1 | MODULE lmdz_lscp_tools |
---|
2 | |
---|
3 | IMPLICIT NONE |
---|
4 | |
---|
5 | CONTAINS |
---|
6 | |
---|
7 | !+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ |
---|
8 | SUBROUTINE FALLICE_VELOCITY(klon,iwc,temp,rho,pres,ptconv,velo) |
---|
9 | |
---|
10 | ! Ref: |
---|
11 | ! Stubenrauch, C. J., Bonazzola, M., |
---|
12 | ! Protopapadaki, S. E., & Musat, I. (2019). |
---|
13 | ! New cloud system metrics to assess bulk |
---|
14 | ! ice cloud schemes in a GCM. Journal of |
---|
15 | ! Advances in Modeling Earth Systems, 11, |
---|
16 | ! 3212–3234. https://doi.org/10.1029/2019MS001642 |
---|
17 | |
---|
18 | use lmdz_lscp_ini, only: iflag_vice, ffallv_con, ffallv_lsc |
---|
19 | use lmdz_lscp_ini, only: cice_velo, dice_velo |
---|
20 | |
---|
21 | IMPLICIT NONE |
---|
22 | |
---|
23 | INTEGER, INTENT(IN) :: klon |
---|
24 | REAL, INTENT(IN), DIMENSION(klon) :: iwc ! specific ice water content [kg/m3] |
---|
25 | REAL, INTENT(IN), DIMENSION(klon) :: temp ! temperature [K] |
---|
26 | REAL, INTENT(IN), DIMENSION(klon) :: rho ! dry air density [kg/m3] |
---|
27 | REAL, INTENT(IN), DIMENSION(klon) :: pres ! air pressure [Pa] |
---|
28 | LOGICAL, INTENT(IN), DIMENSION(klon) :: ptconv ! convective point [-] |
---|
29 | |
---|
30 | REAL, INTENT(OUT), DIMENSION(klon) :: velo ! fallspeed velocity of crystals [m/s] |
---|
31 | |
---|
32 | |
---|
33 | INTEGER i |
---|
34 | REAL logvm,iwcg,tempc,phpa,fallv_tun |
---|
35 | REAL m2ice, m2snow, vmice, vmsnow |
---|
36 | REAL aice, bice, asnow, bsnow |
---|
37 | |
---|
38 | |
---|
39 | DO i=1,klon |
---|
40 | |
---|
41 | IF (ptconv(i)) THEN |
---|
42 | fallv_tun=ffallv_con |
---|
43 | ELSE |
---|
44 | fallv_tun=ffallv_lsc |
---|
45 | ENDIF |
---|
46 | |
---|
47 | tempc=temp(i)-273.15 ! celcius temp |
---|
48 | iwcg=MAX(iwc(i)*1000.,1E-3) ! iwc in g/m3. We set a minimum value to prevent from division by 0 |
---|
49 | phpa=pres(i)/100. ! pressure in hPa |
---|
50 | |
---|
51 | IF (iflag_vice .EQ. 1) THEN |
---|
52 | ! so-called 'empirical parameterization' in Stubenrauch et al. 2019 |
---|
53 | if (tempc .GE. -60.0) then |
---|
54 | |
---|
55 | logvm= -0.0000414122*tempc*tempc*log(iwcg)-0.00538922*tempc*log(iwcg) & |
---|
56 | -0.0516344*log(iwcg)+0.00216078*tempc + 1.9714 |
---|
57 | velo(i)=exp(logvm) |
---|
58 | else |
---|
59 | velo(i)=65.0*(iwcg**0.2)*(150./phpa)**0.15 |
---|
60 | endif |
---|
61 | |
---|
62 | velo(i)=fallv_tun*velo(i)/100.0 ! from cm/s to m/s |
---|
63 | |
---|
64 | ELSE IF (iflag_vice .EQ. 2) THEN |
---|
65 | ! so called PSDM empirical coherent bulk ice scheme in Stubenrauch et al. 2019 |
---|
66 | aice=0.587 |
---|
67 | bice=2.45 |
---|
68 | asnow=0.0444 |
---|
69 | bsnow=2.1 |
---|
70 | |
---|
71 | m2ice=((iwcg*0.001/aice)/(exp(13.6-bice*7.76+0.479*bice**2)* & |
---|
72 | exp((-0.0361+bice*0.0151+0.00149*bice**2)*tempc))) & |
---|
73 | **(1./(0.807+bice*0.00581+0.0457*bice**2)) |
---|
74 | |
---|
75 | vmice=100.*1042.4*exp(13.6-(bice+1)*7.76+0.479*(bice+1.)**2)*exp((-0.0361+ & |
---|
76 | (bice+1.)*0.0151+0.00149*(bice+1.)**2)*tempc) & |
---|
77 | *(m2ice**(0.807+(bice+1.)*0.00581+0.0457*(bice+1.)**2))/(iwcg*0.001/aice) |
---|
78 | |
---|
79 | |
---|
80 | vmice=vmice*((1000./phpa)**0.2) |
---|
81 | |
---|
82 | m2snow=((iwcg*0.001/asnow)/(exp(13.6-bsnow*7.76+0.479*bsnow**2)* & |
