| 1 | % Location of loadnc.m |
|---|
| 2 | path(path, '../common') |
|---|
| 3 | |
|---|
| 4 | do_plot_sw_libradtran = 1; |
|---|
| 5 | do_plot_sw_spartacus_extras = 0; % Need to have run "make i3rc_spartacus_extra" |
|---|
| 6 | |
|---|
| 7 | % Load libRadTran benchmark |
|---|
| 8 | load i3rc_mls_cumulus_LIBRADTRAN |
|---|
| 9 | |
|---|
| 10 | % Load ECRAD/SPARTACUS cases |
|---|
| 11 | sp_code = 'i3rc_mls_cumulus'; |
|---|
| 12 | scases = {[sp_code '_ECRAD_ICA_OUT.nc'],... % Stored result of running ECRAD in ICA mode |
|---|
| 13 | [sp_code '_3reg_3d_out.nc'],... |
|---|
| 14 | [sp_code '_3reg_3d_clustering_out.nc'],... |
|---|
| 15 | [sp_code '_mcica_out.nc'],... |
|---|
| 16 | [sp_code '_tc_out.nc'],... |
|---|
| 17 | [sp_code '_3reg_1d_out.nc']}; |
|---|
| 18 | id_ica = 1; |
|---|
| 19 | id_1d = 6; |
|---|
| 20 | id_3d = 2; % Maximum entrapment |
|---|
| 21 | %id_3d = 7; % Computed entrapment |
|---|
| 22 | ecrad_sw_list = [id_ica id_3d 4 5]; |
|---|
| 23 | ecrad_legend = {'ECRAD ICA','ECRAD SPARTACUS','ECRAD McICA','ECRAD Tripleclouds'}; |
|---|
| 24 | ecrad_styles = {'b--','r--','g--','c--'}; |
|---|
| 25 | |
|---|
| 26 | if do_plot_sw_spartacus_extras |
|---|
| 27 | scases(end+1:end+6)={[sp_code '_3reg_3d_computed_out.nc'],... |
|---|
| 28 | [sp_code '_3reg_3d_minimum_out.nc'],... |
|---|
| 29 | [sp_code '_3reg_1d_computed_out.nc'],... |
|---|
| 30 | [sp_code '_3reg_1d_minimum_out.nc'],... |
|---|
| 31 | [sp_code '_3reg_3d_computedleast_out.nc'],... |
|---|
| 32 | [sp_code '_3reg_3d_fractal_out.nc']}; |
|---|
| 33 | ecrad_sw_list = [id_3d 7 8 id_1d 9 10 5 11 12]; |
|---|
| 34 | ecrad_legend = {'SPARTACUS 3D Max','SPARTACUS 3D Comp','SPARTACUS 3D Min',... |
|---|
| 35 | 'SPARTACUS 1D Max','SPARTACUS 1D Comp','SPARTACUS 1D Min',... |
|---|
| 36 | 'Tripleclouds','SPARTACUS 3D Comp least','SPARTACUS 3D Fract'}; |
|---|
| 37 | ecrad_styles = {'r--','r-','r-.','b--','bo','bx','c--','m--','m-.'}; |
|---|
| 38 | id_3d_min = 8; |
|---|
| 39 | end |
|---|
| 40 | |
|---|
| 41 | % Factor for conversion to heating rates in K day-1 |
|---|
| 42 | ff = 24.*3600.*(9.81./1004); |
|---|
| 43 | for icase = 1:length(scases) |
|---|
| 44 | sp{icase} = loadnc([scases{icase}]); |
|---|
| 45 | sp{icase}.hr_sw = ff.*diff(sp{icase}.flux_up_sw-sp{icase}.flux_dn_sw)./diff(sp{icase}.pressure_hl); |
|---|
| 46 | sp{icase}.hr_lw = ff.*diff(sp{icase}.flux_up_lw-sp{icase}.flux_dn_lw)./diff(sp{icase}.pressure_hl); |
|---|
| 47 | end |
|---|
| 48 | |
|---|
| 49 | % Load input data |
|---|
| 50 | sp_input = loadnc([sp_code '_sza.nc']); |
|---|
| 51 | sp_sza = acosd(sp_input.cos_solar_zenith_angle); |
