klon,klev,nbtr),INTENT(IN) :: tr ! q de traceur (bas en haut) |
---|
| 42 | REAL,DIMENSION(klon,klev),INTENT(IN) :: upd ! saturated updraft mass flux |
---|
| 43 | REAL,DIMENSION(klon,klev),INTENT(IN) :: dnd ! saturated downdraft mass flux |
---|
| 44 | ! |
---|
| 45 | REAL,DIMENSION(klon,klev),INTENT(IN) :: wdtrainA ! masses precipitantes de l'asc adiab |
---|
| 46 | REAL,DIMENSION(klon,klev),INTENT(IN) :: wdtrainM ! masses precipitantes des melanges |
---|
| 47 | !JE REAL,DIMENSION(klon,klev),INTENT(IN) :: pmflxrIN ! vprecip: eau |
---|
| 48 | REAL,DIMENSION(klon,klev+1),INTENT(IN) :: pmflxrIN ! vprecip: eau |
---|
| 49 | !JE REAL,DIMENSION(klon,klev),INTENT(IN) :: pmflxsIN ! vprecip: neige |
---|
| 50 | REAL,DIMENSION(klon,klev+1),INTENT(IN) :: pmflxsIN ! vprecip: neige |
---|
| 51 | REAL,DIMENSION(klon,klev),INTENT(IN) :: ev ! evaporation cv30_routine |
---|
| 52 | REAL,DIMENSION(klon,klev),INTENT(IN) :: epIN |
---|
| 53 | REAL,DIMENSION(klon,klev),INTENT(IN) :: te |
---|
| 54 | REAL,DIMENSION(klon,klev,klev),INTENT(IN) :: sij ! fraction dair de lenv |
---|
| 55 | REAL,DIMENSION(klon,klev),INTENT(IN) :: wght_cvfd ! weights of the layers feeding convection |
---|
| 56 | REAL,DIMENSION(klon,klev,klev),INTENT(IN) :: elij ! contenu en eau condensée spécifique/conc deau condensée massique |
---|
| 57 | REAL,DIMENSION(klon,klev,klev),INTENT(IN) :: epmlmMm ! eau condensee precipitee dans mel masse dair sat |
---|
| 58 | REAL,DIMENSION(klon,klev),INTENT(IN) :: eplaMm ! eau condensee precipitee dans aa masse dair sat |
---|
| 59 | |
---|
| 60 | REAL,DIMENSION(klon,klev),INTENT(IN) :: clw ! contenu en eau condensée dans lasc adiab |
---|
| 61 | REAL,DIMENSION(klon),INTENT(IN) :: sigd |
---|
| 62 | INTEGER,DIMENSION(klon),INTENT(IN) :: icb,inb |
---|
| 63 | ! |
---|
| 64 | REAL,DIMENSION(klon,klev),INTENT(IN) :: ccntrAA_3d |
---|
| 65 | REAL,DIMENSION(klon,klev),INTENT(IN) :: ccntrENV_3d |
---|
| 66 | REAL,DIMENSION(klon,klev),INTENT(IN) :: coefcoli_3d |
---|
| 67 | ! |
---|
| 68 | ! Sortie |
---|
| 69 | REAL,DIMENSION(klon,klev,nbtr),INTENT(OUT) :: dtrcv ! tendance totale (bas en haut) |
---|
| 70 | REAL,DIMENSION(klon,klev,nbtr),INTENT(OUT) :: dtrcvMA ! M-A Filiberti |
---|
| 71 | REAL,DIMENSION(klon,klev,nbtr),INTENT(OUT) :: trsptd ! tendance du transport |
---|
| 72 | REAL,DIMENSION(klon,klev,nbtr),INTENT(OUT) :: dtrSscav ! tendance du lessivage courant sat |
---|
| 73 | REAL,DIMENSION(klon,klev,nbtr),INTENT(OUT) :: dtrsat ! tendance trsp+sat scav |
---|
| 74 | REAL,DIMENSION(klon,klev,nbtr),INTENT(OUT) :: dtrUscav ! tendance du lessivage courant unsat |
---|
[5450] | 75 | REAL,DIMENSION(klon,nbtr), INTENT(OUT) :: flux_tr_wet ! wet deposit |
---|
[2147] | 76 | ! |
---|
| 77 | ! Variables locales |
---|
| 78 | INTEGER :: i,j,k |
---|
| 79 | REAL,DIMENSION(klon,klev) :: dxpres ! difference de pression entre niveau (j+1) et (j) |
---|
| 80 | REAL :: pdtimeRG ! pas de temps * gravite |
---|
| 81 | REAL,DIMENSION(klon,nbtr) :: qfeed ! tracer concentration feeding convection |
---|
| 82 | ! variables pour les courants satures |
---|
| 83 | REAL,DIMENSION(klon,klev,klev) :: zmd |
---|
| 84 | REAL,DIMENSION(klon,klev,klev) :: za |
---|
| 85 | REAL,DIMENSION(klon,klev,nbtr) :: zmfd,zmfa |
---|
| 86 | REAL,DIMENSION(klon,klev,nbtr) :: zmfp,zmfu |
---|
| 87 | |
---|
| 88 | REAL,DIMENSION(klon,klev,nbtr),INTENT(OUT) :: zmfd1a |
---|
| 89 | REAL,DIMENSION(klon,klev,nbtr),INTENT(OUT) :: zmfdam |
---|
| 90 | REAL,DIMENSION(klon,klev,nbtr),INTENT(OUT) :: zmfphi2 |
---|
| 91 | |
---|
| 92 | ! RomP ! les variables sont nettoyees des valeurs aberrantes |
---|
| 93 | REAL,DIMENSION(klon,klev) :: Pa, Pm ! pluie AA et mélanges, var temporaire |
---|
| 94 | REAL,DIMENSION(klon,klev) :: pmflxs,pmflxr ! pmflxrIN,pmflxsIN sans valeur aberante |
---|
| 95 | REAL,DIMENSION(klon,klev) :: mp ! flux de masse |
---|
| 96 | REAL,DIMENSION(klon,klev) :: ep ! fraction d'eau convertie en precipitation |
---|
