1 | |
---|
2 | ! $Id: conema3.f90 5400 2024-12-10 10:35:28Z aborella $ |
---|
3 | |
---|
4 | SUBROUTINE conema3(dtime, paprs, pplay, t, q, u, v, tra, ntra, work1, work2, & |
---|
5 | d_t, d_q, d_u, d_v, d_tra, rain, snow, kbas, ktop, upwd, dnwd, dnwdbis, & |
---|
6 | bas, top, ma, cape, tvp, rflag, pbase, bbase, dtvpdt1, dtvpdq1, dplcldt, & |
---|
7 | dplcldr, qcond_incld) |
---|
8 | |
---|
9 | USE dimphy |
---|
10 | USE infotrac_phy, ONLY: nbtr |
---|
11 | USE yomcst_mod_h |
---|
12 | USE conema3_mod_h |
---|
13 | USE yoethf_mod_h |
---|
14 | IMPLICIT NONE |
---|
15 | ! ====================================================================== |
---|
16 | ! Auteur(s): Z.X. Li (LMD/CNRS) date: 19930818 |
---|
17 | ! Objet: schema de convection de Emanuel (1991) interface |
---|
18 | ! Mai 1998: Interface modifiee pour implementation dans LMDZ |
---|
19 | ! ====================================================================== |
---|
20 | ! Arguments: |
---|
21 | ! dtime---input-R-pas d'integration (s) |
---|
22 | ! paprs---input-R-pression inter-couches (Pa) |
---|
23 | ! pplay---input-R-pression au milieu des couches (Pa) |
---|
24 | ! t-------input-R-temperature (K) |
---|
25 | ! q-------input-R-humidite specifique (kg/kg) |
---|
26 | ! u-------input-R-vitesse du vent zonal (m/s) |
---|
27 | ! v-------input-R-vitesse duvent meridien (m/s) |
---|
28 | ! tra-----input-R-tableau de rapport de melange des traceurs |
---|
29 | ! work*: input et output: deux variables de travail, |
---|
30 | ! on peut les mettre a 0 au debut |
---|
31 | |
---|
32 | ! d_t-----output-R-increment de la temperature |
---|
33 | ! d_q-----output-R-increment de la vapeur d'eau |
---|
34 | ! d_u-----output-R-increment de la vitesse zonale |
---|
35 | ! d_v-----output-R-increment de la vitesse meridienne |
---|
36 | ! d_tra---output-R-increment du contenu en traceurs |
---|
37 | ! rain----output-R-la pluie (mm/s) |
---|
38 | ! snow----output-R-la neige (mm/s) |
---|
39 | ! kbas----output-R-bas du nuage (integer) |
---|
40 | ! ktop----output-R-haut du nuage (integer) |
---|
41 | ! upwd----output-R-saturated updraft mass flux (kg/m**2/s) |
---|
42 | ! dnwd----output-R-saturated downdraft mass flux (kg/m**2/s) |
---|
43 | ! dnwdbis-output-R-unsaturated downdraft mass flux (kg/m**2/s) |
---|
44 | ! bas-----output-R-bas du nuage (real) |
---|
45 | ! top-----output-R-haut du nuage (real) |
---|
46 | ! Ma------output-R-flux ascendant non dilue (kg/m**2/s) |
---|
47 | ! cape----output-R-CAPE |
---|
48 | ! tvp-----output-R-virtual temperature of the lifted parcel |
---|
49 | ! rflag---output-R-flag sur le fonctionnement de convect |
---|
50 | ! pbase---output-R-pression a la base du nuage (Pa) |
---|
