source: LMDZ6/branches/cirrus/libf/phylmd/StratAer/micphy_tstep.F90 @ 5452

Last change on this file since 5452 was 5202, checked in by Laurent Fairhead, 4 months ago

Updating cirrus branch to trunk revision 5171

  • Property svn:keywords set to Id
File size: 8.3 KB
Line 
1!
2! $Id: micphy_tstep.F90 5202 2024-09-20 10:32:04Z aborella $
3!
4SUBROUTINE micphy_tstep(pdtphys,tr_seri,t_seri,pplay,paprs,rh,is_strato)
5
6  USE geometry_mod, ONLY : latitude_deg !NL- latitude corr. to local domain
7  USE dimphy, ONLY : klon,klev
8  USE aerophys
9  USE infotrac_phy, ONLY : nbtr_bin, nbtr_sulgas, nbtr, id_H2SO4_strat
10  USE phys_local_var_mod, ONLY: mdw, budg_3D_nucl, budg_3D_cond_evap, budg_h2so4_to_part, R2SO4, DENSO4, &
11       f_r_wet, R2SO4B, DENSO4B, f_r_wetB
12  USE nucleation_tstep_mod
13  USE cond_evap_tstep_mod
14  USE sulfate_aer_mod, ONLY : STRAACT
15  USE YOMCST, ONLY : RPI, RD, RG
16  USE print_control_mod, ONLY: lunout
17  USE strataer_local_var_mod ! contains also RRSI and Vbin
18 
19  IMPLICIT NONE
20
21  !--------------------------------------------------------
22
23  ! transfer variables when calling this routine
24  REAL,INTENT(IN)                               :: pdtphys ! Pas d'integration pour la physique (seconde)
25  REAL,DIMENSION(klon,klev,nbtr),INTENT(INOUT)  :: tr_seri ! Concentration Traceur [U/KgA]
26  REAL,DIMENSION(klon,klev),INTENT(IN)          :: t_seri  ! Temperature
27  REAL,DIMENSION(klon,klev),INTENT(IN)          :: pplay   ! pression pour le mileu de chaque couche (en Pa)
28  REAL,DIMENSION(klon,klev+1),INTENT(IN)        :: paprs   ! pression pour chaque inter-couche (en Pa)
29  REAL,DIMENSION(klon,klev),INTENT(IN)          :: rh      ! humidite relative
30  LOGICAL,DIMENSION(klon,klev),INTENT(IN)       :: is_strato
31
32  ! local variables in coagulation routine
33  INTEGER, PARAMETER        :: nbtstep=4  ! Max number of time steps in microphysics per time step in physics
34  INTEGER                   :: it,ilon,ilev,count_tstep
35  REAL                      :: rhoa !H2SO4 number density [molecules/cm3]
36  REAL                      :: ntot !total number of molecules in the critical cluster (ntot>4)
37  REAL                      :: x    ! molefraction of H2SO4 in the critical cluster     
38  REAL a_xm, b_xm, c_xm
39  REAL PDT, dt
40  REAL H2SO4_init
41  REAL ACTSO4(klon,klev)
42  REAL nucl_rate
43  REAL cond_evap_rate
44  REAL evap_rate
45  REAL FL(nbtr_bin)
46  REAL ASO4(nbtr_bin)
47  REAL DNDR(nbtr_bin)
48  REAL H2SO4_sat
49  REAL R2SO4ik(nbtr_bin), DENSO4ik(nbtr_bin), f_r_wetik(nbtr_bin)
50 
51  !coefficients for H2SO4 density parametrization used for nucleation if ntot<4
52  a_xm = 0.7681724 + 1.*(2.1847140 + 1.*(7.1630022 + 1.*(-44.31447 + &
53       & 1.*(88.75606 + 1.*(-75.73729 + 1.*23.43228)))))
54  b_xm = 1.808225e-3 + 1.*(-9.294656e-3 + 1.*(-0.03742148 + 1.*(0.2565321 + &
55       & 1.*(-0.5362872 + 1.*(0.4857736 - 1.*0.1629592)))))
56  c_xm = -3.478524e-6 + 1.*(1.335867e-5 + 1.*(5.195706e-5 + 1.*(-3.717636e-4 + &
57       & 1.*(7.990811e-4 + 1.*(-7.458060e-4 + 1.*2.58139e-4 )))))
58
59  IF(.not.flag_new_strat_compo) THEN
60     ! STRAACT (R2SO4, t_seri -> H2SO4 activity coefficient (ACTSO4)) for cond/evap
61     CALL STRAACT(ACTSO4)
62  ENDIF
63 
64  DO ilon=1, klon
65!
