| 1 | MODULE lscp_mod |
|---|
| 2 | |
|---|
| 3 | IMPLICIT NONE |
|---|
| 4 | |
|---|
| 5 | CONTAINS |
|---|
| 6 | |
|---|
| 7 | !++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ |
|---|
| 8 | SUBROUTINE lscp(klon,klev,dtime,missing_val, & |
|---|
| 9 | paprs,pplay,t,q,ptconv,ratqs, & |
|---|
| 10 | d_t, d_q, d_ql, d_qi, rneb, rneblsvol, rneb_seri, & |
|---|
| 11 | radocond, radicefrac, rain, snow, & |
|---|
| 12 | frac_impa, frac_nucl, beta, & |
|---|
| 13 | prfl, psfl, rhcl, zqta, fraca, & |
|---|
| 14 | ztv, zpspsk, ztla, zthl, iflag_cld_th, & |
|---|
| 15 | iflag_ice_thermo, ok_ice_sursat, qsatl, qsats, & |
|---|
| 16 | qclr, qcld, qss, qvc, rnebclr, rnebss, gamma_ss, & |
|---|
| 17 | Tcontr, qcontr, qcontr2, fcontrN, fcontrP) |
|---|
| 18 | |
|---|
| 19 | !++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ |
|---|
| 20 | ! Authors: Z.X. Li (LMD), J-L Dufresne (LMD), C. Rio (LMD), J-Y Grandpeix (LMD) |
|---|
| 21 | ! A. JAM (LMD), J-B Madeleine (LMD), E. Vignon (LMD), L. Touzze-Peiffert (LMD) |
|---|
| 22 | !-------------------------------------------------------------------------------- |
|---|
| 23 | ! Date: 01/2021 |
|---|
| 24 | !-------------------------------------------------------------------------------- |
|---|
| 25 | ! Aim: Large Scale Clouds and Precipitation (LSCP) |
|---|
| 26 | ! |
|---|
| 27 | ! This code is a new version of the fisrtilp.F90 routine, which is itself a |
|---|
| 28 | ! merge of 'first' (superrsaturation physics, P. LeVan K. Laval) |
|---|
| 29 | ! and 'ilp' (il pleut, L. Li) |
|---|
| 30 | ! |
|---|
| 31 | ! Compared to the original fisrtilp code, lscp |
|---|
| 32 | ! -> assumes thermcep = .TRUE. all the time (fisrtilp inconsistent when .FALSE.) |
|---|
| 33 | ! -> consider always precipitation thermalisation (fl_cor_ebil>0) |
|---|
| 34 | ! -> option iflag_fisrtilp_qsat<0 no longer possible (qsat does not evolve with T) |
|---|
| 35 | ! -> option "oldbug" by JYG has been removed |
|---|
| 36 | ! -> iflag_t_glace >0 always |
|---|
| 37 | ! -> the 'all or nothing' cloud approach is no longer available (cpartiel=T always) |
|---|
| 38 | ! -> rectangular distribution from L. Li no longer available |
|---|
| 39 | ! -> We always account for the Wegener-Findeisen-Bergeron process (iflag_bergeron = 2 in fisrt) |
|---|
| 40 | !-------------------------------------------------------------------------------- |
|---|
| 41 | ! References: |
|---|
| 42 | ! |
|---|
| 43 | ! - Bony, S., & Emanuel, K. A. 2001, JAS, doi: 10.1175/1520-0469(2001)058<3158:APOTCA>2.0.CO;2 |
|---|
| 44 | ! - Hourdin et al. 2013, Clim Dyn, doi:10.1007/s00382-012-1343-y |
|---|
| 45 | ! - Jam et al. 2013, Boundary-Layer Meteorol, doi:10.1007/s10546-012-9789-3 |
|---|
| 46 | ! - Jouhaud, et al. 2018. JAMES, doi:10.1029/2018MS001379 |
|---|
| 47 | ! - Madeleine et al. 2020, JAMES, doi:10.1029/2020MS002046 |
|---|
| 48 | ! - Touzze-Peifert Ludo, PhD thesis, p117-124 |
|---|
| 49 | ! ------------------------------------------------------------------------------- |
|---|
| 50 | ! Code structure: |
|---|
| 51 | ! |
|---|
| 52 | ! P0> Thermalization of the precipitation coming from the overlying layer |
|---|
| 53 | ! P1> Evaporation of the precipitation (falling from the k+1 level) |
|---|
| 54 | ! P2> Cloud formation (at the k level) |
|---|
| 55 | ! P2.A.1> With the PDFs, calculation of cloud properties using the inital |
|---|
| 56 | ! values of T and Q |
|---|
| 57 | ! P2.A.2> Coupling between condensed water and temperature |
|---|
| 58 | ! P2.A.3> Calculation of final quantities associated with cloud formation |
|---|
| 59 | ! P2.B> Release of Latent heat after cloud formation |
|---|
| 60 | ! P3> Autoconversion to precipitation (k-level) |
|---|
| 61 | ! P4> Wet scavenging |
|---|
| 62 | !------------------------------------------------------------------------------ |
|---|
| 63 | ! Some preliminary comments (JBM) : |
|---|
| 64 | ! |
|---|
| 65 | ! The cloud water that the radiation scheme sees is not the same that the cloud |
|---|
| 66 | ! water used in the physics and the dynamics |
|---|
| 67 | ! |
|---|
| 68 | ! During the autoconversion to precipitation (P3 step), radocond (cloud water used |
|---|
| 69 | ! by the radiation scheme) is calculated as an average of the water that remains |
|---|
| 70 | ! in the cloud during the precipitation and not the water remaining at the end |
|---|
| 71 | ! of the time step. The latter is used in the rest of the physics and advected |
|---|
| 72 | ! by the dynamics. |
|---|
| 73 | ! |
|---|
| 74 | ! In summary: |
|---|
| 75 | ! |
|---|
| 76 | ! Radiation: |
|---|
| 77 | ! xflwc(newmicro)+xfiwc(newmicro) = |
|---|
| 78 | ! radocond=lwcon(nc)+iwcon(nc) |
|---|
| 79 | ! |
|---|
| 80 | ! Notetheless, be aware of: |
|---|
| 81 | ! |
|---|
| 82 | ! radocond .NE. ocond(nc) |
|---|
| 83 | ! i.e.: |
|---|
| 84 | ! lwcon(nc)+iwcon(nc) .NE. ocond(nc) |
|---|
| 85 | ! but oliq+(ocond-oliq) .EQ. ocond |
|---|
| 86 | ! (which is not trivial) |
|---|
| 87 | !++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ |
|---|
| 88 | ! |
|---|
| 89 | USE print_control_mod, ONLY: prt_level, lunout |
|---|
| 90 | USE cloudth_mod, ONLY : cloudth, cloudth_v3, cloudth_v6, cloudth_mpc |
|---|
| 91 | USE lscp_tools_mod, ONLY : calc_qsat_ecmwf, icefrac_lscp, calc_gammasat, fallice_velocity |
|---|
| 92 | USE ice_sursat_mod, ONLY : ice_sursat |
|---|
| 93 | |
|---|
| 94 | USE lscp_ini_mod, ONLY : seuil_neb, ninter, iflag_evap_prec, t_coup, DDT0, ztfondue, rain_int_min |
|---|
| 95 | USE lscp_ini_mod, ONLY : iflag_mpc_bl, ok_radocond_snow, a_tr_sca, ok_debug_autoconversion |
|---|
| 96 | |
|---|
| 97 | |
|---|
| 98 | IMPLICIT NONE |
|---|
| 99 | |
|---|
| 100 | !=============================================================================== |
|---|
| 101 | ! VARIABLES DECLARATION |
|---|
| 102 | !=============================================================================== |
|---|
| 103 | |
|---|
| 104 | include "YOMCST.h" |
|---|
| 105 | include "YOETHF.h" |
|---|
| 106 | include "fisrtilp.h" |
|---|
| 107 | include "nuage.h" |
|---|
| 108 | |
|---|
| 109 | ! INPUT VARIABLES: |
|---|
| 110 | !----------------- |
|---|
| 111 | |
|---|
