[2690] | 1 | MODULE traccoag_mod |
---|
| 2 | ! |
---|
| 3 | ! This module calculates the concentration of aerosol particles in certain size bins |
---|
| 4 | ! considering coagulation and sedimentation. |
---|
| 5 | ! |
---|
| 6 | CONTAINS |
---|
| 7 | |
---|
| 8 | SUBROUTINE traccoag(pdtphys, gmtime, debutphy, julien, & |
---|
| 9 | presnivs, xlat, xlon, pphis, pphi, & |
---|
[2752] | 10 | t_seri, pplay, paprs, sh, rh, tr_seri) |
---|
[5202] | 11 | |
---|
[2752] | 12 | USE phys_local_var_mod, ONLY: mdw, R2SO4, DENSO4, f_r_wet, surf_PM25_sulf, & |
---|
[5202] | 13 | & budg_emi_ocs, budg_emi_so2, budg_emi_h2so4, budg_emi_part, & |
---|
| 14 | & R2SO4B, DENSO4B, f_r_wetB, sulfmmr, SAD_sulfate, sulfmmr_mode, nd_mode, reff_sulfate |
---|
| 15 | |
---|
[2690] | 16 | USE dimphy |
---|
[4293] | 17 | USE infotrac_phy, ONLY : nbtr_bin, nbtr_sulgas, nbtr, id_SO2_strat |
---|
[2690] | 18 | USE aerophys |
---|
[3526] | 19 | USE geometry_mod, ONLY : cell_area, boundslat |
---|
[2690] | 20 | USE mod_grid_phy_lmdz |
---|
| 21 | USE mod_phys_lmdz_mpi_data, ONLY : is_mpi_root |
---|
| 22 | USE mod_phys_lmdz_para, only: gather, scatter |
---|
[4601] | 23 | USE phys_cal_mod, ONLY : year_len, year_cur, mth_cur, day_cur, hour |
---|
[2690] | 24 | USE sulfate_aer_mod |
---|
| 25 | USE phys_local_var_mod, ONLY: stratomask |
---|
| 26 | USE YOMCST |
---|
[3526] | 27 | USE print_control_mod, ONLY: lunout |
---|
[4601] | 28 | USE strataer_local_var_mod |
---|
| 29 | |
---|
[2690] | 30 | IMPLICIT NONE |
---|
| 31 | |
---|
| 32 | ! Input argument |
---|
| 33 | !--------------- |
---|
| 34 | REAL,INTENT(IN) :: pdtphys ! Pas d'integration pour la physique (seconde) |
---|
| 35 | REAL,INTENT(IN) :: gmtime ! Heure courante |
---|
| 36 | LOGICAL,INTENT(IN) :: debutphy ! le flag de l'initialisation de la physique |
---|
| 37 | INTEGER,INTENT(IN) :: julien ! Jour julien |
---|
| 38 | |
---|
| 39 | REAL,DIMENSION(klev),INTENT(IN) :: presnivs! pressions approximat. des milieux couches (en PA) |
---|
| 40 | REAL,DIMENSION(klon),INTENT(IN) :: xlat ! latitudes pour chaque point |
---|
| 41 | REAL,DIMENSION(klon),INTENT(IN) :: xlon ! longitudes pour chaque point |
---|
| 42 | REAL,DIMENSION(klon),INTENT(IN) :: pphis ! geopotentiel du sol |
---|
| 43 | REAL,DIMENSION(klon,klev),INTENT(IN) :: pphi ! geopotentiel de chaque couche |
---|
| 44 | |
---|
| 45 | REAL,DIMENSION(klon,klev),INTENT(IN) :: t_seri ! Temperature |
---|
| 46 | REAL,DIMENSION(klon,klev),INTENT(IN) :: pplay ! pression pour le mileu de chaque couche (en Pa) |
---|
| 47 | REAL,DIMENSION(klon,klev+1),INTENT(IN) :: paprs ! pression pour chaque inter-couche (en Pa) |
---|
| 48 | REAL,DIMENSION(klon,klev),INTENT(IN) :: sh ! humidite specifique |
---|
| 49 | REAL,DIMENSION(klon,klev),INTENT(IN) :: rh ! humidite relative |
---|
| 50 | |
