1 | MODULE lmdz_lscp_poprecip |
---|
2 | !---------------------------------------------------------------- |
---|
3 | ! Module for the process-oriented treament of precipitation |
---|
4 | ! that are called in LSCP |
---|
5 | ! Authors: Atelier Nuage (G. Riviere, L. Raillard, M. Wimmer, |
---|
6 | ! N. Dutrievoz, E. Vignon, A. Borella, et al.) |
---|
7 | ! Jan. 2024 |
---|
8 | |
---|
9 | |
---|
10 | IMPLICIT NONE |
---|
11 | |
---|
12 | CONTAINS |
---|
13 | |
---|
14 | !---------------------------------------------------------------- |
---|
15 | ! Computes the processes-oriented precipitation formulations for |
---|
16 | ! evaporation and sublimation |
---|
17 | ! |
---|
18 | SUBROUTINE poprecip_precld( & |
---|
19 | klon, dtime, iftop, paprsdn, paprsup, pplay, temp, tempupnew, qvap, & |
---|
20 | qprecip, precipfracclr, precipfraccld, qvapclrup, qtotupnew, & |
---|
21 | rain, rainclr, raincld, snow, snowclr, snowcld, dqreva, dqssub & |
---|
22 | ) |
---|
23 | |
---|
24 | USE lmdz_lscp_ini, ONLY : prt_level, lunout |
---|
25 | USE lmdz_lscp_ini, ONLY : coef_eva, coef_sub, expo_eva, expo_sub, thresh_precip_frac |
---|
26 | USE lmdz_lscp_ini, ONLY : RCPD, RLSTT, RLVTT, RLMLT, RVTMP2, RTT, RD, RG |
---|
27 | USE lmdz_lscp_ini, ONLY : ok_corr_vap_evasub |
---|
28 | USE lmdz_lscp_tools, ONLY : calc_qsat_ecmwf |
---|
29 | |
---|
30 | IMPLICIT NONE |
---|
31 | |
---|
32 | |
---|
33 | INTEGER, INTENT(IN) :: klon !--number of horizontal grid points [-] |
---|
34 | REAL, INTENT(IN) :: dtime !--time step [s] |
---|
35 | LOGICAL, INTENT(IN) :: iftop !--if top of the column |
---|
36 | |
---|
37 | |
---|
38 | REAL, INTENT(IN), DIMENSION(klon) :: paprsdn !--pressure at the bottom interface of the layer [Pa] |
---|
39 | REAL, INTENT(IN), DIMENSION(klon) :: paprsup !--pressure at the top interface of the layer [Pa] |
---|
40 | REAL, INTENT(IN), DIMENSION(klon) :: pplay !--pressure in the middle of the layer [Pa] |
---|
41 | |
---|
42 | REAL, INTENT(INOUT), DIMENSION(klon) :: temp !--current temperature [K] |
---|
43 | REAL, INTENT(INOUT), DIMENSION(klon) :: tempupnew !--updated temperature of the overlying layer [K] |
---|
44 | |
---|
45 | REAL, INTENT(INOUT), DIMENSION(klon) :: qvap !--current water vapor specific humidity (includes evaporated qi and ql) [kg/kg] |
---|
46 | REAL, INTENT(INOUT), DIMENSION(klon) :: qprecip !--specific humidity in the precipitation falling from the upper layer [kg/kg] |
---|
47 | |
---|
48 | REAL, INTENT(INOUT), DIMENSION(klon) :: precipfracclr !--fraction of precipitation in the clear sky IN THE LAYER ABOVE [-] |
---|
49 | REAL, INTENT(INOUT), DIMENSION(klon) :: precipfraccld !--fraction of precipitation in the cloudy air IN THE LAYER ABOVE [-] |
---|
50 | |
---|
51 | REAL, INTENT(IN), DIMENSION(klon) :: qvapclrup !--clear-sky specific humidity IN THE LAYER ABOVE [kg/kg] |
---|
52 | REAL, INTENT(IN), DIMENSION(klon) :: qtotupnew !--total specific humidity IN THE LAYER ABOVE [kg/kg] |
---|
53 | |
---|
54 | REAL, INTENT(INOUT), DIMENSION(klon) :: rain !--flux of rain gridbox-mean coming from the layer above [kg/s/m2] |
---|
55 | REAL, INTENT(INOUT), DIMENSION(klon) :: rainclr !--flux of rain gridbox-mean in clear sky coming from the layer above [kg/s/m2] |
---|
56 | REAL, INTENT(IN), DIMENSION(klon) :: raincld !--flux of rain gridbox-mean in cloudy air coming from the layer above [kg/s/m2] |
---|
57 | REAL, INTENT(INOUT), DIMENSION(klon) :: snow !--flux of snow gridbox-mean coming from the layer above [kg/s/m2] |
---|
58 | REAL, INTENT(INOUT), DIMENSION(klon) :: snowclr !--flux of snow gridbox-mean in clear sky coming from the layer above [kg/s/m2] |
---|
59 | REAL, INTENT(IN), DIMENSION(klon) :: snowcld !--flux of snow gridbox-mean in cloudy air coming from the layer above [kg/s/m2] |
---|
60 | |
---|
61 | REAL, INTENT(OUT), DIMENSION(klon) :: dqreva !--rain tendency due to evaporation [kg/kg/s] |
---|
62 | REAL, INTENT(OUT), DIMENSION(klon) :: dqssub !--snow tendency due to sublimation [kg/kg/s] |
---|
63 | |
---|
64 | |
---|
65 | !--Integer for interating over klon |
---|
66 | INTEGER :: i |
---|
67 | !--dhum_to_dflux: coef to convert a specific quantity variation to a flux variation |
---|
68 | REAL, DIMENSION(klon) :: dhum_to_dflux |
---|
69 | !-- |
---|
70 | REAL, DIMENSION(klon) :: rho, dz |
---|
71 | |
---|
72 | !--Saturation values |
---|
73 | REAL, DIMENSION(klon) :: qzero, qsat, dqsat, qsatl, dqsatl, qsati, dqsati |
---|
74 | !--Vapor in the clear sky |
---|
75 | REAL :: qvapclr |
---|
76 | !--Fluxes tendencies because of evaporation and sublimation |
---|
77 | REAL :: dprecip_evasub_max, draineva, dsnowsub, dprecip_evasub_tot |
---|
78 | !--Specific humidity tendencies because of evaporation and sublimation |
---|
79 | REAL :: dqrevap, dqssubl |
---|
80 | !--Specific heat constant |
---|
81 | REAL :: cpair, cpw |
---|
82 | |
---|
83 | !--Initialisation |
---|
84 | qzero(:) = 0. |
---|
85 | dqreva(:) = 0. |
---|
86 | dqssub(:) = 0. |
---|
87 | dqrevap = 0. |
---|
88 | dqssubl = 0. |
---|
89 | |
---|
90 | !-- dhum_to_dflux = rho * dz/dt = 1 / g * dP/dt |
---|
91 | dhum_to_dflux(:) = ( paprsdn(:) - paprsup(:) ) / RG / dtime |
---|
92 | rho(:) = pplay(:) / temp(:) / RD |
---|
93 | dz(:) = ( paprsdn(:) - paprsup(:) ) / RG / rho(:) |
---|
94 | |
---|
95 | !--Calculation of saturation specific humidity |
---|
96 | !--depending on temperature: |
---|
97 | CALL calc_qsat_ecmwf(klon,temp(:),qzero(:),pplay(:),RTT,0,.false.,qsat(:),dqsat(:)) |
---|
98 | !--wrt liquid water |
---|
99 | CALL calc_qsat_ecmwf(klon,temp(:),qzero(:),pplay(:),RTT,1,.false.,qsatl(:),dqsatl(:)) |
---|
100 | !--wrt ice |
---|
101 | CALL calc_qsat_ecmwf(klon,temp(:),qzero(:),pplay(:),RTT,2,.false.,qsati(:),dqsati(:)) |
---|
102 | |
---|
103 | |
---|
104 | |
---|
105 | !--First step consists in "thermalizing" the layer: |
---|
106 | !--as the flux of precip from layer above "advects" some heat (as the precip is at the temperature |
---|
107 | !--of the overlying layer) we recalculate a mean temperature that both the air and the precip in the |
---|
108 | !--layer have. |
---|
109 | |
---|
110 | IF (iftop) THEN |
---|
111 | |
---|
112 | DO i = 1, klon |
---|
113 | qprecip(i) = 0. |
---|
114 | ENDDO |
---|
115 | |
---|
116 | ELSE |
---|
117 | |
---|
118 | DO i = 1, klon |
---|
119 | !--No condensed water so cp=cp(vapor+dry air) |
---|
120 | !-- RVTMP2=rcpv/rcpd-1 |
---|