| 112 | INTEGER, INTENT(IN) :: klon,klev ! number of horizontal grid points and vertical levels |
|---|
| 113 | REAL, INTENT(IN) :: dtime ! time step [s] |
|---|
| 114 | REAL, INTENT(IN) :: missing_val ! missing value for output |
|---|
| 115 | |
|---|
| 116 | REAL, DIMENSION(klon,klev+1), INTENT(IN) :: paprs ! inter-layer pressure [Pa] |
|---|
| 117 | REAL, DIMENSION(klon,klev), INTENT(IN) :: pplay ! mid-layer pressure [Pa] |
|---|
| 118 | REAL, DIMENSION(klon,klev), INTENT(IN) :: t ! temperature (K) |
|---|
| 119 | REAL, DIMENSION(klon,klev), INTENT(IN) :: q ! total specific humidity (= vapor phase) [kg/kg] |
|---|
| 120 | INTEGER, INTENT(IN) :: iflag_cld_th ! flag that determines the distribution of convective clouds |
|---|
| 121 | INTEGER, INTENT(IN) :: iflag_ice_thermo! flag to activate the ice thermodynamics |
|---|
| 122 | ! CR: if iflag_ice_thermo=2, only convection is active |
|---|
| 123 | LOGICAL, INTENT(IN) :: ok_ice_sursat ! flag to determine if ice sursaturation is activated |
|---|
| 124 | |
|---|
| 125 | LOGICAL, DIMENSION(klon,klev), INTENT(IN) :: ptconv ! grid points where deep convection scheme is active |
|---|
| 126 | |
|---|
| 127 | |
|---|
| 128 | !Inputs associated with thermal plumes |
|---|
| 129 | |
|---|
| 130 | REAL, DIMENSION(klon,klev), INTENT(IN) :: ztv ! virtual potential temperature [K] |
|---|
| 131 | REAL, DIMENSION(klon,klev), INTENT(IN) :: zqta ! specific humidity within thermals [kg/kg] |
|---|
| 132 | REAL, DIMENSION(klon,klev), INTENT(IN) :: fraca ! fraction of thermals within the mesh [-] |
|---|
| 133 | REAL, DIMENSION(klon,klev), INTENT(IN) :: zpspsk ! exner potential (p/100000)**(R/cp) |
|---|
| 134 | REAL, DIMENSION(klon,klev), INTENT(IN) :: ztla ! liquid temperature within thermals [K] |
|---|
| 135 | REAL, DIMENSION(klon,klev), INTENT(INOUT) :: zthl ! liquid potential temperature [K] |
|---|
| 136 | |
|---|
| 137 | ! INPUT/OUTPUT variables |
|---|
| 138 | !------------------------ |
|---|
| 139 | |
|---|
| 140 | REAL, DIMENSION(klon,klev), INTENT(INOUT):: ratqs ! function of pressure that sets the large-scale |
|---|
| 141 | REAL, DIMENSION(klon,klev), INTENT(INOUT):: beta ! conversion rate of condensed water |
|---|
| 142 | |
|---|
| 143 | |
|---|
| 144 | ! Input sursaturation en glace |
|---|
| 145 | REAL, DIMENSION(klon,klev), INTENT(INOUT):: rneb_seri ! fraction nuageuse en memoire |
|---|
| 146 | |
|---|
| 147 | ! OUTPUT variables |
|---|
| 148 | !----------------- |
|---|
| 149 | |
|---|
| 150 | REAL, DIMENSION(klon,klev), INTENT(OUT) :: d_t ! temperature increment [K] |
|---|
| 151 | REAL, DIMENSION(klon,klev), INTENT(OUT) :: d_q ! specific humidity increment [kg/kg] |
|---|
| 152 | REAL, DIMENSION(klon,klev), INTENT(OUT) :: d_ql ! liquid water increment [kg/kg] |
|---|
| 153 | REAL, DIMENSION(klon,klev), INTENT(OUT) :: d_qi ! cloud ice mass increment [kg/kg] |
|---|
| 154 | REAL, DIMENSION(klon,klev), INTENT(OUT) :: rneb ! cloud fraction [-] |
|---|
| 155 | REAL, DIMENSION(klon,klev), INTENT(OUT) :: rneblsvol ! cloud fraction per unit volume [-] |
|---|
| 156 | REAL, DIMENSION(klon,klev), INTENT(OUT) :: radocond ! condensed water used in the radiation scheme [kg/kg] |
|---|
| 157 | REAL, DIMENSION(klon,klev), INTENT(OUT) :: radicefrac ! ice fraction of condensed water for radiation scheme |
|---|
| 158 | REAL, DIMENSION(klon,klev), INTENT(OUT) :: rhcl ! clear-sky relative humidity [-] |
|---|
| 159 | REAL, DIMENSION(klon), INTENT(OUT) :: rain ! surface large-scale rainfall [kg/s/m2] |
|---|
| 160 | REAL, DIMENSION(klon), INTENT(OUT) :: snow ! surface large-scale snowfall [kg/s/m2] |
|---|
| 161 | REAL, DIMENSION(klon,klev), INTENT(OUT) :: qsatl ! saturation specific humidity wrt liquid [kg/kg] |
|---|
| 162 | REAL, DIMENSION(klon,klev), INTENT(OUT) :: qsats ! saturation specific humidity wrt ice [kg/kg] |
|---|
| 163 | REAL, DIMENSION(klon,klev+1), INTENT(OUT) :: prfl ! large-scale rainfall flux in the column [kg/s/m2] |
|---|
| 164 | REAL, DIMENSION(klon,klev+1), INTENT(OUT) :: psfl ! large-scale snowfall flux in the column [kg/s/m2] |
|---|
| 165 | |
|---|
| 166 | ! fraction of aerosol scavenging through impaction and nucleation (for on-line) |
|---|
| 167 | |
|---|
| 168 | REAL, DIMENSION(klon,klev), INTENT(OUT) :: frac_impa ! scavenging fraction due tu impaction [-] |
|---|
| 169 | REAL, DIMENSION(klon,klev), INTENT(OUT) :: frac_nucl ! scavenging fraction due tu nucleation [-] |
|---|
| 170 | |
|---|
| 171 | ! for supersaturation and contrails parameterisation |
|---|
| 172 | |
|---|
| 173 | REAL, DIMENSION(klon,klev), INTENT(OUT) :: qclr ! specific total water content in clear sky region [kg/kg] |
|---|
| 174 | REAL, DIMENSION(klon,klev), INTENT(OUT) :: qcld ! specific total water content in cloudy region [kg/kg] |
|---|
| 175 | REAL, DIMENSION(klon,klev), INTENT(OUT) :: qss ! specific total water content in supersat region [kg/kg] |
|---|
| 176 | REAL, DIMENSION(klon,klev), INTENT(OUT) :: qvc ! specific vapor content in clouds [kg/kg] |
|---|
| 177 | REAL, DIMENSION(klon,klev), INTENT(OUT) :: rnebclr ! mesh fraction of clear sky [-] |
|---|
| 178 | REAL, DIMENSION(klon,klev), INTENT(OUT) :: rnebss ! mesh fraction of ISSR [-] |
|---|
| 179 | REAL, DIMENSION(klon,klev), INTENT(OUT) :: gamma_ss ! coefficient governing the ice nucleation RHi threshold [-] |
|---|
| 180 | REAL, DIMENSION(klon,klev), INTENT(OUT) :: Tcontr ! threshold temperature for contrail formation [K] |
|---|
| 181 | REAL, DIMENSION(klon,klev), INTENT(OUT) :: qcontr ! threshold humidity for contrail formation [kg/kg] |
|---|
| 182 | REAL, DIMENSION(klon,klev), INTENT(OUT) :: qcontr2 ! // (2nd expression more consistent with LMDZ expression of q) |
|---|
| 183 | REAL, DIMENSION(klon,klev), INTENT(OUT) :: fcontrN ! fraction of grid favourable to non-persistent contrails |
|---|
| 184 | REAL, DIMENSION(klon,klev), INTENT(OUT) :: fcontrP ! fraction of grid favourable to persistent contrails |
|---|
| 185 | |
|---|
| 186 | |
|---|
| 187 | ! LOCAL VARIABLES: |
|---|
| 188 | !---------------- |
|---|
| 189 | |
|---|
| 190 | REAL qsl(klon), qsi(klon) |
|---|
| 191 | REAL zct, zcl |
|---|
| 192 | REAL ctot(klon,klev) |
|---|
| 193 | REAL ctot_vol(klon,klev) |
|---|