---|
| 51 | ! Output argument |
---|
| 52 | !---------------- |
---|
| 53 | REAL,DIMENSION(klon,klev,nbtr),INTENT(INOUT) :: tr_seri ! Concentration Traceur [U/KgA] |
---|
| 54 | |
---|
| 55 | ! Local variables |
---|
| 56 | !---------------- |
---|
[3526] | 57 | REAL :: m_aer_emiss_vol_daily ! daily injection mass emission |
---|
[4601] | 58 | REAL :: m_aer ! aerosol mass |
---|
[5202] | 59 | INTEGER :: it, k, i, j, ilon, ilev, itime, i_int, ieru |
---|
[2690] | 60 | LOGICAL,DIMENSION(klon,klev) :: is_strato ! true = above tropopause, false = below |
---|
| 61 | REAL,DIMENSION(klon,klev) :: m_air_gridbox ! mass of air in every grid box [kg] |
---|
| 62 | REAL,DIMENSION(klon_glo,klev,nbtr) :: tr_seri_glo ! Concentration Traceur [U/KgA] |
---|
| 63 | REAL,DIMENSION(klev+1) :: altLMDz ! altitude of layer interfaces in m |
---|
| 64 | REAL,DIMENSION(klev) :: f_lay_emiss ! fraction of emission for every vertical layer |
---|
| 65 | REAL :: f_lay_sum ! sum of layer emission fractions |
---|
[2699] | 66 | REAL :: alt ! altitude for integral calculation |
---|
[2690] | 67 | INTEGER,PARAMETER :: n_int_alt=10 ! number of subintervals for integration over Gaussian emission profile |
---|
| 68 | REAL,DIMENSION(nbtr_bin) :: r_bin ! particle radius in size bin [m] |
---|
| 69 | REAL,DIMENSION(nbtr_bin) :: r_lower ! particle radius at lower bin boundary [m] |
---|
| 70 | REAL,DIMENSION(nbtr_bin) :: r_upper ! particle radius at upper bin boundary [m] |
---|
| 71 | REAL,DIMENSION(nbtr_bin) :: m_part_dry ! mass of one dry particle in size bin [kg] |
---|
| 72 | REAL :: zrho ! Density of air [kg/m3] |
---|
| 73 | REAL :: zdz ! thickness of atm. model layer in m |
---|
[2752] | 74 | REAL,DIMENSION(klev) :: zdm ! mass of atm. model layer in kg |
---|
[2690] | 75 | REAL,DIMENSION(klon,klev) :: dens_aer ! density of aerosol particles [kg/m3 aerosol] with default H2SO4 mass fraction |
---|
[2752] | 76 | REAL :: emission ! emission |
---|
[3526] | 77 | REAL :: theta_min, theta_max ! for SAI computation between two latitudes |
---|
| 78 | REAL :: dlat_loc |
---|
[4601] | 79 | REAL :: latmin,latmax,lonmin,lonmax ! lat/lon min/max for injection |
---|
| 80 | REAL :: sigma_alt, altemiss ! injection altitude + sigma for distrib |
---|
| 81 | REAL :: pdt,stretchlong ! physic timestep, stretch emission over one day |
---|
| 82 | |
---|
[4513] | 83 | INTEGER :: injdur_sai ! injection duration for SAI case [days] |
---|
| 84 | INTEGER :: yr, is_bissext |
---|
[5202] | 85 | REAL :: samoment2, samoment3! 2nd and 3rd order moments of size distribution |
---|
[2690] | 86 | |
---|
[4601] | 87 | IF (is_mpi_root .AND. flag_verbose_strataer) THEN |
---|
[3526] | 88 | WRITE(lunout,*) 'in traccoag: date from phys_cal_mod =',year_cur,'-',mth_cur,'-',day_cur,'-',hour |
---|