66!--initialisation of diagnostic
67  budg_h2so4_to_part(ilon)=0.0
68!
69  DO ilev=1, klev
70!
71!--initialisation of diagnostic
72  budg_3D_nucl(ilon,ilev)=0.0
73  budg_3D_cond_evap(ilon,ilev)=0.0
74!
75  ! only in the stratosphere
76  IF (is_strato(ilon,ilev)) THEN
77    ! initialize sulfur fluxes
78    H2SO4_init=tr_seri(ilon,ilev,id_H2SO4_strat)
79    ! adaptive timestep for nucleation and condensation
80    PDT=pdtphys
81    count_tstep=0
82    DO WHILE (PDT>0.0)
83      count_tstep=count_tstep+1
84      IF (count_tstep .GT. nbtstep)  EXIT
85      ! convert tr_seri(GASH2SO4) (in kg/kgA) to H2SO4 number density (in molecules/cm3)
86      rhoa=tr_seri(ilon,ilev,id_H2SO4_strat) &
87          & *pplay(ilon,ilev)/t_seri(ilon,ilev)/RD/1.E6/mH2SO4mol
88      ! compute nucleation rate in kg(H2SO4)/kgA/s
89      CALL nucleation_rate(rhoa,t_seri(ilon,ilev),pplay(ilon,ilev),rh(ilon,ilev), &
90           & a_xm,b_xm,c_xm,nucl_rate,ntot,x)
91      !NL - add nucleation box (if flag on)
92      IF (flag_nuc_rate_box) THEN
93         IF (latitude_deg(ilon).LE.nuclat_min .OR. latitude_deg(ilon).GE.nuclat_max &
94              .OR. pplay(ilon,ilev).GE.nucpres_max .AND. pplay(ilon,ilev).LE.nucpres_min) THEN
95            nucl_rate=0.0
96         ENDIF
97      ENDIF
98      ! compute cond/evap rate in kg(H2SO4)/kgA/s
99      IF(flag_new_strat_compo) THEN
100         R2SO4ik(:)   = R2SO4B(ilon,ilev,:)
101         DENSO4ik(:)  = DENSO4B(ilon,ilev,:)
102         f_r_wetik(:) = f_r_wetB(ilon,ilev,:)
103         CALL condens_evapor_rate_kelvin(rhoa,t_seri(ilon,ilev),pplay(ilon,ilev), &
104              & R2SO4(ilon,ilev),DENSO4(ilon,ilev),f_r_wet(ilon,ilev), &
105              & R2SO4ik,DENSO4ik,f_r_wetik,FL,ASO4,DNDR)
106      ELSE
107         CALL condens_evapor_rate(rhoa,t_seri(ilon,ilev),pplay(ilon,ilev), &
108              & ACTSO4(ilon,ilev),R2SO4(ilon,ilev),DENSO4(ilon,ilev),f_r_wet(ilon,ilev), &
109              & FL,ASO4,DNDR)
110      ENDIF
111      ! Compute H2SO4 saturate vapor for big particules
112      H2SO4_sat = DNDR(nbtr_bin)/(pplay(ilon,ilev)/t_seri(ilon,ilev)/RD/1.E6/mH2SO4mol)
113      ! consider only condensation (positive FL)
114      DO it=1,nbtr_bin
115        FL(it)=MAX(FL(it),0.)
116      ENDDO
117      ! compute total H2SO4 cond flux for all particles
118      cond_evap_rate=0.0
119      DO it=1, nbtr_bin
120        cond_evap_rate=cond_evap_rate+tr_seri(ilon,ilev,it+nbtr_sulgas)*FL(it)*mH2SO4mol
121      ENDDO
122      ! determine appropriate time step
123      dt=(H2SO4_init-H2SO4_sat)/float(nbtstep)/MAX(1.e-30, nucl_rate+cond_evap_rate) !cond_evap_rate pos. for cond. and neg. for evap.
