source: LMDZ6/branches/contrails/libf/phylmd/cv3_cine.f90 @ 5461

Last change on this file since 5461 was 5346, checked in by fhourdin, 5 weeks ago

Debut de replaysation de la convection profonde.

Regroupement de cvparam, cv3param et cvthermo (récemment
passés de statut de .h à module, dans un unique module
lmdz_cv_ini.f90

  • Property copyright set to
    Name of program: LMDZ
    Creation date: 1984
    Version: LMDZ5
    License: CeCILL version 2
    Holder: Laboratoire de m\'et\'eorologie dynamique, CNRS, UMR 8539
    See the license file in the root directory
  • Property svn:eol-style set to native
  • Property svn:keywords set to Author Date Id Revision
File size: 12.8 KB
Line 
1
2! $Id: cv3_cine.f90 5346 2024-11-28 19:41:47Z fhourdin $
3
4SUBROUTINE cv3_cine(nloc, ncum, nd, icb, inb, pbase, plcl, p, ph, tv, tvp, &
5    cina, cinb, plfc)
6
7  ! **************************************************************
8  ! *
9  ! CV3_CINE                                                    *
10  ! *
11  ! *
12  ! written by   :   Frederique Cheruy                          *
13  ! vectorization:   Jean-Yves Grandpeix, 19/06/2003, 11.54.43  *
14  ! modified by :                                               *
15  ! **************************************************************
16
17   USE lmdz_cv_ini, ONLY : nl
18
19  USE yomcst_mod_h
20IMPLICIT NONE
21
22
23  ! input:
24  INTEGER ncum, nd, nloc
25  INTEGER icb(nloc), inb(nloc)
26  REAL pbase(nloc), plcl(nloc)
27  REAL p(nloc, nd), ph(nloc, nd+1)
28  REAL tv(nloc, nd), tvp(nloc, nd)
29
30  ! output
31  REAL cina(nloc), cinb(nloc), plfc(nloc)
32
33  ! local variables
34  INTEGER il, i, j, k
35  INTEGER itop(nloc), ineg(nloc), ilow(nloc)
36  INTEGER ifst(nloc), isublcl(nloc)
37  LOGICAL lswitch(nloc), lswitch1(nloc), lswitch2(nloc), lswitch3(nloc)
38  LOGICAL exist_lfc(nloc)
39  REAL dpmax
40  REAL deltap, dcin
41  REAL buoylcl(nloc), tvplcl(nloc), tvlcl(nloc)
42  REAL p0(nloc)
43  REAL buoyz(nloc), buoy(nloc, nd)
44
45  ! -------------------------------------------------------------
46  ! Initialization
47  ! -------------------------------------------------------------
48  DO il = 1, ncum
49    cina(il) = 0.
50    cinb(il) = 0.
51  END DO
52
53  ! --------------------------------------------------------------
54  ! Recompute buoyancies
55  ! --------------------------------------------------------------
56  DO k = 1, nd
57    DO il = 1, ncum
58      ! print*,'tvp tv=',tvp(il,k),tv(il,k)
59      buoy(il, k) = tvp(il, k) - tv(il, k)
60    END DO
61  END DO
62  ! ---------------------------------------------------------------
63
64  ! calcul de la flottabilite a LCL (Buoylcl)
65  ! ifst = first P-level above lcl
66  ! isublcl = highest P-level below lcl.