| 97 | REAL,DIMENSION(klon,klev) :: evap ! evaporation : variable temporaire |
---|
| 98 | REAL,DIMENSION(klon,klev) :: rho !environmental density |
---|
| 99 | |
---|
| 100 | REAL,DIMENSION(klon,klev) :: kappa ! denominateur du au calcul de la matrice |
---|
| 101 | ! pour obtenir qd et qp |
---|
| 102 | REAL,DIMENSION(klon,klev,nbtr),INTENT(OUT) :: qTrdi ! traceurs descente air insature transport MA |
---|
| 103 | REAL,DIMENSION(klon,klev,nbtr),INTENT(OUT) :: qDi ! traceurs descente insaturees |
---|
| 104 | REAL,DIMENSION(klon,klev,nbtr),INTENT(OUT) :: qPr ! traceurs colonne precipitante |
---|
| 105 | REAL,DIMENSION(klon,klev,nbtr),INTENT(OUT) :: qPa ! traceurs dans les precip issues lasc. adiab. |
---|
| 106 | REAL,DIMENSION(klon,klev,nbtr),INTENT(OUT) :: qMel ! traceurs dans les precip issues des melanges |
---|
| 107 | REAL,DIMENSION(klon,klev,nbtr) :: qMeltmp ! variable temporaire |
---|
| 108 | REAL,DIMENSION(klon,klev,nbtr) :: qpmMint |
---|
| 109 | REAL,DIMENSION(klon,klev),INTENT(OUT) :: Mint |
---|
| 110 | ! tendances |
---|
| 111 | REAL :: tdcvMA ! terme de transport de traceur (schema Marie Angele) |
---|
| 112 | REAL :: trsptrac ! terme de transport de traceur par l'air |
---|
| 113 | REAL :: scavtrac ! terme de lessivage courant sature |
---|
| 114 | REAL :: uscavtrac ! terme de lessivage courant insature |
---|
| 115 | ! impaction |
---|
| 116 | !!! Correction apres discussion Romain P. / Olivier B. |
---|
| 117 | !!! REAL,PARAMETER :: rdrop=2.5e-3 ! rayon des gouttes d'eau |
---|
| 118 | REAL,PARAMETER :: rdrop=1.e-3 ! rayon des gouttes d'eau |
---|
| 119 | !!! |
---|
| 120 | REAL,DIMENSION(klon,klev) :: imp ! coefficient d'impaction |
---|
| 121 | ! |
---|
| 122 | LOGICAL,DIMENSION(klon,klev) :: NO_precip |
---|
| 123 | ! var tmp tests |
---|
| 124 | REAL :: conserv |
---|
| 125 | real :: conservMA |
---|
| 126 | |
---|
[2284] | 127 | !jyg< |
---|
| 128 | !! ! ====================================================== |
---|
| 129 | !! ! calcul de l'impaction |
---|
| 130 | !! ! ====================================================== |
---|
| 131 | !! |
---|
| 132 | !! ! impaction sur la surface de la colonne de la descente insaturee |
---|
| 133 | !! ! On prend la moyenne des precip entre le niveau i+1 et i |
---|
| 134 | !! ! I=3/4* (P(1+1)+P(i))/2 / (sigd*r*rho_l) |
---|
| 135 | !! ! 1000kg/m3= densite de l'eau |
---|
| 136 | !! ! 0.75e-3 = 3/4 /1000 |
---|
| 137 | !! ! Par la suite, I est tout le temps multiplie par sig_d pour avoir l'impaction sur la surface de la maille |
---|
| 138 | !!!! ! on le neglige ici pour simplifier le code |
---|
| 139 | !! |
---|
| 140 | !! DO j=1,klev-1 |
---|
| 141 | !! DO i=1,klon |
---|
| 142 | !! imp(i,j) = coefcoli_3d(i,j)*0.75e-3/rdrop *& |
---|
| 143 | !! 0.5*(pmflxr(i,j+1)+pmflxs(i,j+1)+pmflxr(i,j)+pmflxs(i,j)) |
---|
| 144 | !! ENDDO |
---|
| 145 | !! ENDDO |
---|
| 146 | !>jyg |
---|
[2147] | 147 | ! |
---|
| 148 | ! initialisation pour flux de traceurs, td et autre |
---|
| 149 | ! |
---|
| 150 | trsptrac = 0. |
---|
| 151 | scavtrac = 0. |
---|
| 152 | uscavtrac = 0. |
---|
| 153 | qfeed(:,it) = 0. !RL |
---|
| 154 | DO j=1,klev |
---|
| 155 | DO i=1,klon |
---|
| 156 | zmfd(i,j,it)=0. |
---|
| 157 | zmfa(i,j,it)=0. |
---|
| 158 | zmfu(i,j,it)=0. |
---|
| 159 | zmfp(i,j,it)=0. |
---|
| 160 | zmfphi2(i,j,it)=0. |
---|
| 161 | zmfd1a(i,j,it)=0. |
---|
| 162 | zmfdam(i,j,it)=0. |
---|
| 163 | qDi(i,j,it)=0. |
---|
| 164 | qPr(i,j,it)=0. |
---|
| 165 | qPa(i,j,it)=0. |
---|
| 166 | qMel(i,j,it)=0. |
---|
| 167 | qMeltmp(i,j,it)=0. |
---|
| 168 | qTrdi(i,j,it)=0. |
---|
| 169 | kappa(i,j)=0. |
---|
| 170 | trsptd(i,j,it)=0. |
---|
| 171 | dtrsat(i,j,it)=0. |
---|
| 172 | dtrSscav(i,j,it)=0. |
---|
| 173 | dtrUscav(i,j,it)=0. |
---|
| 174 | dtrcv(i,j,it)=0. |
---|
| 175 | dtrcvMA(i,j,it)=0. |
---|
| 176 | evap(i,j)=0. |
---|
| 177 | dxpres(i,j)=0. |
---|
| 178 | qpmMint(i,j,it)=0. |
---|
| 179 | Mint(i,j)=0. |
---|