[4601] | 89 | WRITE(lunout,*) 'IN traccoag flag_emit: ',flag_emit |
---|
[2690] | 90 | ENDIF |
---|
[3526] | 91 | |
---|
[5202] | 92 | ! radius [m] |
---|
[2690] | 93 | DO it=1, nbtr_bin |
---|
| 94 | r_bin(it)=mdw(it)/2. |
---|
| 95 | ENDDO |
---|
| 96 | |
---|
| 97 | !--set boundaries of size bins |
---|
| 98 | DO it=1, nbtr_bin |
---|
| 99 | IF (it.EQ.1) THEN |
---|
| 100 | r_upper(it)=sqrt(r_bin(it+1)*r_bin(it)) |
---|
| 101 | r_lower(it)=r_bin(it)**2./r_upper(it) |
---|
| 102 | ELSEIF (it.EQ.nbtr_bin) THEN |
---|
| 103 | r_lower(it)=sqrt(r_bin(it)*r_bin(it-1)) |
---|
| 104 | r_upper(it)=r_bin(it)**2./r_lower(it) |
---|
| 105 | ELSE |
---|
| 106 | r_lower(it)=sqrt(r_bin(it)*r_bin(it-1)) |
---|
| 107 | r_upper(it)=sqrt(r_bin(it+1)*r_bin(it)) |
---|
| 108 | ENDIF |
---|
| 109 | ENDDO |
---|
| 110 | |
---|
| 111 | IF (debutphy .and. is_mpi_root) THEN |
---|
| 112 | DO it=1, nbtr_bin |
---|
[3526] | 113 | WRITE(lunout,*) 'radius bin', it, ':', r_bin(it), '(from', r_lower(it), 'to', r_upper(it), ')' |
---|
[2690] | 114 | ENDDO |
---|
| 115 | ENDIF |
---|
| 116 | |
---|
| 117 | !--initialising logical is_strato from stratomask |
---|
| 118 | is_strato(:,:)=.FALSE. |
---|
[2695] | 119 | WHERE (stratomask.GT.0.5) is_strato=.TRUE. |
---|
[2690] | 120 | |
---|
[4750] | 121 | IF(flag_new_strat_compo) THEN |
---|
[5202] | 122 | IF(debutphy) WRITE(lunout,*) 'traccoag: COMPO/DENSITY (Tabazadeh 97) + H2O kelvin effect', flag_new_strat_compo |
---|
| 123 | ! STRACOMP (H2O, P, t_seri, R -> R2SO4 + Kelvin effect) : Taba97, Socol, etc... |
---|
| 124 | CALL stracomp_kelvin(sh,t_seri,pplay) |
---|
[4750] | 125 | ELSE |
---|
[5202] | 126 | IF(debutphy) WRITE(lunout,*) 'traccoag: COMPO from Bekki 2D model', flag_new_strat_compo |
---|
[4750] | 127 | ! STRACOMP (H2O, P, t_seri -> aerosol composition (R2SO4)) |
---|
| 128 | ! H2SO4 mass fraction in aerosol (%) |
---|
| 129 | CALL stracomp(sh,t_seri,pplay) |
---|
| 130 | |
---|
| 131 | ! aerosol density (gr/cm3) |
---|
| 132 | CALL denh2sa(t_seri) |
---|
[5202] | 133 | |
---|
| 134 | ! compute factor for converting dry to wet radius (for every grid box) |
---|
| 135 | f_r_wet(:,:) = (dens_aer_dry/(DENSO4(:,:)*1000.)/(R2SO4(:,:)/100.))**(1./3.) |
---|
[4750] | 136 | ENDIF |
---|
| 137 | |
---|
[2690] | 138 | !--calculate mass of air in every grid box |
---|
| 139 | DO ilon=1, klon |
---|
[4601] | 140 | DO ilev=1, klev |
---|
| 141 | m_air_gridbox(ilon,ilev)=(paprs(ilon,ilev)-paprs(ilon,ilev+1))/RG*cell_area(ilon) |
---|
| 142 | ENDDO |
---|
[2690] | 143 | ENDDO |
---|
[4601] | 144 | |
---|
[2752] | 145 | !--initialise emission diagnostics |
---|
[4769] | 146 | if (nErupt > 0 .and. (flag_emit == 1 .or. flag_emit == 4)) budg_emi(:,1)=0.0 |
---|
[2752] | 147 | budg_emi_ocs(:)=0.0 |
---|
| 148 | budg_emi_so2(:)=0.0 |
---|
| 149 | budg_emi_h2so4(:)=0.0 |