|---|
| 52 | |
|---|
| 53 | |
|---|
| 54 | sza_axis = [0 90]; |
|---|
| 55 | sza_tick = [0:15:90]; |
|---|
| 56 | |
|---|
| 57 | % Plot shortwave 3D effect as shown in Fig. 4 of Hogan et al. (2016) |
|---|
| 58 | figure(1) |
|---|
| 59 | clf |
|---|
| 60 | set(gcf,'defaultlinelinewidth',1,'paperposition',[0.25 2.5 21 16]); |
|---|
| 61 | |
|---|
| 62 | subplot(2,2,1); |
|---|
| 63 | if do_plot_sw_libradtran |
|---|
| 64 | plot(sza,up_toa_1D,'b'); |
|---|
| 65 | hold on |
|---|
| 66 | errorbar(sza,up_toa_3D,up_toa_std_3D,'r'); |
|---|
| 67 | end |
|---|
| 68 | |
|---|
| 69 | for ii = 1:length(ecrad_sw_list) |
|---|
| 70 | iecrad = ecrad_sw_list(ii); |
|---|
| 71 | plot(sp_sza,sp{iecrad}.flux_up_sw(1,:),ecrad_styles{ii}); |
|---|
| 72 | hold on |
|---|
| 73 | end |
|---|
| 74 | |
|---|
| 75 | plot(sp_sza,sp{1}.flux_up_sw_clear(1,:),'k'); |
|---|
| 76 | |
|---|
| 77 | xlim(sza_axis); |
|---|
| 78 | ylabel('TOA upwelling flux (W m^{-2})'); |
|---|
| 79 | text(0,1.02,' \bf(a)','verticalalignment','bottom','units','normalized'); |
|---|
| 80 | ylim([0 300]); |
|---|
| 81 | grid on |
|---|
| 82 | set(gca,'xtick',sza_tick); |
|---|
| 83 | xlabel('Solar zenith angle (\circ)') |
|---|
| 84 | ylim([0 250]); |
|---|
| 85 | if do_plot_sw_libradtran |
|---|
| 86 | leg = {'libRadtran ICA (DISORT)',... |
|---|
| 87 | 'libRadtran 3D (MYSTIC)'}; |
|---|
| 88 | leg([1:length(ecrad_legend)]+2) = ecrad_legend; |
|---|
| 89 | else |
|---|
| 90 | leg = ecrad_legend; |
|---|
| 91 | end |
|---|
| 92 | leg{length(leg)+1} = 'Clear sky'; |
|---|
| 93 | hh=legend(leg,3); |
|---|
| 94 | set(hh,'fontsize',7) |
|---|
| 95 | |
|---|
| 96 | subplot(2,2,2); |
|---|
| 97 | plot(sza,dn_direct_surf_1D./cosd(sza),'b'); |
|---|
| 98 | hold on |
|---|
| 99 | errorbar(sza,dn_direct_surf_3D./cosd(sza), dn_direct_surf_std_3D./cosd(sza),'r'); |
|---|
| 100 | |
|---|
| 101 | for ii = 1:length(ecrad_sw_list) |
|---|
| 102 | iecrad = ecrad_sw_list(ii); |
|---|
| 103 | plot(sp_sza,sp{iecrad}.flux_dn_direct_sw(end,:)./cosd(sp_sza'),ecrad_styles{ii}); |
|---|
| 104 | end |
|---|
| 105 | |
|---|
| 106 | plot(sp_sza,sp{id_3d}.flux_dn_direct_sw_clear(end,:)./cosd(sp_sza'),'k'); |
|---|
| 107 | |
|---|
| 108 | xlim(sza_axis); |
|---|
| 109 | ylim([0 1100]); |
|---|
| 110 | grid on |
|---|
| 111 | set(gca,'xtick',sza_tick); |
|---|
| 112 | xlabel('Solar zenith angle (\circ)') |
|---|
| 113 | ylabel('Direct flux in direction of sun (W m^{-2})'); |
|---|
| 114 | h=legend(leg,3); |
|---|
| 115 | set(h,'fontsize',7) |
|---|
| 116 | text(0,1.02,' \bf(b)','verticalalignment','bottom','units','normalized'); |