| 180 | END DO |
---|
| 181 | END DO |
---|
| 182 | |
---|
| 183 | ! suppression des valeurs très faibles (~1e-320) |
---|
| 184 | ! multiplication de levaporation pour lavoir par unite de temps |
---|
| 185 | ! et par unite de surface de la maille |
---|
| 186 | ! -> cv30_unsat : evap : masse evaporee/s/(m2 de la descente) |
---|
| 187 | DO j=1,klev |
---|
| 188 | DO i=1,klon |
---|
| 189 | IF(ev(i,j).lt.1.e-16) THEN |
---|
| 190 | evap(i,j)=0. |
---|
| 191 | ELSE |
---|
| 192 | evap(i,j)=ev(i,j)*sigd(i) |
---|
| 193 | ENDIF |
---|
| 194 | END DO |
---|
| 195 | END DO |
---|
| 196 | |
---|
| 197 | DO j=1,klev |
---|
| 198 | DO i=1,klon |
---|
| 199 | IF(j.LT.klev) THEN |
---|
| 200 | IF(epIN(i,j).LT.1.e-32) THEN |
---|
| 201 | ep(i,j)=0. |
---|
| 202 | ELSE |
---|
| 203 | ep(i,j)=epIN(i,j) |
---|
| 204 | ENDIF |
---|
| 205 | ELSE |
---|
| 206 | ep(i,j)=epmax |
---|
| 207 | ENDIF |
---|
| 208 | IF(mpIN(i,j).LT.1.e-32) THEN |
---|
| 209 | mp(i,j)=0. |
---|
| 210 | ELSE |
---|
| 211 | mp(i,j)=mpIN(i,j) |
---|
| 212 | ENDIF |
---|
| 213 | IF(pmflxsIN(i,j).LT.1.e-32) THEN |
---|
| 214 | pmflxs(i,j)=0. |
---|
| 215 | ELSE |
---|
| 216 | pmflxs(i,j)=pmflxsIN(i,j) |
---|
| 217 | ENDIF |
---|
| 218 | IF(pmflxrIN(i,j).LT.1.e-32) THEN |
---|
| 219 | pmflxr(i,j)=0. |
---|
| 220 | ELSE |
---|
| 221 | pmflxr(i,j)=pmflxrIN(i,j) |
---|
| 222 | ENDIF |
---|
| 223 | IF(wdtrainA(i,j).LT.1.e-32) THEN |
---|
| 224 | Pa(i,j)=0. |
---|
| 225 | ELSE |
---|
| 226 | Pa(i,j)=wdtrainA(i,j) |
---|
| 227 | ENDIF |
---|
| 228 | IF(wdtrainM(i,j).LT.1.e-32) THEN |
---|
| 229 | Pm(i,j)=0. |
---|
| 230 | ELSE |
---|
| 231 | Pm(i,j)=wdtrainM(i,j) |
---|
| 232 | ENDIF |
---|
| 233 | END DO |
---|
| 234 | END DO |
---|
| 235 | |
---|
| 236 | !========================================== |
---|
| 237 | DO j = klev-1,1,-1 |
---|
| 238 | DO i = 1,klon |
---|
| 239 | NO_precip(i,j) = (pmflxr(i,j+1)+pmflxs(i,j+1)).LT.1.e-10& |
---|
| 240 | .AND.Pa(i,j).LT.1.e-10.AND.Pm(i,j).LT.1.e-10 |
---|
| 241 | END DO |
---|
| 242 | END DO |
---|
| 243 | |
---|
[2284] | 244 | !jyg< |
---|
| 245 | ! ====================================================== |
---|
| 246 | ! calcul de l'impaction |
---|
| 247 | ! ====================================================== |
---|
| 248 | |
---|
| 249 | ! impaction sur la surface de la colonne de la descente insaturee |
---|
| 250 | ! On prend la moyenne des precip entre le niveau i+1 et i |
---|
| 251 | ! I=3/4* (P(1+1)+P(i))/2 / (sigd*r*rho_l) |
---|
| 252 | ! 1000kg/m3= densite de l'eau |
---|
| 253 | ! 0.75e-3 = 3/4 /1000 |
---|
| 254 | ! Par la suite, I est tout le temps multiplie par sig_d pour avoir l'impaction sur la surface de la maille |
---|
| 255 | ! on le neglige ici pour simplifier le code |
---|
| 256 | |
---|
| 257 | DO j=1,klev-1 |
---|
| 258 | DO i=1,klon |
---|
| 259 | imp(i,j) = coefcoli_3d(i,j)*0.75e-3/rdrop *& |
---|
| 260 | 0.5*(pmflxr(i,j+1)+pmflxs(i,j+1)+pmflxr(i,j)+pmflxs(i,j)) |
---|
| 261 | ENDDO |
---|
| 262 | ENDDO |
---|
| 263 | !>jyg |
---|
[2147] | 264 | ! ========================================= |
---|
| 265 | ! calcul des tendances liees au downdraft |
---|
| 266 | ! ========================================= |
---|
| 267 | !cdir collapse |
---|
| 268 | DO k=1,klev |
---|
| 269 | DO j=1,klev |
---|
| 270 | DO i=1,klon |
---|
| 271 | zmd(i,j,k)=0. |
---|
| 272 | za (i,j,k)=0. |
---|
| 273 | END DO |
---|
| 274 | END DO |
---|
| 275 | END DO |
---|
| 276 | ! calcul de la matrice d echange |
---|
| 277 | ! matrice de distribution de la masse entrainee en k |
---|
| 278 | ! commmentaire RomP : mp > 0 |
---|
| 279 | DO k=1,klev-1 |
---|
| 280 | DO i=1,klon |
---|
| 281 | zmd(i,k,k)=max(0.,mp(i,k)-mp(i,k+1)) ! ~ mk(k) |
---|
| 282 | END DO |
---|
| 283 | END DO |
---|
| 284 | DO k=2,klev |
---|
| 285 | DO j=k-1,1,-1 |
---|
| 286 | DO i=1,klon |
---|
| 287 | IF(mp(i,j+1).GT.1.e-10) THEN |
---|
| 288 | zmd(i,j,k)=zmd(i,j+1,k)*min(1.,mp(i,j)/mp(i,j+1)) !det ~ mk(j)=mk(j+1)*mp(i,j)/mp(i,j+1) |