---|
| 150 | budg_emi_part(:)=0.0 |
---|
| 151 | |
---|
[4601] | 152 | !--sulfur emission, depending on chosen scenario (flag_emit) |
---|
| 153 | SELECT CASE(flag_emit) |
---|
[2690] | 154 | |
---|
| 155 | CASE(0) ! background aerosol |
---|
| 156 | ! do nothing (no emission) |
---|
| 157 | |
---|
| 158 | CASE(1) ! volcanic eruption |
---|
| 159 | !--only emit on day of eruption |
---|
| 160 | ! stretch emission over one day of Pinatubo eruption |
---|
[3526] | 161 | DO ieru=1, nErupt |
---|
| 162 | IF (year_cur==year_emit_vol(ieru).AND.mth_cur==mth_emit_vol(ieru).AND.& |
---|
| 163 | day_cur>=day_emit_vol(ieru).AND.day_cur<(day_emit_vol(ieru)+injdur)) THEN |
---|
[4601] | 164 | |
---|
| 165 | ! daily injection mass emission |
---|
| 166 | m_aer=m_aer_emiss_vol(ieru,1)/(REAL(injdur)*REAL(ponde_lonlat_vol(ieru))) |
---|
| 167 | !emission as SO2 gas (with m(SO2)=64/32*m_aer_emiss) |
---|
| 168 | m_aer=m_aer*(mSO2mol/mSatom) |
---|
| 169 | |
---|
| 170 | WRITE(lunout,*) 'IN traccoag m_aer_emiss_vol(ieru)=',m_aer_emiss_vol(ieru,1), & |
---|
[3526] | 171 | 'ponde_lonlat_vol(ieru)=',ponde_lonlat_vol(ieru),'(injdur*ponde_lonlat_vol(ieru))', & |
---|
[4601] | 172 | (injdur*ponde_lonlat_vol(ieru)),'m_aer_emiss_vol_daily=',m_aer,'ieru=',ieru |
---|
[3526] | 173 | WRITE(lunout,*) 'IN traccoag, dlon=',dlon |
---|
[4601] | 174 | |
---|
| 175 | latmin=xlat_min_vol(ieru) |
---|
| 176 | latmax=xlat_max_vol(ieru) |
---|
| 177 | lonmin=xlon_min_vol(ieru) |
---|
| 178 | lonmax=xlon_max_vol(ieru) |
---|
| 179 | altemiss = altemiss_vol(ieru) |
---|
| 180 | sigma_alt = sigma_alt_vol(ieru) |
---|
| 181 | pdt=pdtphys |
---|
| 182 | ! stretch emission over one day of eruption |
---|
| 183 | stretchlong = 1. |
---|
| 184 | |
---|
| 185 | CALL STRATEMIT(pdtphys,pdt,xlat,xlon,t_seri,pplay,paprs,tr_seri,& |
---|
| 186 | m_aer,latmin,latmax,lonmin,lonmax,altemiss,sigma_alt,id_SO2_strat, & |
---|
| 187 | stretchlong,1,0) |
---|
| 188 | |
---|
[3526] | 189 | ENDIF ! emission period |
---|
| 190 | ENDDO ! eruption number |
---|
| 191 | |
---|
[2690] | 192 | CASE(2) ! stratospheric aerosol injections (SAI) |
---|
| 193 | ! |
---|
[4513] | 194 | ! Computing duration of SAI in days... |
---|
| 195 | ! ... starting from 0... |
---|
| 196 | injdur_sai = 0 |
---|
| 197 | ! ... then adding whole years from first to (n-1)th... |
---|
| 198 | DO yr = year_emit_sai_start, year_emit_sai_end-1 |
---|
| 199 | ! (n % 4 == 0) and (n % 100 != 0 or n % 400 == 0) |
---|
| 200 | is_bissext = (MOD(yr,4)==0) .AND. (MOD(yr,100) /= 0 .OR. MOD(yr,400) == 0) |
---|
| 201 | injdur_sai = injdur_sai+365+is_bissext |
---|
| 202 | ENDDO |
---|
| 203 | ! ... then subtracting part of the first year where no injection yet... |
---|
| 204 | is_bissext = (MOD(year_emit_sai_start,4)==0) .AND. (MOD(year_emit_sai_start,100) /= 0 .OR. MOD(year_emit_sai_start,400) == 0) |