---|
83 | exp((-0.0361+bsnow*0.0151+0.00149*bsnow**2)*tempc))) & |
---|
84 | **(1./(0.807+bsnow*0.00581+0.0457*bsnow**2)) |
---|
85 | |
---|
86 | |
---|
87 | vmsnow=100.*14.3*exp(13.6-(bsnow+.416)*7.76+0.479*(bsnow+.416)**2)& |
---|
88 | *exp((-0.0361+(bsnow+.416)*0.0151+0.00149*(bsnow+.416)**2)*tempc)& |
---|
89 | *(m2snow**(0.807+(bsnow+.416)*0.00581+0.0457*(bsnow+.416)**2))/(iwcg*0.001/asnow) |
---|
90 | |
---|
91 | vmsnow=vmsnow*((1000./phpa)**0.35) |
---|
92 | velo(i)=fallv_tun*min(vmsnow,vmice)/100. ! to m/s |
---|
93 | |
---|
94 | ELSE |
---|
95 | ! By default, fallspeed velocity of ice crystals according to Heymsfield & Donner 1990 |
---|
96 | velo(i) = fallv_tun*cice_velo*((iwcg/1000.)**dice_velo) |
---|
97 | ENDIF |
---|
98 | ENDDO |
---|
99 | |
---|
100 | END SUBROUTINE FALLICE_VELOCITY |
---|
101 | !+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ |
---|
102 | |
---|
103 | !+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ |
---|
104 | SUBROUTINE ICEFRAC_LSCP(klon, temp, iflag_ice_thermo, distcltop, temp_cltop, icefrac, dicefracdT) |
---|
105 | !+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ |
---|
106 | |
---|
107 | ! Compute the ice fraction 1-xliq (see e.g. |
---|
108 | ! Doutriaux-Boucher & Quaas 2004, section 2.2.) |
---|
109 | ! as a function of temperature |
---|
110 | ! see also Fig 3 of Madeleine et al. 2020, JAMES |
---|
111 | !+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ |
---|
112 | |
---|
113 | |
---|
114 | USE print_control_mod, ONLY: lunout, prt_level |
---|
115 | USE lmdz_lscp_ini, ONLY: t_glace_min, t_glace_max, exposant_glace, iflag_t_glace |
---|
116 | USE lmdz_lscp_ini, ONLY : RTT, dist_liq, temp_nowater |
---|
117 | |
---|
118 | IMPLICIT NONE |
---|
119 | |
---|
120 | |
---|
121 | INTEGER, INTENT(IN) :: klon ! number of horizontal grid points |
---|
122 | REAL, INTENT(IN), DIMENSION(klon) :: temp ! temperature |
---|
123 | REAL, INTENT(IN), DIMENSION(klon) :: distcltop ! distance to cloud top |
---|
124 | REAL, INTENT(IN), DIMENSION(klon) :: temp_cltop ! temperature of cloud top |
---|
125 | INTEGER, INTENT(IN) :: iflag_ice_thermo |
---|
126 | REAL, INTENT(OUT), DIMENSION(klon) :: icefrac |
---|
127 | REAL, INTENT(OUT), DIMENSION(klon) :: dicefracdT |
---|
128 | |
---|
129 | |
---|
130 | INTEGER i |
---|
131 | REAL liqfrac_tmp, dicefrac_tmp |
---|
132 | REAL Dv, denomdep,beta,qsi,dqsidt |
---|
133 | LOGICAL ice_thermo |
---|
134 | |
---|
135 | CHARACTER (len = 20) :: modname = 'lscp_tools' |
---|
136 | CHARACTER (len = 80) :: abort_message |
---|
137 | |
---|
138 | IF ((iflag_t_glace.LT.2) .OR. (iflag_t_glace.GT.6)) THEN |
---|
139 | abort_message = 'lscp cannot be used if iflag_t_glace<2 or >6' |
---|
140 | CALL abort_physic(modname,abort_message,1) |
---|
141 | ENDIF |
---|
142 | |
---|
143 | IF (.NOT.((iflag_ice_thermo .EQ. 1).OR.(iflag_ice_thermo .GE. 3))) THEN |
---|
144 | abort_message = 'lscp cannot be used without ice thermodynamics' |
---|
145 | CALL abort_physic(modname,abort_message,1) |
---|
146 | ENDIF |
---|
147 | |
---|
148 | |
---|
149 | DO i=1,klon |
---|
150 | |
---|
151 | ! old function with sole dependence upon temperature |
---|
152 | IF (iflag_t_glace .EQ. 2) THEN |
---|
153 | liqfrac_tmp = (temp(i)-t_glace_min) / (t_glace_max-t_glace_min) |