---|
| 289 | ENDIF |
---|
| 290 | END DO |
---|
| 291 | END DO |
---|
| 292 | END DO |
---|
| 293 | DO k=1,klev |
---|
| 294 | DO j=1,klev-1 |
---|
| 295 | DO i=1,klon |
---|
| 296 | za(i,j,k)=max(0.,zmd(i,j+1,k)-zmd(i,j,k)) |
---|
| 297 | END DO |
---|
| 298 | END DO |
---|
| 299 | END DO |
---|
| 300 | !!!!! quantite de traceur dans la descente d'air insaturee : 4 juin 2012 |
---|
| 301 | DO k=1,klev |
---|
| 302 | DO j=1,klev-1 |
---|
| 303 | DO i=1,klon |
---|
| 304 | IF(mp(i,j+1).GT.1.e-10) THEN |
---|
| 305 | qTrdi(i,j+1,it)=qTrdi(i,j+1,it)+(zmd(i,j+1,k)/mp(i,j+1))*tr(i,k,it) |
---|
| 306 | ELSE |
---|
| 307 | qTrdi(i,j,it)=0.!tr(i,j,it) |
---|
| 308 | ENDIF |
---|
| 309 | ENDDO |
---|
| 310 | ENDDO |
---|
| 311 | ENDDO |
---|
| 312 | !!!!! |
---|
| 313 | ! |
---|
| 314 | ! rajout du terme lie a l ascendance induite |
---|
| 315 | ! |
---|
| 316 | DO j=2,klev |
---|
| 317 | DO i=1,klon |
---|
| 318 | za(i,j,j-1)=za(i,j,j-1)+mp(i,j) |
---|
| 319 | END DO |
---|
| 320 | END DO |
---|
| 321 | ! |
---|
| 322 | ! tendance courants insatures ! sans lessivage ancien schema |
---|
| 323 | ! |
---|
| 324 | DO k=1,klev |
---|
| 325 | DO j=1,klev |
---|
| 326 | DO i=1,klon |
---|
| 327 | zmfd(i,j,it)=zmfd(i,j,it)+za(i,j,k)*(tr(i,k,it)-tr(i,j,it)) |
---|
| 328 | END DO |
---|
| 329 | END DO |
---|
| 330 | END DO |
---|
| 331 | ! |
---|
| 332 | ! ========================================= |
---|
| 333 | ! calcul des tendances liees aux courants satures j <-> z ; k <-> z' |
---|
| 334 | ! ========================================= |
---|
| 335 | !RL |
---|
| 336 | ! Feeding concentrations |
---|
| 337 | DO j=1,klev |
---|
| 338 | DO i=1,klon |
---|
| 339 | qfeed(i,it)=qfeed(i,it)+wght_cvfd(i,j)*tr(i,j,it) |
---|
| 340 | END DO |
---|
| 341 | END DO |
---|
| 342 | !RL |
---|
| 343 | ! |
---|
| 344 | DO j=1,klev |
---|
| 345 | DO i=1,klon |
---|
| 346 | !RL |
---|
| 347 | !! zmfa(i,j,it)=da(i,j)*(tr(i,1,it)-tr(i,j,it)) ! da |
---|
| 348 | zmfa(i,j,it)=da(i,j)*(qfeed(i,it)-tr(i,j,it)) ! da |
---|
| 349 | !RL |
---|
| 350 | END DO |
---|
| 351 | END DO |
---|
| 352 | ! |
---|
| 353 | DO k=1,klev |
---|
| 354 | DO j=1,klev |
---|
| 355 | DO i=1,klon |
---|
| 356 | zmfp(i,j,it)=zmfp(i,j,it)+phi(i,j,k)*(tr(i,k,it)-tr(i,j,it)) ! phi |
---|
| 357 | END DO |
---|
| 358 | END DO |
---|
| 359 | END DO |
---|
| 360 | ! RomP ajout des matrices liees au lessivage |
---|
| 361 | DO j=1,klev |
---|
| 362 | DO i=1,klon |
---|
| 363 | zmfd1a(i,j,it)=d1a(i,j)*tr(i,1,it) ! da1 |
---|
| 364 | zmfdam(i,j,it)=dam(i,j)*tr(i,1,it) ! dam |
---|
| 365 | END DO |
---|
| 366 | END DO |
---|
| 367 | DO k=1,klev |
---|
| 368 | DO j=1,klev |
---|
| 369 | DO i=1,klon |
---|
| 370 | zmfphi2(i,j,it)=zmfphi2(i,j,it)+phi2(i,j,k)*tr(i,k,it) ! psi |
---|
| 371 | END DO |
---|
| 372 | END DO |
---|
| 373 | END DO |
---|
| 374 | DO j=1,klev-1 |
---|
| 375 | DO i=1,klon |
---|
| 376 | zmfu(i,j,it)=max(0.,upd(i,j+1)+dnd(i,j+1))*(tr(i,j+1,it)-tr(i,j,it)) |
---|
| 377 | END DO |
---|
| 378 | END DO |
---|
| 379 | DO j=2,klev |
---|
| 380 | DO i=1,klon |
---|
| 381 | zmfu(i,j,it)=zmfu(i,j,it)+min(0.,upd(i,j)+dnd(i,j))*(tr(i,j,it)-tr(i,j-1,it)) |
---|
| 382 | END DO |
---|
| 383 | END DO |
---|
| 384 | ! =================================================== |
---|
| 385 | ! calcul des tendances liees aux courants insatures |
---|
| 386 | ! =================================================== |
---|
| 387 | ! pression |
---|
| 388 | DO k=1, klev |
---|
| 389 | DO i=1, klon |
---|
| 390 | dxpres(i,k)=paprs(i,k)-paprs(i,k+1) |
---|
| 391 | ENDDO |
---|
| 392 | ENDDO |
---|
| 393 | pdtimeRG=pdtime*RG |
---|
| 394 | |
---|
| 395 | ! q_pa et q_pm traceurs issues des courants satures se retrouvant dans les precipitations |
---|
| 396 | DO j=1,klev |
---|
| 397 | DO i=1,klon |
---|
| 398 | IF(j.GE.icb(i).AND.j.LE.inb(i)) THEN |
---|
| 399 | IF(clw(i,j).GT.1.e-16) THEN |
---|
| 400 | !JE qPa(i,j,it)=ccntrAA_coef*tr(i,1,it)/clw(i,j) |