121 | cpair = RCPD * ( 1. + RVTMP2 * qvap(i) ) |
---|
122 | cpw = RCPD * RVTMP2 |
---|
123 | !--qprecip has to be thermalized with |
---|
124 | !--layer's air so that precipitation at the ground has the |
---|
125 | !--same temperature as the lowermost layer |
---|
126 | !--we convert the flux into a specific quantity qprecip |
---|
127 | qprecip(i) = ( rain(i) + snow(i) ) / dhum_to_dflux(i) |
---|
128 | !-- t(i,k+1) + d_t(i,k+1): new temperature of the overlying layer |
---|
129 | temp(i) = ( tempupnew(i) * qprecip(i) * cpw + cpair * temp(i) ) & |
---|
130 | / ( cpair + qprecip(i) * cpw ) |
---|
131 | ENDDO |
---|
132 | |
---|
133 | ENDIF |
---|
134 | |
---|
135 | ! TODO Probleme : on utilise qvap total dans la maille pour l'evap / sub |
---|
136 | ! alors qu'on n'evap / sub que dans le ciel clair |
---|
137 | ! deux options pour cette routine : |
---|
138 | ! - soit on diagnostique le nuage AVANT l'evap / sub et on estime donc |
---|
139 | ! la fraction precipitante ciel clair dans la maille, ce qui permet de travailler |
---|
140 | ! avec des fractions, des fluxs et surtout un qvap dans le ciel clair |
---|
141 | ! - soit on pousse la param de Ludo au bout, et on prend un qvap de k+1 |
---|
142 | ! dans le ciel clair, avec un truc comme : |
---|
143 | ! qvapclr(k) = qvapclr(k+1)/qtot(k+1) * qtot(k) |
---|
144 | ! UPDATE : on code la seconde version. A voir si on veut mettre la premiere version. |
---|
145 | |
---|
146 | |
---|
147 | DO i = 1, klon |
---|
148 | |
---|
149 | !--If there is precipitation from the layer above |
---|
150 | ! NOTE TODO here we could replace the condition on precipfracclr(i) by a condition |
---|
151 | ! such as eps or thresh_precip_frac, to remove the senseless barrier in the formulas |
---|
152 | ! of evap / sublim |
---|
153 | IF ( ( ( rain(i) + snow(i) ) .GT. 0. ) .AND. ( precipfracclr(i) .GT. 0. ) ) THEN |
---|
154 | |
---|
155 | IF ( ok_corr_vap_evasub ) THEN |
---|
156 | !--Corrected version - we use the same water ratio between |
---|
157 | !--the clear and the cloudy sky as in the layer above. This |
---|
158 | !--extends the assumption that the cloud fraction is the same |
---|
159 | !--as the layer above. This is assumed only for the evap / subl |
---|
160 | !--process |
---|
161 | !--Note that qvap(i) is the total water in the gridbox, and |
---|
162 | !--precipfraccld(i) is the cloud fraction in the layer above |
---|
163 | qvapclr = qvapclrup(i) / qtotupnew(i) * qvap(i) / ( 1. - precipfraccld(i) ) |
---|
164 | ELSE |
---|
165 | !--Legacy version from Ludo - we use the total specific humidity |
---|
166 | !--for the evap / subl process |
---|
167 | qvapclr = qvap(i) |
---|
168 | ENDIF |
---|
169 | |
---|
170 | !--Evaporation of liquid precipitation coming from above |
---|
171 | !--in the clear sky only |
---|
172 | !--dprecip/dz = -beta*(1-qvap/qsat)*(precip**expo_eva) |
---|
173 | !--formula from Sundqvist 1988, Klemp & Wilhemson 1978 |
---|
174 | !--Exact explicit formulation (rainclr is resolved exactly, qvap explicitly) |
---|
175 | !--which does not need a barrier on rainclr, because included in the formula |
---|
176 | draineva = precipfracclr(i) * ( MAX(0., & |
---|
177 | - coef_eva * ( 1. - expo_eva ) * (1. - qvapclr / qsatl(i)) * dz(i) & |
---|
178 | + ( rainclr(i) / MAX(thresh_precip_frac, precipfracclr(i)) )**( 1. - expo_eva ) & |
---|
179 | ) )**( 1. / ( 1. - expo_eva ) ) - rainclr(i) |
---|
180 | |
---|
181 | !--Evaporation is limited by 0 |
---|
182 | draineva = MIN(0., draineva) |
---|
183 | |
---|
184 | |
---|
185 | !--Sublimation of the solid precipitation coming from above |
---|
186 | !--(same formula as for liquid precip) |
---|
187 | !--Exact explicit formulation (snowclr is resolved exactly, qvap explicitly) |
---|
188 | !--which does not need a barrier on snowclr, because included in the formula |
---|
189 | dsnowsub = precipfracclr(i) * ( MAX(0., & |
---|
190 | - coef_sub * ( 1. - expo_sub ) * (1. - qvapclr / qsati(i)) * dz(i) & |
---|
191 | + ( snowclr(i) / MAX(thresh_precip_frac, precipfracclr(i)) )**( 1. - expo_sub ) & |
---|
192 | ) )**( 1. / ( 1. - expo_sub ) ) - snowclr(i) |
---|
193 | |
---|
194 | !--Sublimation is limited by 0 |
---|
195 | ! TODO: change max when we will allow for vapor deposition in supersaturated regions |
---|
196 | dsnowsub = MIN(0., dsnowsub) |
---|
197 | |
---|
198 | !--Evaporation limit: we ensure that the layer's fraction below |
---|
199 | !--the clear sky does not reach saturation. In this case, we |
---|
200 | !--redistribute the maximum flux dprecip_evasub_max conserving the ratio liquid/ice |
---|
201 | !--Max evaporation is computed not to saturate the clear sky precip fraction |
---|
202 | !--(i.e., the fraction where evaporation occurs) |
---|
203 | !--It is expressed as a max flux dprecip_evasub_max |
---|
204 | |
---|
205 | dprecip_evasub_max = MIN(0., ( qvapclr - qsat(i) ) * precipfracclr(i)) & |
---|
206 | * dhum_to_dflux(i) |
---|
207 | dprecip_evasub_tot = draineva + dsnowsub |
---|
208 | |
---|
209 | !--Barriers |
---|
210 | !--If activates if the total is LOWER than the max because |
---|
211 | !--everything is negative |
---|
212 | IF ( dprecip_evasub_tot .LT. dprecip_evasub_max ) THEN |
---|
213 | draineva = dprecip_evasub_max * draineva / dprecip_evasub_tot |
---|
214 | dsnowsub = dprecip_evasub_max * dsnowsub / dprecip_evasub_tot |
---|
215 | ENDIF |
---|
216 | |
---|
217 | |
---|
218 | !--New solid and liquid precipitation fluxes after evap and sublimation |
---|
219 | dqrevap = draineva / dhum_to_dflux(i) |
---|
220 | dqssubl = dsnowsub / dhum_to_dflux(i) |
---|
221 | |
---|
222 | |
---|
223 | !--Vapor is updated after evaporation/sublimation (it is increased) |
---|
224 | qvap(i) = qvap(i) - dqrevap - dqssubl |
---|
225 | !--qprecip is the total condensed water in the precip flux (it is decreased) |
---|
226 | qprecip(i) = qprecip(i) + dqrevap + dqssubl |
---|
227 | !--Air and precip temperature (i.e., gridbox temperature) |
---|
228 | !--is updated due to latent heat cooling |
---|
229 | temp(i) = temp(i) & |
---|
230 | + dqrevap * RLVTT / RCPD & |
---|
231 | / ( 1. + RVTMP2 * ( qvap(i) + qprecip(i) ) ) & |
---|
232 | + dqssubl * RLSTT / RCPD & |
---|
233 | / ( 1. + RVTMP2 * ( qvap(i) + qprecip(i) ) ) |
---|
234 | |
---|
235 | !--Add tendencies |
---|
236 | !--The MAX is needed because in some cases, the flux can be slightly negative (numerical precision) |
---|