---|
154 | liqfrac_tmp = MIN(MAX(liqfrac_tmp,0.0),1.0) |
---|
155 | icefrac(i) = (1.0-liqfrac_tmp)**exposant_glace |
---|
156 | IF (icefrac(i) .GT.0.) THEN |
---|
157 | dicefracdT(i)= exposant_glace * (icefrac(i)**(exposant_glace-1.)) & |
---|
158 | / (t_glace_min - t_glace_max) |
---|
159 | ENDIF |
---|
160 | |
---|
161 | IF ((icefrac(i).EQ.0).OR.(icefrac(i).EQ.1)) THEN |
---|
162 | dicefracdT(i)=0. |
---|
163 | ENDIF |
---|
164 | |
---|
165 | ENDIF |
---|
166 | |
---|
167 | ! function of temperature used in CMIP6 physics |
---|
168 | IF (iflag_t_glace .EQ. 3) THEN |
---|
169 | liqfrac_tmp = (temp(i)-t_glace_min) / (t_glace_max-t_glace_min) |
---|
170 | liqfrac_tmp = MIN(MAX(liqfrac_tmp,0.0),1.0) |
---|
171 | icefrac(i) = 1.0-liqfrac_tmp**exposant_glace |
---|
172 | IF ((icefrac(i) .GT.0.) .AND. (liqfrac_tmp .GT. 0.)) THEN |
---|
173 | dicefracdT(i)= exposant_glace * ((liqfrac_tmp)**(exposant_glace-1.)) & |
---|
174 | / (t_glace_min - t_glace_max) |
---|
175 | ELSE |
---|
176 | dicefracdT(i)=0. |
---|
177 | ENDIF |
---|
178 | ENDIF |
---|
179 | |
---|
180 | ! for iflag_t_glace .GE. 4, the liquid fraction depends upon temperature at cloud top |
---|
181 | ! and then decreases with decreasing height |
---|
182 | |
---|
183 | !with linear function of temperature at cloud top |
---|
184 | IF (iflag_t_glace .EQ. 4) THEN |
---|
185 | liqfrac_tmp = (temp(i)-t_glace_min) / (t_glace_max-t_glace_min) |
---|
186 | liqfrac_tmp = MIN(MAX(liqfrac_tmp,0.0),1.0) |
---|
187 | icefrac(i) = MAX(MIN(1.,1.0 - liqfrac_tmp*exp(-distcltop(i)/dist_liq)),0.) |
---|
188 | dicefrac_tmp = - temp(i)/(t_glace_max-t_glace_min) |
---|
189 | dicefracdT(i) = dicefrac_tmp*exp(-distcltop(i)/dist_liq) |
---|
190 | IF ((liqfrac_tmp .LE.0) .OR. (liqfrac_tmp .GE. 1)) THEN |
---|
191 | dicefracdT(i) = 0. |
---|
192 | ENDIF |
---|
193 | ENDIF |
---|
194 | |
---|
195 | ! with CMIP6 function of temperature at cloud top |
---|
196 | IF (iflag_t_glace .EQ. 5) THEN |
---|
197 | liqfrac_tmp = (temp(i)-t_glace_min) / (t_glace_max-t_glace_min) |
---|
198 | liqfrac_tmp = MIN(MAX(liqfrac_tmp,0.0),1.0) |
---|
199 | liqfrac_tmp = liqfrac_tmp**exposant_glace |
---|
200 | icefrac(i) = MAX(MIN(1.,1.0 - liqfrac_tmp*exp(-distcltop(i)/dist_liq)),0.) |
---|
201 | IF ((liqfrac_tmp .LE.0) .OR. (liqfrac_tmp .GE. 1)) THEN |
---|
202 | dicefracdT(i) = 0. |
---|
203 | ELSE |
---|
204 | dicefracdT(i) = exposant_glace*((liqfrac_tmp)**(exposant_glace-1.))/(t_glace_min- t_glace_max) & |
---|
205 | *exp(-distcltop(i)/dist_liq) |
---|
206 | ENDIF |
---|
207 | ENDIF |
---|
208 | |
---|
209 | ! with modified function of temperature at cloud top |
---|
210 | ! to get largere values around 260 K, works well with t_glace_min = 241K |
---|
211 | IF (iflag_t_glace .EQ. 6) THEN |
---|
212 | IF (temp(i) .GT. t_glace_max) THEN |
---|
213 | liqfrac_tmp = 1. |
---|
214 | ELSE |
---|
215 | liqfrac_tmp = -((temp(i)-t_glace_max) / (t_glace_max-t_glace_min))**2+1. |
---|
216 | ENDIF |
---|
217 | liqfrac_tmp = MIN(MAX(liqfrac_tmp,0.0),1.0) |
---|
218 | icefrac(i) = MAX(MIN(1.,1.0 - liqfrac_tmp*exp(-distcltop(i)/dist_liq)),0.) |
---|
219 | IF ((liqfrac_tmp .LE.0) .OR. (liqfrac_tmp .GE. 1)) THEN |
---|
220 | dicefracdT(i) = 0. |
---|
221 | ELSE |
---|