---|
| 401 | qPa(i,j,it)=ccntrAA_3d(i,j)*tr(i,1,it)/clw(i,j) |
---|
| 402 | ELSE |
---|
| 403 | qPa(i,j,it)=0. |
---|
| 404 | ENDIF |
---|
| 405 | ENDIF |
---|
| 406 | END DO |
---|
| 407 | END DO |
---|
| 408 | |
---|
| 409 | ! calcul de q_pm en 2 parties : |
---|
| 410 | ! 1) calcul de sa valeur pour un niveau z' donne |
---|
| 411 | ! 2) integration sur la verticale sur z' |
---|
| 412 | DO j=1,klev |
---|
| 413 | DO k=1,j-1 |
---|
| 414 | DO i=1,klon |
---|
| 415 | IF(k.GE.icb(i).AND.k.LE.inb(i).AND.& |
---|
| 416 | j.LE.inb(i)) THEN |
---|
| 417 | IF(elij(i,k,j).GT.1.e-16) THEN |
---|
| 418 | !JE qMeltmp(i,j,it)=((1-ep(i,k))*ccntrAA_coef*tr(i,1,it)& |
---|
| 419 | !JE *(1.-sij(i,k,j)) +ccntrENV_coef& |
---|
| 420 | !JE *tr(i,k,it)*sij(i,k,j)) / elij(i,k,j) |
---|
| 421 | qMeltmp(i,j,it)=((1-ep(i,k))*ccntrAA_3d(i,k)*tr(i,1,it)& |
---|
| 422 | *(1.-sij(i,k,j)) +ccntrENV_3d(i,k)& |
---|
| 423 | *tr(i,k,it)*sij(i,k,j)) / elij(i,k,j) |
---|
| 424 | ELSE |
---|
| 425 | qMeltmp(i,j,it)=0. |
---|
| 426 | ENDIF |
---|
| 427 | qpmMint(i,j,it)=qpmMint(i,j,it) + qMeltmp(i,j,it)*epmlmMm(i,j,k) |
---|
| 428 | Mint(i,j)=Mint(i,j) + epmlmMm(i,j,k) |
---|
| 429 | ENDIF ! end if dans nuage |
---|
| 430 | END DO |
---|
| 431 | END DO |
---|
| 432 | END DO |
---|
| 433 | |
---|
| 434 | DO j=1,klev |
---|
| 435 | DO i=1,klon |
---|
| 436 | IF(Mint(i,j).GT.1.e-16) THEN |
---|
| 437 | qMel(i,j,it)=qpmMint(i,j,it)/Mint(i,j) |
---|
| 438 | ELSE |
---|
| 439 | qMel(i,j,it)=0. |
---|
| 440 | ENDIF |
---|
| 441 | END DO |
---|
| 442 | END DO |
---|
| 443 | |
---|
| 444 | ! calcul de q_d et q_p traceurs de la descente precipitante |
---|
| 445 | DO j=klev-1,1,-1 |
---|
| 446 | DO i=1,klon |
---|
| 447 | IF(mp(i,j+1).GT.mp(i,j).AND.mp(i,j+1).GT.1.e-10) THEN ! detrainement |
---|
| 448 | kappa(i,j)=((pmflxr(i,j+1)+pmflxs(i,j+1)+Pa(i,j)+Pm(i,j))*& |
---|
| 449 | (-mp(i,j+1)-imp(i,j)/RG*dxpres(i,j))& |
---|
| 450 | + (imp(i,j)/RG*dxpres(i,j))*(evap(i,j)/RG*dxpres(i,j))) |
---|
| 451 | |
---|
| 452 | ELSEIF(mp(i,j).GT.mp(i,j+1).AND.mp(i,j).GT.1.e-10) THEN! entrainement |
---|
| 453 | IF(j.eq.1) THEN |
---|
| 454 | kappa(i,j)=((pmflxr(i,j+1)+pmflxs(i,j+1)+Pa(i,j)+Pm(i,j))*& |
---|
| 455 | (-mp(i,2)-imp(i,j)/RG*dxpres(i,j))& |
---|
| 456 | + (imp(i,j)/RG*dxpres(i,j))*(evap(i,j)/RG*dxpres(i,j))) |
---|
| 457 | ELSE |
---|
| 458 | kappa(i,j)=((pmflxr(i,j+1)+pmflxs(i,j+1)+Pa(i,j)+Pm(i,j))*& |
---|
| 459 | (-mp(i,j)-imp(i,j)/RG*dxpres(i,j))& |
---|
| 460 | + (imp(i,j)/RG*dxpres(i,j))*(evap(i,j)/RG*dxpres(i,j))) |
---|
| 461 | ENDIF |
---|
| 462 | ELSE |
---|
| 463 | kappa(i,j)=1. |
---|
| 464 | ENDIF |
---|
| 465 | ENDDO |
---|
| 466 | ENDDO |
---|
| 467 | |
---|
| 468 | DO j=klev-1,1,-1 |
---|
| 469 | DO i=1,klon |
---|
| 470 | IF (abs(kappa(i,j)).LT.1.e-25) THEN !si denominateur nul (il peut y avoir des mp!=0) |
---|
| 471 | kappa(i,j)=1. |
---|
| 472 | IF(j.eq.1) THEN |
---|
| 473 | qDi(i,j,it)=qDi(i,j+1,it) !orig tr(i,j,it) ! mp(1)=0 donc tout vient de la couche supérieure |
---|
| 474 | ELSEIF(mp(i,j+1).GT.mp(i,j).AND.mp(i,j+1).GT.1.e-10) THEN |
---|
| 475 | qDi(i,j,it)=qDi(i,j+1,it) |
---|
| 476 | ELSEIF(mp(i,j).GT.mp(i,j+1).AND.mp(i,j).GT.1.e-10) THEN! entrainement |
---|
| 477 | qDi(i,j,it)=(-mp(i,j+1)*(qDi(i,j+1,it)-tr(i,j,it))-mp(i,j)*tr(i,j,it))/(-mp(i,j)) |
---|
| 478 | ELSE ! si mp (i)=0 et mp(j+1)=0 |
---|
| 479 | qDi(i,j,it)=tr(i,j,it) ! orig 0. |
---|
| 480 | ENDIF |
---|
| 481 | |
---|
| 482 | IF(NO_precip(i,j)) THEN |
---|
| 483 | qPr(i,j,it)=0. |
---|
| 484 | ELSE |
---|
| 485 | qPr(i,j,it)=((pmflxr(i,j+1)+pmflxs(i,j+1))*qPr(i,j+1,it)+& |
---|
| 486 | Pa(i,j)*qPa(i,j,it)+Pm(i,j)*qMel(i,j,it)& |
---|
| 487 | +imp(i,j)/RG*dxpres(i,j)*qDi(i,j,it))/& |
---|
| 488 | (pmflxr(i,j+1)+pmflxs(i,j+1)+Pa(i,j)+Pm(i,j)) |
---|
| 489 | ENDIF |
---|
| 490 | ELSE ! denominateur non nul |
---|
| 491 | kappa(i,j)=1./kappa(i,j) |
---|
| 492 | ! calcul de qd et qp |
---|