| 194 | REAL zqs(klon), zdqs(klon), zdelta, zcor, zcvm5 |
|---|
| 195 | REAL zdqsdT_raw(klon) |
|---|
| 196 | REAL gammasat(klon),dgammasatdt(klon) ! coefficient to make cold condensation at the correct RH and derivative wrt T |
|---|
| 197 | REAL Tbef(klon),qlbef(klon),DT(klon),num,denom |
|---|
| 198 | REAL cste |
|---|
| 199 | REAL zpdf_sig(klon),zpdf_k(klon),zpdf_delta(klon) |
|---|
| 200 | REAL Zpdf_a(klon),zpdf_b(klon),zpdf_e1(klon),zpdf_e2(klon) |
|---|
| 201 | REAL erf |
|---|
| 202 | REAL qcloud(klon), icefrac_mpc(klon,klev), qincloud_mpc(klon) |
|---|
| 203 | REAL zrfl(klon), zrfln(klon), zqev, zqevt |
|---|
| 204 | REAL zifl(klon), zifln(klon), ziflprev(klon),zqev0,zqevi, zqevti |
|---|
| 205 | REAL zoliq(klon), zcond(klon), zq(klon), zqn(klon) |
|---|
| 206 | REAL zoliql(klon), zoliqi(klon) |
|---|
| 207 | REAL zt(klon) |
|---|
| 208 | REAL zdz(klon),zrho(klon,klev),iwc(klon) |
|---|
| 209 | REAL zchau,zfroi,zfice(klon),zneb(klon),znebprecip(klon) |
|---|
| 210 | REAL zmelt,zrain,zsnow,zprecip |
|---|
| 211 | REAL dzfice(klon) |
|---|
| 212 | REAL zsolid |
|---|
| 213 | REAL qtot(klon), qzero(klon) |
|---|
| 214 | REAL dqsl(klon),dqsi(klon) |
|---|
| 215 | REAL smallestreal |
|---|
| 216 | ! Variables for Bergeron process |
|---|
| 217 | REAL zcp, coef1, DeltaT, Deltaq, Deltaqprecl |
|---|
| 218 | REAL zqpreci(klon), zqprecl(klon) |
|---|
| 219 | ! Variables precipitation energy conservation |
|---|
| 220 | REAL zmqc(klon) |
|---|
| 221 | REAL zalpha_tr |
|---|
| 222 | REAL zfrac_lessi |
|---|
| 223 | REAL zprec_cond(klon) |
|---|
| 224 | REAL zmair(klon), zcpair, zcpeau |
|---|
| 225 | REAL zlh_solid(klon), zm_solid ! for liquid -> solid conversion |
|---|
| 226 | REAL zrflclr(klon), zrflcld(klon) |
|---|
| 227 | REAL d_zrfl_clr_cld(klon), d_zifl_clr_cld(klon) |
|---|
| 228 | REAL d_zrfl_cld_clr(klon), d_zifl_cld_clr(klon) |
|---|
| 229 | REAL ziflclr(klon), ziflcld(klon) |
|---|
| 230 | REAL znebprecipclr(klon), znebprecipcld(klon) |
|---|
| 231 | REAL tot_zneb(klon), tot_znebn(klon), d_tot_zneb(klon) |
|---|
| 232 | REAL d_znebprecip_clr_cld(klon), d_znebprecip_cld_clr(klon) |
|---|
| 233 | REAL velo(klon,klev), vr |
|---|
| 234 | REAL qlmpc, qimpc, rnebmpc |
|---|
| 235 | REAL radocondi(klon,klev), radocondl(klon,klev) |
|---|
| 236 | |
|---|
| 237 | INTEGER i, k, n, kk |
|---|
| 238 | INTEGER n_i(klon), iter |
|---|
| 239 | INTEGER ncoreczq |
|---|
| 240 | INTEGER mpc_bl_points(klon,klev) |
|---|
| 241 | |
|---|
| 242 | LOGICAL lognormale(klon) |
|---|
| 243 | LOGICAL keepgoing(klon) |
|---|
| 244 | LOGICAL,SAVE :: appel1er |
|---|
| 245 | !$OMP THREADPRIVATE(appel1er) |
|---|
| 246 | |
|---|
| 247 | CHARACTER (len = 20) :: modname = 'lscp' |
|---|
| 248 | CHARACTER (len = 80) :: abort_message |
|---|
| 249 | |
|---|
| 250 | DATA appel1er /.TRUE./ |
|---|
| 251 | |
|---|
| 252 | !=============================================================================== |
|---|
| 253 | ! INITIALISATION |
|---|
| 254 | !=============================================================================== |
|---|
| 255 | |
|---|
| 256 | ! Few initial checks |
|---|
| 257 | |
|---|
| 258 | IF (iflag_t_glace.EQ.0) THEN |
|---|
| 259 | abort_message = 'lscp cannot be used if iflag_t_glace=0' |
|---|
| 260 | CALL abort_physic(modname,abort_message,1) |
|---|
| 261 | ENDIF |
|---|
| 262 | |
|---|
| 263 | IF (.NOT.((iflag_ice_thermo .EQ. 1).OR.(iflag_ice_thermo .GE. 3))) THEN |
|---|
| 264 | abort_message = 'lscp cannot be used without ice thermodynamics' |
|---|
| 265 | CALL abort_physic(modname,abort_message,1) |
|---|
| 266 | ENDIF |
|---|
| 267 | |
|---|
| 268 | IF (iflag_fisrtilp_qsat .LT. 0) THEN |
|---|
| 269 | abort_message = 'lscp cannot be used with iflag_fisrtilp<0' |
|---|
| 270 | CALL abort_physic(modname,abort_message,1) |
|---|
| 271 | ENDIF |
|---|
| 272 | |
|---|
| 273 | ! Few initialisations |
|---|
| 274 | |
|---|
| 275 | znebprecip(:)=0.0 |
|---|
| 276 | ctot_vol(1:klon,1:klev)=0.0 |
|---|
| 277 | rneblsvol(1:klon,1:klev)=0.0 |
|---|
| 278 | smallestreal=1.e-9 |
|---|
| 279 | znebprecipclr(:)=0.0 |
|---|
| 280 | znebprecipcld(:)=0.0 |
|---|
| 281 | mpc_bl_points(:,:)=0 |
|---|
| 282 | |
|---|
| 283 | IF (prt_level>9) WRITE(lunout,*) 'NUAGES4 A. JAM' |
|---|
| 284 | |
|---|
| 285 | ! AA for 'safety' reasons |
|---|
| 286 | zalpha_tr = 0. |
|---|
| 287 | zfrac_lessi = 0. |
|---|
| 288 | beta(:,:)= 0. |
|---|
| 289 | |
|---|
| 290 | ! Initialisation of variables: |
|---|
| 291 | |
|---|
| 292 | prfl(:,:) = 0.0 |
|---|
| 293 | psfl(:,:) = 0.0 |
|---|
| 294 | d_t(:,:) = 0.0 |
|---|
| 295 | d_q(:,:) = 0.0 |
|---|
| 296 | d_ql(:,:) = 0.0 |
|---|
| 297 | d_qi(:,:) = 0.0 |
|---|
| 298 | rneb(:,:) = 0.0 |
|---|
| 299 | radocond(:,:) = 0.0 |
|---|
| 300 | radicefrac(:,:) = 0.0 |
|---|
| 301 | frac_nucl(:,:) = 1.0 |
|---|
| 302 | frac_impa(:,:) = 1.0 |
|---|
| 303 | rain(:) = 0.0 |
|---|
| 304 | snow(:) = 0.0 |
|---|
| 305 | zoliq(:)=0.0 |
|---|
| 306 | zfice(:)=0.0 |
|---|
| 307 | dzfice(:)=0.0 |
|---|
| 308 | zqprecl(:)=0.0 |
|---|
| 309 | zqpreci(:)=0.0 |
|---|
| 310 | zrfl(:) = 0.0 |
|---|
| 311 | zifl(:) = 0.0 |
|---|
| 312 | ziflprev(:)=0.0 |
|---|
| 313 | zneb(:) = seuil_neb |
|---|
| 314 | zrflclr(:) = 0.0 |
|---|
| 315 | ziflclr(:) = 0.0 |
|---|
| 316 | zrflcld(:) = 0.0 |
|---|
| 317 | ziflcld(:) = 0.0 |
|---|
| 318 | tot_zneb(:) = 0.0 |
|---|
| 319 | tot_znebn(:) = 0.0 |
|---|
| 320 | d_tot_zneb(:) = 0.0 |
|---|
| 321 | qzero(:) = 0.0 |
|---|
| 322 | |
|---|
| 323 | !--ice supersaturation |
|---|
| 324 | gamma_ss(:,:) = 1.0 |
|---|
| 325 | qss(:,:) = 0.0 |
|---|
| 326 | rnebss(:,:) = 0.0 |
|---|
| 327 | Tcontr(:,:) = missing_val |
|---|
| 328 | qcontr(:,:) = missing_val |
|---|
| 329 | qcontr2(:,:) = missing_val |
|---|
| 330 | fcontrN(:,:) = 0.0 |
|---|
| 331 | fcontrP(:,:) = 0.0 |
|---|
| 332 | |
|---|
| 333 | !c_iso: variable initialisation for iso |
|---|
| 334 | |
|---|
| 335 | |
|---|
| 336 | !=============================================================================== |
|---|
| 337 | ! BEGINNING OF VERTICAL LOOP FROM TOP TO BOTTOM |
|---|
| 338 | !=============================================================================== |
|---|
| 339 | |
|---|
| 340 | ncoreczq=0 |
|---|