|---|
| 117 | |
|---|
| 118 | up1dinterp = interp1(sza,up_toa_1D,sp_sza)'; |
|---|
| 119 | |
|---|
| 120 | subplot(2,2,3) |
|---|
| 121 | errorbar(sza,... |
|---|
| 122 | 100.*(up_toa_3D-up_toa_1D)./(up_toa_1D-sw_up_clear(end,:)),... |
|---|
| 123 | 100.*(up_toa_std_3D)./(up_toa_1D-sw_up_clear(end,:)),... |
|---|
| 124 | 'r'); |
|---|
| 125 | hold on |
|---|
| 126 | effect_3d = 100.*(sp{id_3d}.flux_up_sw(1,:)-sp{id_ica}.flux_up_sw(1,:)) ... |
|---|
| 127 | ./(sp{id_ica}.flux_up_sw(1,:)-sp{id_3d}.flux_up_sw_clear(1,:)); |
|---|
| 128 | effect_3d(end) = NaN; |
|---|
| 129 | plot(sp_sza,effect_3d,'r--'); |
|---|
| 130 | |
|---|
| 131 | if do_plot_sw_spartacus_extras |
|---|
| 132 | effect_edge = 100.*(sp{id_3d_min}.flux_up_sw(1,:)-sp{id_ica}.flux_up_sw(1,:)) ... |
|---|
| 133 | ./(sp{id_ica}.flux_up_sw(1,:)-sp{id_3d_min}.flux_up_sw_clear(1,:)); |
|---|
| 134 | effect_edge(end) = NaN; |
|---|
| 135 | plot(sp_sza,effect_edge,'r-.'); |
|---|
| 136 | end |
|---|
| 137 | |
|---|
| 138 | xlim(sza_axis); |
|---|
| 139 | ylim([-40 140]); |
|---|
| 140 | set(gca,'xtick',sza_tick); |
|---|
| 141 | ylabel('3D change to cloud radiative effect (%)'); |
|---|
| 142 | xlabel('Solar zenith angle (\circ)') |
|---|
| 143 | text(0,1.02,' \bf(d)','verticalalignment','bottom','units','normalized'); |
|---|
| 144 | grid on |
|---|
| 145 | if do_plot_sw_spartacus_extras |
|---|
| 146 | h=legend('libRadtran','SPARTACUS','SPARTACUS edge only',2); |
|---|
| 147 | else |
|---|
| 148 | h=legend('libRadtran','SPARTACUS',2); |
|---|
| 149 | end |
|---|
| 150 | set(h,'fontsize',8) |
|---|
| 151 | |
|---|
| 152 | subplot(2,2,4) |
|---|
| 153 | errorbar(sza,-(up_toa_3D-up_toa_1D),up_toa_std_3D,'r'); |
|---|
| 154 | hold on |
|---|
| 155 | effect_3d = sp{id_3d}.flux_up_sw(1,:)-sp{id_ica}.flux_up_sw(1,:); |
|---|
| 156 | effect_3d(end) = NaN; |
|---|
| 157 | plot(sp_sza,-effect_3d,'r--'); |
|---|
| 158 | |
|---|
| 159 | if do_plot_sw_spartacus_extras |
|---|
| 160 | effect_edge = sp{id_3d_min}.flux_up_sw(1,:)-sp{id_ica}.flux_up_sw(1,:); |
|---|
| 161 | effect_edge(end) = NaN; |
|---|
| 162 | plot(sp_sza,-effect_edge,'r-.'); |
|---|
| 163 | end |
|---|
| 164 | |
|---|
| 165 | xlim(sza_axis); |
|---|
| 166 | ylim([-25 30]); |
|---|
| 167 | set(gca,'xtick',sza_tick); |
|---|
| 168 | ylabel('3D change to cloud radiative effect (W m^{-2})'); |
|---|
| 169 | xlabel('Solar zenith angle (\circ)') |
|---|
| 170 | text(0,1.02,' \bf(c)','verticalalignment','bottom','units','normalized'); |
|---|
| 171 | grid on |
|---|
| 172 | if do_plot_sw_spartacus_extras |
|---|