237 | rainclr(i) = MAX(0., rainclr(i) + draineva) |
---|
238 | snowclr(i) = MAX(0., snowclr(i) + dsnowsub) |
---|
239 | |
---|
240 | !--If there is no more precip fluxes, the precipitation fraction in clear |
---|
241 | !--sky is set to 0 |
---|
242 | IF ( ( rainclr(i) + snowclr(i) ) .LE. 0. ) precipfracclr(i) = 0. |
---|
243 | |
---|
244 | !--Calculation of the total fluxes |
---|
245 | rain(i) = rainclr(i) + raincld(i) |
---|
246 | snow(i) = snowclr(i) + snowcld(i) |
---|
247 | |
---|
248 | ELSEIF ( ( rain(i) + snow(i) ) .LE. 0. ) THEN |
---|
249 | !--If no precip, we reinitialize the cloud fraction used for the precip to 0 |
---|
250 | precipfraccld(i) = 0. |
---|
251 | precipfracclr(i) = 0. |
---|
252 | |
---|
253 | ENDIF ! ( ( rain(i) + snow(i) ) .GT. 0. ) |
---|
254 | |
---|
255 | !--Diagnostic tendencies |
---|
256 | dqssub(i) = dqssubl / dtime |
---|
257 | dqreva(i) = dqrevap / dtime |
---|
258 | |
---|
259 | ENDDO ! loop on klon |
---|
260 | |
---|
261 | |
---|
262 | END SUBROUTINE poprecip_precld |
---|
263 | |
---|
264 | !---------------------------------------------------------------- |
---|
265 | ! Computes the processes-oriented precipitation formulations for |
---|
266 | ! - autoconversion (auto) via a deposition process |
---|
267 | ! - aggregation (agg) |
---|
268 | ! - riming (rim) |
---|
269 | ! - collection (col) |
---|
270 | ! - melting (melt) |
---|
271 | ! - freezing (freez) |
---|
272 | ! |
---|
273 | SUBROUTINE poprecip_postcld( & |
---|
274 | klon, dtime, paprsdn, paprsup, pplay, ctot_vol, ptconv, & |
---|
275 | temp, qvap, qliq, qice, icefrac, cldfra, & |
---|
276 | precipfracclr, precipfraccld, & |
---|
277 | rain, rainclr, raincld, snow, snowclr, snowcld, & |
---|
278 | qraindiag, qsnowdiag, dqrauto, dqrcol, dqrmelt, dqrfreez, & |
---|
279 | dqsauto, dqsagg, dqsrim, dqsmelt, dqsfreez) |
---|
280 | |
---|
281 | USE lmdz_lscp_ini, ONLY : prt_level, lunout |
---|
282 | USE lmdz_lscp_ini, ONLY : RCPD, RLSTT, RLVTT, RLMLT, RVTMP2, RTT, RD, RG, RPI |
---|
283 | USE lmdz_lscp_tools, ONLY : calc_qsat_ecmwf |
---|
284 | |
---|
285 | USE lmdz_lscp_ini, ONLY : cld_lc_con, cld_tau_con, cld_expo_con, seuil_neb, & |
---|
286 | cld_lc_lsc, cld_tau_lsc, cld_expo_lsc, rain_int_min, & |
---|
287 | thresh_precip_frac, gamma_col, gamma_agg, gamma_rim, & |
---|
288 | rho_rain, r_rain, r_snow, rho_ice, & |
---|
289 | tau_auto_snow_min, tau_auto_snow_max, & |
---|
290 | thresh_precip_frac, eps, & |
---|
291 | gamma_melt, alpha_freez, beta_freez, temp_nowater, & |
---|
292 | iflag_cloudth_vert, iflag_rain_incloud_vol, & |
---|
293 | cld_lc_lsc_snow, cld_lc_con_snow, gamma_freez, & |
---|
294 | rain_fallspeed_clr, rain_fallspeed_cld, & |
---|
295 | snow_fallspeed_clr, snow_fallspeed_cld |
---|
296 | |
---|
297 | |
---|
298 | IMPLICIT NONE |
---|
299 | |
---|
300 | INTEGER, INTENT(IN) :: klon !--number of horizontal grid points [-] |
---|
301 | REAL, INTENT(IN) :: dtime !--time step [s] |
---|
302 | |
---|
303 | REAL, INTENT(IN), DIMENSION(klon) :: paprsdn !--pressure at the bottom interface of the layer [Pa] |
---|
304 | REAL, INTENT(IN), DIMENSION(klon) :: paprsup !--pressure at the top interface of the layer [Pa] |
---|
305 | REAL, INTENT(IN), DIMENSION(klon) :: pplay !--pressure in the middle of the layer [Pa] |
---|
306 | |
---|
307 | REAL, INTENT(IN), DIMENSION(klon) :: ctot_vol !--volumic cloud fraction [-] |
---|
308 | LOGICAL, INTENT(IN), DIMENSION(klon) :: ptconv !--true if we are in a convective point |
---|
309 | |
---|
310 | REAL, INTENT(INOUT), DIMENSION(klon) :: temp !--current temperature [K] |
---|
311 | REAL, INTENT(INOUT), DIMENSION(klon) :: qvap !--current water vapor specific humidity [kg/kg] |
---|
312 | REAL, INTENT(INOUT), DIMENSION(klon) :: qliq !--current liquid water specific humidity [kg/kg] |
---|
313 | REAL, INTENT(INOUT), DIMENSION(klon) :: qice !--current ice water specific humidity [kg/kg] |
---|
314 | REAL, INTENT(IN), DIMENSION(klon) :: icefrac !--ice fraction [-] |
---|
315 | REAL, INTENT(IN), DIMENSION(klon) :: cldfra !--cloud fraction [-] |
---|
316 | |
---|
317 | REAL, INTENT(INOUT), DIMENSION(klon) :: precipfracclr !--fraction of precipitation in the clear sky IN THE LAYER ABOVE [-] |
---|
318 | REAL, INTENT(INOUT), DIMENSION(klon) :: precipfraccld !--fraction of precipitation in the cloudy air IN THE LAYER ABOVE [-] |
---|
319 | !--NB. at the end of the routine, becomes the fraction of precip |
---|
320 | !--in the current layer |
---|
321 | |
---|
322 | REAL, INTENT(INOUT), DIMENSION(klon) :: rain !--flux of rain gridbox-mean coming from the layer above [kg/s/m2] |
---|
323 | REAL, INTENT(INOUT), DIMENSION(klon) :: rainclr !--flux of rain gridbox-mean in clear sky coming from the layer above [kg/s/m2] |
---|
324 | REAL, INTENT(INOUT), DIMENSION(klon) :: raincld !--flux of rain gridbox-mean in cloudy air coming from the layer above [kg/s/m2] |
---|
325 | REAL, INTENT(INOUT), DIMENSION(klon) :: snow !--flux of snow gridbox-mean coming from the layer above [kg/s/m2] |
---|
326 | REAL, INTENT(INOUT), DIMENSION(klon) :: snowclr !--flux of snow gridbox-mean in clear sky coming from the layer above [kg/s/m2] |
---|
327 | REAL, INTENT(INOUT), DIMENSION(klon) :: snowcld !--flux of snow gridbox-mean in cloudy air coming from the layer above [kg/s/m2] |
---|
328 | |
---|
329 | REAL, INTENT(OUT), DIMENSION(klon) :: qraindiag !--DIAGNOSTIC specific rain content [kg/kg] |
---|
330 | REAL, INTENT(OUT), DIMENSION(klon) :: qsnowdiag !--DIAGNOSTIC specific snow content [kg/kg] |
---|
331 | REAL, INTENT(OUT), DIMENSION(klon) :: dqrcol !--rain tendendy due to collection by rain of liquid cloud droplets [kg/kg/s] |
---|
332 | REAL, INTENT(OUT), DIMENSION(klon) :: dqsagg !--snow tendency due to collection of lcoud ice by aggregation [kg/kg/s] |
---|
333 | REAL, INTENT(OUT), DIMENSION(klon) :: dqrauto !--rain tendency due to autoconversion of cloud liquid [kg/kg/s] |
---|
334 | REAL, INTENT(OUT), DIMENSION(klon) :: dqsauto !--snow tendency due to autoconversion of cloud ice [kg/kg/s] |
---|
335 | REAL, INTENT(OUT), DIMENSION(klon) :: dqsrim !--snow tendency due to riming [kg/kg/s] |
---|
336 | REAL, INTENT(OUT), DIMENSION(klon) :: dqsmelt !--snow tendency due to melting [kg/kg/s] |
---|
337 | REAL, INTENT(OUT), DIMENSION(klon) :: dqrmelt !--rain tendency due to melting [kg/kg/s] |
---|
338 | REAL, INTENT(OUT), DIMENSION(klon) :: dqsfreez !--snow tendency due to freezing [kg/kg/s] |