---|
| 205 | SELECT CASE(mth_emit_sai_start) |
---|
| 206 | CASE(2) |
---|
| 207 | injdur_sai = injdur_sai-31 |
---|
| 208 | CASE(3) |
---|
| 209 | injdur_sai = injdur_sai-31-28-is_bissext |
---|
| 210 | CASE(4) |
---|
| 211 | injdur_sai = injdur_sai-31-28-is_bissext-31 |
---|
| 212 | CASE(5) |
---|
| 213 | injdur_sai = injdur_sai-31-28-is_bissext-31-30 |
---|
| 214 | CASE(6) |
---|
| 215 | injdur_sai = injdur_sai-31-28-is_bissext-31-30-31 |
---|
| 216 | CASE(7) |
---|
| 217 | injdur_sai = injdur_sai-31-28-is_bissext-31-30-31-30 |
---|
| 218 | CASE(8) |
---|
| 219 | injdur_sai = injdur_sai-31-28-is_bissext-31-30-31-30-31 |
---|
| 220 | CASE(9) |
---|
| 221 | injdur_sai = injdur_sai-31-28-is_bissext-31-30-31-30-31-31 |
---|
| 222 | CASE(10) |
---|
| 223 | injdur_sai = injdur_sai-31-28-is_bissext-31-30-31-30-31-31-30 |
---|
| 224 | CASE(11) |
---|
| 225 | injdur_sai = injdur_sai-31-28-is_bissext-31-30-31-30-31-31-30-31 |
---|
| 226 | CASE(12) |
---|
| 227 | injdur_sai = injdur_sai-31-28-is_bissext-31-30-31-30-31-31-30-31-30 |
---|
| 228 | END SELECT |
---|
| 229 | injdur_sai = injdur_sai-day_emit_sai_start+1 |
---|
| 230 | ! ... then adding part of the n-th year |
---|
| 231 | is_bissext = (MOD(year_emit_sai_end,4)==0) .AND. (MOD(year_emit_sai_end,100) /= 0 .OR. MOD(year_emit_sai_end,400) == 0) |
---|
| 232 | SELECT CASE(mth_emit_sai_end) |
---|
| 233 | CASE(2) |
---|
| 234 | injdur_sai = injdur_sai+31 |
---|
| 235 | CASE(3) |
---|
| 236 | injdur_sai = injdur_sai+31+28+is_bissext |
---|
| 237 | CASE(4) |
---|
| 238 | injdur_sai = injdur_sai+31+28+is_bissext+31 |
---|
| 239 | CASE(5) |
---|
| 240 | injdur_sai = injdur_sai+31+28+is_bissext+31+30 |
---|
| 241 | CASE(6) |
---|
| 242 | injdur_sai = injdur_sai+31+28+is_bissext+31+30+31 |
---|
| 243 | CASE(7) |
---|
| 244 | injdur_sai = injdur_sai+31+28+is_bissext+31+30+31+30 |
---|
| 245 | CASE(8) |
---|
| 246 | injdur_sai = injdur_sai+31+28+is_bissext+31+30+31+30+31 |
---|
| 247 | CASE(9) |
---|
| 248 | injdur_sai = injdur_sai+31+28+is_bissext+31+30+31+30+31+31 |
---|
| 249 | CASE(10) |
---|
| 250 | injdur_sai = injdur_sai+31+28+is_bissext+31+30+31+30+31+31+30 |
---|
| 251 | CASE(11) |
---|
| 252 | injdur_sai = injdur_sai+31+28+is_bissext+31+30+31+30+31+31+30+31 |
---|
| 253 | CASE(12) |
---|
| 254 | injdur_sai = injdur_sai+31+28+is_bissext+31+30+31+30+31+31+30+31+30 |
---|
| 255 | END SELECT |
---|
| 256 | injdur_sai = injdur_sai+day_emit_sai_end |
---|
| 257 | ! A security: are SAI dates of injection consistent? |
---|
| 258 | IF (injdur_sai <= 0) THEN |
---|
| 259 | CALL abort_physic('traccoag_mod', 'Pb in SAI dates of injection.',1) |
---|
| 260 | ENDIF |
---|
| 261 | ! Injection in itself |
---|
| 262 | IF (( year_emit_sai_start <= year_cur ) & |
---|