124      IF (dt.LT.0.0) THEN
125        dt=PDT
126      ENDIF
127      dt=MIN(dt,PDT)
128      ! update H2SO4 concentration
129      tr_seri(ilon,ilev,id_H2SO4_strat)=MAX(0.,tr_seri(ilon,ilev,id_H2SO4_strat)-(nucl_rate+cond_evap_rate)*dt)
130      ! apply cond to bins
131      CALL condens_evapor_part(dt,FL,ASO4,f_r_wet(ilon,ilev),tr_seri(ilon,ilev,:))
132      ! apply nucl. to bins
133      CALL nucleation_part(nucl_rate,ntot,x,dt,tr_seri(ilon,ilev,:))
134      ! compute fluxes as diagnostic in [kg(S)/m2/layer/s] (now - for evap and + for cond)
135      budg_3D_cond_evap(ilon,ilev)=budg_3D_cond_evap(ilon,ilev)+mSatom/mH2SO4mol &
136               & *cond_evap_rate*(paprs(ilon,ilev)-paprs(ilon,ilev+1))/RG*dt/pdtphys
137      budg_3D_nucl(ilon,ilev)=budg_3D_nucl(ilon,ilev)+mSatom/mH2SO4mol &
138               & *nucl_rate*(paprs(ilon,ilev)-paprs(ilon,ilev+1))/RG*dt/pdtphys
139      ! update time step
140      PDT=PDT-dt
141    ENDDO
142    ! convert tr_seri(GASH2SO4) (in kg/kgA) to H2SO4 number density (in molecules/cm3)
143    rhoa=tr_seri(ilon,ilev,id_H2SO4_strat) &
144        & *pplay(ilon,ilev)/t_seri(ilon,ilev)/RD/1.E6/mH2SO4mol
145    ! compute cond/evap rate in kg(H2SO4)/kgA/s (now only evap for pdtphys)
146    IF(flag_new_strat_compo) THEN
147       CALL condens_evapor_rate_kelvin(rhoa,t_seri(ilon,ilev),pplay(ilon,ilev), &
148            & R2SO4(ilon,ilev),DENSO4(ilon,ilev),f_r_wet(ilon,ilev), &
149            & R2SO4ik,DENSO4ik,f_r_wetik,FL,ASO4,DNDR)
150    ELSE
151       CALL condens_evapor_rate(rhoa,t_seri(ilon,ilev),pplay(ilon,ilev), &
152            & ACTSO4(ilon,ilev),R2SO4(ilon,ilev),DENSO4(ilon,ilev),f_r_wet(ilon,ilev), &
153            & FL,ASO4,DNDR)
154    ENDIF
155    ! limit evaporation (negative FL) over one physics time step to H2SO4 content of the droplet
156    DO it=1,nbtr_bin
157      FL(it)=MAX(FL(it)*pdtphys,0.-ASO4(it))/pdtphys
158      ! consider only evap (negative FL)
159      FL(it)=MIN(FL(it),0.)
160    ENDDO
161    ! compute total H2SO4 evap flux for all particles
162    evap_rate=0.0
163    DO it=1, nbtr_bin
164      evap_rate=evap_rate+tr_seri(ilon,ilev,it+nbtr_sulgas)*FL(it)*mH2SO4mol
165    ENDDO
166    ! update H2SO4 concentration after evap
167    tr_seri(ilon,ilev,id_H2SO4_strat)=MAX(0.,tr_seri(ilon,ilev,id_H2SO4_strat)-evap_rate*pdtphys)
168    ! apply evap to bins
169    CALL condens_evapor_part(pdtphys,FL,ASO4,f_r_wet(ilon,ilev),tr_seri(ilon,ilev,:))
170    ! compute fluxes as diagnostic in [kg(S)/m2/layer/s] (now - for evap and + for cond)
171    budg_3D_cond_evap(ilon,ilev)=budg_3D_cond_evap(ilon,ilev)+mSatom/mH2SO4mol &
172             & *evap_rate*(paprs(ilon,ilev)-paprs(ilon,ilev+1))/RG
173    ! compute vertically integrated flux due to the net effect of nucleation and condensation/evaporation
174    budg_h2so4_to_part(ilon)=budg_h2so4_to_part(ilon)+(H2SO4_init-tr_seri(ilon,ilev,id_H2SO4_strat)) &
175             & *mSatom/mH2SO4mol*(paprs(ilon,ilev)-paprs(ilon,ilev+1))/RG/pdtphys
176  ENDIF
177  ENDDO
178  ENDDO
179
180  IF (MINVAL(tr_seri).LT.0.0) THEN
181    DO ilon=1, klon
182    DO ilev=1, klev   
183    DO it=1, nbtr
184      IF (tr_seri(ilon,ilev,it).LT.0.0) THEN
185         WRITE(lunout,*) 'micphy_tstep: negative concentration', tr_seri(ilon,ilev,it), ilon, ilev, it
186      ENDIF
187    ENDDO
188    ENDDO
189    ENDDO
190  ENDIF
191
192END SUBROUTINE micphy_tstep
Note: See TracBrowser for help on using the repository browser.