67  ! ---------------------------------------------------------------
68
69  DO il = 1, ncum
70    tvplcl(il) = tvp(il, 1)*(plcl(il)/p(il,1))**(2./7.) !For dry air, R/Cp=2/7
71  END DO
72
73  DO il = 1, ncum
74    IF (plcl(il)>p(il,icb(il))) THEN
75      ifst(il) = icb(il)
76      isublcl(il) = icb(il) - 1
77    ELSE
78      ifst(il) = icb(il) + 1
79      isublcl(il) = icb(il)
80    END IF
81  END DO
82
83  DO il = 1, ncum
84    tvlcl(il) = tv(il, ifst(il)-1) + (tv(il,ifst(il))-tv(il,ifst(il)-1))*( &
85      plcl(il)-p(il,ifst(il)-1))/(p(il,ifst(il))-p(il,ifst(il)-1))
86  END DO
87
88  DO il = 1, ncum
89    buoylcl(il) = tvplcl(il) - tvlcl(il)
90  END DO
91
92  ! ---------------------------------------------------------------
93  ! premiere couche contenant un  niveau de flotabilite positive
94  ! et premiere couche contenant un  niveau de flotabilite negative
95  ! au dessus du niveau de condensation
96  ! ---------------------------------------------------------------
97  DO il = 1, ncum
98    itop(il) = nl - 1
99    ineg(il) = nl - 1
100    exist_lfc(il) = .FALSE.
101  END DO
102  DO k = nl - 1, 1, -1
103    DO il = 1, ncum
104      IF (k>=ifst(il)) THEN
105        IF (buoy(il,k)>0.) THEN
106          itop(il) = k
107          exist_lfc(il) = .TRUE.
108        ELSE
109          ineg(il) = k
110        END IF
111      END IF
112    END DO
113  END DO
114
115  ! ---------------------------------------------------------------
116  ! When there is no positive buoyancy level, set Plfc, Cina and Cinb
117  ! to arbitrary extreme values.
118  ! ---------------------------------------------------------------
119  DO il = 1, ncum
120    IF (.NOT. exist_lfc(il)) THEN
121      plfc(il) = 1.111
122      cinb(il) = -1111.
123      cina(il) = -1112.
124    END IF
125  END DO
126
127
128  ! ---------------------------------------------------------------
129  ! -- Two cases : BUOYlcl >= 0 and BUOYlcl < 0.
130  ! ---------------------------------------------------------------
131
132  ! --------------------
133  ! -- 1.0 BUOYlcl >=0.
134  ! --------------------
135
136  dpmax = 50.
137  DO il = 1, ncum
138    lswitch1(il) = buoylcl(il) >= 0. .AND. exist_lfc(il)
139    lswitch(il) = lswitch1(il)
140  END DO
141
142  ! 1.1 No inhibition case
143  ! ----------------------
144  ! If buoyancy is positive at LCL and stays positive over a large enough
145  ! pressure interval (=DPMAX), inhibition is set to zero,
146
147  DO il = 1, ncum
148    IF (lswitch(il)) THEN
149      IF (p(il,ineg(il))<p(il,icb(il))-dpmax) THEN
150        plfc(il) = plcl(il)
151        cina(il) = 0.
152        cinb(il) = 0.
153      END IF
154    END IF
155  END DO
156
157  ! 1.2 Upper inhibition only case
158  ! ------------------------------
159  DO il = 1, ncum
160    lswitch2(il) = p(il, ineg(il)) >= p(il, icb(il)) - dpmax
161    lswitch(il) = lswitch1(il) .AND. lswitch2(il)
162  END DO
163
164  ! 1.2.1 Recompute itop (=1st layer with positive buoyancy above ineg)
165  ! -------------------------------------------------------------------
166
167  DO il = 1, ncum
168    IF (lswitch(il)) THEN
169      itop(il) = nl - 1
170    END IF
171  END DO
172
173  DO k = nl, 1, -1
174    DO il = 1, ncum
175      IF (lswitch(il)) THEN
176        IF (k>=ineg(il) .AND. buoy(il,k)>0) THEN
177          itop(il) = k
178        END IF
179      END IF
180    END DO
181  END DO
182
183  ! If there is no layer with positive buoyancy above ineg, set Plfc,
184  ! Cina and Cinb to arbitrary extreme values.
185  DO il = 1, ncum
186    IF (lswitch(il) .AND. itop(il) == nl - 1) THEN
187      plfc(il) = 1.121
188      cinb(il) = -1121.
189      cina(il) = -1122.