---|
339 | REAL, INTENT(OUT), DIMENSION(klon) :: dqrfreez !--rain tendency due to freezing [kg/kg/s] |
---|
340 | |
---|
341 | |
---|
342 | |
---|
343 | !--Local variables |
---|
344 | |
---|
345 | INTEGER :: i |
---|
346 | !--dhum_to_dflux: coef to convert a specific quantity variation to a flux variation |
---|
347 | REAL, DIMENSION(klon) :: dhum_to_dflux |
---|
348 | REAL, DIMENSION(klon) :: qtot !--includes vap, liq, ice and precip |
---|
349 | |
---|
350 | !--Partition of the fluxes |
---|
351 | REAL :: dcldfra |
---|
352 | REAL :: precipfractot |
---|
353 | REAL :: dprecipfracclr, dprecipfraccld |
---|
354 | REAL :: drainclr, dsnowclr |
---|
355 | REAL :: draincld, dsnowcld |
---|
356 | |
---|
357 | !--Collection, aggregation and riming |
---|
358 | REAL :: eff_cldfra |
---|
359 | REAL :: coef_col, coef_agg, coef_rim, coef_tmp, qrain_tmp |
---|
360 | REAL :: Eff_rain_liq, Eff_snow_ice, Eff_snow_liq |
---|
361 | REAL :: rho_snow |
---|
362 | REAL :: dqlcol !--loss of liquid cloud content due to collection by rain [kg/kg/s] |
---|
363 | REAL :: dqiagg !--loss of ice cloud content due to collection by aggregation [kg/kg/s] |
---|
364 | REAL :: dqlrim !--loss of liquid cloud content due to riming on snow [kg/kg/s] |
---|
365 | |
---|
366 | !--Autoconversion |
---|
367 | REAL :: qthresh_auto_rain, tau_auto_rain, expo_auto_rain |
---|
368 | REAL :: qthresh_auto_snow, tau_auto_snow, expo_auto_snow |
---|
369 | REAL :: dqlauto !--loss of liquid cloud content due to autoconversion to rain [kg/kg/s] |
---|
370 | REAL :: dqiauto !--loss of ice cloud content due to autoconversion to snow [kg/kg/s] |
---|
371 | |
---|
372 | !--Melting |
---|
373 | REAL :: dqsmelt_max, air_thermal_conduct |
---|
374 | REAL :: nb_snowflake_clr, nb_snowflake_cld |
---|
375 | REAL :: capa_snowflake, temp_wetbulb |
---|
376 | REAL :: rho, r_ice |
---|
377 | REAL :: dqsclrmelt, dqscldmelt, dqstotmelt |
---|
378 | REAL, DIMENSION(klon) :: qzero, qsat, dqsat |
---|
379 | |
---|
380 | !--Freezing |
---|
381 | REAL :: dqrfreez_max |
---|
382 | REAL :: tau_freez |
---|
383 | REAL :: dqrclrfreez, dqrcldfreez, dqrtotfreez, dqrtotfreez_step1, dqrtotfreez_step2 |
---|
384 | REAL :: coef_freez |
---|
385 | REAL :: dqifreez !--loss of ice cloud content due to collection of ice from rain [kg/kg/s] |
---|
386 | REAL :: Eff_rain_ice |
---|
387 | |
---|
388 | |
---|
389 | !--Initialisation of variables |
---|
390 | |
---|
391 | |
---|
392 | qzero(:) = 0. |
---|
393 | |
---|
394 | dqrcol(:) = 0. |
---|
395 | dqsagg(:) = 0. |
---|
396 | dqsauto(:) = 0. |
---|
397 | dqrauto(:) = 0. |
---|
398 | dqsrim(:) = 0. |
---|
399 | dqrmelt(:) = 0. |
---|
400 | dqsmelt(:) = 0. |
---|
401 | dqrfreez(:) = 0. |
---|
402 | dqsfreez(:) = 0. |
---|
403 | |
---|
404 | |
---|
405 | DO i = 1, klon |
---|
406 | |
---|
407 | !--Variables initialisation |
---|
408 | dqlcol = 0. |
---|
409 | dqiagg = 0. |
---|
410 | dqiauto = 0. |
---|
411 | dqlauto = 0. |
---|
412 | dqlrim = 0. |
---|
413 | |
---|
414 | !-- dhum_to_dflux = rho * dz/dt = 1 / g * dP/dt |
---|
415 | dhum_to_dflux(i) = ( paprsdn(i) - paprsup(i) ) / RG / dtime |
---|
416 | qtot(i) = qvap(i) + qliq(i) + qice(i) & |
---|
417 | + ( raincld(i) + rainclr(i) + snowcld(i) + snowclr(i) ) / dhum_to_dflux(i) |
---|
418 | |
---|
419 | !------------------------------------------------------------ |
---|
420 | !-- PRECIPITATION FRACTIONS UPDATE |
---|
421 | !------------------------------------------------------------ |
---|
422 | !--The goal of this routine is to reattribute precipitation fractions |
---|
423 | !--and fluxes to clear or cloudy air, depending on the variation of |
---|
424 | !--the cloud fraction on the vertical dimension. We assume a |
---|
425 | !--maximum-random overlap of the cloud cover (see Jakob and Klein, 2000, |
---|
426 | !--and LTP thesis, 2021) |
---|
427 | !--NB. in fact, we assume a maximum-random overlap of the total precip. frac |
---|
428 | |
---|
429 | !--Initialisation |
---|
430 | precipfractot = precipfracclr(i) + precipfraccld(i) |
---|
431 | |
---|
432 | !--Instead of using the cloud cover which was use in LTP thesis, we use the |
---|
433 | !--total precip. fraction to compute the maximum-random overlap. This is |
---|
434 | !--because all the information of the cloud cover is embedded into |
---|
435 | !--precipfractot, and this allows for taking into account the potential |
---|
436 | !--reduction of the precipitation fraction because either the flux is too |
---|
437 | !--small (see barrier at the end of poprecip_postcld) or the flux is completely |
---|
438 | !--evaporated (see barrier at the end of poprecip_precld) |
---|
439 | !--NB. precipfraccld(i) is here the cloud fraction of the layer above |
---|
440 | !precipfractot = 1. - ( 1. - precipfractot ) * & |
---|
441 | ! ( 1. - MAX( cldfra(i), precipfraccld(i) ) ) & |
---|
442 | ! / ( 1. - MIN( precipfraccld(i), 1. - eps ) ) |
---|
443 | |
---|
444 | |
---|
445 | IF ( precipfraccld(i) .GT. ( 1. - eps ) ) THEN |
---|
446 | precipfractot = 1. |
---|
447 | ELSE |
---|
448 | precipfractot = 1. - ( 1. - precipfractot ) * & |
---|
449 | ( 1. - MAX( cldfra(i), precipfraccld(i) ) ) & |
---|
450 | / ( 1. - precipfraccld(i) ) |
---|
451 | ENDIF |
---|
452 | |
---|
453 | !--precipfraccld(i) is here the cloud fraction of the layer above |
---|
454 | dcldfra = cldfra(i) - precipfraccld(i) |
---|
455 | !--Tendency of the clear-sky precipitation fraction. We add a MAX on the |
---|
456 | !--calculation of the current CS precip. frac. |
---|
457 | !dprecipfracclr = MAX( 0., ( precipfractot - cldfra(i) ) ) - precipfracclr(i) |
---|
458 | !--We remove it, because precipfractot is guaranteed to be > cldfra (the MAX is activated |
---|
459 | !--if precipfractot < cldfra) |
---|
460 | dprecipfracclr = ( precipfractot - cldfra(i) ) - precipfracclr(i) |
---|
461 | !--Tendency of the cloudy precipitation fraction. We add a MAX on the |
---|
462 | !--calculation of the current CS precip. frac. |
---|
463 | !dprecipfraccld = MAX( dcldfra , - precipfraccld(i) ) |
---|
464 | !--We remove it, because cldfra is guaranteed to be > 0 (the MAX is activated |
---|
465 | !--if cldfra < 0) |
---|
466 | dprecipfraccld = dcldfra |
---|
467 | |
---|
468 | |
---|
469 | !--If the cloud extends |
---|
470 | IF ( dprecipfraccld .GT. 0. ) THEN |
---|
471 | !--If there is no CS precip, nothing happens. |
---|