| 341 | |
|---|
| 342 | DO k = klev, 1, -1 |
|---|
| 343 | |
|---|
| 344 | ! Initialisation temperature and specific humidity |
|---|
| 345 | DO i = 1, klon |
|---|
| 346 | zt(i)=t(i,k) |
|---|
| 347 | zq(i)=q(i,k) |
|---|
| 348 | !c_iso init of iso |
|---|
| 349 | ENDDO |
|---|
| 350 | |
|---|
| 351 | ! -------------------------------------------------------------------- |
|---|
| 352 | ! P0> Thermalization of precipitation falling from the overlying layer |
|---|
| 353 | ! -------------------------------------------------------------------- |
|---|
| 354 | ! Computes air temperature variation due to enthalpy transported by |
|---|
| 355 | ! precipitation. Precipitation is then thermalized with the air in the |
|---|
| 356 | ! layer. |
|---|
| 357 | ! The precipitation should remain thermalized throughout the different |
|---|
| 358 | ! thermodynamical transformations. |
|---|
| 359 | ! The corresponding water mass should |
|---|
| 360 | ! be added when calculating the layer's enthalpy change with |
|---|
| 361 | ! temperature |
|---|
| 362 | ! See lmdzpedia page todoan |
|---|
| 363 | ! todoan: check consistency with ice phase |
|---|
| 364 | ! todoan: understand why several steps |
|---|
| 365 | ! --------------------------------------------------------------------- |
|---|
| 366 | |
|---|
| 367 | IF (k.LE.klev-1) THEN |
|---|
| 368 | |
|---|
| 369 | DO i = 1, klon |
|---|
| 370 | |
|---|
| 371 | zmair(i)=(paprs(i,k)-paprs(i,k+1))/RG |
|---|
| 372 | ! no condensed water so cp=cp(vapor+dry air) |
|---|
| 373 | ! RVTMP2=rcpv/rcpd-1 |
|---|
| 374 | zcpair=RCPD*(1.0+RVTMP2*zq(i)) |
|---|
| 375 | zcpeau=RCPD*RVTMP2 |
|---|
| 376 | |
|---|
| 377 | ! zmqc: precipitation mass that has to be thermalized with |
|---|
| 378 | ! layer's air so that precipitation at the ground has the |
|---|
| 379 | ! same temperature as the lowermost layer |
|---|
| 380 | zmqc(i) = (zrfl(i)+zifl(i))*dtime/zmair(i) |
|---|
| 381 | ! t(i,k+1)+d_t(i,k+1): new temperature of the overlying layer |
|---|
| 382 | zt(i) = ( (t(i,k+1)+d_t(i,k+1))*zmqc(i)*zcpeau + zcpair*zt(i) ) & |
|---|
| 383 | / (zcpair + zmqc(i)*zcpeau) |
|---|
| 384 | |
|---|
| 385 | ENDDO |
|---|
| 386 | |
|---|
| 387 | ELSE |
|---|
| 388 | |
|---|
| 389 | DO i = 1, klon |
|---|
| 390 | zmair(i)=(paprs(i,k)-paprs(i,k+1))/RG |
|---|
| 391 | zmqc(i) = 0. |
|---|
| 392 | ENDDO |
|---|
| 393 | |
|---|
| 394 | ENDIF |
|---|
| 395 | |
|---|
| 396 | ! -------------------------------------------------------------------- |
|---|
| 397 | ! P1> Precipitation evaporation/sublimation |
|---|
| 398 | ! -------------------------------------------------------------------- |
|---|
| 399 | ! A part of the precipitation coming from above is evaporated/sublimated. |
|---|
| 400 | ! -------------------------------------------------------------------- |
|---|
| 401 | |
|---|
| 402 | IF (iflag_evap_prec.GE.1) THEN |
|---|
| 403 | |
|---|
| 404 | ! Calculation of saturation specific humidity |
|---|
| 405 | ! depending on temperature: |
|---|
| 406 | CALL calc_qsat_ecmwf(klon,zt(:),qzero(:),pplay(:,k),RTT,0,.false.,zqs(:),zdqs(:)) |
|---|
| 407 | ! wrt liquid water |
|---|
| 408 | CALL calc_qsat_ecmwf(klon,zt(:),qzero(:),pplay(:,k),RTT,1,.false.,qsl(:),dqsl(:)) |
|---|
| 409 | ! wrt ice |
|---|
| 410 | CALL calc_qsat_ecmwf(klon,zt(:),qzero(:),pplay(:,k),RTT,2,.false.,qsi(:),dqsi(:)) |
|---|
| 411 | |
|---|
| 412 | DO i = 1, klon |
|---|
| 413 | |
|---|
| 414 | ! if precipitation |
|---|
| 415 | IF (zrfl(i)+zifl(i).GT.0.) THEN |
|---|
| 416 | |
|---|
| 417 | ! LudoTP: we only account for precipitation evaporation in the clear-sky (iflag_evap_prec=4). |
|---|
| 418 | ! c_iso: likely important to distinguish cs from neb isotope precipitation |
|---|
| 419 | |
|---|
| 420 | IF (iflag_evap_prec.EQ.4) THEN |
|---|
| 421 | zrfl(i) = zrflclr(i) |
|---|
| 422 | zifl(i) = ziflclr(i) |
|---|
| 423 | ENDIF |
|---|
| 424 | |
|---|
| 425 | IF (iflag_evap_prec.EQ.1) THEN |
|---|
| 426 | znebprecip(i)=zneb(i) |
|---|
| 427 | ELSE |
|---|
| 428 | znebprecip(i)=MAX(zneb(i),znebprecip(i)) |
|---|
| 429 | ENDIF |
|---|
| 430 | |
|---|
| 431 | IF (iflag_evap_prec.EQ.4) THEN |
|---|
| 432 | ! Max evaporation not to saturate the whole mesh |
|---|
| 433 | zqev0 = MAX(0.0, zqs(i)-zq(i)) |
|---|
| 434 | ELSE |
|---|
| 435 | ! Max evap not to saturate the fraction below the cloud |
|---|
| 436 | zqev0 = MAX(0.0, (zqs(i)-zq(i))*znebprecip(i)) |
|---|
| 437 | ENDIF |
|---|
| 438 | |
|---|
| 439 | ! Evaporation of liquid precipitation coming from above |
|---|
| 440 | ! dP/dz=beta*(1-q/qsat)*sqrt(P) |
|---|
| 441 | ! formula from Sundquist 1988, Klemp & Wilhemson 1978 |
|---|
| 442 | ! LTP: evaporation only in the clear sky part (iflag_evap_prec=4) |
|---|
| 443 | |
|---|
| 444 | IF (iflag_evap_prec.EQ.3) THEN |
|---|
| 445 | zqevt = znebprecip(i)*coef_eva*(1.0-zq(i)/qsl(i)) & |
|---|
| 446 | *SQRT(zrfl(i)/max(1.e-4,znebprecip(i))) & |
|---|
| 447 | *(paprs(i,k)-paprs(i,k+1))/pplay(i,k)*zt(i)*RD/RG |
|---|
| 448 | ELSE IF (iflag_evap_prec.EQ.4) THEN |
|---|
| 449 | zqevt = znebprecipclr(i)*coef_eva*(1.0-zq(i)/qsl(i)) & |
|---|
| 450 | *SQRT(zrfl(i)/max(1.e-8,znebprecipclr(i))) & |
|---|
| 451 | *(paprs(i,k)-paprs(i,k+1))/pplay(i,k)*zt(i)*RD/RG |
|---|
| 452 | ELSE |
|---|
| 453 | zqevt = 1.*coef_eva*(1.0-zq(i)/qsl(i))*SQRT(zrfl(i)) & |
|---|
| 454 | *(paprs(i,k)-paprs(i,k+1))/pplay(i,k)*zt(i)*RD/RG |
|---|
| 455 | ENDIF |
|---|
| 456 | |
|---|
| 457 | zqevt = MAX(0.0,MIN(zqevt,zrfl(i))) & |
|---|
| 458 | *RG*dtime/(paprs(i,k)-paprs(i,k+1)) |
|---|
| 459 | |
|---|
| 460 | ! sublimation of the solid precipitation coming from above |
|---|
| 461 | IF (iflag_evap_prec.EQ.3) THEN |
|---|
| 462 | zqevti = znebprecip(i)*coef_eva_i*(1.0-zq(i)/qsi(i)) & |
|---|
| 463 | *SQRT(zifl(i)/max(1.e-4,znebprecip(i))) & |
|---|
| 464 | *(paprs(i,k)-paprs(i,k+1))/pplay(i,k)*zt(i)*RD/RG |
|---|
| 465 | ELSE IF (iflag_evap_prec.EQ.4) THEN |
|---|
| 466 | zqevti = znebprecipclr(i)*coef_eva_i*(1.0-zq(i)/qsi(i)) & |
|---|
| 467 | *SQRT(zifl(i)/max(1.e-8,znebprecipclr(i))) & |
|---|
| 468 | *(paprs(i,k)-paprs(i,k+1))/pplay(i,k)*zt(i)*RD/RG |
|---|
| 469 | ELSE |
|---|
| 470 | zqevti = 1.*coef_eva_i*(1.0-zq(i)/qsi(i))*SQRT(zifl(i)) & |