190    END IF
191  END DO
192
193  DO il = 1, ncum
194    lswitch3(il) = itop(il) < nl -1
195    lswitch(il) = lswitch1(il) .AND. lswitch2(il) .AND. lswitch3(il)
196  END DO
197
198  DO il = 1, ncum
199    IF (lswitch(il)) THEN
200      cinb(il) = 0.
201
202      ! 1.2.2  Calcul de la pression du niveau de flot. nulle juste au-dessus
203      ! de LCL
204      ! ---------------------------------------------------------------------------
205      IF (ineg(il)>isublcl(il)+1) THEN
206        ! In order to get P0, one may interpolate linearly buoyancies
207        ! between P(ineg) and P(ineg-1).
208        p0(il) = (buoy(il,ineg(il))*p(il,ineg(il)-1)-buoy(il,ineg(il)-1)*p(il,ineg(il)))/ &
209          (buoy(il,ineg(il))-buoy(il,ineg(il)-1))
210      ELSE
211        ! In order to get P0, one has to interpolate between P(ineg) and
212        ! Plcl.
213        p0(il) = (buoy(il,ineg(il))*plcl(il)-buoylcl(il)*p(il,ineg(il)))/ &
214          (buoy(il,ineg(il))-buoylcl(il))
215      END IF
216    END IF
217  END DO
218
219  ! 1.2.3 Computation of PLFC
220  ! -------------------------
221  DO il = 1, ncum
222    IF (lswitch(il)) THEN
223      plfc(il) = (buoy(il,itop(il))*p(il,itop(il)-1)-buoy(il,itop( &
224        il)-1)*p(il,itop(il)))/(buoy(il,itop(il))-buoy(il,itop(il)-1))
225    END IF
226  END DO
227
228  ! 1.2.4 Computation of CINA
229  ! -------------------------
230
231  ! Upper part of CINA : integral from P(itop-1) to Plfc
232  DO il = 1, ncum
233    IF (lswitch(il)) THEN
234      deltap = p(il, itop(il)-1) - plfc(il)
235      dcin = rd*buoy(il, itop(il)-1)*deltap/(p(il,itop(il)-1)+plfc(il))
236      cina(il) = min(0., dcin)
237    END IF
238  END DO
239
240  ! Middle part of CINA : integral from P(ineg) to P(itop-1)
241  DO k = 1, nl
242    DO il = 1, ncum
243      IF (lswitch(il)) THEN
244        IF (k>=ineg(il) .AND. k<=itop(il)-2) THEN
245          deltap = p(il, k) - p(il, k+1)
246          dcin = 0.5*rd*(buoy(il,k)+buoy(il,k+1))*deltap/ph(il, k+1)
247          cina(il) = cina(il) + min(0., dcin)
248        END IF
249      END IF
250    END DO
251  END DO
252
253  ! Lower part of CINA : integral from P0 to P(ineg)
254  DO il = 1, ncum
255    IF (lswitch(il)) THEN
256      deltap = p0(il) - p(il, ineg(il))
257      dcin = rd*buoy(il, ineg(il))*deltap/(p(il,ineg(il))+p0(il))
258      cina(il) = cina(il) + min(0., dcin)
259    END IF
260  END DO
261
262
263  ! ------------------
264  ! -- 2.0 BUOYlcl <0.