472 | !--If there is, we reattribute some of the CS precip flux |
---|
473 | !--to the cloud precip flux, proportionnally to the |
---|
474 | !--decrease of the CS precip fraction |
---|
475 | IF ( precipfracclr(i) .LE. 0. ) THEN |
---|
476 | drainclr = 0. |
---|
477 | dsnowclr = 0. |
---|
478 | ELSE |
---|
479 | drainclr = dprecipfracclr / precipfracclr(i) * rainclr(i) |
---|
480 | dsnowclr = dprecipfracclr / precipfracclr(i) * snowclr(i) |
---|
481 | ENDIF |
---|
482 | !--If the cloud narrows |
---|
483 | ELSEIF ( dprecipfraccld .LT. 0. ) THEN |
---|
484 | !--We reattribute some of the cloudy precip flux |
---|
485 | !--to the CS precip flux, proportionnally to the |
---|
486 | !--decrease of the cloud precip fraction |
---|
487 | draincld = dprecipfraccld / precipfraccld(i) * raincld(i) |
---|
488 | dsnowcld = dprecipfraccld / precipfraccld(i) * snowcld(i) |
---|
489 | drainclr = - draincld |
---|
490 | dsnowclr = - dsnowcld |
---|
491 | !--If the cloud stays the same or if there is no cloud above and |
---|
492 | !--in the current layer, nothing happens |
---|
493 | ELSE |
---|
494 | drainclr = 0. |
---|
495 | dsnowclr = 0. |
---|
496 | ENDIF |
---|
497 | |
---|
498 | !--We add the tendencies |
---|
499 | !--The MAX is needed because in some cases, the flux can be slightly negative (numerical precision) |
---|
500 | precipfraccld(i) = precipfraccld(i) + dprecipfraccld |
---|
501 | precipfracclr(i) = precipfracclr(i) + dprecipfracclr |
---|
502 | rainclr(i) = MAX(0., rainclr(i) + drainclr) |
---|
503 | snowclr(i) = MAX(0., snowclr(i) + dsnowclr) |
---|
504 | raincld(i) = MAX(0., raincld(i) - drainclr) |
---|
505 | snowcld(i) = MAX(0., snowcld(i) - dsnowclr) |
---|
506 | |
---|
507 | !--If vertical heterogeneity is taken into account, we use |
---|
508 | !--the "true" volume fraction instead of a modified |
---|
509 | !--surface fraction (which is larger and artificially |
---|
510 | !--reduces the in-cloud water). |
---|
511 | IF ( ( iflag_cloudth_vert .GE. 3 ) .AND. ( iflag_rain_incloud_vol .EQ. 1 ) ) THEN |
---|
512 | eff_cldfra = ctot_vol(i) |
---|
513 | ELSE |
---|
514 | eff_cldfra = cldfra(i) |
---|
515 | ENDIF |
---|
516 | |
---|
517 | |
---|
518 | !--Start precipitation growth processes |
---|
519 | |
---|
520 | !--If the cloud is big enough, the precipitation processes activate |
---|
521 | ! TODO met on seuil_neb ici ? |
---|
522 | IF ( cldfra(i) .GE. seuil_neb ) THEN |
---|
523 | |
---|
524 | !--------------------------------------------------------- |
---|
525 | !-- COLLECTION AND AGGREGATION |
---|
526 | !--------------------------------------------------------- |
---|
527 | !--Collection: processus through which rain collects small liquid droplets |
---|
528 | !--in suspension, and add it to the rain flux |
---|
529 | !--Aggregation: same for snow (precip flux) and ice crystals (in suspension) |
---|
530 | !--Those processes are treated before autoconversion because we do not |
---|
531 | !--want to collect/aggregate the newly formed fluxes, which already |
---|
532 | !--"saw" the cloud as they come from it |
---|
533 | !--The formulas come from Muench and Lohmann 2020 |
---|
534 | |
---|
535 | !--gamma_col: tuning coefficient [-] |
---|
536 | !--rho_rain: volumic mass of rain [kg/m3] |
---|
537 | !--r_rain: size of the rain droplets [m] |
---|
538 | !--Eff_rain_liq: efficiency of the collection process [-] (between 0 and 1) |
---|
539 | !--dqlcol is a gridbox-mean quantity, as is qliq and raincld. They are |
---|
540 | !--divided by respectively eff_cldfra, eff_cldfra and precipfraccld to |
---|
541 | !--get in-cloud mean quantities. The two divisions by eff_cldfra are |
---|
542 | !--then simplified. |
---|
543 | |
---|
544 | !--The collection efficiency is perfect. |
---|
545 | Eff_rain_liq = 1. |
---|
546 | coef_col = gamma_col * 3. / 4. / rho_rain / r_rain * Eff_rain_liq |
---|
547 | IF ( raincld(i) .GT. 0. ) THEN |
---|
548 | !--Exact explicit version, which does not need a barrier because of |
---|
549 | !--the exponential decrease |
---|
550 | dqlcol = qliq(i) * ( EXP( - dtime * coef_col * raincld(i) / precipfraccld(i) ) - 1. ) |
---|
551 | |
---|
552 | !--Add tendencies |
---|
553 | qliq(i) = qliq(i) + dqlcol |
---|
554 | raincld(i) = raincld(i) - dqlcol * dhum_to_dflux(i) |
---|
555 | |
---|
556 | !--Diagnostic tendencies |
---|
557 | dqrcol(i) = - dqlcol / dtime |
---|
558 | ENDIF |
---|
559 | |
---|
560 | !--Same as for aggregation |
---|
561 | !--Eff_snow_liq formula: following Milbrandt and Yau 2005, |
---|
562 | !--it s a product of a collection efficiency and a sticking efficiency |
---|
563 | Eff_snow_ice = 0.05 * EXP( 0.1 * ( temp(i) - RTT ) ) |
---|
564 | !--rho_snow formula follows Brandes et al. 2007 (JAMC) |
---|
565 | rho_snow = 1.e3 * 0.178 * ( r_snow * 2. * 1000. )**(-0.922) |
---|
566 | coef_agg = gamma_agg * 3. / 4. / rho_snow / r_snow * Eff_snow_ice |
---|
567 | IF ( snowcld(i) .GT. 0. ) THEN |
---|
568 | !--Exact explicit version, which does not need a barrier because of |
---|
569 | !--the exponential decrease |
---|
570 | dqiagg = qice(i) * ( EXP( - dtime * coef_agg * snowcld(i) / precipfraccld(i) ) - 1. ) |
---|
571 | |
---|
572 | !--Add tendencies |
---|
573 | qice(i) = qice(i) + dqiagg |
---|
574 | snowcld(i) = snowcld(i) - dqiagg * dhum_to_dflux(i) |
---|
575 | |
---|
576 | !--Diagnostic tendencies |
---|
577 | dqsagg(i) = - dqiagg / dtime |
---|
578 | ENDIF |
---|
579 | |
---|
580 | |
---|
581 | !--------------------------------------------------------- |
---|
582 | !-- AUTOCONVERSION |
---|
583 | !--------------------------------------------------------- |
---|
584 | !--Autoconversion converts liquid droplets/ice crystals into |
---|
585 | !--rain drops/snowflakes. It relies on the formulations by |
---|
586 | !--Sundqvist 1978. |
---|
587 | |
---|
588 | !--If we are in a convective point, we have different parameters |
---|
589 | !--for the autoconversion |
---|
590 | IF ( ptconv(i) ) THEN |
---|
591 | qthresh_auto_rain = cld_lc_con |
---|
592 | qthresh_auto_snow = cld_lc_con_snow |
---|
593 | |
---|
594 | tau_auto_rain = cld_tau_con |
---|
595 | !--tau for snow depends on the ice fraction in mixed-phase clouds |
---|
596 | tau_auto_snow = tau_auto_snow_max & |
---|
597 | + ( tau_auto_snow_min - tau_auto_snow_max ) * ( 1. - icefrac(i) ) |
---|
598 | |
---|
599 | expo_auto_rain = cld_expo_con |
---|
600 | expo_auto_snow = cld_expo_con |
---|