|---|
| 471 | *(paprs(i,k)-paprs(i,k+1))/pplay(i,k)*zt(i)*RD/RG |
|---|
| 472 | ENDIF |
|---|
| 473 | |
|---|
| 474 | zqevti = MAX(0.0,MIN(zqevti,zifl(i))) & |
|---|
| 475 | *RG*dtime/(paprs(i,k)-paprs(i,k+1)) |
|---|
| 476 | |
|---|
| 477 | ! A. JAM |
|---|
| 478 | ! Evaporation limit: we ensure that the layer's fraction below |
|---|
| 479 | ! the cloud or the whole mesh (depending on iflag_evap_prec) |
|---|
| 480 | ! does not reach saturation. In this case, we |
|---|
| 481 | ! redistribute zqev0 conserving the ratio liquid/ice |
|---|
| 482 | |
|---|
| 483 | ! todoan: check the consistency of this formula |
|---|
| 484 | IF (zqevt+zqevti.GT.zqev0) THEN |
|---|
| 485 | zqev=zqev0*zqevt/(zqevt+zqevti) |
|---|
| 486 | zqevi=zqev0*zqevti/(zqevt+zqevti) |
|---|
| 487 | ELSE |
|---|
| 488 | zqev=zqevt |
|---|
| 489 | zqevi=zqevti |
|---|
| 490 | ENDIF |
|---|
| 491 | |
|---|
| 492 | |
|---|
| 493 | ! New solid and liquid precipitation fluxes after evap and sublimation |
|---|
| 494 | zrfln(i) = Max(0.,zrfl(i) - zqev*(paprs(i,k)-paprs(i,k+1)) & |
|---|
| 495 | /RG/dtime) |
|---|
| 496 | zifln(i) = Max(0.,zifl(i) - zqevi*(paprs(i,k)-paprs(i,k+1)) & |
|---|
| 497 | /RG/dtime) |
|---|
| 498 | |
|---|
| 499 | |
|---|
| 500 | ! vapor, temperature, precip fluxes update |
|---|
| 501 | zq(i) = zq(i) - (zrfln(i)+zifln(i)-zrfl(i)-zifl(i)) & |
|---|
| 502 | * (RG/(paprs(i,k)-paprs(i,k+1)))*dtime |
|---|
| 503 | zmqc(i) = zmqc(i) + (zrfln(i)+zifln(i)-zrfl(i)-zifl(i)) & |
|---|
| 504 | * (RG/(paprs(i,k)-paprs(i,k+1)))*dtime |
|---|
| 505 | zt(i) = zt(i) + (zrfln(i)-zrfl(i)) & |
|---|
| 506 | * (RG/(paprs(i,k)-paprs(i,k+1)))*dtime & |
|---|
| 507 | * RLVTT/RCPD/(1.0+RVTMP2*(zq(i)+zmqc(i))) & |
|---|
| 508 | + (zifln(i)-zifl(i)) & |
|---|
| 509 | * (RG/(paprs(i,k)-paprs(i,k+1)))*dtime & |
|---|
| 510 | * RLSTT/RCPD/(1.0+RVTMP2*(zq(i)+zmqc(i))) |
|---|
| 511 | |
|---|
| 512 | ! New values of liquid and solid precipitation |
|---|
| 513 | zrfl(i) = zrfln(i) |
|---|
| 514 | zifl(i) = zifln(i) |
|---|
| 515 | |
|---|
| 516 | ! c_iso here call_reevap that updates isotopic zrfl, zifl (in inout) |
|---|
| 517 | ! due to evap + sublim |
|---|
| 518 | |
|---|
| 519 | |
|---|
| 520 | IF (iflag_evap_prec.EQ.4) THEN |
|---|
| 521 | zrflclr(i) = zrfl(i) |
|---|
| 522 | ziflclr(i) = zifl(i) |
|---|
| 523 | IF(zrflclr(i) + ziflclr(i).LE.0) THEN |
|---|
| 524 | znebprecipclr(i) = 0.0 |
|---|
| 525 | ENDIF |
|---|
| 526 | zrfl(i) = zrflclr(i) + zrflcld(i) |
|---|
| 527 | zifl(i) = ziflclr(i) + ziflcld(i) |
|---|
| 528 | ENDIF |
|---|
| 529 | |
|---|
| 530 | ! c_iso duplicate for isotopes or loop on isotopes |
|---|
| 531 | |
|---|
| 532 | ! Melting: |
|---|
| 533 | zmelt = ((zt(i)-RTT)/(ztfondue-RTT)) ! JYG |
|---|
| 534 | ! precip fraction that is melted |
|---|
| 535 | zmelt = MIN(MAX(zmelt,0.),1.) |
|---|
| 536 | |
|---|
| 537 | ! update of rainfall and snowfall due to melting |
|---|
| 538 | IF (iflag_evap_prec.EQ.4) THEN |
|---|
| 539 | zrflclr(i)=zrflclr(i)+zmelt*ziflclr(i) |
|---|
| 540 | zrflcld(i)=zrflcld(i)+zmelt*ziflcld(i) |
|---|
| 541 | zrfl(i)=zrflclr(i)+zrflcld(i) |
|---|
| 542 | |
|---|
| 543 | ziflclr(i)=ziflclr(i)*(1.-zmelt) |
|---|
| 544 | ziflcld(i)=ziflcld(i)*(1.-zmelt) |
|---|
| 545 | zifl(i)=ziflclr(i)+ziflcld(i) |
|---|
| 546 | |
|---|
| 547 | ELSE |
|---|
| 548 | zrfl(i)=zrfl(i)+zmelt*zifl(i) |
|---|
| 549 | |
|---|
| 550 | zifl(i)=zifl(i)*(1.-zmelt) |
|---|
| 551 | ENDIF |
|---|
| 552 | |
|---|
| 553 | |
|---|
| 554 | ! c_iso: melting of isotopic precipi with zmelt (no fractionation) |
|---|
| 555 | |
|---|
| 556 | ! Latent heat of melting with precipitation thermalization |
|---|
| 557 | zt(i)=zt(i)-zifl(i)*zmelt*(RG*dtime)/(paprs(i,k)-paprs(i,k+1)) & |
|---|
| 558 | *RLMLT/RCPD/(1.0+RVTMP2*(zq(i)+zmqc(i))) |
|---|
| 559 | |
|---|
| 560 | |
|---|
| 561 | ELSE |
|---|
| 562 | ! if no precip, we reinitialize the cloud fraction used for the precip to 0 |
|---|
| 563 | znebprecip(i)=0. |
|---|
| 564 | |
|---|
| 565 | ENDIF ! (zrfl(i)+zifl(i).GT.0.) |
|---|
| 566 | |
|---|
| 567 | ENDDO |
|---|
| 568 | |
|---|
| 569 | ENDIF ! (iflag_evap_prec>=1) |
|---|
| 570 | |
|---|
| 571 | ! -------------------------------------------------------------------- |
|---|
| 572 | ! End precip evaporation |
|---|
| 573 | ! -------------------------------------------------------------------- |
|---|
| 574 | |
|---|
| 575 | ! Calculation of qsat, L/Cp*dqsat/dT and ncoreczq counter |
|---|
| 576 | !------------------------------------------------------- |
|---|
| 577 | |
|---|
| 578 | qtot(:)=zq(:)+zmqc(:) |
|---|
| 579 | CALL calc_qsat_ecmwf(klon,zt(:),qtot(:),pplay(:,k),RTT,0,.false.,zqs(:),zdqs(:)) |
|---|
| 580 | DO i = 1, klon |
|---|
| 581 | zdelta = MAX(0.,SIGN(1.,RTT-zt(i))) |
|---|
| 582 | zdqsdT_raw(i) = zdqs(i)*RCPD*(1.0+RVTMP2*zq(i)) / (RLVTT*(1.-zdelta) + RLSTT*zdelta) |
|---|
| 583 | IF (zq(i) .LT. 1.e-15) THEN |
|---|
| 584 | ncoreczq=ncoreczq+1 |
|---|
| 585 | zq(i)=1.e-15 |
|---|
| 586 | ENDIF |
|---|
| 587 | ! c_iso: do something similar for isotopes |
|---|
| 588 | |
|---|
| 589 | ENDDO |
|---|
| 590 | |
|---|
| 591 | ! -------------------------------------------------------------------- |
|---|
| 592 | ! P2> Cloud formation |
|---|
| 593 | !--------------------------------------------------------------------- |
|---|
| 594 | ! |
|---|
| 595 | ! Unlike fisrtilp, we always assume a 'fractional cloud' approach |
|---|
| 596 | ! i.e. clouds occupy only a fraction of the mesh (the subgrid distribution |
|---|
| 597 | ! is prescribed and depends on large scale variables and boundary layer |
|---|
| 598 | ! properties) |
|---|
| 599 | ! The decrease in condensed part due tu latent heating is taken into |
|---|
| 600 | ! account |
|---|
| 601 | ! ------------------------------------------------------------------- |
|---|
| 602 | |
|---|
| 603 | ! P2.1> With the PDFs (log-normal, bigaussian) |
|---|
| 604 | ! cloud properties calculation with the initial values of t and q |
|---|
| 605 | ! ---------------------------------------------------------------- |
|---|
| 606 | |
|---|
| 607 | ! initialise gammasat and qincloud_mpc |
|---|
| 608 | gammasat(:)=1. |
|---|
| 609 | qincloud_mpc(:)=0. |