| 173 | h=legend('libRadtran','SPARTACUS','SPARTACUS edge only',2); |
|---|
| 174 | else |
|---|
| 175 | h=legend('libRadtran','SPARTACUS',2); |
|---|
| 176 | end |
|---|
| 177 | |
|---|
| 178 | set(h,'fontsize',8) |
|---|
| 179 | |
|---|
| 180 | % Write selected cloud radiative forcings to the terminal window |
|---|
| 181 | isza = [1 6]; |
|---|
| 182 | sza(isza) |
|---|
| 183 | |
|---|
| 184 | crf_mystic_1d_toa = -(up_toa_1D(isza)-sw_up_clear(end,isza)) |
|---|
| 185 | crf_mystic_3deffect = up_toa_1D(isza)-up_toa_3D(isza) |
|---|
| 186 | |
|---|
| 187 | crf_spartacus_1d_toa = interp1(sp_sza,-sp{id_ica}.flux_up_sw(1,:) + sp{id_ica}.flux_up_sw_clear(1,:), sza(isza)) |
|---|
| 188 | crf_spartacus_3deffect = interp1(sp_sza,-effect_3d(:), sza(isza)) |
|---|
| 189 | |
|---|
| 190 | crf_mystic_3deffect_percentage = 100.* crf_mystic_3deffect ./ crf_mystic_1d_toa |
|---|
| 191 | crf_spartacus_3deffect_percentage = 100.* crf_spartacus_3deffect ./ crf_spartacus_1d_toa |
|---|
| 192 | |
|---|
| 193 | |
|---|
| 194 | % Plot the 3D impact on shortwave heating rates as in Fig. 5 of Hogan et al. (2016) |
|---|
| 195 | figure(2) |
|---|
| 196 | clf |
|---|
| 197 | set(gcf,'units','inches','paperposition',[0.25 0.25 10 9],'defaultlinelinewidth',1); |
|---|
| 198 | |
|---|
| 199 | sza_map = [1 9 16 24 31 38 41 45]; |
|---|
| 200 | sza_map = {1, [8 9], 16, [23 24], 31, [38 39], 41, 45}; |
|---|
| 201 | |
|---|
| 202 | for isza = [1 5]; %[2 6] |
|---|
| 203 | sza(isza) |
|---|
| 204 | hr_sp_clear = ff.*diff(sp{id_3d}.flux_up_sw_clear-sp{id_3d}.flux_dn_sw_clear)./diff(sp{id_3d}.pressure_hl); |
|---|
| 205 | ii = sza_map{isza}; |
|---|
| 206 | z_mid_sp = (sp_input.height_hl(1:end-1,1) + sp_input.height_hl(2:end,1))./2; |
|---|
| 207 | |
|---|
| 208 | plot(dat1D{isza}.hr,dat1D{isza}.z_mid,'b') |
|---|
| 209 | axis([1 4.5 0 3]); |
|---|
| 210 | hold on |
|---|
| 211 | |
|---|
| 212 | plot(dat3D{isza}.hr,dat3D{isza}.z_mid,'r') |
|---|
| 213 | if isza == 5 |
|---|
| 214 | errs=nan.*dat3D{isza}.hr_std; |
|---|
| 215 | ind = [2 4 6 16 26 36 43:2:49]; |
|---|
| 216 | ind = [1:5 8:5:38 42:50]; |
|---|
| 217 | errs(ind) = dat3D{isza}.hr_std(ind); |
|---|
| 218 | herrorbar(dat3D{isza}.hr,dat3D{isza}.z_mid,errs,'r') |
|---|
| 219 | end |
|---|
| 220 | |
|---|
| 221 | SPARTACUS_SZA = sp_sza(ii); |
|---|
| 222 | plot(mean(sp{id_ica}.hr_sw(:,ii),2),z_mid_sp./1000,'b--'); |
|---|
| 223 | plot(mean(sp{id_3d}.hr_sw(:,ii),2),z_mid_sp./1000,'r--'); |
|---|
| 224 | plot(mean(hr_sp_clear(:,ii),2),z_mid_sp./1000,'k-'); |
|---|
| 225 | end |
|---|
| 226 | |
|---|
| 227 | axis([1 4.5 0 3]); |
|---|