222 | dicefracdT(i) = 2*((temp(i)-t_glace_max) / (t_glace_max-t_glace_min))/(t_glace_max-t_glace_min) & |
---|
223 | *exp(-distcltop(i)/dist_liq) |
---|
224 | ENDIF |
---|
225 | ENDIF |
---|
226 | |
---|
227 | ! if temperature of cloud top <-40°C, |
---|
228 | IF (iflag_t_glace .GE. 4) THEN |
---|
229 | IF ((temp_cltop(i) .LE. temp_nowater) .AND. (temp(i) .LE. t_glace_max)) THEN |
---|
230 | icefrac(i) = 1. |
---|
231 | dicefracdT(i) = 0. |
---|
232 | ENDIF |
---|
233 | ENDIF |
---|
234 | |
---|
235 | |
---|
236 | ENDDO ! klon |
---|
237 | |
---|
238 | RETURN |
---|
239 | |
---|
240 | END SUBROUTINE ICEFRAC_LSCP |
---|
241 | !+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ |
---|
242 | |
---|
243 | |
---|
244 | |
---|
245 | SUBROUTINE CALC_QSAT_ECMWF(klon,temp,qtot,pressure,tref,phase,flagth,qs,dqs) |
---|
246 | !+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ |
---|
247 | ! Calculate qsat following ECMWF method |
---|
248 | !+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ |
---|
249 | |
---|
250 | |
---|
251 | IMPLICIT NONE |
---|
252 | |
---|
253 | include "YOMCST.h" |
---|
254 | include "YOETHF.h" |
---|
255 | include "FCTTRE.h" |
---|
256 | |
---|
257 | INTEGER, INTENT(IN) :: klon ! number of horizontal grid points |
---|
258 | REAL, INTENT(IN), DIMENSION(klon) :: temp ! temperature in K |
---|
259 | REAL, INTENT(IN), DIMENSION(klon) :: qtot ! total specific water in kg/kg |
---|
260 | REAL, INTENT(IN), DIMENSION(klon) :: pressure ! pressure in Pa |
---|
261 | REAL, INTENT(IN) :: tref ! reference temperature in K |
---|
262 | LOGICAL, INTENT(IN) :: flagth ! flag for qsat calculation for thermals |
---|
263 | INTEGER, INTENT(IN) :: phase |
---|
264 | ! phase: 0=depend on temperature sign (temp>tref -> liquid, temp<tref, solid) |
---|
265 | ! 1=liquid |
---|
266 | ! 2=solid |
---|
267 | |
---|
268 | REAL, INTENT(OUT), DIMENSION(klon) :: qs ! saturation specific humidity [kg/kg] |
---|
269 | REAL, INTENT(OUT), DIMENSION(klon) :: dqs ! derivation of saturation specific humidity wrt T |
---|
270 | |
---|
271 | REAL delta, cor, cvm5 |
---|
272 | INTEGER i |
---|
273 | |
---|
274 | DO i=1,klon |
---|
275 | |
---|
276 | IF (phase .EQ. 1) THEN |
---|
277 | delta=0. |
---|
278 | ELSEIF (phase .EQ. 2) THEN |
---|
279 | delta=1. |
---|
280 | ELSE |
---|
281 | delta=MAX(0.,SIGN(1.,tref-temp(i))) |
---|
282 | ENDIF |
---|
283 | |
---|
284 | IF (flagth) THEN |
---|
285 | cvm5=R5LES*(1.-delta) + R5IES*delta |
---|
286 | ELSE |
---|
287 | cvm5 = R5LES*RLVTT*(1.-delta) + R5IES*RLSTT*delta |
---|
288 | cvm5 = cvm5 /RCPD/(1.0+RVTMP2*(qtot(i))) |
---|
289 | ENDIF |
---|
290 | |
---|
291 | qs(i)= R2ES*FOEEW(temp(i),delta)/pressure(i) |
---|
292 | qs(i)=MIN(0.5,qs(i)) |
---|
293 | cor=1./(1.-RETV*qs(i)) |
---|
294 | qs(i)=qs(i)*cor |
---|
295 | dqs(i)= FOEDE(temp(i),delta,cvm5,qs(i),cor) |
---|
296 | |
---|
297 | END DO |
---|
298 | |
---|
299 | END SUBROUTINE CALC_QSAT_ECMWF |
---|
300 | !+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ |
---|
301 | |
---|
302 | |
---|
303 | !+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ |
---|
304 | SUBROUTINE CALC_GAMMASAT(klon,temp,qtot,pressure,gammasat,dgammasatdt) |
---|
305 | |
---|
306 | !+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ |
---|
307 | ! programme that calculates the gammasat parameter that determines the |