51 | ! bbase---output-R-buoyancy a la base du nuage (K) |
---|
52 | ! dtvpdt1-output-R-derivative of parcel virtual temp wrt T1 |
---|
53 | ! dtvpdq1-output-R-derivative of parcel virtual temp wrt Q1 |
---|
54 | ! dplcldt-output-R-derivative of the PCP pressure wrt T1 |
---|
55 | ! dplcldr-output-R-derivative of the PCP pressure wrt Q1 |
---|
56 | ! ====================================================================== |
---|
57 | |
---|
58 | INTEGER i, l, m, itra |
---|
59 | INTEGER ntra ! if no tracer transport |
---|
60 | ! is needed, set ntra = 1 (or 0) |
---|
61 | REAL dtime |
---|
62 | |
---|
63 | REAL d_t2(klon, klev), d_q2(klon, klev) ! sbl |
---|
64 | REAL d_u2(klon, klev), d_v2(klon, klev) ! sbl |
---|
65 | REAL em_d_t2(klev), em_d_q2(klev) ! sbl |
---|
66 | REAL em_d_u2(klev), em_d_v2(klev) ! sbl |
---|
67 | |
---|
68 | REAL paprs(klon, klev+1), pplay(klon, klev) |
---|
69 | REAL t(klon, klev), q(klon, klev), d_t(klon, klev), d_q(klon, klev) |
---|
70 | REAL u(klon, klev), v(klon, klev), tra(klon, klev, ntra) |
---|
71 | REAL d_u(klon, klev), d_v(klon, klev), d_tra(klon, klev, ntra) |
---|
72 | REAL work1(klon, klev), work2(klon, klev) |
---|
73 | REAL upwd(klon, klev), dnwd(klon, klev), dnwdbis(klon, klev) |
---|
74 | REAL rain(klon) |
---|
75 | REAL snow(klon) |
---|
76 | REAL cape(klon), tvp(klon, klev), rflag(klon) |
---|
77 | REAL pbase(klon), bbase(klon) |
---|
78 | REAL dtvpdt1(klon, klev), dtvpdq1(klon, klev) |
---|
79 | REAL dplcldt(klon), dplcldr(klon) |
---|
80 | INTEGER kbas(klon), ktop(klon) |
---|
81 | |
---|
82 | REAL wd(klon) |
---|
83 | REAL qcond_incld(klon, klev) |
---|
84 | |
---|
85 | LOGICAL, SAVE :: first = .TRUE. |
---|
86 | !$OMP THREADPRIVATE(first) |
---|
87 | |
---|
88 | ! ym REAL em_t(klev) |
---|
89 | REAL, ALLOCATABLE, SAVE :: em_t(:) |
---|
90 | !$OMP THREADPRIVATE(em_t) |
---|
91 | ! ym REAL em_q(klev) |
---|
92 | REAL, ALLOCATABLE, SAVE :: em_q(:) |
---|
93 | !$OMP THREADPRIVATE(em_q) |
---|
94 | ! ym REAL em_qs(klev) |
---|
95 | REAL, ALLOCATABLE, SAVE :: em_qs(:) |
---|
96 | !$OMP THREADPRIVATE(em_qs) |
---|
97 | ! ym REAL em_u(klev), em_v(klev), em_tra(klev,nbtr) |
---|
98 | REAL, ALLOCATABLE, SAVE :: em_u(:), em_v(:), em_tra(:, :) |
---|
99 | !$OMP THREADPRIVATE(em_u,em_v,em_tra) |
---|
100 | ! ym REAL em_ph(klev+1), em_p(klev) |
---|
101 | REAL, ALLOCATABLE, SAVE :: em_ph(:), em_p(:) |
---|
102 | !$OMP THREADPRIVATE(em_ph,em_p) |
---|
103 | ! ym REAL em_work1(klev), em_work2(klev) |
---|
104 | REAL, ALLOCATABLE, SAVE :: em_work1(:), em_work2(:) |
---|
105 | !$OMP THREADPRIVATE(em_work1,em_work2) |
---|
106 | ! ym REAL em_precip, em_d_t(klev), em_d_q(klev) |
---|
107 | REAL, SAVE :: em_precip |
---|
108 | !$OMP THREADPRIVATE(em_precip) |
---|