| 263 | .AND. ( year_cur <= year_emit_sai_end ) & |
---|
| 264 | .AND. ( mth_emit_sai_start <= mth_cur .OR. year_emit_sai_start < year_cur ) & |
---|
| 265 | .AND. ( mth_cur <= mth_emit_sai_end .OR. year_cur < year_emit_sai_end ) & |
---|
| 266 | .AND. ( day_emit_sai_start <= day_cur .OR. mth_emit_sai_start < mth_cur .OR. year_emit_sai_start < year_cur ) & |
---|
| 267 | .AND. ( day_cur <= day_emit_sai_end .OR. mth_cur < mth_emit_sai_end .OR. year_cur < year_emit_sai_end )) THEN |
---|
[4601] | 268 | |
---|
| 269 | m_aer=m_aer_emiss_sai |
---|
| 270 | !emission as SO2 gas (with m(SO2)=64/32*m_aer_emiss) |
---|
| 271 | m_aer=m_aer*(mSO2mol/mSatom) |
---|
| 272 | |
---|
| 273 | latmin=xlat_sai |
---|
| 274 | latmax=xlat_sai |
---|
| 275 | lonmin=xlon_sai |
---|
| 276 | lonmax=xlon_sai |
---|
| 277 | altemiss = altemiss_sai |
---|
| 278 | sigma_alt = sigma_alt_sai |
---|
| 279 | pdt=0. |
---|
| 280 | ! stretch emission over whole year (360d) |
---|
| 281 | stretchlong=FLOAT(year_len) |
---|
| 282 | |
---|
| 283 | CALL STRATEMIT(pdtphys,pdt,xlat,xlon,t_seri,pplay,paprs,m_air_gridbox,tr_seri,& |
---|
| 284 | m_aer,latmin,latmax,lonmin,lonmax,altemiss,sigma_alt,id_SO2_strat, & |
---|
| 285 | stretchlong,1,0) |
---|
| 286 | |
---|
| 287 | budg_emi_so2(:) = budg_emi(:,1)*mSatom/mSO2mol |
---|
[4513] | 288 | ENDIF ! Condition over injection dates |
---|
| 289 | |
---|
[3526] | 290 | CASE(3) ! --- SAI injection over a single band of longitude and between |
---|
| 291 | ! lat_min and lat_max |
---|
| 292 | |
---|
[4601] | 293 | m_aer=m_aer_emiss_sai |
---|
| 294 | !emission as SO2 gas (with m(SO2)=64/32*m_aer_emiss) |
---|
| 295 | m_aer=m_aer*(mSO2mol/mSatom) |
---|
[3526] | 296 | |
---|
[4601] | 297 | latmin=xlat_min_sai |
---|
| 298 | latmax=xlat_max_sai |
---|
| 299 | lonmin=xlon_sai |
---|
| 300 | lonmax=xlon_sai |
---|
| 301 | altemiss = altemiss_sai |
---|
| 302 | sigma_alt = sigma_alt_sai |
---|
| 303 | pdt=0. |
---|
| 304 | ! stretch emission over whole year (360d) |
---|
| 305 | stretchlong=FLOAT(year_len) |
---|
[3526] | 306 | |
---|
[4601] | 307 | CALL STRATEMIT(pdtphys,pdt,xlat,xlon,t_seri,pplay,paprs,m_air_gridbox,tr_seri,& |
---|
| 308 | m_aer,latmin,latmax,lonmin,lonmax,altemiss,sigma_alt,id_SO2_strat, & |
---|
| 309 | stretchlong,1,0) |
---|
[3526] | 310 | |
---|
[4601] | 311 | budg_emi_so2(:) = budg_emi(:,1)*mSatom/mSO2mol |
---|
| 312 | |
---|
| 313 | END SELECT ! emission scenario (flag_emit) |
---|
[3526] | 314 | |
---|
[2690] | 315 | !--read background concentrations of OCS and SO2 and lifetimes from input file |
---|
[2695] | 316 | !--update the variables defined in phys_local_var_mod |
---|
| 317 | CALL interp_sulf_input(debutphy,pdtphys,paprs,tr_seri) |
---|
[2690] | 318 | |
---|
| 319 | !--convert OCS to SO2 in the stratosphere |
---|