601 | ELSE |
---|
602 | qthresh_auto_rain = cld_lc_lsc |
---|
603 | qthresh_auto_snow = cld_lc_lsc_snow |
---|
604 | |
---|
605 | tau_auto_rain = cld_tau_lsc |
---|
606 | !--tau for snow depends on the ice fraction in mixed-phase clouds |
---|
607 | tau_auto_snow = tau_auto_snow_max & |
---|
608 | + ( tau_auto_snow_min - tau_auto_snow_max ) * ( 1. - icefrac(i) ) |
---|
609 | |
---|
610 | expo_auto_rain = cld_expo_lsc |
---|
611 | expo_auto_snow = cld_expo_lsc |
---|
612 | ENDIF |
---|
613 | |
---|
614 | |
---|
615 | ! Liquid water quantity to remove according to (Sundqvist, 1978) |
---|
616 | ! dqliq/dt = -qliq/tau * ( 1-exp(-(qliqincld/qthresh)**2) ) |
---|
617 | ! |
---|
618 | !--And same formula for ice |
---|
619 | ! |
---|
620 | !--We first treat the second term (with exponential) in an explicit way |
---|
621 | !--and then treat the first term (-q/tau) in an exact way |
---|
622 | |
---|
623 | dqlauto = - qliq(i) * ( 1. - exp( - dtime / tau_auto_rain * ( 1. - exp( & |
---|
624 | - ( qliq(i) / eff_cldfra / qthresh_auto_rain ) ** expo_auto_rain ) ) ) ) |
---|
625 | |
---|
626 | dqiauto = - qice(i) * ( 1. - exp( - dtime / tau_auto_snow * ( 1. - exp( & |
---|
627 | - ( qice(i) / eff_cldfra / qthresh_auto_snow ) ** expo_auto_snow ) ) ) ) |
---|
628 | |
---|
629 | |
---|
630 | !--Barriers so that we don't create more rain/snow |
---|
631 | !--than there is liquid/ice |
---|
632 | dqlauto = MAX( - qliq(i), dqlauto ) |
---|
633 | dqiauto = MAX( - qice(i), dqiauto ) |
---|
634 | |
---|
635 | !--Add tendencies |
---|
636 | qliq(i) = qliq(i) + dqlauto |
---|
637 | qice(i) = qice(i) + dqiauto |
---|
638 | raincld(i) = raincld(i) - dqlauto * dhum_to_dflux(i) |
---|
639 | snowcld(i) = snowcld(i) - dqiauto * dhum_to_dflux(i) |
---|
640 | |
---|
641 | !--Diagnostic tendencies |
---|
642 | dqsauto(i) = - dqiauto / dtime |
---|
643 | dqrauto(i) = - dqlauto / dtime |
---|
644 | |
---|
645 | |
---|
646 | !--------------------------------------------------------- |
---|
647 | !-- RIMING |
---|
648 | !--------------------------------------------------------- |
---|
649 | !--Process which converts liquid droplets in suspension into |
---|
650 | !--snow because of the collision between |
---|
651 | !--those and falling snowflakes. |
---|
652 | !--The formula comes from Muench and Lohmann 2020 |
---|
653 | !--NB.: this process needs a temperature adjustment |
---|
654 | |
---|
655 | !--Eff_snow_liq formula: following Seifert and Beheng 2006, |
---|
656 | !--assuming a cloud droplet diameter of 20 microns. |
---|
657 | Eff_snow_liq = 0.2 |
---|
658 | !--rho_snow formula follows Brandes et al. 2007 (JAMC) |
---|
659 | rho_snow = 1.e3 * 0.178 * ( r_snow * 2. * 1000. )**(-0.922) |
---|
660 | coef_rim = gamma_rim * 3. / 4. / rho_snow / r_snow * Eff_snow_liq |
---|
661 | IF ( snowcld(i) .GT. 0. ) THEN |
---|
662 | !--Exact version, which does not need a barrier because of |
---|
663 | !--the exponential decrease |
---|
664 | dqlrim = qliq(i) * ( EXP( - dtime * coef_rim * snowcld(i) / precipfraccld(i) ) - 1. ) |
---|
665 | |
---|
666 | !--Add tendencies |
---|
667 | !--The MAX is needed because in some cases, the flux can be slightly negative (numerical precision) |
---|
668 | qliq(i) = qliq(i) + dqlrim |
---|
669 | snowcld(i) = snowcld(i) - dqlrim * dhum_to_dflux(i) |
---|
670 | |
---|
671 | !--Temperature adjustment with the release of latent |
---|
672 | !--heat because of solid condensation |
---|
673 | temp(i) = temp(i) - dqlrim * RLMLT / RCPD & |
---|
674 | / ( 1. + RVTMP2 * qtot(i) ) |
---|
675 | |
---|
676 | !--Diagnostic tendencies |
---|
677 | dqsrim(i) = - dqlrim / dtime |
---|
678 | ENDIF |
---|
679 | |
---|
680 | ENDIF ! cldfra .GE. seuil_neb |
---|
681 | |
---|
682 | ENDDO ! loop on klon |
---|
683 | |
---|
684 | |
---|
685 | !--Re-calculation of saturation specific humidity |
---|
686 | !--because riming changed temperature |
---|
687 | CALL calc_qsat_ecmwf(klon, temp, qzero, pplay, RTT, 0, .FALSE., qsat, dqsat) |
---|
688 | |
---|
689 | DO i = 1, klon |
---|
690 | |
---|
691 | !--------------------------------------------------------- |
---|
692 | !-- MELTING |
---|
693 | !--------------------------------------------------------- |
---|
694 | !--Process through which snow melts into rain. |
---|
695 | !--The formula is homemade. |
---|
696 | !--NB.: this process needs a temperature adjustment |
---|
697 | |
---|
698 | !--dqsmelt_max : maximum snow melting so that temperature |
---|
699 | !-- stays higher than 273 K [kg/kg] |
---|
700 | !--capa_snowflake : capacitance of a snowflake, equal to |
---|
701 | !-- the radius if the snowflake is a sphere [m] |
---|
702 | !--temp_wetbulb : wet-bulb temperature [K] |
---|
703 | !--snow_fallspeed : snow fall velocity (in clear/cloudy sky) [m/s] |
---|
704 | !--air_thermal_conduct : thermal conductivity of the air [J/m/K/s] |
---|
705 | !--gamma_melt : tuning parameter for melting [-] |
---|
706 | !--nb_snowflake : number of snowflakes (in clear/cloudy air) [-] |
---|
707 | |
---|
708 | IF ( ( snowclr(i) + snowcld(i) ) .GT. 0. ) THEN |
---|
709 | !--Computed according to |
---|
710 | !--Cpdry * Delta T * (1 + (Cpvap/Cpdry - 1) * qtot) = Lfusion * Delta q |
---|
711 | dqsmelt_max = MIN(0., ( RTT - temp(i) ) / RLMLT * RCPD & |
---|
712 | * ( 1. + RVTMP2 * qtot(i) )) |
---|
713 | |
---|
714 | !--Initialisation |
---|
715 | dqsclrmelt = 0. |
---|
716 | dqscldmelt = 0. |
---|
717 | |
---|
718 | !--We assume that the snowflakes are spherical |
---|
719 | capa_snowflake = r_snow |
---|
720 | !--Thermal conductivity of the air, empirical formula from Beard and Pruppacher (1971) |
---|
721 | air_thermal_conduct = ( 5.69 + 0.017 * ( temp(i) - RTT ) ) * 1.e-3 * 4.184 |
---|
722 | !--rho_snow formula follows Brandes et al. 2007 (JAMC) |
---|
723 | rho_snow = 1.e3 * 0.178 * ( r_snow * 2. * 1000. )**(-0.922) |
---|
724 | |
---|
725 | !--In clear air |
---|
726 | IF ( ( snowclr(i) .GT. 0. ) .AND. ( precipfracclr(i) .GT. 0. ) ) THEN |
---|
727 | !--Formula for the wet-bulb temperature from ECMWF (IFS) |
---|
728 | !--The vapor used is the vapor in the clear sky |
---|
729 | temp_wetbulb = temp(i) & |
---|
730 | - ( qsat(i) - ( qvap(i) - cldfra(i) * qsat(i) ) / ( 1. - cldfra(i) ) ) & |
---|
731 | * ( 1329.31 + 0.0074615 * ( pplay(i) - 0.85e5 ) & |
---|
732 | - 40.637 * ( temp(i) - 275. ) ) |
---|
733 | !--Calculated according to |
---|