---|
308 | ! homogeneous condensation thresholds for cold (<0oC) clouds |
---|
309 | ! condensation at q>gammasat*qsat |
---|
310 | ! Etienne Vignon, March 2021 |
---|
311 | !+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ |
---|
312 | |
---|
313 | use lmdz_lscp_ini, only: iflag_gammasat, temp_nowater, RTT |
---|
314 | use lmdz_lscp_ini, only: a_homofreez, b_homofreez, delta_hetfreez |
---|
315 | |
---|
316 | IMPLICIT NONE |
---|
317 | |
---|
318 | |
---|
319 | INTEGER, INTENT(IN) :: klon ! number of horizontal grid points |
---|
320 | REAL, INTENT(IN), DIMENSION(klon) :: temp ! temperature in K |
---|
321 | REAL, INTENT(IN), DIMENSION(klon) :: qtot ! total specific water in kg/kg |
---|
322 | |
---|
323 | REAL, INTENT(IN), DIMENSION(klon) :: pressure ! pressure in Pa |
---|
324 | |
---|
325 | REAL, INTENT(OUT), DIMENSION(klon) :: gammasat ! coefficient to multiply qsat with to calculate saturation |
---|
326 | REAL, INTENT(OUT), DIMENSION(klon) :: dgammasatdt ! derivative of gammasat wrt temperature |
---|
327 | |
---|
328 | REAL, DIMENSION(klon) :: qsi,qsl,dqsl,dqsi |
---|
329 | REAL f_homofreez, fac |
---|
330 | |
---|
331 | INTEGER i |
---|
332 | |
---|
333 | CALL CALC_QSAT_ECMWF(klon,temp,qtot,pressure,RTT,1,.false.,qsl,dqsl) |
---|
334 | CALL CALC_QSAT_ECMWF(klon,temp,qtot,pressure,RTT,2,.false.,qsi,dqsi) |
---|
335 | |
---|
336 | DO i = 1, klon |
---|
337 | |
---|
338 | IF ( temp(i) .GE. RTT ) THEN |
---|
339 | ! warm clouds: condensation at saturation wrt liquid |
---|
340 | gammasat(i) = 1. |
---|
341 | dgammasatdt(i) = 0. |
---|
342 | |
---|
343 | ELSE |
---|
344 | ! cold clouds: qsi > qsl |
---|
345 | |
---|
346 | ! homogeneous freezing of aerosols, according to |
---|
347 | ! Koop, 2000 and Ren and MacKenzie, 2005 (QJRMS) |
---|
348 | ! 'Cirrus regime' |
---|
349 | ! if f_homofreez > qsl / qsi, liquid nucleation |
---|
350 | ! if f_homofreez < qsl / qsi, homogeneous freezing of aerosols |
---|
351 | ! Note: f_homofreez = qsl / qsi for temp ~= -38degC |
---|
352 | f_homofreez = a_homofreez - temp(i) / b_homofreez |
---|
353 | |
---|
354 | IF ( iflag_gammasat .GE. 3 ) THEN |
---|
355 | ! condensation at homogeneous freezing threshold for temp < -38 degC |
---|
356 | ! condensation at liquid saturation for temp > -38 degC |
---|
357 | IF ( f_homofreez .LE. qsl(i) / qsi(i) ) THEN |
---|
358 | gammasat(i) = f_homofreez |
---|
359 | dgammasatdt(i) = - 1. / b_homofreez |
---|
360 | ELSE |
---|
361 | gammasat(i) = qsl(i) / qsi(i) |
---|
362 | dgammasatdt(i) = ( dqsl(i) * qsi(i) - dqsi(i) * qsl(i) ) / qsi(i) / qsi(i) |
---|
363 | ENDIF |
---|
364 | |
---|
365 | ELSEIF ( iflag_gammasat .EQ. 2 ) THEN |
---|
366 | ! condensation at homogeneous freezing threshold for temp < -38 degC |
---|
367 | ! condensation at a threshold linearly decreasing between homogeneous |
---|
368 | ! freezing and ice saturation for -38 degC < temp < temp_nowater |
---|
369 | ! condensation at ice saturation for temp > temp_nowater |
---|
370 | ! If temp_nowater = 235.15 K, this is equivalent to iflag_gammasat = 1 |
---|
371 | IF ( f_homofreez .LE. qsl(i) / qsi(i) ) THEN |
---|
372 | gammasat(i) = f_homofreez |
---|
373 | dgammasatdt(i) = - 1. / b_homofreez |
---|
374 | ELSEIF ( temp(i) .LE. temp_nowater ) THEN |
---|
