source: LMDZ6/branches/cirrus/libf/phylmd/StratAer/micphy_tstep.F90

Last change on this file was 5202, checked in by Laurent Fairhead, 3 months ago

Updating cirrus branch to trunk revision 5171

  • Property svn:keywords set to Id
File size: 8.3 KB
RevLine 
[3526]1!
2! $Id: micphy_tstep.F90 5202 2024-09-20 10:32:04Z abarral $
3!
[2690]4SUBROUTINE micphy_tstep(pdtphys,tr_seri,t_seri,pplay,paprs,rh,is_strato)
5
[3526]6  USE geometry_mod, ONLY : latitude_deg !NL- latitude corr. to local domain
[2690]7  USE dimphy, ONLY : klon,klev
8  USE aerophys
[4293]9  USE infotrac_phy, ONLY : nbtr_bin, nbtr_sulgas, nbtr, id_H2SO4_strat
[5202]10  USE phys_local_var_mod, ONLY: mdw, budg_3D_nucl, budg_3D_cond_evap, budg_h2so4_to_part, R2SO4, DENSO4, &
11       f_r_wet, R2SO4B, DENSO4B, f_r_wetB
[2690]12  USE nucleation_tstep_mod
13  USE cond_evap_tstep_mod
14  USE sulfate_aer_mod, ONLY : STRAACT
[2695]15  USE YOMCST, ONLY : RPI, RD, RG
[3526]16  USE print_control_mod, ONLY: lunout
[5202]17  USE strataer_local_var_mod ! contains also RRSI and Vbin
[3526]18 
[2690]19  IMPLICIT NONE
20
21  !--------------------------------------------------------
22
23  ! transfer variables when calling this routine
24  REAL,INTENT(IN)                               :: pdtphys ! Pas d'integration pour la physique (seconde)
25  REAL,DIMENSION(klon,klev,nbtr),INTENT(INOUT)  :: tr_seri ! Concentration Traceur [U/KgA]
26  REAL,DIMENSION(klon,klev),INTENT(IN)          :: t_seri  ! Temperature
27  REAL,DIMENSION(klon,klev),INTENT(IN)          :: pplay   ! pression pour le mileu de chaque couche (en Pa)
28  REAL,DIMENSION(klon,klev+1),INTENT(IN)        :: paprs   ! pression pour chaque inter-couche (en Pa)
29  REAL,DIMENSION(klon,klev),INTENT(IN)          :: rh      ! humidite relative
30  LOGICAL,DIMENSION(klon,klev),INTENT(IN)       :: is_strato
31
32  ! local variables in coagulation routine
33  INTEGER, PARAMETER        :: nbtstep=4  ! Max number of time steps in microphysics per time step in physics
[3098]34  INTEGER                   :: it,ilon,ilev,count_tstep
[2690]35  REAL                      :: rhoa !H2SO4 number density [molecules/cm3]
36  REAL                      :: ntot !total number of molecules in the critical cluster (ntot>4)
37  REAL                      :: x    ! molefraction of H2SO4 in the critical cluster     
38  REAL a_xm, b_xm, c_xm
39  REAL PDT, dt
40  REAL H2SO4_init
41  REAL ACTSO4(klon,klev)
42  REAL nucl_rate
43  REAL cond_evap_rate
44  REAL evap_rate
45  REAL FL(nbtr_bin)
46  REAL ASO4(nbtr_bin)
47  REAL DNDR(nbtr_bin)
[4293]48  REAL H2SO4_sat
[5202]49  REAL R2SO4ik(nbtr_bin), DENSO4ik(nbtr_bin), f_r_wetik(nbtr_bin)
50 
[2690]51  !coefficients for H2SO4 density parametrization used for nucleation if ntot<4
52  a_xm = 0.7681724 + 1.*(2.1847140 + 1.*(7.1630022 + 1.*(-44.31447 + &
53       & 1.*(88.75606 + 1.*(-75.73729 + 1.*23.43228)))))
54  b_xm = 1.808225e-3 + 1.*(-9.294656e-3 + 1.*(-0.03742148 + 1.*(0.2565321 + &
55       & 1.*(-0.5362872 + 1.*(0.4857736 - 1.*0.1629592)))))
56  c_xm = -3.478524e-6 + 1.*(1.335867e-5 + 1.*(5.195706e-5 + 1.*(-3.717636e-4 + &
57       & 1.*(7.990811e-4 + 1.*(-7.458060e-4 + 1.*2.58139e-4 )))))
58
[5202]59  IF(.not.flag_new_strat_compo) THEN
60     ! STRAACT (R2SO4, t_seri -> H2SO4 activity coefficient (ACTSO4)) for cond/evap
61     CALL STRAACT(ACTSO4)
62  ENDIF
63 
[2690]64  DO ilon=1, klon
[3094]65!