734 | !-- flux = velocity_snowflakes * nb_snowflakes * volume_snowflakes * rho_snow |
---|
735 | nb_snowflake_clr = snowclr(i) / precipfracclr(i) / snow_fallspeed_clr & |
---|
736 | / ( 4. / 3. * RPI * r_snow**3. * rho_snow ) |
---|
737 | dqsclrmelt = - nb_snowflake_clr * 4. * RPI * air_thermal_conduct & |
---|
738 | * capa_snowflake / RLMLT * gamma_melt & |
---|
739 | * MAX(0., temp_wetbulb - RTT) * dtime |
---|
740 | |
---|
741 | !--Barrier to limit the melting flux to the clr snow flux in the mesh |
---|
742 | dqsclrmelt = MAX( dqsclrmelt , -snowclr(i) / dhum_to_dflux(i)) |
---|
743 | ENDIF |
---|
744 | |
---|
745 | |
---|
746 | !--In cloudy air |
---|
747 | IF ( ( snowcld(i) .GT. 0. ) .AND. ( precipfraccld(i) .GT. 0. ) ) THEN |
---|
748 | !--As the air is saturated, the wet-bulb temperature is equal to the |
---|
749 | !--temperature |
---|
750 | temp_wetbulb = temp(i) |
---|
751 | !--Calculated according to |
---|
752 | !-- flux = velocity_snowflakes * nb_snowflakes * volume_snowflakes * rho_snow |
---|
753 | nb_snowflake_cld = snowcld(i) / precipfraccld(i) / snow_fallspeed_cld & |
---|
754 | / ( 4. / 3. * RPI * r_snow**3. * rho_snow ) |
---|
755 | dqscldmelt = - nb_snowflake_cld * 4. * RPI * air_thermal_conduct & |
---|
756 | * capa_snowflake / RLMLT * gamma_melt & |
---|
757 | * MAX(0., temp_wetbulb - RTT) * dtime |
---|
758 | |
---|
759 | !--Barrier to limit the melting flux to the cld snow flux in the mesh |
---|
760 | dqscldmelt = MAX(dqscldmelt , - snowcld(i) / dhum_to_dflux(i)) |
---|
761 | ENDIF |
---|
762 | |
---|
763 | |
---|
764 | !--Barrier on temperature. If the total melting flux leads to a |
---|
765 | !--positive temperature, it is limited to keep temperature above 0 degC. |
---|
766 | !--It is activated if the total is LOWER than the max |
---|
767 | !--because everything is negative |
---|
768 | dqstotmelt = dqsclrmelt + dqscldmelt |
---|
769 | IF ( dqstotmelt .LT. dqsmelt_max ) THEN |
---|
770 | !--We redistribute the max melted snow keeping |
---|
771 | !--the clear/cloud partition of the melted snow |
---|
772 | dqsclrmelt = dqsmelt_max * dqsclrmelt / dqstotmelt |
---|
773 | dqscldmelt = dqsmelt_max * dqscldmelt / dqstotmelt |
---|
774 | dqstotmelt = dqsmelt_max |
---|
775 | |
---|
776 | ENDIF |
---|
777 | |
---|
778 | !--Add tendencies |
---|
779 | !--The MAX is needed because in some cases, the flux can be slightly negative (numerical precision) |
---|
780 | rainclr(i) = MAX(0., rainclr(i) - dqsclrmelt * dhum_to_dflux(i)) |
---|
781 | raincld(i) = MAX(0., raincld(i) - dqscldmelt * dhum_to_dflux(i)) |
---|
782 | snowclr(i) = MAX(0., snowclr(i) + dqsclrmelt * dhum_to_dflux(i)) |
---|
783 | snowcld(i) = MAX(0., snowcld(i) + dqscldmelt * dhum_to_dflux(i)) |
---|
784 | |
---|
785 | !--Temperature adjustment with the release of latent |
---|
786 | !--heat because of melting |
---|
787 | temp(i) = temp(i) + dqstotmelt * RLMLT / RCPD & |
---|
788 | / ( 1. + RVTMP2 * qtot(i) ) |
---|
789 | |
---|
790 | !--Diagnostic tendencies |
---|
791 | dqrmelt(i) = - dqstotmelt / dtime |
---|
792 | dqsmelt(i) = dqstotmelt / dtime |
---|
793 | |
---|
794 | ENDIF |
---|
795 | |
---|
796 | |
---|
797 | !--------------------------------------------------------- |
---|
798 | !-- FREEZING |
---|
799 | !--------------------------------------------------------- |
---|
800 | !--Process through which rain freezes into snow. |
---|
801 | !-- We parameterize it as a 2 step process: |
---|
802 | !--first: freezing following collision with ice crystals |
---|
803 | !--second: immersion freezing following (inspired by Bigg 1953) |
---|
804 | !--the latter is parameterized as an exponential decrease of the rain |
---|
805 | !--water content with a homemade formulya |
---|
806 | !--This is based on a caracteritic time of freezing, which |
---|
807 | !--exponentially depends on temperature so that it is |
---|
808 | !--equal to 1 for temp_nowater (see below) and is close to |
---|
809 | !--0 for RTT (=273.15 K). |
---|
810 | !--NB.: this process needs a temperature adjustment |
---|
811 | !--dqrfreez_max : maximum rain freezing so that temperature |
---|
812 | !-- stays lower than 273 K [kg/kg] |
---|
813 | !--tau_freez : caracteristic time of freezing [s] |
---|
814 | !--gamma_freez : tuning parameter [s-1] |
---|
815 | !--alpha_freez : tuning parameter for the shape of the exponential curve [-] |
---|
816 | !--temp_nowater : temperature below which no liquid water exists [K] (about -40 degC) |
---|
817 | |
---|
818 | IF ( ( rainclr(i) + raincld(i) ) .GT. 0. ) THEN |
---|
819 | |
---|
820 | |
---|
821 | !--1st step: freezing following collision with ice crystals |
---|
822 | !--Sub-process of freezing which quantifies the collision between |
---|
823 | !--ice crystals in suspension and falling rain droplets. |
---|
824 | !--The rain droplets freeze, becoming graupel, and carrying |
---|
825 | !--the ice crystal (which acted as an ice nucleating particle). |
---|
826 | !--The formula is adapted from the riming formula. |
---|
827 | !--it works only in the cloudy part |
---|
828 | |
---|
829 | dqifreez = 0. |
---|
830 | dqrtotfreez_step1 = 0. |
---|
831 | |
---|
832 | IF ( ( qice(i) .GT. 0. ) .AND. ( cldfra(i) .GT. 0. ) .AND. & |
---|
833 | ( raincld(i) .GT. 0. ) .AND. ( precipfraccld(i) .GT. 0. ) ) THEN |
---|
834 | dqrclrfreez = 0. |
---|
835 | dqrcldfreez = 0. |
---|
836 | |
---|
837 | !--Computed according to |
---|
838 | !--Cpdry * Delta T * (1 + (Cpvap/Cpdry - 1) * qtot) = Lfusion * Delta q |
---|
839 | dqrfreez_max = MIN(0., ( temp(i) - RTT ) / RLMLT * RCPD & |
---|
840 | * ( 1. + RVTMP2 * qtot(i) )) |
---|
841 | |
---|
842 | |
---|
843 | !--The collision efficiency is assumed unity |
---|
844 | Eff_rain_ice = 1. |
---|
845 | coef_freez = gamma_freez * 3. / 4. / rho_rain / r_rain * Eff_rain_ice |
---|
846 | !--Exact version, which does not need a barrier because of |
---|
847 | !--the exponential decrease. |
---|
848 | dqifreez = qice(i) * ( EXP( - dtime * coef_freez * raincld(i) / precipfraccld(i) ) - 1. ) |
---|
849 | |
---|
850 | !--We add the part of rain water that freezes, limited by a temperature barrier |
---|
851 | !--This quantity is calculated assuming that the number of drop that freeze correspond to the number |
---|
852 | !--of crystals collected (and assuming uniform distributions of ice crystals and rain drops) |
---|
853 | !--The ice specific humidity that collide with rain is dqi = dNi 4/3 PI rho_ice r_ice**3 |