[2752] | 320 | CALL ocs_to_so2(pdtphys,tr_seri,t_seri,pplay,paprs,is_strato) |
---|
[2690] | 321 | |
---|
| 322 | !--convert SO2 to H2SO4 |
---|
[2752] | 323 | CALL so2_to_h2so4(pdtphys,tr_seri,t_seri,pplay,paprs,is_strato) |
---|
[2690] | 324 | |
---|
| 325 | !--common routine for nucleation and condensation/evaporation with adaptive timestep |
---|
| 326 | CALL micphy_tstep(pdtphys,tr_seri,t_seri,pplay,paprs,rh,is_strato) |
---|
| 327 | |
---|
| 328 | !--call coagulation routine |
---|
| 329 | CALL coagulate(pdtphys,mdw,tr_seri,t_seri,pplay,dens_aer,is_strato) |
---|
| 330 | |
---|
[4601] | 331 | !--call sedimentation routine |
---|
[2690] | 332 | CALL aer_sedimnt(pdtphys, t_seri, pplay, paprs, tr_seri, dens_aer) |
---|
| 333 | |
---|
| 334 | !--compute mass concentration of PM2.5 sulfate particles (wet diameter and mass) at the surface for health studies |
---|
| 335 | surf_PM25_sulf(:)=0.0 |
---|
| 336 | DO i=1,klon |
---|
| 337 | DO it=1, nbtr_bin |
---|
| 338 | IF (mdw(it) .LT. 2.5e-6) THEN |
---|
| 339 | !surf_PM25_sulf(i)=surf_PM25_sulf(i)+tr_seri(i,1,it+nbtr_sulgas)*m_part(i,1,it) & |
---|
[3526] | 340 | !assume that particles consist of ammonium sulfate at the surface (132g/mol) |
---|
| 341 | !and are dry at T = 20 deg. C and 50 perc. humidity |
---|
[2690] | 342 | surf_PM25_sulf(i)=surf_PM25_sulf(i)+tr_seri(i,1,it+nbtr_sulgas) & |
---|
| 343 | & *132./98.*dens_aer_dry*4./3.*RPI*(mdw(it)/2.)**3 & |
---|
[2752] | 344 | & *pplay(i,1)/t_seri(i,1)/RD*1.e9 |
---|
[2690] | 345 | ENDIF |
---|
| 346 | ENDDO |
---|
| 347 | ENDDO |
---|
[4601] | 348 | |
---|
[5202] | 349 | !--compute |
---|
| 350 | ! sulfmmr: Sulfate aerosol concentration (dry mixing ratio) (condensed H2SO4 mmr) |
---|
| 351 | ! SAD_sulfate: SAD all aerosols (cm2/cm3) (must be WET) |
---|
| 352 | ! sulfmmr_mode: sulfate(=H2SO4 if dry) MMR in different modes (ambiguous but based on sulfmmr, it mus be DRY(?) mmr) |
---|
| 353 | ! nd_mode: DRY(?) particle concentration in different modes (part/m3) |
---|
| 354 | sulfmmr(:,:)=0.0 |
---|
| 355 | SAD_sulfate(:,:)=0.0 |
---|
| 356 | sulfmmr_mode(:,:,:)=0.0 |
---|
| 357 | nd_mode(:,:,:)=0.0 |
---|
| 358 | reff_sulfate(:,:)=0.0 |
---|
| 359 | |
---|
| 360 | DO i=1,klon |
---|
| 361 | DO j=1,klev |
---|
| 362 | samoment2=0.0 |
---|
| 363 | samoment3=0.0 |
---|
| 364 | DO it=1, nbtr_bin |
---|
| 365 | !surf_PM25_sulf(i)=surf_PM25_sulf(i)+tr_seri(i,1,it+nbtr_sulgas)*m_part(i,1,it) & |
---|
| 366 | !assume that particles consist of ammonium sulfate at the surface (132g/mol) |
---|
| 367 | !and are dry at T = 20 deg. C and 50 perc. humidity |
---|
| 368 | |
---|
| 369 | ! sulfmmr_mode: sulfate(=H2SO4 if dry) MMR in different modes (based on sulfmmr, it must be DRY mmr) |
---|
| 370 | ! equivalent to condensed H2SO4 mmr= H2SO4 kg / kgA in bin it |
---|