|---|
| 610 | |
|---|
| 611 | IF (iflag_cld_th.GE.5) THEN |
|---|
| 612 | |
|---|
| 613 | IF (iflag_mpc_bl .LT. 1) THEN |
|---|
| 614 | |
|---|
| 615 | IF (iflag_cloudth_vert.LE.2) THEN |
|---|
| 616 | |
|---|
| 617 | CALL cloudth(klon,klev,k,ztv, & |
|---|
| 618 | zq,zqta,fraca, & |
|---|
| 619 | qcloud,ctot,zpspsk,paprs,pplay,ztla,zthl, & |
|---|
| 620 | ratqs,zqs,t) |
|---|
| 621 | |
|---|
| 622 | ELSEIF (iflag_cloudth_vert.GE.3 .AND. iflag_cloudth_vert.LE.5) THEN |
|---|
| 623 | |
|---|
| 624 | CALL cloudth_v3(klon,klev,k,ztv, & |
|---|
| 625 | zq,zqta,fraca, & |
|---|
| 626 | qcloud,ctot,ctot_vol,zpspsk,paprs,pplay,ztla,zthl, & |
|---|
| 627 | ratqs,zqs,t) |
|---|
| 628 | |
|---|
| 629 | !Jean Jouhaud's version, Decembre 2018 |
|---|
| 630 | !------------------------------------- |
|---|
| 631 | |
|---|
| 632 | ELSEIF (iflag_cloudth_vert.EQ.6) THEN |
|---|
| 633 | |
|---|
| 634 | CALL cloudth_v6(klon,klev,k,ztv, & |
|---|
| 635 | zq,zqta,fraca, & |
|---|
| 636 | qcloud,ctot,ctot_vol,zpspsk,paprs,pplay,ztla,zthl, & |
|---|
| 637 | ratqs,zqs,t) |
|---|
| 638 | |
|---|
| 639 | ENDIF |
|---|
| 640 | |
|---|
| 641 | ELSE |
|---|
| 642 | ! cloudth_v3 + cold microphysical considerations |
|---|
| 643 | ! + stationary mixed-phase cloud model |
|---|
| 644 | |
|---|
| 645 | CALL cloudth_mpc(klon,klev,k,iflag_mpc_bl,mpc_bl_points, & |
|---|
| 646 | t,ztv,zq,zqta,fraca, zpspsk, & |
|---|
| 647 | paprs,pplay,ztla,zthl,ratqs,zqs,psfl, & |
|---|
| 648 | qcloud,qincloud_mpc,icefrac_mpc,ctot,ctot_vol) |
|---|
| 649 | |
|---|
| 650 | ENDIF ! iflag_mpc_bl |
|---|
| 651 | |
|---|
| 652 | DO i=1,klon |
|---|
| 653 | rneb(i,k)=ctot(i,k) |
|---|
| 654 | rneblsvol(i,k)=ctot_vol(i,k) |
|---|
| 655 | zqn(i)=qcloud(i) |
|---|
| 656 | ENDDO |
|---|
| 657 | |
|---|
| 658 | ENDIF |
|---|
| 659 | |
|---|
| 660 | IF (iflag_cld_th .LE. 4) THEN |
|---|
| 661 | |
|---|
| 662 | ! lognormal |
|---|
| 663 | lognormale = .TRUE. |
|---|
| 664 | |
|---|
| 665 | ELSEIF (iflag_cld_th .GE. 6) THEN |
|---|
| 666 | |
|---|
| 667 | ! lognormal distribution when no thermals |
|---|
| 668 | lognormale = fraca(:,k) < 1e-10 |
|---|
| 669 | |
|---|
| 670 | ELSE |
|---|
| 671 | ! When iflag_cld_th=5, we always assume |
|---|
| 672 | ! bi-gaussian distribution |
|---|
| 673 | lognormale = .FALSE. |
|---|
| 674 | |
|---|
| 675 | ENDIF |
|---|
| 676 | |
|---|
| 677 | DT(:) = 0. |
|---|
| 678 | n_i(:)=0 |
|---|
| 679 | Tbef(:)=zt(:) |
|---|
| 680 | qlbef(:)=0. |
|---|
| 681 | |
|---|
| 682 | ! Treatment of non-boundary layer clouds (lognormale) |
|---|
| 683 | ! condensation with qsat(T) variation (adaptation) |
|---|
| 684 | ! Iterative resolution to converge towards qsat |
|---|
| 685 | ! with update of temperature, ice fraction and qsat at |
|---|
| 686 | ! each iteration |
|---|
| 687 | |
|---|
| 688 | ! todoan -> sensitivity to iflag_fisrtilp_qsat |
|---|
| 689 | DO iter=1,iflag_fisrtilp_qsat+1 |
|---|
| 690 | |
|---|
| 691 | DO i=1,klon |
|---|
| 692 | |
|---|
| 693 | ! keepgoing = .true. while convergence is not satisfied |
|---|
| 694 | keepgoing(i)=ABS(DT(i)).GT.DDT0 |
|---|
| 695 | |
|---|
| 696 | IF ((keepgoing(i) .OR. (n_i(i) .EQ. 0)) .AND. lognormale(i)) THEN |
|---|
| 697 | |
|---|
| 698 | ! if not convergence: |
|---|
| 699 | |
|---|
| 700 | ! P2.2.1> cloud fraction and condensed water mass calculation |
|---|
| 701 | ! Calculated variables: |
|---|
| 702 | ! rneb : cloud fraction |
|---|
| 703 | ! zqn : total water within the cloud |
|---|
| 704 | ! zcond: mean condensed water within the mesh |
|---|
| 705 | ! rhcl: clear-sky relative humidity |
|---|
| 706 | !--------------------------------------------------------------- |
|---|
| 707 | |
|---|
| 708 | ! new temperature that only serves in the iteration process: |
|---|
| 709 | Tbef(i)=Tbef(i)+DT(i) |
|---|
| 710 | |
|---|
| 711 | ! Rneb, qzn and zcond for lognormal PDFs |
|---|
| 712 | qtot(i)=zq(i)+zmqc(i) |
|---|
| 713 | |
|---|
| 714 | ENDIF |
|---|
| 715 | |
|---|
| 716 | ENDDO |
|---|
| 717 | |
|---|
| 718 | ! Calculation of saturation specific humidity and ice fraction |
|---|
| 719 | CALL calc_qsat_ecmwf(klon,Tbef(:),qtot(:),pplay(:,k),RTT,0,.false.,zqs(:),zdqs(:)) |
|---|
| 720 | CALL calc_gammasat(klon,Tbef(:),qtot(:),pplay(:,k),gammasat(:),dgammasatdt(:)) |
|---|
| 721 | ! saturation may occur at a humidity different from qsat (gamma qsat), so gamma correction for dqs |
|---|
| 722 | zdqs(:) = gammasat(:)*zdqs(:)+zqs(:)*dgammasatdt(:) |
|---|
| 723 | CALL icefrac_lscp(klon, zt(:),pplay(:,k)/paprs(:,1),zfice(:),dzfice(:)) |
|---|
| 724 | |
|---|
| 725 | DO i=1,klon !todoan : check if loop in i is needed |
|---|
| 726 | |
|---|
| 727 | IF ((keepgoing(i) .OR. (n_i(i) .EQ. 0)) .AND. lognormale(i)) THEN |
|---|
| 728 | |
|---|
| 729 | zpdf_sig(i)=ratqs(i,k)*zq(i) |
|---|
| 730 | zpdf_k(i)=-sqrt(log(1.+(zpdf_sig(i)/zq(i))**2)) |
|---|
| 731 | zpdf_delta(i)=log(zq(i)/(gammasat(i)*zqs(i))) |
|---|
| 732 | zpdf_a(i)=zpdf_delta(i)/(zpdf_k(i)*sqrt(2.)) |
|---|
| 733 | zpdf_b(i)=zpdf_k(i)/(2.*sqrt(2.)) |
|---|
| 734 | zpdf_e1(i)=zpdf_a(i)-zpdf_b(i) |
|---|
| 735 | zpdf_e1(i)=sign(min(ABS(zpdf_e1(i)),5.),zpdf_e1(i)) |
|---|
| 736 | zpdf_e1(i)=1.-erf(zpdf_e1(i)) |
|---|
| 737 | zpdf_e2(i)=zpdf_a(i)+zpdf_b(i) |
|---|
| 738 | zpdf_e2(i)=sign(min(ABS(zpdf_e2(i)),5.),zpdf_e2(i)) |
|---|
| 739 | zpdf_e2(i)=1.-erf(zpdf_e2(i)) |
|---|
| 740 | |
|---|
| 741 | IF ((.NOT.ok_ice_sursat).OR.(Tbef(i).GT.t_glace_min)) THEN |
|---|
| 742 | |
|---|
| 743 | IF (zpdf_e1(i).LT.1.e-10) THEN |
|---|
| 744 | rneb(i,k)=0. |
|---|
| 745 | zqn(i)=gammasat(i)*zqs(i) |
|---|
| 746 | ELSE |
|---|
| 747 | rneb(i,k)=0.5*zpdf_e1(i) |
|---|
| 748 | zqn(i)=zq(i)*zpdf_e2(i)/zpdf_e1(i) |
|---|
| 749 | ENDIF |
|---|
| 750 | |
|---|
| 751 | rnebss(i,k)=0.0 !--added by OB (needed because of the convergence loop on time) |
|---|
| 752 | fcontrN(i,k)=0.0 !--idem |
|---|
| 753 | fcontrP(i,k)=0.0 !--idem |
|---|
| 754 | qss(i,k)=0.0 !--idem |
|---|
| 755 | |
|---|
| 756 | ELSE ! in case of ice supersaturation by Audran |
|---|
| 757 | |
|---|
| 758 | !------------------------------------ |
|---|
| 759 | ! ICE SUPERSATURATION |
|---|
| 760 | !------------------------------------ |
|---|
| 761 | |
|---|