109 | REAL, ALLOCATABLE, SAVE :: em_d_t(:), em_d_q(:) |
---|
110 | !$OMP THREADPRIVATE(em_d_t,em_d_q) |
---|
111 | ! ym REAL em_d_u(klev), em_d_v(klev), em_d_tra(klev,nbtr) |
---|
112 | REAL, ALLOCATABLE, SAVE :: em_d_u(:), em_d_v(:), em_d_tra(:, :) |
---|
113 | !$OMP THREADPRIVATE(em_d_u,em_d_v,em_d_tra) |
---|
114 | ! ym REAL em_upwd(klev), em_dnwd(klev), em_dnwdbis(klev) |
---|
115 | REAL, ALLOCATABLE, SAVE :: em_upwd(:), em_dnwd(:), em_dnwdbis(:) |
---|
116 | !$OMP THREADPRIVATE(em_upwd,em_dnwd,em_dnwdbis) |
---|
117 | REAL em_dtvpdt1(klev), em_dtvpdq1(klev) |
---|
118 | REAL em_dplcldt, em_dplcldr |
---|
119 | ! ym SAVE em_t,em_q, em_qs, em_ph, em_p, em_work1, em_work2 |
---|
120 | ! ym SAVE em_u,em_v, em_tra |
---|
121 | ! ym SAVE em_d_u,em_d_v, em_d_tra |
---|
122 | ! ym SAVE em_precip, em_d_t, em_d_q, em_upwd, em_dnwd, em_dnwdbis |
---|
123 | |
---|
124 | INTEGER em_bas, em_top |
---|
125 | SAVE em_bas, em_top |
---|
126 | !$OMP THREADPRIVATE(em_bas,em_top) |
---|
127 | REAL em_wd |
---|
128 | REAL em_qcond(klev) |
---|
129 | REAL em_qcondc(klev) |
---|
130 | |
---|
131 | REAL zx_t, zx_qs, zdelta, zcor |
---|
132 | INTEGER iflag |
---|
133 | REAL sigsum |
---|
134 | ! cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc |
---|
135 | ! VARIABLES A SORTIR |
---|
136 | ! ccccccccccccccccccccccccccccccccccccccccccccccccc |
---|
137 | |
---|
138 | ! ym REAL emmip(klev) !variation de flux ascnon dilue i et i+1 |
---|
139 | REAL, ALLOCATABLE, SAVE :: emmip(:) |
---|
140 | !$OMP THREADPRIVATE(emmip) |
---|
141 | ! ym SAVE emmip |
---|
142 | ! ym real emMke(klev) |
---|
143 | REAL, ALLOCATABLE, SAVE :: emmke(:) |
---|
144 | !$OMP THREADPRIVATE(emmke) |
---|
145 | ! ym save emMke |
---|
146 | REAL top |
---|
147 | REAL bas |
---|
148 | ! ym real emMa(klev) |
---|
149 | REAL, ALLOCATABLE, SAVE :: emma(:) |
---|
150 | !$OMP THREADPRIVATE(emma) |
---|
151 | ! ym save emMa |
---|
152 | REAL ma(klon, klev) |
---|
153 | REAL ment(klev, klev) |
---|
154 | REAL qent(klev, klev) |
---|
155 | REAL tps(klev), tls(klev) |
---|
156 | REAL sij(klev, klev) |
---|
157 | REAL em_cape, em_tvp(klev) |
---|
158 | REAL em_pbase, em_bbase |
---|
159 | INTEGER iw, j, k, ix, iy |
---|
160 | |
---|
161 | ! -- sb: pour schema nuages: |
---|
162 | |
---|
163 | INTEGER iflagcon |
---|
164 | INTEGER em_ifc(klev) |
---|
165 | |
---|
166 | REAL em_pradj |
---|
167 | REAL em_cldf(klev), em_cldq(klev) |
---|
168 | REAL em_ftadj(klev), em_fradj(klev) |
---|
169 | |
---|
170 | INTEGER ifc(klon, klev) |
---|
171 | REAL pradj(klon) |
---|
172 | REAL cldf(klon, klev), cldq(klon, klev) |
---|
173 | REAL ftadj(klon, klev), fqadj(klon, klev) |
---|
174 | |
---|
175 | ! sb -- |
---|
176 | |
---|
177 | ! cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc |
---|
178 | |
---|
179 | include "FCTTRE.h" |
---|
180 | |
---|
181 | IF (first) THEN |
---|
182 | |
---|
183 | ALLOCATE (em_t(klev)) |
---|
184 | ALLOCATE (em_q(klev)) |
---|
185 | ALLOCATE (em_qs(klev)) |
---|
186 | ALLOCATE (em_u(klev), em_v(klev), em_tra(klev,nbtr)) |
---|
187 | ALLOCATE (em_ph(klev+1), em_p(klev)) |
---|
188 | ALLOCATE (em_work1(klev), em_work2(klev)) |
---|
189 | ALLOCATE (em_d_t(klev), em_d_q(klev)) |
---|
190 | ALLOCATE (em_d_u(klev), em_d_v(klev), em_d_tra(klev,nbtr)) |
---|
191 | ALLOCATE (em_upwd(klev), em_dnwd(klev), em_dnwdbis(klev)) |
---|
192 | ALLOCATE (emmip(klev)) |
---|
193 | ALLOCATE (emmke(klev)) |
---|
194 | ALLOCATE (emma(klev)) |
---|
195 | |
---|
196 | first = .FALSE. |
---|
197 | END IF |
---|
198 | |
---|
199 | qcond_incld(:, :) = 0. |
---|
200 | |
---|
201 | ! @$$ print*,'debut conema' |
---|
202 | |
---|
203 | DO i = 1, klon |
---|
204 | DO l = 1, klev + 1 |
---|
205 | em_ph(l) = paprs(i, l)/100.0 |
---|
206 | END DO |
---|
207 | |
---|
208 | DO l = 1, klev |
---|
209 | em_p(l) = pplay(i, l)/100.0 |
---|
210 | em_t(l) = t(i, l) |
---|
211 | em_q(l) = q(i, l) |
---|
212 | em_u(l) = u(i, l) |
---|
213 | em_v(l) = v(i, l) |
---|
214 | DO itra = 1, ntra |
---|
215 | em_tra(l, itra) = tra(i, l, itra) |
---|
216 | END DO |
---|
217 | ! @$$ print*,'em_t',em_t |
---|
218 | ! @$$ print*,'em_q',em_q |
---|
219 | ! @$$ print*,'em_qs',em_qs |
---|
220 | ! @$$ print*,'em_u',em_u |
---|
221 | ! @$$ print*,'em_v',em_v |
---|
222 | ! @$$ print*,'em_tra',em_tra |
---|
223 | ! @$$ print*,'em_p',em_p |
---|
224 | |
---|
225 | |
---|
226 | |
---|
227 | zx_t = em_t(l) |
---|
228 | zdelta = max(0., sign(1.,rtt-zx_t)) |
---|
229 | zx_qs = r2es*foeew(zx_t, zdelta)/em_p(l)/100.0 |
---|
230 | zx_qs = min(0.5, zx_qs) |
---|
231 | ! @$$ print*,'zx_qs',zx_qs |
---|
232 | zcor = 1./(1.-retv*zx_qs) |
---|
233 | zx_qs = zx_qs*zcor |
---|
234 | em_qs(l) = zx_qs |
---|
235 | ! @$$ print*,'em_qs',em_qs |
---|
236 | |
---|
237 | em_work1(l) = work1(i, l) |
---|
238 | em_work2(l) = work2(i, l) |
---|
239 | emmke(l) = 0 |
---|
240 | ! emMa(l)=0 |
---|
241 | ! Ma(i,l)=0 |
---|
242 | |
---|
243 | em_dtvpdt1(l) = 0. |
---|
244 | em_dtvpdq1(l) = 0. |
---|
245 | dtvpdt1(i, l) = 0. |
---|
246 | dtvpdq1(i, l) = 0. |
---|
247 | END DO |
---|
248 | |
---|
249 | em_dplcldt = 0. |
---|
250 | em_dplcldr = 0. |
---|
251 | rain(i) = 0.0 |
---|
252 | snow(i) = 0.0 |
---|
253 | kbas(i) = 1 |
---|
254 | ktop(i) = 1 |
---|
255 | ! ajout SB: |
---|
256 | bas = 1 |
---|
257 | top = 1 |
---|
258 | |
---|
259 | |
---|
260 | ! sb3d write(*,1792) (em_work1(m),m=1,klev) |
---|
261 | 1792 FORMAT ('sig avant convect ', /, 10(1X,E13.5)) |
---|
262 | |
---|
263 | ! sb d write(*,1793) (em_work2(m),m=1,klev) |