| 493 | !!jyg (20130119) correction pour le sommet du nuage |
---|
| 494 | !! if(j.GE.inb(i)) THEN !au-dessus du nuage, sommet inclu |
---|
| 495 | if(j.GT.inb(i)) THEN !au-dessus du nuage |
---|
| 496 | qDi(i,j,it)=tr(i,j,it) ! pas de descente => environnement = descente insaturee |
---|
| 497 | qPr(i,j,it)=0. |
---|
| 498 | |
---|
| 499 | ! vvv premiere couche du modele ou mp(1)=0 ! det tout le temps vvv |
---|
| 500 | ELSEIF(j.eq.1) THEN |
---|
| 501 | if(mp(i,2).GT.1.e-10) THEN !mp(2) non nul -> detrainement (car mp(1) = 0) !ent pas possible |
---|
| 502 | if(NO_precip(i,j)) THEN !pas de precip en (i) |
---|
| 503 | qDi(i,j,it)=qDi(i,j+1,it) |
---|
| 504 | qPr(i,j,it)=0. |
---|
| 505 | ELSE |
---|
| 506 | qDi(i,j,it)=kappa(i,j)*(& |
---|
| 507 | (-evap(i,j)/RG*dxpres(i,j))*((pmflxr(i,j+1)+pmflxs(i,j+1))*qPr(i,j+1,it)+& |
---|
| 508 | Pa(i,j)*qPa(i,j,it)+Pm(i,j)*qMel(i,j,it)) +& |
---|
| 509 | (pmflxr(i,j+1)+pmflxs(i,j+1)+Pa(i,j)+Pm(i,j))*& |
---|
| 510 | (-mp(i,j+1)*qDi(i,j+1,it))) |
---|
| 511 | |
---|
| 512 | qPr(i,j,it)=kappa(i,j)*(& |
---|
| 513 | (-mp(i,j+1)-imp(i,j)/RG*dxpres(i,j))*& |
---|
| 514 | ((pmflxr(i,j+1)+pmflxs(i,j+1))*qPr(i,j+1,it)+& |
---|
| 515 | Pa(i,j)*qPa(i,j,it)+Pm(i,j)*qMel(i,j,it))& |
---|
| 516 | +(-mp(i,j+1)*qDi(i,j+1,it)) * (imp(i,j)/RG*dxpres(i,j))) |
---|
| 517 | ENDIF |
---|
| 518 | |
---|
| 519 | ELSE !mp(2) nul -> plus de descente insaturee -> pluie agit sur environnement |
---|
| 520 | qDi(i,j,it)=tr(i,j,it) ! orig 0. |
---|
| 521 | if(NO_precip(i,j)) THEN |
---|
| 522 | qPr(i,j,it)=0. |
---|
| 523 | ELSE |
---|
| 524 | qPr(i,j,it)=((pmflxr(i,j+1)+pmflxs(i,j+1))*qPr(i,j+1,it)+& |
---|
| 525 | Pa(i,j)*qPa(i,j,it)+Pm(i,j)*qMel(i,j,it)& |
---|
| 526 | +imp(i,j)/RG*dxpres(i,j)*tr(i,j,it))/& |
---|
| 527 | (pmflxr(i,j+1)+pmflxs(i,j+1)+Pa(i,j)+Pm(i,j)) |
---|
| 528 | ENDIF |
---|
| 529 | |
---|
| 530 | ENDIF !mp(2) nul ou non |
---|
| 531 | |
---|
| 532 | ! vvv (j!=1.AND.j.LT.inb(i)) en-dessous du sommet nuage vvv |
---|
| 533 | ELSE |
---|
| 534 | !------------------------------------------------------------- detrainement |
---|
| 535 | if(mp(i,j+1).GT.mp(i,j).AND.mp(i,j+1).GT.1.e-10) THEN !mp(i,j).GT.1.e-10) THEN |
---|
| 536 | if(NO_precip(i,j)) THEN |
---|
| 537 | qDi(i,j,it)=qDi(i,j+1,it) |
---|
| 538 | qPr(i,j,it)=0. |
---|
| 539 | ELSE |
---|
| 540 | qDi(i,j,it)=kappa(i,j)*(& |
---|
| 541 | (-evap(i,j)/RG*dxpres(i,j))*((pmflxr(i,j+1)+pmflxs(i,j+1))*qPr(i,j+1,it)+& |
---|
| 542 | Pa(i,j)*qPa(i,j,it)+Pm(i,j)*qMel(i,j,it)) +& |
---|
| 543 | (pmflxr(i,j+1)+pmflxs(i,j+1)+Pa(i,j)+Pm(i,j))*& |
---|
| 544 | (-mp(i,j+1)*qDi(i,j+1,it))) |
---|
| 545 | ! |
---|
| 546 | qPr(i,j,it)=kappa(i,j)*(& |
---|
| 547 | (-mp(i,j+1)-imp(i,j)/RG*dxpres(i,j))*& |
---|
| 548 | ((pmflxr(i,j+1)+pmflxs(i,j+1))*qPr(i,j+1,it)+& |
---|
| 549 | Pa(i,j)*qPa(i,j,it)+Pm(i,j)*qMel(i,j,it))& |
---|
| 550 | +(-mp(i,j+1)*qDi(i,j+1,it)) * (imp(i,j)/RG*dxpres(i,j))) |
---|
| 551 | ENDIF !precip |
---|
| 552 | !------------------------------------------------------------- entrainement |
---|
| 553 | ELSEIF(mp(i,j).GT.mp(i,j+1).AND.mp(i,j).GT.1.e-10) THEN |
---|
| 554 | if(NO_precip(i,j)) THEN |
---|
| 555 | qDi(i,j,it)=(-mp(i,j+1)*(qDi(i,j+1,it)-tr(i,j,it))-mp(i,j)*tr(i,j,it))/(-mp(i,j)) |
---|
| 556 | qPr(i,j,it)=0. |
---|
| 557 | ELSE |
---|
| 558 | qDi(i,j,it)=kappa(i,j)*(& |
---|
| 559 | (-evap(i,j)/RG*dxpres(i,j))*((pmflxr(i,j+1)+pmflxs(i,j+1))*qPr(i,j+1,it)+& |
---|
| 560 | Pa(i,j)*qPa(i,j,it)+Pm(i,j)*qMel(i,j,it)) +& |
---|
| 561 | (pmflxr(i,j+1)+pmflxs(i,j+1)+Pa(i,j)+Pm(i,j))*& |
---|
| 562 | (-mp(i,j+1)*(qDi(i,j+1,it)-tr(i,j,it))-mp(i,j)*tr(i,j,it))) |
---|
| 563 | ! |
---|
| 564 | qPr(i,j,it)=kappa(i,j)*(& |
---|
| 565 | (-mp(i,j)-imp(i,j)/RG*dxpres(i,j))*& |
---|
| 566 | ((pmflxr(i,j+1)+pmflxs(i,j+1))*qPr(i,j+1,it)+& |
---|
| 567 | Pa(i,j)*qPa(i,j,it)+Pm(i,j)*qMel(i,j,it))& |
---|
| 568 | +(-mp(i,j+1)*(qDi(i,j+1,it)-tr(i,j,it))-mp(i,j)*tr(i,j,it))*& |
---|
| 569 | (imp(i,j)/RG*dxpres(i,j))) |