265  ! ------------------
266
267  DO il = 1, ncum
268    lswitch1(il) = buoylcl(il) < 0. .AND. exist_lfc(il)
269    lswitch(il) = lswitch1(il)
270  END DO
271
272  ! 2.0.1 Premiere  couche ou la flotabilite est negative au dessus du sol
273  ! ----------------------------------------------------
274  ! au cas ou elle existe  sinon ilow=1 (nk apres)
275  ! on suppose que la parcelle part de la premiere couche
276
277  DO il = 1, ncum
278    IF (lswitch(il)) THEN
279      ilow(il) = 1
280    END IF
281  END DO
282
283  DO k = nl, 1, -1
284    DO il = 1, ncum
285      IF (lswitch(il) .AND. k<=icb(il)-1) THEN
286        IF (buoy(il,k)<0.) THEN
287          ilow(il) = k
288        END IF
289      END IF
290    END DO
291  END DO
292
293  ! 2.0.2  Calcul de la pression du niveau de flot. nulle sous le nuage
294  ! ----------------------------------------------------
295  DO il = 1, ncum
296    IF (lswitch(il)) THEN
297      IF (ilow(il)>1) THEN
298        p0(il) = (buoy(il,ilow(il))*p(il,ilow(il)-1)-buoy(il,ilow( &
299          il)-1)*p(il,ilow(il)))/(buoy(il,ilow(il))-buoy(il,ilow(il)-1))
300        buoyz(il) = 0.
301      ELSE
302        p0(il) = p(il, 1)
303        buoyz(il) = buoy(il, 1)
304      END IF
305    END IF
306  END DO
307
308  ! 2.1. Computation of CINB
309  ! -----------------------
310
311  DO il = 1, ncum
312    lswitch2(il) = (isublcl(il)==1 .AND. ilow(il)==1) .OR. &
313      (isublcl(il)==ilow(il)-1)
314    lswitch(il) = lswitch1(il) .AND. lswitch2(il)
315  END DO
316  ! c      IF (    (isublcl .EQ. 1 .AND. ilow .EQ. 1)
317  ! c     $    .OR.(isublcl .EQ. ilow-1)) THEN
318
319  ! 2.1.1 First case : Plcl just above P0
320  ! -------------------------------------
321  DO il = 1, ncum
322    IF (lswitch(il)) THEN
323      deltap = p0(il) - plcl(il)
324      dcin = rd*(buoyz(il)+buoylcl(il))*deltap/(p0(il)+plcl(il))
325      cinb(il) = min(0., dcin)
326    END IF
327  END DO
328
329  DO il = 1, ncum
330    lswitch(il) = lswitch1(il) .AND. .NOT. lswitch2(il)
331  END DO
332  ! c      ELSE
333
334  ! 2.1.2 Second case : there is at least one P-level between P0 and Plcl
335  ! ---------------------------------------------------------------------
336
337  ! Lower part of CINB : integral from P0 to P(ilow)
338  DO il = 1, ncum
339    IF (lswitch(il)) THEN
340      deltap = p0(il) - p(il, ilow(il))
341      dcin = rd*(buoyz(il)+buoy(il,ilow(il)))*deltap/(p0(il)+p(il,ilow(il)))
342      cinb(il) = min(0., dcin)
343    END IF
344  END DO
345
346
347  ! Middle part of CINB : integral from P(ilow) to P(isublcl)
348  ! c      DO k = ilow,isublcl-1
349  DO k = 1, nl
350    DO il = 1, ncum
351      IF (lswitch(il) .AND. k>=ilow(il) .AND. k<=isublcl(il)-1) THEN
352        deltap = p(il, k) - p(il, k+1)
353        dcin = 0.5*rd*(buoy(il,k)+buoy(il,k+1))*deltap/ph(il, k+1)
354        cinb(il) = cinb(il) + min(0., dcin)
355      END IF
356    END DO
357  END DO
358
359  ! Upper part of CINB : integral from P(isublcl) to Plcl
360  DO il = 1, ncum
361    IF (lswitch(il)) THEN
362      deltap = p(il, isublcl(il)) - plcl(il)
363      dcin = rd*(buoy(il,isublcl(il))+buoylcl(il))*deltap/ &
364        (p(il,isublcl(il))+plcl(il))
365      cinb(il) = cinb(il) + min(0., dcin)
366    END IF
367  END DO
368
369
370  ! c      ENDIF
371
372  ! 2.2 Computation of CINA
373  ! ---------------------
374
375  DO il = 1, ncum
376    lswitch2(il) = plcl(il) > p(il, itop(il)-1)
377    lswitch(il) = lswitch1(il) .AND. lswitch2(il)
378  END DO
379
380  ! 2.2.1 FIrst case : Plcl > P(itop-1)
381  ! ---------------------------------
382  ! In order to get Plfc, one may interpolate linearly buoyancies
383  ! between P(itop) and P(itop-1).