| 371 | sulfmmr_mode(i,j,it) = tr_seri(i,j,it+nbtr_sulgas) & ! [DRY part/kgA in bin it] |
---|
| 372 | & *(4./3.)*RPI*(mdw(it)/2.)**3. & ! [mdw: dry diameter in m] |
---|
| 373 | & *dens_aer_dry ! [dry aerosol mass density in kg/m3] |
---|
| 374 | |
---|
| 375 | ! sulfmmr: Sulfate aerosol concentration (dry mass mixing ratio) |
---|
| 376 | ! equivalent to total condensed H2SO4 mmr (H2SO4 kg / kgA |
---|
| 377 | sulfmmr(i,j) = sulfmmr(i,j) + sulfmmr_mode(i,j,it) |
---|
| 378 | |
---|
| 379 | ! nd_mode: particle concentration in different modes (DRY part/m3) |
---|
| 380 | nd_mode(i,j,it) = tr_seri(i,j,it+nbtr_sulgas) & ! [DRY part/kgA in bin it] |
---|
| 381 | & *pplay(i,j)/t_seri(i,j)/RD ! [air mass concentration in kg air /m3A] |
---|
| 382 | |
---|
| 383 | IF(flag_new_strat_compo) THEN |
---|
| 384 | ! SAD_sulfate: SAD WET sulfate aerosols (cm2/cm3) |
---|
| 385 | SAD_sulfate(i,j) = SAD_sulfate(i,j) + nd_mode(i,j,it) & ! [DRY part/m3A (in bin it)] |
---|
| 386 | & *4.*RPI*( mdw(it)*f_r_wetB(i,j,it)/2. )**2. & ! [WET SA of part it in m2] |
---|
| 387 | & *1.e-2 ! conversion from m2/m3 to cm2/cm3A |
---|
| 388 | ! samoment2 : 2nd order moment of WET sulfate aerosols (m2/m3) |
---|
| 389 | samoment2 = samoment2 + nd_mode(i,j,it) & ! [DRY part/m3A (in bin it)] |
---|
| 390 | & *( mdw(it)*f_r_wetB(i,j,it)/2. )**2. ! [WET SA of part it in m2] |
---|
| 391 | ! samoment3 : 3nd order moment of WET sulfate aerosols (cm2/cm3) |
---|
| 392 | samoment3 = samoment3 + nd_mode(i,j,it) & ! [DRY part/m3A (in bin it)] |
---|
| 393 | & *( mdw(it)*f_r_wetB(i,j,it)/2. )**3. ! [WET SA of part it in m2] |
---|
| 394 | ELSE |
---|
| 395 | ! SAD_sulfate: SAD WET sulfate aerosols (cm2/cm3) |
---|
| 396 | SAD_sulfate(i,j) = SAD_sulfate(i,j) + nd_mode(i,j,it) & ! [DRY part/m3A (in bin it)] |
---|
| 397 | & *4.*RPI*( mdw(it)*f_r_wet(i,j)/2. )**2. & ! [WET SA of part it in m2] |
---|
| 398 | & *1.e-2 ! conversion from m2/m3 to cm2/cm3A |
---|
| 399 | ! samoment2 : 2nd order moment of WET sulfate aerosols (m2/m3) |
---|
| 400 | samoment2 = samoment2 + nd_mode(i,j,it) & ! [DRY part/m3A (in bin it)] |
---|
| 401 | & *( mdw(it)*f_r_wet(i,j)/2. )**2. ! [WET SA of part it in m2] |
---|
| 402 | ! samoment3 : 3nd order moment of WET sulfate aerosols (cm2/cm3) |
---|
| 403 | samoment3 = samoment3 + nd_mode(i,j,it) & ! [DRY part/m3A (in bin it)] |
---|
| 404 | & *( mdw(it)*f_r_wet(i,j)/2. )**3. ! [WET SA of part it in m2] |
---|
| 405 | ENDIF |
---|
| 406 | ENDDO |
---|
| 407 | ! reff_sulfate: effective radius of WET sulfate aerosols (cm) |
---|
| 408 | reff_sulfate(i,j) = (samoment3 / samoment2) & |
---|
| 409 | & *1.e2 ! conversion from m to cm |
---|
| 410 | ENDDO |
---|
| 411 | ENDDO |
---|
| 412 | |
---|
[2690] | 413 | END SUBROUTINE traccoag |
---|
| 414 | |
---|
| 415 | END MODULE traccoag_mod |
---|