---|
| 570 | ENDIF !precip |
---|
| 571 | !------------------------------------------------------------- ENDIF ! ent/det |
---|
| 572 | ELSE !mp nul |
---|
| 573 | qDi(i,j,it)=tr(i,j,it) ! orig 0. |
---|
| 574 | if(NO_precip(i,j)) THEN |
---|
| 575 | qPr(i,j,it)=0. |
---|
| 576 | ELSE |
---|
| 577 | qPr(i,j,it)=((pmflxr(i,j+1)+pmflxs(i,j+1))*qPr(i,j+1,it)+& |
---|
| 578 | Pa(i,j)*qPa(i,j,it)+Pm(i,j)*qMel(i,j,it)& |
---|
| 579 | +imp(i,j)/RG*dxpres(i,j)*tr(i,j,it))/& |
---|
| 580 | (pmflxr(i,j+1)+pmflxs(i,j+1)+Pa(i,j)+Pm(i,j)) |
---|
| 581 | ENDIF |
---|
| 582 | ENDIF ! mp nul ou non |
---|
| 583 | ENDIF ! condition sur j |
---|
| 584 | ENDIF ! kappa |
---|
| 585 | ENDDO |
---|
| 586 | ENDDO |
---|
| 587 | |
---|
| 588 | !! print test descente insaturee |
---|
| 589 | ! DO j=klev,1,-1 |
---|
| 590 | ! DO i=1,klon |
---|
| 591 | ! if(it.eq.3) THEN |
---|
| 592 | ! write(*,'(I2,2X,a,e20.12,2X,a,e20.12,2X,a,e20.12,2X,a,e20.12,2X,a,e20.12,2X,a,e20.12,2X,a,e20.12)') j,& |
---|
| 593 | !! 'zmfdam',zmfdam(i,j,it),'zmfpsi',zmfphi2(i,j,it),& |
---|
| 594 | ! 'zmfdam+zmfpsi',zmfdam(i,j,it)+zmfphi2(i,j,it),'qpmMint',qpmMint(i,j,it),& |
---|
| 595 | ! 'Pm',Pm(i,j),'Mint',Mint(i,j),& |
---|
| 596 | !! 'zmfa',zmfa(i,j,it),'zmfp',zmfp(i,j,it),& |
---|
| 597 | ! 'zmfdam',zmfdam(i,j,it),'zmfpsi',zmfphi2(i,j,it),'zmfd1a',zmfd1a(i,j,it) |
---|
| 598 | !! 'Pa',Pa(i,j),'eplaMm',eplaMm(i,j) |
---|
| 599 | !! 'zmfd1a=da1*qa',zmfd1a(i,j,it),'Pa*qPa',wdtrainA(i,j)*qPa(i,j,it),'da1',d1a(i,j) |
---|
| 600 | ! ENDIF |
---|
| 601 | ! ENDDO |
---|
| 602 | ! ENDDO |
---|
| 603 | |
---|
| 604 | |
---|
| 605 | ! =================================================== |
---|
| 606 | ! calcul final des tendances |
---|
| 607 | ! =================================================== |
---|
| 608 | |
---|
| 609 | DO k=klev-1,1,-1 |
---|
| 610 | DO i=1, klon |
---|
| 611 | ! transport |
---|
| 612 | tdcvMA=zmfd(i,k,it)+zmfu(i,k,it)+zmfa(i,k,it)+zmfp(i,k,it) ! double comptage des downdraft insatures |
---|
| 613 | trsptrac=zmfu(i,k,it)+zmfa(i,k,it)+zmfp(i,k,it) |
---|
| 614 | ! lessivage courants satures |
---|
| 615 | !JE scavtrac=-ccntrAA_coef*zmfd1a(i,k,it)& |
---|
| 616 | !JE -zmfphi2(i,k,it)*ccntrENV_coef& |
---|
| 617 | !JE -zmfdam(i,k,it)*ccntrAA_coef |
---|
| 618 | scavtrac=-ccntrAA_3d(i,k)*zmfd1a(i,k,it)& |
---|
| 619 | -zmfphi2(i,k,it)*ccntrENV_3d(i,k)& |
---|
| 620 | -zmfdam(i,k,it)*ccntrAA_3d(i,k) |
---|
| 621 | ! lessivage courants insatures |
---|
| 622 | if(k.LE.inb(i).AND.k.GT.1) THEN ! tendances dans le nuage |
---|
| 623 | !------------------------------------------------------------- detrainement |
---|
| 624 | if(mp(i,k+1).GT.mp(i,k).AND.mp(i,k+1).GT.1.e-10) THEN |
---|
| 625 | uscavtrac= (-mp(i,k)+mp(i,k+1))*(qDi(i,k,it)-tr(i,k,it))& |
---|
| 626 | + mp(i,k)*(tr(i,k-1,it)-tr(i,k,it)) |
---|
| 627 | ! |
---|
| 628 | ! if(it.eq.3) write(*,'(I2,1X,a,5X,e20.12,82X,a,e20.12)')k,' det incloud',& |
---|
| 629 | ! (-mp(i,k)+mp(i,k+1))*(qDi(i,k,it)-tr(i,k,it))*pdtimeRG/dxpres(i,k)+& |
---|
| 630 | ! mp(i,k)*(tr(i,k-1,it)-tr(i,k,it))*pdtimeRG/dxpres(i,k),& |
---|
| 631 | ! 'mp',mp(i,k) |
---|
| 632 | !------------------------------------------------------------- entrainement |
---|
| 633 | ELSEIF(mp(i,k).GT.mp(i,k+1).AND.mp(i,k).GT.1.e-10) THEN |
---|
| 634 | uscavtrac= mp(i,k)*(tr(i,k-1,it)-tr(i,k,it)) |
---|
| 635 | ! |
---|
| 636 | ! if(it.eq.3) write(*,'(I2,1X,a,5X,e20.12,82X,a,e20.12)')k,' ent incloud',uscavtrac*pdtimeRG/dxpres(i,k), 'mp',mp(i,k) |
---|
| 637 | !=!------------------------------------------------------------- end ent/det |
---|
| 638 | ELSE ! mp(i,k+1)=0. et mp(i,k)=0. pluie directement sur l environnement |
---|
| 639 | |
---|
| 640 | if(NO_precip(i,k)) THEN |
---|
| 641 | uscavtrac=0. |
---|
| 642 | ! if(it.eq.3) write(*,'(I2,1X,a,e20.12,82X,a,e20.12)')k,' no P ent incloud',uscavtrac*pdtimeRG/dxpres(i,k), 'mp',mp(i,k) |
---|
| 643 | ELSE |
---|