| 762 | CALL ice_sursat(pplay(i,k), paprs(i,k)-paprs(i,k+1), dtime, i, k, t(i,k), zq(i), & |
|---|
| 763 | gamma_ss(i,k), zqs(i), Tbef(i), rneb_seri(i,k), ratqs(i,k), & |
|---|
| 764 | rneb(i,k), zqn(i), rnebss(i,k), qss(i,k), & |
|---|
| 765 | Tcontr(i,k), qcontr(i,k), qcontr2(i,k), fcontrN(i,k), fcontrP(i,k) ) |
|---|
| 766 | |
|---|
| 767 | ENDIF ! ((flag_ice_sursat.eq.0).or.(Tbef(i).gt.t_glace_min)) |
|---|
| 768 | |
|---|
| 769 | ! If vertical heterogeneity, change fraction by volume as well |
|---|
| 770 | IF (iflag_cloudth_vert.GE.3) THEN |
|---|
| 771 | ctot_vol(i,k)=rneb(i,k) |
|---|
| 772 | rneblsvol(i,k)=ctot_vol(i,k) |
|---|
| 773 | ENDIF |
|---|
| 774 | |
|---|
| 775 | |
|---|
| 776 | ! P2.2.2> Approximative calculation of temperature variation DT |
|---|
| 777 | ! due to condensation. |
|---|
| 778 | ! Calculated variables: |
|---|
| 779 | ! dT : temperature change due to condensation |
|---|
| 780 | !--------------------------------------------------------------- |
|---|
| 781 | |
|---|
| 782 | |
|---|
| 783 | IF (zfice(i).LT.1) THEN |
|---|
| 784 | cste=RLVTT |
|---|
| 785 | ELSE |
|---|
| 786 | cste=RLSTT |
|---|
| 787 | ENDIF |
|---|
| 788 | |
|---|
| 789 | qlbef(i)=max(0.,zqn(i)-zqs(i)) |
|---|
| 790 | num = -Tbef(i)+zt(i)+rneb(i,k)*((1-zfice(i))*RLVTT & |
|---|
| 791 | +zfice(i)*RLSTT)/RCPD/(1.0+RVTMP2*(zq(i)+zmqc(i)))*qlbef(i) |
|---|
| 792 | denom = 1.+rneb(i,k)*((1-zfice(i))*RLVTT+zfice(i)*RLSTT)/cste*zdqs(i) & |
|---|
| 793 | -(RLSTT-RLVTT)/RCPD/(1.0+RVTMP2*(zq(i)+zmqc(i)))*rneb(i,k) & |
|---|
| 794 | *qlbef(i)*dzfice(i) |
|---|
| 795 | ! here we update a provisory temperature variable that only serves in the iteration |
|---|
| 796 | ! process |
|---|
| 797 | DT(i)=num/denom |
|---|
| 798 | n_i(i)=n_i(i)+1 |
|---|
| 799 | |
|---|
| 800 | ENDIF ! end keepgoing |
|---|
| 801 | |
|---|
| 802 | ENDDO ! end loop on i |
|---|
| 803 | |
|---|
| 804 | ENDDO ! iter=1,iflag_fisrtilp_qsat+1 |
|---|
| 805 | |
|---|
| 806 | ! P2.3> Final quantities calculation |
|---|
| 807 | ! Calculated variables: |
|---|
| 808 | ! rneb : cloud fraction |
|---|
| 809 | ! zcond: mean condensed water in the mesh |
|---|
| 810 | ! zqn : mean water vapor in the mesh |
|---|
| 811 | ! zt : temperature |
|---|
| 812 | ! rhcl : clear-sky relative humidity |
|---|
| 813 | ! ---------------------------------------------------------------- |
|---|
| 814 | |
|---|
| 815 | ! Water vapor update, Phase determination and subsequent latent heat exchange |
|---|
| 816 | |
|---|
| 817 | ! Partition function in stratiform clouds (will be overwritten in boundary-layer MPCs) |
|---|
| 818 | CALL icefrac_lscp(klon,zt(:),pplay(:,k)/paprs(:,1),zfice(:), dzfice(:)) |
|---|
| 819 | |
|---|
| 820 | DO i=1, klon |
|---|
| 821 | |
|---|
| 822 | |
|---|
| 823 | IF (mpc_bl_points(i,k) .GT. 0) THEN |
|---|
| 824 | zcond(i) = MAX(0.0,qincloud_mpc(i))*rneb(i,k) |
|---|
| 825 | ! following line is very strange and probably wrong |
|---|
| 826 | rhcl(i,k)= (zqs(i)+zq(i))/2./zqs(i) |
|---|
| 827 | ! water vapor update and partition function if thermals |
|---|
| 828 | zq(i) = zq(i) - zcond(i) |
|---|
| 829 | zfice(i)=icefrac_mpc(i,k) |
|---|
| 830 | |
|---|
| 831 | ELSE |
|---|
| 832 | |
|---|
| 833 | ! Checks on rneb, rhcl and zqn |
|---|
| 834 | IF (rneb(i,k) .LE. 0.0) THEN |
|---|
| 835 | zqn(i) = 0.0 |
|---|
| 836 | rneb(i,k) = 0.0 |
|---|
| 837 | zcond(i) = 0.0 |
|---|
| 838 | rhcl(i,k)=zq(i)/zqs(i) |
|---|
| 839 | ELSE IF (rneb(i,k) .GE. 1.0) THEN |
|---|
| 840 | zqn(i) = zq(i) |
|---|
| 841 | rneb(i,k) = 1.0 |
|---|
| 842 | zcond(i) = MAX(0.0,zqn(i)-gammasat(i)*zqs(i)) |
|---|
| 843 | rhcl(i,k)=1.0 |
|---|
| 844 | ELSE |
|---|
| 845 | zcond(i) = MAX(0.0,zqn(i)-gammasat(i)*zqs(i))*rneb(i,k) |
|---|
| 846 | ! following line is very strange and probably wrong: |
|---|
| 847 | rhcl(i,k)=(zqs(i)+zq(i))/2./zqs(i) |
|---|
| 848 | ENDIF |
|---|
| 849 | |
|---|
| 850 | ! water vapor update |
|---|
| 851 | zq(i) = zq(i) - zcond(i) |
|---|
| 852 | |
|---|
| 853 | ENDIF |
|---|
| 854 | |
|---|
| 855 | ! c_iso : routine that computes in-cloud supersaturation |
|---|
| 856 | ! c_iso condensation of isotopes (zcond, zsursat, zfice, zq in input) |
|---|
| 857 | |
|---|
| 858 | ! temperature update due to phase change |
|---|
| 859 | zt(i) = zt(i) + (1.-zfice(i))*zcond(i) & |
|---|
| 860 | & * RLVTT/RCPD/(1.0+RVTMP2*(zq(i)+zmqc(i)+zcond(i))) & |
|---|
| 861 | +zfice(i)*zcond(i) * RLSTT/RCPD/(1.0+RVTMP2*(zq(i)+zmqc(i)+zcond(i))) |
|---|
| 862 | ENDDO |
|---|
| 863 | |
|---|
| 864 | ! If vertical heterogeneity, change volume fraction |
|---|
| 865 | IF (iflag_cloudth_vert .GE. 3) THEN |
|---|
| 866 | ctot_vol(1:klon,k)=min(max(ctot_vol(1:klon,k),0.),1.) |
|---|
| 867 | rneblsvol(1:klon,k)=ctot_vol(1:klon,k) |
|---|
| 868 | ENDIF |
|---|
| 869 | |
|---|
| 870 | ! ---------------------------------------------------------------- |
|---|
| 871 | ! P3> Precipitation formation |
|---|
| 872 | ! ---------------------------------------------------------------- |
|---|
| 873 | |
|---|
| 874 | ! LTP: |
|---|
| 875 | IF (iflag_evap_prec==4) THEN |
|---|
| 876 | |
|---|
| 877 | !Partitionning between precipitation coming from clouds and that coming from CS |
|---|
| 878 | |
|---|
| 879 | !0) Calculate tot_zneb, total cloud fraction above the cloud |
|---|
| 880 | !assuming a maximum-random overlap (voir Jakob and Klein, 2000) |
|---|
| 881 | |
|---|
| 882 | DO i=1, klon |
|---|
| 883 | tot_znebn(i) = 1. - (1.-tot_zneb(i))*(1 - max(rneb(i,k),zneb(i))) & |
|---|
| 884 | /(1.-min(zneb(i),1.-smallestreal)) |
|---|
| 885 | d_tot_zneb(i) = tot_znebn(i) - tot_zneb(i) |
|---|
| 886 | tot_zneb(i) = tot_znebn(i) |
|---|
| 887 | |
|---|
| 888 | |
|---|
| 889 | !1) Cloudy to clear air |
|---|
| 890 | d_znebprecip_cld_clr(i) = znebprecipcld(i) - min(rneb(i,k),znebprecipcld(i)) |
|---|
| 891 | IF (znebprecipcld(i) .GT. 0.) THEN |
|---|
| 892 | d_zrfl_cld_clr(i) = d_znebprecip_cld_clr(i)/znebprecipcld(i)*zrflcld(i) |
|---|
| 893 | d_zifl_cld_clr(i) = d_znebprecip_cld_clr(i)/znebprecipcld(i)*ziflcld(i) |
|---|
| 894 | ELSE |
|---|
| 895 | d_zrfl_cld_clr(i) = 0. |
|---|
| 896 | d_zifl_cld_clr(i) = 0. |
|---|
| 897 | ENDIF |
|---|
| 898 | |
|---|