375 | ! Here, we assume that f_homofreez = qsl / qsi for temp = -38 degC = 235.15 K |
---|
376 | dgammasatdt(i) = ( a_homofreez - 235.15 / b_homofreez - 1. ) & |
---|
377 | / ( 235.15 - temp_nowater ) |
---|
378 | gammasat(i) = dgammasatdt(i) * ( temp(i) - temp_nowater ) + 1. |
---|
379 | ELSE |
---|
380 | gammasat(i) = 1. |
---|
381 | dgammasatdt(i) = 0. |
---|
382 | ENDIF |
---|
383 | |
---|
384 | ELSEIF ( iflag_gammasat .EQ. 1 ) THEN |
---|
385 | ! condensation at homogeneous freezing threshold for temp < -38 degC |
---|
386 | ! condensation at ice saturation for temp > -38 degC |
---|
387 | IF ( f_homofreez .LE. qsl(i) / qsi(i) ) THEN |
---|
388 | gammasat(i) = f_homofreez |
---|
389 | dgammasatdt(i) = - 1. / b_homofreez |
---|
390 | ELSE |
---|
391 | gammasat(i) = 1. |
---|
392 | dgammasatdt(i) = 0. |
---|
393 | ENDIF |
---|
394 | |
---|
395 | ELSE |
---|
396 | ! condensation at ice saturation for temp < -38 degC |
---|
397 | ! condensation at ice saturation for temp > -38 degC |
---|
398 | gammasat(i) = 1. |
---|
399 | dgammasatdt(i) = 0. |
---|
400 | |
---|
401 | ENDIF |
---|
402 | |
---|
403 | ! Note that the delta_hetfreez parameter allows to linearly decrease the |
---|
404 | ! condensation threshold between the calculated threshold and the ice saturation |
---|
405 | ! for delta_hetfreez = 1, the threshold is the calculated condensation threshold |
---|
406 | ! for delta_hetfreez = 0, the threshold is the ice saturation |
---|
407 | gammasat(i) = ( 1. - delta_hetfreez ) + delta_hetfreez * gammasat(i) |
---|
408 | dgammasatdt(i) = delta_hetfreez * dgammasatdt(i) |
---|
409 | |
---|
410 | ENDIF |
---|
411 | |
---|
412 | END DO |
---|
413 | |
---|
414 | |
---|
415 | END SUBROUTINE CALC_GAMMASAT |
---|
416 | !+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ |
---|
417 | |
---|
418 | |
---|
419 | !++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ |
---|
420 | SUBROUTINE DISTANCE_TO_CLOUD_TOP(klon,klev,k,temp,pplay,paprs,rneb,distcltop1D,temp_cltop) |
---|
421 | !++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ |
---|
422 | |
---|
423 | USE lmdz_lscp_ini, ONLY : rd,rg,tresh_cl |
---|
424 | |
---|
425 | IMPLICIT NONE |
---|
426 | |
---|
427 | INTEGER, INTENT(IN) :: klon,klev !number of horizontal and vertical grid points |
---|
428 | INTEGER, INTENT(IN) :: k ! vertical index |
---|
429 | REAL, INTENT(IN), DIMENSION(klon,klev) :: temp ! temperature in K |
---|
430 | REAL, INTENT(IN), DIMENSION(klon,klev) :: pplay ! pressure middle layer in Pa |
---|
431 | REAL, INTENT(IN), DIMENSION(klon,klev+1) :: paprs ! pressure interfaces in Pa |
---|
432 | REAL, INTENT(IN), DIMENSION(klon,klev) :: rneb ! cloud fraction |
---|
433 | |
---|
434 | REAL, INTENT(OUT), DIMENSION(klon) :: distcltop1D ! distance from cloud top |
---|
435 | REAL, INTENT(OUT), DIMENSION(klon) :: temp_cltop ! temperature of cloud top |
---|
436 | |
---|
437 | REAL dzlay(klon,klev) |
---|
438 | REAL zlay(klon,klev) |
---|
439 | REAL dzinterf |
---|
440 | INTEGER i,k_top, kvert |
---|
441 | LOGICAL bool_cl |
---|
442 | |
---|
443 | |
---|
444 | DO i=1,klon |
---|
445 | ! Initialization height middle of first layer |
---|
446 | dzlay(i,1) = Rd * temp(i,1) / rg * log(paprs(i,1)/paprs(i,2)) |
---|
447 | zlay(i,1) = dzlay(i,1)/2 |
---|
448 | |
---|