| 228 | xlabel('Shortwave heating rate (K d^{-1})'); |
|---|
| 229 | ylabel('Height (km)'); |
|---|
| 230 | text(1.25,3,['\theta_0=' num2str(sza(isza)) '\circ'],'verticalalignment','bottom') |
|---|
| 231 | text(2.4,3,'\theta_0=0\circ','verticalalignment','bottom') |
|---|
| 232 | h=legend(leg{[1 2 3 4 end]},4); |
|---|
| 233 | set(h,'fontsize',7); |
|---|
| 234 | |
|---|
| 235 | % Plot longwave 3D effect on heating rates as shown in Fig. 6 of Hogan |
|---|
| 236 | % et al. (2016) |
|---|
| 237 | p = interp1(sp_input.height_hl(:,1),sp_input.pressure_hl(:,1),z.*1000); |
|---|
| 238 | z_mid = 0.5.*(z(1:end-1)+z(2:end)); |
|---|
| 239 | |
|---|
| 240 | hr_clear = ff.*diff(lw_up_clear-lw_dn_clear)./diff(p); |
|---|
| 241 | hr_1d = ff.*diff(d{1}.lw_up-d{1}.lw_dn)./diff(p); |
|---|
| 242 | hr_3d = ff.*diff(d{2}.lw_up-d{2}.lw_dn)./diff(p); |
|---|
| 243 | hr_sp_3d = ff.*diff(sp{id_3d}.flux_up_lw-sp{id_3d}.flux_dn_lw)./diff(sp{id_3d}.pressure_hl); |
|---|
| 244 | hr_sp_1d = ff.*diff(sp{id_1d}.flux_up_lw-sp{id_1d}.flux_dn_lw)./diff(sp{id_1d}.pressure_hl); |
|---|
| 245 | hr_sp_clear = ff.*diff(sp{id_1d}.flux_up_lw_clear-sp{id_1d}.flux_dn_lw_clear)./diff(sp{id_1d}.pressure_hl); |
|---|
| 246 | hr_sp_3d_clustering = ff.*diff(sp{3}.flux_up_lw-sp{3}.flux_dn_lw)./diff(sp{3}.pressure_hl); |
|---|
| 247 | |
|---|
| 248 | cols = 'brmg'; |
|---|
| 249 | cols_clear = 'km'; |
|---|
| 250 | |
|---|
| 251 | figure(3) |
|---|
| 252 | clf |
|---|
| 253 | set(gcf,'units','inches','paperposition',[0.25 0.25 10 9],'defaultlinelinewidth',1); |
|---|
| 254 | |
|---|
| 255 | plot(smooth1D(hr_clear),z_mid,'k'); |
|---|
| 256 | hold on |
|---|
| 257 | plot(smooth1D(hr_1d),z_mid,cols(1)); |
|---|
| 258 | plot(smooth1D(hr_3d),z_mid,cols(2)); |
|---|
| 259 | plot(smooth1D(hr_sp_clear(:,1)),z_mid_sp./1000,'k--'); |
|---|
| 260 | plot(smooth1D(hr_sp_1d(:,1)),z_mid_sp./1000,[cols(1) '--']); |
|---|
| 261 | plot(smooth1D(hr_sp_3d_clustering(:,1)),z_mid_sp./1000,[cols(2) '--']); |
|---|
| 262 | h=plot(smooth1D(hr_sp_3d(:,1)),z_mid_sp./1000,[cols(3) '--']); |
|---|
| 263 | if cols(3) == 'm' |
|---|
| 264 | set(h,'color',[1 0.65 0]); |
|---|
| 265 | end |
|---|
| 266 | |
|---|
| 267 | ylim([0 3]); |
|---|
| 268 | |
|---|
| 269 | xlabel('Longwave heating rate (K d^{-1})'); |
|---|
| 270 | ylabel('Height (km)'); |
|---|
| 271 | xlim([-5 -1]); |
|---|
| 272 | h=legend('libRadtran clear','libRadtran ICA (DISORT)','libRadtran 3D (MYSTIC)',... |
|---|
| 273 | 'SPARTACUS clear','SPARTACUS 1D','SPARTACUS 3D clust', ... |
|---|
| 274 | 'SPARTACUS 3D no clust',3); |
|---|
| 275 | set(h,'fontsize',6); |
|---|