---|
854 | !--The rain that collide with ice is, similarly, dqr = dNr 4/3 PI rho_rain r_rain**3 |
---|
855 | !--The assumption above corresponds to dNi = dNr, i.e., |
---|
856 | !-- dqr = dqi * (4/3 PI rho_rain * r_rain**3) / (4/3 PI rho_ice * r_ice**3) |
---|
857 | !--Dry density [kg/m3] |
---|
858 | rho = pplay(i) / temp(i) / RD |
---|
859 | !--r_ice formula from Sun and Rikus (1999) |
---|
860 | r_ice = 1.e-6 * ( 45.8966 * ( qice(i) / cldfra(i) * rho * 1e3 )**0.2214 & |
---|
861 | + 0.7957 * ( qice(i) / cldfra(i) * rho * 1e3 )**0.2535 * ( temp(i) - RTT + 190. ) ) / 2. |
---|
862 | dqrcldfreez = dqifreez * rho_rain * r_rain**3. / ( rho_ice * r_ice**3. ) |
---|
863 | dqrcldfreez = MAX(dqrcldfreez, - raincld(i) / dhum_to_dflux(i)) |
---|
864 | dqrcldfreez = MAX(dqrcldfreez, dqrfreez_max) |
---|
865 | dqrtotfreez_step1 = dqrcldfreez |
---|
866 | |
---|
867 | !--Add tendencies |
---|
868 | !--The MAX is needed because in some cases, the flux can be slightly negative (numerical precision) |
---|
869 | qice(i) = qice(i) + dqifreez |
---|
870 | raincld(i) = MAX(0., raincld(i) + dqrcldfreez * dhum_to_dflux(i)) |
---|
871 | snowcld(i) = MAX(0., snowcld(i) - dqrcldfreez * dhum_to_dflux(i) - dqifreez * dhum_to_dflux(i)) |
---|
872 | temp(i) = temp(i) - dqrtotfreez_step1 * RLMLT / RCPD & |
---|
873 | / ( 1. + RVTMP2 * qtot(i) ) |
---|
874 | |
---|
875 | ENDIF |
---|
876 | |
---|
877 | !-- Second step immersion freezing of rain drops |
---|
878 | !-- with a homemade timeconstant depending on temperature |
---|
879 | |
---|
880 | dqrclrfreez = 0. |
---|
881 | dqrcldfreez = 0. |
---|
882 | dqrtotfreez_step2 = 0. |
---|
883 | !--Computed according to |
---|
884 | !--Cpdry * Delta T * (1 + (Cpvap/Cpdry - 1) * qtot) = Lfusion * Delta q |
---|
885 | |
---|
886 | dqrfreez_max = MIN(0., ( temp(i) - RTT ) / RLMLT * RCPD & |
---|
887 | * ( 1. + RVTMP2 * qtot(i) )) |
---|
888 | |
---|
889 | |
---|
890 | tau_freez = 1. / ( beta_freez & |
---|
891 | * EXP( - alpha_freez * ( temp(i) - temp_nowater ) / ( RTT - temp_nowater ) ) ) |
---|
892 | |
---|
893 | |
---|
894 | !--In clear air |
---|
895 | IF ( rainclr(i) .GT. 0. ) THEN |
---|
896 | !--Exact solution of dqrain/dt = -qrain/tau_freez |
---|
897 | dqrclrfreez = rainclr(i) / dhum_to_dflux(i) * ( EXP( - dtime / tau_freez ) - 1. ) |
---|
898 | ENDIF |
---|
899 | |
---|
900 | !--In cloudy air |
---|
901 | IF ( raincld(i) .GT. 0. ) THEN |
---|
902 | !--Exact solution of dqrain/dt = -qrain/tau_freez |
---|
903 | dqrcldfreez = raincld(i) / dhum_to_dflux(i) * ( EXP( - dtime / tau_freez ) - 1. ) |
---|
904 | ENDIF |
---|
905 | |
---|
906 | !--temperature barrier step 2 |
---|
907 | !--It is activated if the total is LOWER than the max |
---|
908 | !--because everything is negative |
---|
909 | dqrtotfreez_step2 = dqrclrfreez + dqrcldfreez |
---|
910 | |
---|
911 | IF ( dqrtotfreez_step2 .LT. dqrfreez_max ) THEN |
---|
912 | !--We redistribute the max freezed rain keeping |
---|
913 | !--the clear/cloud partition of the freezing rain |
---|
914 | dqrclrfreez = dqrfreez_max * dqrclrfreez / dqrtotfreez_step2 |
---|
915 | dqrcldfreez = dqrfreez_max * dqrcldfreez / dqrtotfreez_step2 |
---|
916 | dqrtotfreez_step2 = dqrfreez_max |
---|
917 | ENDIF |
---|
918 | |
---|
919 | |
---|
920 | !--Add tendencies |
---|
921 | !--The MAX is needed because in some cases, the flux can be slightly negative (numerical precision) |
---|
922 | rainclr(i) = MAX(0., rainclr(i) + dqrclrfreez * dhum_to_dflux(i)) |
---|
923 | raincld(i) = MAX(0., raincld(i) + dqrcldfreez * dhum_to_dflux(i)) |
---|
924 | snowclr(i) = MAX(0., snowclr(i) - dqrclrfreez * dhum_to_dflux(i)) |
---|
925 | snowcld(i) = MAX(0., snowcld(i) - dqrcldfreez * dhum_to_dflux(i)) |
---|
926 | |
---|
927 | |
---|
928 | !--Temperature adjustment with the uptake of latent |
---|
929 | !--heat because of freezing |
---|
930 | temp(i) = temp(i) - dqrtotfreez_step2 * RLMLT / RCPD & |
---|
931 | / ( 1. + RVTMP2 * qtot(i) ) |
---|
932 | |
---|
933 | !--Diagnostic tendencies |
---|
934 | dqrtotfreez = dqrtotfreez_step1 + dqrtotfreez_step2 |
---|
935 | dqrfreez(i) = dqrtotfreez / dtime |
---|
936 | dqsfreez(i) = -(dqrtotfreez + dqifreez) / dtime |
---|
937 | |
---|
938 | ENDIF |
---|
939 | |
---|
940 | |
---|
941 | |
---|
942 | !--If the local flux of rain+snow in clear/cloudy air is lower than rain_int_min, |
---|
943 | !--we reduce the precipiration fraction in the clear/cloudy air so that the new |
---|
944 | !--local flux of rain+snow is equal to rain_int_min. |
---|
945 | !--Here, rain+snow is the gridbox-mean flux of precip. |
---|
946 | !--Therefore, (rain+snow)/precipfrac is the local flux of precip. |
---|
947 | !--If the local flux of precip is lower than rain_int_min, i.e., |
---|
948 | !-- (rain+snow)/precipfrac < rain_int_min , i.e., |
---|
949 | !-- (rain+snow)/rain_int_min < precipfrac , then we want to reduce |
---|
950 | !--the precip fraction to the equality, i.e., precipfrac = (rain+snow)/rain_int_min. |
---|
951 | !--Note that this is physically different than what is proposed in LTP thesis. |
---|
952 | precipfracclr(i) = MIN( precipfracclr(i), ( rainclr(i) + snowclr(i) ) / rain_int_min ) |
---|
953 | precipfraccld(i) = MIN( precipfraccld(i), ( raincld(i) + snowcld(i) ) / rain_int_min ) |
---|
954 | |
---|
955 | !--Calculate outputs |
---|
956 | rain(i) = rainclr(i) + raincld(i) |
---|
957 | snow(i) = snowclr(i) + snowcld(i) |
---|
958 | |
---|
959 | !--Diagnostics |
---|
960 | !--BEWARE this is indeed a diagnostic: this is an estimation from |
---|
961 | !--the value of the flux at the bottom interface of the mesh and |
---|
962 | !--and assuming an upstream numerical calculation |
---|
963 | !--If ok_radocond_snow is TRUE, then the diagnostic qsnowdiag is |
---|
964 | !--used for computing the total ice water content in the mesh |
---|
965 | !--for radiation only |
---|
966 | qraindiag(i) = ( rainclr(i) / ( pplay(i) / RD / temp(i) ) / rain_fallspeed_clr & |
---|
967 | + raincld(i) / ( pplay(i) / RD / temp(i) ) / rain_fallspeed_cld ) |
---|
968 | qsnowdiag(i) = ( snowclr(i) / ( pplay(i) / RD / temp(i) ) / snow_fallspeed_clr & |
---|
969 | + snowcld(i) / ( pplay(i) / RD / temp(i) ) / snow_fallspeed_cld ) |
---|
970 | |
---|
971 | |
---|
972 | ENDDO ! loop on klon |
---|
973 | |
---|
974 | |
---|
975 | END SUBROUTINE poprecip_postcld |
---|
976 | |
---|
977 | END MODULE lmdz_lscp_poprecip |
---|