449 | DO kvert=2,klev |
---|
450 | IF (kvert.EQ.klev) THEN |
---|
451 | dzlay(i,kvert) = 2*(rd * temp(i,kvert) / rg * log(paprs(i,kvert)/pplay(i,kvert))) |
---|
452 | ELSE |
---|
453 | dzlay(i,kvert) = rd * temp(i,kvert) / rg * log(paprs(i,kvert)/paprs(i,kvert+1)) |
---|
454 | ENDIF |
---|
455 | dzinterf = rd * temp(i,kvert) / rg * log(pplay(i,kvert-1)/pplay(i,kvert)) |
---|
456 | zlay(i,kvert) = zlay(i,kvert-1) + dzinterf |
---|
457 | ENDDO |
---|
458 | ENDDO |
---|
459 | |
---|
460 | DO i=1,klon |
---|
461 | k_top = k |
---|
462 | IF (rneb(i,k) .LE. tresh_cl) THEN |
---|
463 | bool_cl = .FALSE. |
---|
464 | ELSE |
---|
465 | bool_cl = .TRUE. |
---|
466 | ENDIF |
---|
467 | |
---|
468 | DO WHILE ((bool_cl) .AND. (k_top .LE. klev)) |
---|
469 | ! find cloud top |
---|
470 | IF (rneb(i,k_top) .GT. tresh_cl) THEN |
---|
471 | k_top = k_top + 1 |
---|
472 | ELSE |
---|
473 | bool_cl = .FALSE. |
---|
474 | k_top = k_top - 1 |
---|
475 | ENDIF |
---|
476 | ENDDO |
---|
477 | k_top=min(k_top,klev) |
---|
478 | |
---|
479 | !dist to top is dist between current layer and layer of cloud top (from middle to middle) + dist middle to |
---|
480 | !interf for layer of cloud top |
---|
481 | distcltop1D(i) = zlay(i,k_top) - zlay(i,k) + dzlay(i,k_top)/2 |
---|
482 | temp_cltop(i) = temp(i,k_top) |
---|
483 | ENDDO ! klon |
---|
484 | |
---|
485 | END SUBROUTINE DISTANCE_TO_CLOUD_TOP |
---|
486 | !++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ |
---|
487 | |
---|
488 | !++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ |
---|
489 | FUNCTION GAMMAINC ( p, x ) |
---|
490 | |
---|
491 | !*****************************************************************************80 |
---|
492 | ! |
---|
493 | !! GAMMAINC computes the regularized lower incomplete Gamma Integral |
---|
494 | ! |
---|
495 | ! Modified: |
---|
496 | ! |
---|
497 | ! 20 January 2008 |
---|
498 | ! |
---|
499 | ! Author: |
---|
500 | ! |
---|
501 | ! Original FORTRAN77 version by B Shea. |
---|
502 | ! FORTRAN90 version by John Burkardt. |
---|
503 | ! |
---|
504 | ! Reference: |
---|
505 | ! |
---|
506 | ! B Shea, |
---|
507 | ! Algorithm AS 239: |
---|
508 | ! Chi-squared and Incomplete Gamma Integral, |
---|
509 | ! Applied Statistics, |
---|
510 | ! Volume 37, Number 3, 1988, pages 466-473. |
---|
511 | ! |
---|
512 | ! Parameters: |
---|
513 | ! |
---|
514 | ! Input, real X, P, the parameters of the incomplete |
---|
515 | ! gamma ratio. 0 <= X, and 0 < P. |
---|
516 | ! |
---|
517 | ! Output, real GAMMAINC, the value of the incomplete |
---|
518 | ! Gamma integral. |
---|
519 | ! |
---|
520 | IMPLICIT NONE |
---|
521 | |
---|
522 | REAL A |
---|
523 | REAL AN |
---|
524 | REAL ARG |
---|
525 | REAL B |
---|
526 | REAL C |
---|
527 | REAL, PARAMETER :: ELIMIT = - 88.0E+00 |
---|
528 | REAL GAMMAINC |
---|
529 | REAL, PARAMETER :: OFLO = 1.0E+37 |
---|
530 | REAL P |
---|
531 | REAL, PARAMETER :: PLIMIT = 1000.0E+00 |
---|
532 | REAL PN1 |
---|
533 | REAL PN2 |
---|
534 | REAL PN3 |
---|
535 | REAL PN4 |
---|
536 | REAL PN5 |
---|
537 | REAL PN6 |
---|
538 | REAL RN |
---|
539 | REAL, PARAMETER :: TOL = 1.0E-14 |
---|
540 | REAL X |
---|
541 | REAL, PARAMETER :: XBIG = 1.0E+08 |
---|
542 | |
---|
543 | GAMMAINC = 0.0E+00 |
---|
544 | |
---|
545 | IF ( X == 0.0E+00 ) THEN |