---|
264 | 1793 FORMAT ('w avant convect ', /, 10(1X,E13.5)) |
---|
265 | |
---|
266 | ! @$$ print*,'avant convect' |
---|
267 | ! cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc |
---|
268 | |
---|
269 | |
---|
270 | ! print*,'avant convect i=',i |
---|
271 | CALL convect3(dtime, epmax, ok_adj_ema, em_t, em_q, em_qs, em_u, em_v, & |
---|
272 | em_tra, em_p, em_ph, klev, klev+1, klev-1, ntra, dtime, iflag, em_d_t, & |
---|
273 | em_d_q, em_d_u, em_d_v, em_d_tra, em_precip, em_bas, em_top, em_upwd, & |
---|
274 | em_dnwd, em_dnwdbis, em_work1, em_work2, emmip, emmke, emma, ment, & |
---|
275 | qent, tps, tls, sij, em_cape, em_tvp, em_pbase, em_bbase, em_dtvpdt1, & |
---|
276 | em_dtvpdq1, em_dplcldt, em_dplcldr, & ! sbl |
---|
277 | em_d_t2, em_d_q2, em_d_u2, em_d_v2, em_wd, em_qcond, em_qcondc) !sbl |
---|
278 | ! print*,'apres convect ' |
---|
279 | |
---|
280 | ! cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc |
---|
281 | |
---|
282 | ! -- sb: Appel schema statistique de nuages couple a la convection |
---|
283 | ! (Bony et Emanuel 2001): |
---|
284 | |
---|
285 | ! -- creer cvthermo.h qui contiendra les cstes thermo de LMDZ: |
---|
286 | |
---|
287 | iflagcon = 3 |
---|
288 | ! CALL cv_thermo(iflagcon) |
---|
289 | |
---|
290 | ! -- appel schema de nuages: |
---|
291 | |
---|
292 | ! CALL CLOUDS_SUB_LS(klev,em_q,em_qs,em_t |
---|
293 | ! i ,em_p,em_ph,dtime,em_qcondc |
---|
294 | ! o ,em_cldf,em_cldq,em_pradj,em_ftadj,em_fradj,em_ifc) |
---|
295 | |
---|
296 | DO k = 1, klev |
---|
297 | cldf(i, k) = em_cldf(k) ! cloud fraction (0-1) |
---|
298 | cldq(i, k) = em_cldq(k) ! in-cloud water content (kg/kg) |
---|
299 | ftadj(i, k) = em_ftadj(k) ! (dT/dt)_{LS adj} (K/s) |
---|
300 | fqadj(i, k) = em_fradj(k) ! (dq/dt)_{LS adj} (kg/kg/s) |
---|
301 | ifc(i, k) = em_ifc(k) ! flag convergence clouds_gno (1 ou 2) |
---|
302 | END DO |
---|
303 | pradj(i) = em_pradj ! precip from LS supersat adj (mm/day) |
---|
304 | |
---|
305 | ! sb -- |
---|
306 | |
---|
307 | ! SB: |
---|
308 | IF (iflag/=1 .AND. iflag/=4) THEN |
---|
309 | em_cape = 0. |
---|
310 | DO l = 1, klev |
---|
311 | em_upwd(l) = 0. |
---|
312 | em_dnwd(l) = 0. |
---|
313 | em_dnwdbis(l) = 0. |
---|
314 | emma(l) = 0. |
---|
315 | em_tvp(l) = 0. |
---|
316 | END DO |
---|
317 | END IF |
---|
318 | ! fin SB |
---|
319 | |
---|
320 | ! If sig has been set to zero, then set Ma to zero |
---|
321 | |
---|
322 | sigsum = 0. |
---|
323 | DO k = 1, klev |
---|
324 | sigsum = sigsum + em_work1(k) |
---|
325 | END DO |
---|
326 | IF (sigsum==0.0) THEN |
---|
327 | DO k = 1, klev |
---|
328 | emma(k) = 0. |
---|
329 | END DO |
---|
330 | END IF |
---|
331 | |
---|
332 | ! sb3d print*,'i, iflag=',i,iflag |
---|