| 644 | uscavtrac=-imp(i,k)*tr(i,k,it)*dxpres(i,k)/RG+evap(i,k)*qPr(i,k,it)*dxpres(i,k)/RG |
---|
| 645 | ! if(it.eq.3) write(*,'(I2,1X,a,3X,e20.12,82X,a,e20.12)')k,' P env incloud',uscavtrac*pdtimeRG/dxpres(i,k), 'mp',mp(i,k) |
---|
| 646 | !!JE adds |
---|
| 647 | ! if(it.eq.3) write(*,'(I2,1X,a,3X,e20.12,82X,a,e20.12)')k,' P env incloud',uscavtrac, 'imp',imp(i,k) |
---|
| 648 | ! if(it.eq.3) write(*,'(I2,1X,a,3X,e20.12,82X,a,e20.12)')k,' P env incloud',uscavtrac, 'tr',tr(i,k,it) |
---|
| 649 | ! if(it.eq.3) write(*,'(I2,1X,a,3X,e20.12,82X,a,e20.12)')k,' P env incloud',uscavtrac, 'evap',evap(i,k) |
---|
| 650 | ! if(it.eq.3) write(*,'(I2,1X,a,3X,e20.12,82X,a,e20.12)')k,' P env incloud',uscavtrac, 'qPr',qPr(i,k,it) |
---|
| 651 | ! if(it.eq.3) write(*,'(I2,1X,a,3X,e20.12,82X,a,e20.12)')k,' P env incloud',uscavtrac, 'dxpres',dxpres(i,k) |
---|
| 652 | !!Je end |
---|
| 653 | |
---|
| 654 | ENDIF |
---|
| 655 | ENDIF ! mp/det/ent |
---|
| 656 | !------------------------------------------------------------- premiere couche |
---|
| 657 | ELSEIF(k.eq.1) THEN ! mp(1)=0. |
---|
| 658 | if(mp(i,2).GT.1.e-10) THEN !detrainement |
---|
| 659 | uscavtrac= (-0.+mp(i,2))*(qDi(i,k,it)-tr(i,k,it)) !& |
---|
| 660 | ! + mp(i,2)*(0.-tr(i,k,it)) |
---|
| 661 | ! |
---|
| 662 | ! if(it.eq.3) write(*,'(I2,1X,a,e20.12,84X,a,e20.12)')k,' 1 det',& |
---|
| 663 | ! (-0.+mp(i,2))*(qDi(i,k,it)-tr(i,k,it))*pdtimeRG/dxpres(i,k)+& |
---|
| 664 | ! mp(i,2)*(0.-tr(i,k,it))*pdtimeRG/dxpres(i,k),& |
---|
| 665 | ! 'mp',mp(i,k) |
---|
| 666 | ELSE ! mp(2) = 0 = mp(1) pas de descente insaturee, rien ne se passe s'il ne pleut pas, sinon pluie->env |
---|
| 667 | if(NO_precip(i,1)) THEN |
---|
| 668 | uscavtrac=0. |
---|
| 669 | ELSE |
---|
| 670 | uscavtrac=-imp(i,k)*tr(i,k,it)*dxpres(i,k)/RG+evap(i,k)*qPr(i,k,it)*dxpres(i,k)/RG |
---|
| 671 | ENDIF |
---|
| 672 | ! if(it.eq.3) write(*,'(I2,1X,a,2X,e20.12,82X,a,e20.12)')k,'1 P env incloud',uscavtrac*pdtimeRG/dxpres(i,k), 'mp',mp(i,k) |
---|
| 673 | ENDIF |
---|
| 674 | |
---|
| 675 | ELSE ! k > INB au-dessus du nuage |
---|
| 676 | uscavtrac=0. |
---|
| 677 | ENDIF |
---|
| 678 | |
---|
| 679 | ! ===== tendances finales ====== |
---|
| 680 | trsptd(i,k,it)=trsptrac*pdtimeRG/dxpres(i,k) ! td transport sans eau dans courants satures |
---|
| 681 | dtrSscav(i,k,it)=scavtrac*pdtimeRG/dxpres(i,k) ! td du lessivage dans courants satures |
---|
| 682 | dtrUscav(i,k,it)=uscavtrac*pdtimeRG/dxpres(i,k) ! td courant insat |
---|
| 683 | dtrsat(i,k,it)=(trsptrac+scavtrac)*pdtimeRG/dxpres(i,k) ! td courant sat |
---|
| 684 | dtrcv(i,k,it)=(trsptrac+scavtrac+uscavtrac)*pdtimeRG/dxpres(i,k)!dtrsat(i,k,it)+dtrUscav(i,k,it) td conv |
---|
| 685 | !!!!!! |
---|
| 686 | dtrcvMA(i,k,it)=tdcvMA*pdtimeRG/dxpres(i,k) ! MA tendance convection |
---|
| 687 | ENDDO |
---|
| 688 | ENDDO |
---|
[5450] | 689 | DO i=1, klon |
---|
| 690 | flux_tr_wet(i,it) = (pmflxr(i,1)+pmflxs(i,1))*qPr(i,1,it)*pdtime ! wet deposit |
---|
| 691 | ENDDO |
---|
[2147] | 692 | |
---|
| 693 | ! test de conservation du traceur |
---|
| 694 | !print*,"_____________________________________________________________" |
---|
| 695 | !print*," " |
---|
| 696 | ! conserv=0. |
---|
| 697 | ! conservMA=0. |
---|
| 698 | ! DO k= klev-1,1,-1 |
---|
| 699 | ! DO i=1, klon |
---|
| 700 | ! conserv=conserv+dtrcv(i,k,it)* & |
---|
| 701 | ! (paprs(i,k)-paprs(i,k+1))/RG |
---|
| 702 | ! conservMA=conservMA+dtrcvMA(i,k,it)* & |
---|
| 703 | ! (paprs(i,k)-paprs(i,k+1))/RG |
---|
| 704 | ! |
---|
| 705 | ! if(it.eq.3) write(*,'(I2,2X,a,e20.12,2X,a,e20.12,2X,a,e20.12,2X,a,e20.12)') k,& |
---|
| 706 | ! 'MA td ',dtrcvMA(i,k,it)*dxpres(i,k)/RG,& |
---|
| 707 | ! ' td',dtrcv(i,k,it)*dxpres(i,k)/RG,' conservMA ',conservMA,'conserv ',conserv |
---|
| 708 | !! |
---|
| 709 | ! ENDDO |
---|
| 710 | ! ENDDO |
---|
| 711 | ! if(it.eq.3) print *,'it',it,'conserv ',conserv,'conservMA ',conservMA |
---|
| 712 | |
---|
| 713 | END SUBROUTINE cvltr_scav |
---|