---|
546 | GAMMAINC = 0.0E+00 |
---|
547 | RETURN |
---|
548 | END IF |
---|
549 | ! |
---|
550 | ! IF P IS LARGE, USE A NORMAL APPROXIMATION. |
---|
551 | ! |
---|
552 | IF ( PLIMIT < P ) THEN |
---|
553 | |
---|
554 | PN1 = 3.0E+00 * SQRT ( P ) * ( ( X / P )**( 1.0E+00 / 3.0E+00 ) & |
---|
555 | + 1.0E+00 / ( 9.0E+00 * P ) - 1.0E+00 ) |
---|
556 | |
---|
557 | GAMMAINC = 0.5E+00 * ( 1. + ERF ( PN1 ) ) |
---|
558 | RETURN |
---|
559 | |
---|
560 | END IF |
---|
561 | ! |
---|
562 | ! IF X IS LARGE SET GAMMAD = 1. |
---|
563 | ! |
---|
564 | IF ( XBIG < X ) THEN |
---|
565 | GAMMAINC = 1.0E+00 |
---|
566 | RETURN |
---|
567 | END IF |
---|
568 | ! |
---|
569 | ! USE PEARSON'S SERIES EXPANSION. |
---|
570 | ! (NOTE THAT P IS NOT LARGE ENOUGH TO FORCE OVERFLOW IN ALOGAM). |
---|
571 | ! |
---|
572 | IF ( X <= 1.0E+00 .OR. X < P ) THEN |
---|
573 | |
---|
574 | ARG = P * LOG ( X ) - X - LOG_GAMMA ( P + 1.0E+00 ) |
---|
575 | C = 1.0E+00 |
---|
576 | GAMMAINC = 1.0E+00 |
---|
577 | A = P |
---|
578 | |
---|
579 | DO |
---|
580 | |
---|
581 | A = A + 1.0E+00 |
---|
582 | C = C * X / A |
---|
583 | GAMMAINC = GAMMAINC + C |
---|
584 | |
---|
585 | IF ( C <= TOL ) THEN |
---|
586 | EXIT |
---|
587 | END IF |
---|
588 | |
---|
589 | END DO |
---|
590 | |
---|
591 | ARG = ARG + LOG ( GAMMAINC ) |
---|
592 | |
---|
593 | IF ( ELIMIT <= ARG ) THEN |
---|
594 | GAMMAINC = EXP ( ARG ) |
---|
595 | ELSE |
---|
596 | GAMMAINC = 0.0E+00 |
---|
597 | END IF |
---|
598 | ! |
---|
599 | ! USE A CONTINUED FRACTION EXPANSION. |
---|
600 | ! |
---|
601 | ELSE |
---|
602 | |
---|
603 | ARG = P * LOG ( X ) - X - LOG_GAMMA ( P ) |
---|
604 | A = 1.0E+00 - P |
---|
605 | B = A + X + 1.0E+00 |
---|
606 | C = 0.0E+00 |
---|
607 | PN1 = 1.0E+00 |
---|
608 | PN2 = X |
---|
609 | PN3 = X + 1.0E+00 |
---|
610 | PN4 = X * B |
---|
611 | GAMMAINC = PN3 / PN4 |
---|
612 | |
---|
613 | DO |
---|
614 | |
---|
615 | A = A + 1.0E+00 |
---|
616 | B = B + 2.0E+00 |
---|
617 | C = C + 1.0E+00 |
---|
618 | AN = A * C |
---|
619 | PN5 = B * PN3 - AN * PN1 |
---|
620 | PN6 = B * PN4 - AN * PN2 |
---|
621 | |
---|
622 | IF ( PN6 /= 0.0E+00 ) THEN |
---|
623 | |
---|
624 | RN = PN5 / PN6 |
---|
625 | |
---|
626 | IF ( ABS ( GAMMAINC - RN ) <= MIN ( TOL, TOL * RN ) ) THEN |
---|
627 | EXIT |
---|
628 | END IF |
---|
629 | |
---|
630 | GAMMAINC = RN |
---|
631 | |
---|
632 | END IF |
---|
633 | |
---|
634 | PN1 = PN3 |
---|
635 | PN2 = PN4 |
---|
636 | PN3 = PN5 |
---|
637 | PN4 = PN6 |
---|
638 | ! |
---|
639 | ! RE-SCALE TERMS IN CONTINUED FRACTION IF TERMS ARE LARGE. |
---|
640 | ! |
---|
641 | IF ( OFLO <= ABS ( PN5 ) ) THEN |
---|
642 | PN1 = PN1 / OFLO |
---|
643 | PN2 = PN2 / OFLO |
---|
644 | PN3 = PN3 / OFLO |
---|
645 | PN4 = PN4 / OFLO |
---|
646 | END IF |
---|
647 | |
---|
648 | END DO |
---|
649 | |
---|
650 | ARG = ARG + LOG ( GAMMAINC ) |
---|
651 | |
---|
652 | IF ( ELIMIT <= ARG ) THEN |
---|
653 | GAMMAINC = 1.0E+00 - EXP ( ARG ) |
---|
654 | ELSE |
---|
655 | GAMMAINC = 1.0E+00 |
---|
656 | END IF |
---|
657 | |
---|
658 | END IF |
---|
659 | |
---|
660 | RETURN |
---|
661 | END FUNCTION GAMMAINC |
---|
662 | !++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ |
---|
663 | |
---|
664 | END MODULE lmdz_lscp_tools |
---|
665 | |
---|
666 | |
---|