333 | |
---|
334 | ! cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc |
---|
335 | |
---|
336 | ! SORTIE DES ICB ET INB |
---|
337 | ! en fait inb et icb correspondent au niveau ou se trouve |
---|
338 | ! le nuage,le numero d'interface |
---|
339 | ! ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc |
---|
340 | |
---|
341 | ! modif SB: |
---|
342 | IF (iflag==1 .OR. iflag==4) THEN |
---|
343 | top = em_top |
---|
344 | bas = em_bas |
---|
345 | kbas(i) = em_bas |
---|
346 | ktop(i) = em_top |
---|
347 | END IF |
---|
348 | |
---|
349 | pbase(i) = em_pbase |
---|
350 | bbase(i) = em_bbase |
---|
351 | rain(i) = em_precip/86400.0 |
---|
352 | snow(i) = 0.0 |
---|
353 | cape(i) = em_cape |
---|
354 | wd(i) = em_wd |
---|
355 | rflag(i) = real(iflag) |
---|
356 | ! SB kbas(i) = em_bas |
---|
357 | ! SB ktop(i) = em_top |
---|
358 | dplcldt(i) = em_dplcldt |
---|
359 | dplcldr(i) = em_dplcldr |
---|
360 | DO l = 1, klev |
---|
361 | d_t2(i, l) = dtime*em_d_t2(l) |
---|
362 | d_q2(i, l) = dtime*em_d_q2(l) |
---|
363 | d_u2(i, l) = dtime*em_d_u2(l) |
---|
364 | d_v2(i, l) = dtime*em_d_v2(l) |
---|
365 | |
---|
366 | d_t(i, l) = dtime*em_d_t(l) |
---|
367 | d_q(i, l) = dtime*em_d_q(l) |
---|
368 | d_u(i, l) = dtime*em_d_u(l) |
---|
369 | d_v(i, l) = dtime*em_d_v(l) |
---|
370 | DO itra = 1, ntra |
---|
371 | d_tra(i, l, itra) = dtime*em_d_tra(l, itra) |
---|
372 | END DO |
---|
373 | upwd(i, l) = em_upwd(l) |
---|
374 | dnwd(i, l) = em_dnwd(l) |
---|
375 | dnwdbis(i, l) = em_dnwdbis(l) |
---|
376 | work1(i, l) = em_work1(l) |
---|
377 | work2(i, l) = em_work2(l) |
---|
378 | ma(i, l) = emma(l) |
---|
379 | tvp(i, l) = em_tvp(l) |
---|
380 | dtvpdt1(i, l) = em_dtvpdt1(l) |
---|
381 | dtvpdq1(i, l) = em_dtvpdq1(l) |
---|
382 | |
---|
383 | IF (iflag_clw==0) THEN |
---|
384 | qcond_incld(i, l) = em_qcondc(l) |
---|
385 | ELSE IF (iflag_clw==1) THEN |
---|
386 | qcond_incld(i, l) = em_qcond(l) |
---|
387 | END IF |
---|
388 | END DO |
---|
389 | END DO |
---|
390 | |
---|
391 | ! On calcule une eau liquide diagnostique en fonction de la |
---|
392 | ! precip. |
---|
393 | IF (iflag_clw==2) THEN |
---|
394 | DO l = 1, klev |
---|
395 | DO i = 1, klon |
---|
396 | IF (ktop(i)-kbas(i)>0 .AND. l>=kbas(i) .AND. l<=ktop(i)) THEN |
---|
397 | qcond_incld(i, l) = rain(i)*8.E4 & ! s *(pplay(i,l |
---|
398 | ! )-paprs(i,ktop(i)+1)) |
---|
399 | /(pplay(i,kbas(i))-pplay(i,ktop(i))) |
---|
400 | ! s **2 |
---|
401 | ELSE |
---|
402 | qcond_incld(i, l) = 0. |
---|
403 | END IF |
---|
404 | END DO |
---|
405 | PRINT *, 'l=', l, ', qcond_incld=', qcond_incld(1, l) |
---|
406 | END DO |
---|
407 | END IF |
---|
408 | |
---|
409 | |
---|
410 | RETURN |
---|
411 | END SUBROUTINE conema3 |
---|
412 | |
---|