66!--initialisation of diagnostic
67  budg_h2so4_to_part(ilon)=0.0
68!
[2690]69  DO ilev=1, klev
[3094]70!
71!--initialisation of diagnostic
72  budg_3D_nucl(ilon,ilev)=0.0
73  budg_3D_cond_evap(ilon,ilev)=0.0
74!
[2690]75  ! only in the stratosphere
76  IF (is_strato(ilon,ilev)) THEN
77    ! initialize sulfur fluxes
78    H2SO4_init=tr_seri(ilon,ilev,id_H2SO4_strat)
79    ! adaptive timestep for nucleation and condensation
80    PDT=pdtphys
81    count_tstep=0
[2695]82    DO WHILE (PDT>0.0)
[2690]83      count_tstep=count_tstep+1
[2695]84      IF (count_tstep .GT. nbtstep)  EXIT
[2690]85      ! convert tr_seri(GASH2SO4) (in kg/kgA) to H2SO4 number density (in molecules/cm3)
86      rhoa=tr_seri(ilon,ilev,id_H2SO4_strat) &
87          & *pplay(ilon,ilev)/t_seri(ilon,ilev)/RD/1.E6/mH2SO4mol
88      ! compute nucleation rate in kg(H2SO4)/kgA/s
89      CALL nucleation_rate(rhoa,t_seri(ilon,ilev),pplay(ilon,ilev),rh(ilon,ilev), &
[3526]90           & a_xm,b_xm,c_xm,nucl_rate,ntot,x)
91      !NL - add nucleation box (if flag on)
92      IF (flag_nuc_rate_box) THEN
[3527]93         IF (latitude_deg(ilon).LE.nuclat_min .OR. latitude_deg(ilon).GE.nuclat_max &
94              .OR. pplay(ilon,ilev).GE.nucpres_max .AND. pplay(ilon,ilev).LE.nucpres_min) THEN
[3526]95            nucl_rate=0.0
96         ENDIF
97      ENDIF
[2690]98      ! compute cond/evap rate in kg(H2SO4)/kgA/s
[5202]99      IF(flag_new_strat_compo) THEN
100         R2SO4ik(:)   = R2SO4B(ilon,ilev,:)
101         DENSO4ik(:)  = DENSO4B(ilon,ilev,:)
102         f_r_wetik(:) = f_r_wetB(ilon,ilev,:)
103         CALL condens_evapor_rate_kelvin(rhoa,t_seri(ilon,ilev),pplay(ilon,ilev), &
104              & R2SO4(ilon,ilev),DENSO4(ilon,ilev),f_r_wet(ilon,ilev), &
105              & R2SO4ik,DENSO4ik,f_r_wetik,FL,ASO4,DNDR)
106      ELSE
107         CALL condens_evapor_rate(rhoa,t_seri(ilon,ilev),pplay(ilon,ilev), &
108              & ACTSO4(ilon,ilev),R2SO4(ilon,ilev),DENSO4(ilon,ilev),f_r_wet(ilon,ilev), &
109              & FL,ASO4,DNDR)
110      ENDIF
[4293]111      ! Compute H2SO4 saturate vapor for big particules
112      H2SO4_sat = DNDR(nbtr_bin)/(pplay(ilon,ilev)/t_seri(ilon,ilev)/RD/1.E6/mH2SO4mol)
[2690]113      ! consider only condensation (positive FL)
[3098]114      DO it=1,nbtr_bin
115        FL(it)=MAX(FL(it),0.)
[2690]116      ENDDO
117      ! compute total H2SO4 cond flux for all particles
118      cond_evap_rate=0.0
[3098]119      DO it=1, nbtr_bin
120        cond_evap_rate=cond_evap_rate+tr_seri(ilon,ilev,it+nbtr_sulgas)*FL(it)*mH2SO4mol
[2690]121      ENDDO
122      ! determine appropriate time step
[4293]123      dt=(H2SO4_init-H2SO4_sat)/float(nbtstep)/MAX(1.e-30, nucl_rate+cond_evap_rate) !cond_evap_rate pos. for cond. and neg. for evap.