384  DO il = 1, ncum
385    IF (lswitch(il)) THEN
386      plfc(il) = (buoy(il,itop(il))*p(il,itop(il)-1)-buoy(il,itop( &
387        il)-1)*p(il,itop(il)))/(buoy(il,itop(il))-buoy(il,itop(il)-1))
388    END IF
389  END DO
390
391  ! Upper part of CINA : integral from P(itop-1) to Plfc
392  DO il = 1, ncum
393    IF (lswitch(il)) THEN
394      deltap = p(il, itop(il)-1) - plfc(il)
395      dcin = rd*buoy(il, itop(il)-1)*deltap/(p(il,itop(il)-1)+plfc(il))
396      cina(il) = min(0., dcin)
397    END IF
398  END DO
399
400  ! Middle part of CINA : integral from P(icb+1) to P(itop-1)
401  DO k = 1, nl
402    DO il = 1, ncum
403      IF (lswitch(il) .AND. k>=icb(il)+1 .AND. k<=itop(il)-2) THEN
404        deltap = p(il, k) - p(il, k+1)
405        dcin = 0.5*rd*(buoy(il,k)+buoy(il,k+1))*deltap/ph(il, k+1)
406        cina(il) = cina(il) + min(0., dcin)
407      END IF
408    END DO
409  END DO
410
411  ! Lower part of CINA : integral from Plcl to P(icb+1)
412  DO il = 1, ncum
413    IF (lswitch(il)) THEN
414      IF (plcl(il)>p(il,icb(il))) THEN
415        IF (icb(il)<itop(il)-1) THEN
416          deltap = p(il, icb(il)) - p(il, icb(il)+1)
417          dcin = 0.5*rd*(buoy(il,icb(il))+buoy(il,icb(il)+1))*deltap/ &
418            ph(il, icb(il)+1)
419          cina(il) = cina(il) + min(0., dcin)
420        END IF
421
422        deltap = plcl(il) - p(il, icb(il))
423        dcin = rd*(buoylcl(il)+buoy(il,icb(il)))*deltap/ &
424          (plcl(il)+p(il,icb(il)))
425        cina(il) = cina(il) + min(0., dcin)
426      ELSE
427        deltap = plcl(il) - p(il, icb(il)+1)
428        dcin = rd*(buoylcl(il)+buoy(il,icb(il)+1))*deltap/ &
429          (plcl(il)+p(il,icb(il)+1))
430        cina(il) = cina(il) + min(0., dcin)
431      END IF
432    END IF
433  END DO
434
435  DO il = 1, ncum
436    lswitch(il) = lswitch1(il) .AND. .NOT. lswitch2(il)
437  END DO
438  ! c      ELSE
439
440  ! 2.2.2 Second case : Plcl lies between P(itop-1) and P(itop);
441  ! ----------------------------------------------------------
442  ! In order to get Plfc, one has to interpolate between P(itop) and Plcl.
443  DO il = 1, ncum
444    IF (lswitch(il)) THEN
445      plfc(il) = (buoy(il,itop(il))*plcl(il)-buoylcl(il)*p(il,itop(il)))/ &
446        (buoy(il,itop(il))-buoylcl(il))
447    END IF
448  END DO
449
450  DO il = 1, ncum
451    IF (lswitch(il)) THEN
452      deltap = plcl(il) - plfc(il)
453      dcin = rd*buoylcl(il)*deltap/(plcl(il)+plfc(il))
454      cina(il) = min(0., dcin)
455    END IF
456  END DO
457  ! c      ENDIF
458
459
460
461  RETURN
462END SUBROUTINE cv3_cine
Note: See TracBrowser for help on using the repository browser.