[2690]124      IF (dt.LT.0.0) THEN
125        dt=PDT
126      ENDIF
127      dt=MIN(dt,PDT)
128      ! update H2SO4 concentration
129      tr_seri(ilon,ilev,id_H2SO4_strat)=MAX(0.,tr_seri(ilon,ilev,id_H2SO4_strat)-(nucl_rate+cond_evap_rate)*dt)
130      ! apply cond to bins
[5202]131      CALL condens_evapor_part(dt,FL,ASO4,f_r_wet(ilon,ilev),tr_seri(ilon,ilev,:))
[2690]132      ! apply nucl. to bins
[5202]133      CALL nucleation_part(nucl_rate,ntot,x,dt,tr_seri(ilon,ilev,:))
[2690]134      ! compute fluxes as diagnostic in [kg(S)/m2/layer/s] (now - for evap and + for cond)
[2752]135      budg_3D_cond_evap(ilon,ilev)=budg_3D_cond_evap(ilon,ilev)+mSatom/mH2SO4mol &
[2690]136               & *cond_evap_rate*(paprs(ilon,ilev)-paprs(ilon,ilev+1))/RG*dt/pdtphys
[2752]137      budg_3D_nucl(ilon,ilev)=budg_3D_nucl(ilon,ilev)+mSatom/mH2SO4mol &
[2690]138               & *nucl_rate*(paprs(ilon,ilev)-paprs(ilon,ilev+1))/RG*dt/pdtphys
139      ! update time step
140      PDT=PDT-dt
141    ENDDO
142    ! convert tr_seri(GASH2SO4) (in kg/kgA) to H2SO4 number density (in molecules/cm3)
143    rhoa=tr_seri(ilon,ilev,id_H2SO4_strat) &
144        & *pplay(ilon,ilev)/t_seri(ilon,ilev)/RD/1.E6/mH2SO4mol
145    ! compute cond/evap rate in kg(H2SO4)/kgA/s (now only evap for pdtphys)
[5202]146    IF(flag_new_strat_compo) THEN
147       CALL condens_evapor_rate_kelvin(rhoa,t_seri(ilon,ilev),pplay(ilon,ilev), &
148            & R2SO4(ilon,ilev),DENSO4(ilon,ilev),f_r_wet(ilon,ilev), &
149            & R2SO4ik,DENSO4ik,f_r_wetik,FL,ASO4,DNDR)
150    ELSE
151       CALL condens_evapor_rate(rhoa,t_seri(ilon,ilev),pplay(ilon,ilev), &
152            & ACTSO4(ilon,ilev),R2SO4(ilon,ilev),DENSO4(ilon,ilev),f_r_wet(ilon,ilev), &
153            & FL,ASO4,DNDR)
154    ENDIF
[2690]155    ! limit evaporation (negative FL) over one physics time step to H2SO4 content of the droplet
[3098]156    DO it=1,nbtr_bin
157      FL(it)=MAX(FL(it)*pdtphys,0.-ASO4(it))/pdtphys
[2690]158      ! consider only evap (negative FL)
[3098]159      FL(it)=MIN(FL(it),0.)
[2690]160    ENDDO
161    ! compute total H2SO4 evap flux for all particles
162    evap_rate=0.0
[3098]163    DO it=1, nbtr_bin
164      evap_rate=evap_rate+tr_seri(ilon,ilev,it+nbtr_sulgas)*FL(it)*mH2SO4mol
[2690]165    ENDDO
166    ! update H2SO4 concentration after evap
167    tr_seri(ilon,ilev,id_H2SO4_strat)=MAX(0.,tr_seri(ilon,ilev,id_H2SO4_strat)-evap_rate*pdtphys)
168    ! apply evap to bins
[5202]169    CALL condens_evapor_part(pdtphys,FL,ASO4,f_r_wet(ilon,ilev),tr_seri(ilon,ilev,:))
[2690]170    ! compute fluxes as diagnostic in [kg(S)/m2/layer/s] (now - for evap and + for cond)
[2752]171    budg_3D_cond_evap(ilon,ilev)=budg_3D_cond_evap(ilon,ilev)+mSatom/mH2SO4mol &
[2690]172             & *evap_rate*(paprs(ilon,ilev)-paprs(ilon,ilev+1))/RG
[3094]173    ! compute vertically integrated flux due to the net effect of nucleation and condensation/evaporation
174    budg_h2so4_to_part(ilon)=budg_h2so4_to_part(ilon)+(H2SO4_init-tr_seri(ilon,ilev,id_H2SO4_strat)) &
175             & *mSatom/mH2SO4mol*(paprs(ilon,ilev)-paprs(ilon,ilev+1))/RG/pdtphys
[2690]176  ENDIF
177  ENDDO
178  ENDDO
179
[2695]180  IF (MINVAL(tr_seri).LT.0.0) THEN
[2690]181    DO ilon=1, klon
182    DO ilev=1, klev   
[3098]183    DO it=1, nbtr
184      IF (tr_seri(ilon,ilev,it).LT.0.0) THEN
[3526]185         WRITE(lunout,*) 'micphy_tstep: negative concentration', tr_seri(ilon,ilev,it), ilon, ilev, it
[2690]186      ENDIF
187    ENDDO
188    ENDDO
189    ENDDO
190  ENDIF
191
192END SUBROUTINE micphy_tstep
Note: See TracBrowser for help on using the repository browser.