| 899 | !2) Clear to cloudy air |
|---|
| 900 | d_znebprecip_clr_cld(i) = max(0., min(znebprecipclr(i), rneb(i,k) - d_tot_zneb(i) - zneb(i))) |
|---|
| 901 | IF (znebprecipclr(i) .GT. 0) THEN |
|---|
| 902 | d_zrfl_clr_cld(i) = d_znebprecip_clr_cld(i)/znebprecipclr(i)*zrflclr(i) |
|---|
| 903 | d_zifl_clr_cld(i) = d_znebprecip_clr_cld(i)/znebprecipclr(i)*ziflclr(i) |
|---|
| 904 | ELSE |
|---|
| 905 | d_zrfl_clr_cld(i) = 0. |
|---|
| 906 | d_zifl_clr_cld(i) = 0. |
|---|
| 907 | ENDIF |
|---|
| 908 | |
|---|
| 909 | !Update variables |
|---|
| 910 | znebprecipcld(i) = znebprecipcld(i) + d_znebprecip_clr_cld(i) - d_znebprecip_cld_clr(i) |
|---|
| 911 | znebprecipclr(i) = znebprecipclr(i) + d_znebprecip_cld_clr(i) - d_znebprecip_clr_cld(i) |
|---|
| 912 | zrflcld(i) = zrflcld(i) + d_zrfl_clr_cld(i) - d_zrfl_cld_clr(i) |
|---|
| 913 | ziflcld(i) = ziflcld(i) + d_zifl_clr_cld(i) - d_zifl_cld_clr(i) |
|---|
| 914 | zrflclr(i) = zrflclr(i) + d_zrfl_cld_clr(i) - d_zrfl_clr_cld(i) |
|---|
| 915 | ziflclr(i) = ziflclr(i) + d_zifl_cld_clr(i) - d_zifl_clr_cld(i) |
|---|
| 916 | |
|---|
| 917 | ! c_iso do the same thing for isotopes precip |
|---|
| 918 | ENDDO |
|---|
| 919 | ENDIF |
|---|
| 920 | |
|---|
| 921 | ! Initialisation of zoliq and radocond variables |
|---|
| 922 | |
|---|
| 923 | DO i = 1, klon |
|---|
| 924 | zoliq(i) = zcond(i) |
|---|
| 925 | zoliqi(i)= zoliq(i)*zfice(i) |
|---|
| 926 | zoliql(i)= zoliq(i)*(1.-zfice(i)) |
|---|
| 927 | ! c_iso : initialisation of zoliq* also for isotopes |
|---|
| 928 | zrho(i,k) = pplay(i,k) / zt(i) / RD |
|---|
| 929 | zdz(i) = (paprs(i,k)-paprs(i,k+1)) / (zrho(i,k)*RG) |
|---|
| 930 | iwc(i) = 0. |
|---|
| 931 | zneb(i) = MAX(rneb(i,k),seuil_neb) |
|---|
| 932 | radocond(i,k) = zoliq(i)/REAL(ninter+1) |
|---|
| 933 | radicefrac(i,k) = zfice(i) |
|---|
| 934 | radocondi(i,k)=zoliq(i)*zfice(i)/REAL(ninter+1) |
|---|
| 935 | radocondl(i,k)=zoliq(i)*(1.-zfice(i))/REAL(ninter+1) |
|---|
| 936 | ENDDO |
|---|
| 937 | |
|---|
| 938 | ! Autoconversion |
|---|
| 939 | ! ------------------------------------------------------------------------------- |
|---|
| 940 | |
|---|
| 941 | DO n = 1, ninter |
|---|
| 942 | |
|---|
| 943 | DO i=1,klon |
|---|
| 944 | IF (rneb(i,k).GT.0.0) THEN |
|---|
| 945 | iwc(i) = zrho(i,k) * zoliqi(i) / zneb(i) ! in-cloud ice condensate content |
|---|
| 946 | ENDIF |
|---|
| 947 | ENDDO |
|---|
| 948 | |
|---|
| 949 | CALL fallice_velocity(klon,iwc(:),zt(:),zrho(:,k),pplay(:,k),ptconv(:,k),velo(:,k)) |
|---|
| 950 | |
|---|
| 951 | DO i = 1, klon |
|---|
| 952 | |
|---|
| 953 | IF (rneb(i,k).GT.0.0) THEN |
|---|
| 954 | |
|---|
| 955 | ! Initialization of zrain, zsnow and zprecip: |
|---|
| 956 | zrain=0. |
|---|
| 957 | zsnow=0. |
|---|
| 958 | zprecip=0. |
|---|
| 959 | ! c_iso same init for isotopes. Externalisation? |
|---|
| 960 | |
|---|
| 961 | IF (zneb(i).EQ.seuil_neb) THEN |
|---|
| 962 | zprecip = 0.0 |
|---|
| 963 | zsnow = 0.0 |
|---|
| 964 | zrain= 0.0 |
|---|
| 965 | ELSE |
|---|
| 966 | |
|---|
| 967 | IF (ok_debug_autoconversion) THEN ! if condition to be removed after test phase |
|---|
| 968 | |
|---|
| 969 | ! water quantity to remove: zchau (Sundqvist, 1978) |
|---|
| 970 | ! same thing for the ice: zfroi (Zender & Kiehl, 1997) |
|---|
| 971 | IF (ptconv(i,k)) THEN ! if convective point |
|---|
| 972 | zcl=cld_lc_con |
|---|
| 973 | zct=1./cld_tau_con |
|---|
| 974 | zfroi = dtime/REAL(ninter)/zdz(i)*zoliqi(i)*velo(i,k) |
|---|
| 975 | ELSE |
|---|
| 976 | zcl=cld_lc_lsc |
|---|
| 977 | zct=1./cld_tau_lsc |
|---|
| 978 | zfroi = dtime/REAL(ninter)/zdz(i)*zoliqi(i) & ! dqice/dt=1/rho*d(rho*wice*qice)/dz |
|---|
| 979 | *velo(i,k) |
|---|
| 980 | ENDIF |
|---|
| 981 | |
|---|
| 982 | ! if vertical heterogeneity is taken into account, we use |
|---|
| 983 | ! the "true" volume fraction instead of a modified |
|---|
| 984 | ! surface fraction (which is larger and artificially |
|---|
| 985 | ! reduces the in-cloud water). |
|---|
| 986 | |
|---|
| 987 | IF ((iflag_cloudth_vert.GE.3).AND.(iflag_rain_incloud_vol.EQ.1)) THEN |
|---|
| 988 | zchau = zct *dtime/REAL(ninter) * zoliql(i) & |
|---|
| 989 | *(1.0-EXP(-(zoliql(i)/ctot_vol(i,k)/zcl)**2)) |
|---|
| 990 | ELSE |
|---|
| 991 | zchau = zct *dtime/REAL(ninter) * zoliql(i) & |
|---|
| 992 | *(1.0-EXP(-(zoliql(i)/zneb(i)/zcl)**2)) ! dqliq/dt=-qliq/tau*(1-exp(-qcin/clw)**2) |
|---|
| 993 | ENDIF |
|---|
| 994 | |
|---|
| 995 | ELSE ! with old bug in autoconversion |
|---|
| 996 | |
|---|
| 997 | ! water quantity to remove: zchau (Sundqvist, 1978) |
|---|
| 998 | ! same thing for the ice: zfroi (Zender & Kiehl, 1997) |
|---|
| 999 | IF (ptconv(i,k)) THEN ! if convective point |
|---|
| 1000 | zcl=cld_lc_con |
|---|
| 1001 | zct=1./cld_tau_con |
|---|
| 1002 | zfroi = dtime/REAL(ninter)/zdz(i)*zoliq(i)*velo(i,k)*zfice(i) |
|---|
| 1003 | ELSE |
|---|
| 1004 | zcl=cld_lc_lsc |
|---|
| 1005 | zct=1./cld_tau_lsc |
|---|
| 1006 | zfroi = dtime/REAL(ninter)/zdz(i)*zoliq(i) & ! dqice/dt=1/rho*d(rho*wice*qice)/dz |
|---|
| 1007 | *velo(i,k) * zfice(i) |
|---|
| 1008 | ENDIF |
|---|
| 1009 | |
|---|
| 1010 | ! if vertical heterogeneity is taken into account, we use |
|---|
| 1011 | ! the "true" volume fraction instead of a modified |
|---|
| 1012 | ! surface fraction (which is larger and artificially |
|---|
| 1013 | ! reduces the in-cloud water). |
|---|
| 1014 | |
|---|
| 1015 | |
|---|
| 1016 | IF ((iflag_cloudth_vert.GE.3).AND.(iflag_rain_incloud_vol.EQ.1)) THEN |
|---|
| 1017 | zchau = zct *dtime/REAL(ninter) * zoliq(i) & |
|---|
| 1018 | *(1.0-EXP(-(zoliq(i)/ctot_vol(i,k)/zcl)**2)) *(1.-zfice(i)) |
|---|
| 1019 | ELSE |
|---|
| 1020 | zchau = zct *dtime/REAL(ninter) * zoliq(i) & |
|---|
| 1021 | *(1.0-EXP(-(zoliq(i)/zneb(i)/zcl)**2)) *(1.-zfice(i)) ! dqliq/dt=-qliq/tau*(1-exp(-qcin/clw)**2) |
|---|
| 1022 | ENDIF |
|---|
| 1023 | |
|---|
| 1024 | ENDIF ! ok_debug_autoconversion |
|---|
| 1025 | |
|---|
| 1026 | zrain = MIN(MAX(zchau,0.0),zoliql(i)) |
|---|
| 1027 | zsnow = MIN(MAX(zfroi,0.0),zoliqi(i)) |
|---|
| 1028 | zprecip = MAX(zrain + zsnow,0.0) |
|---|
| 1029 | |
|---|
| 1030 | ENDIF |
|---|
| 1031 | |
|---|
| 1032 | zoliql(i) = MAX(zoliq(i)*(1.-zfice(i))-1.*zrain , 0.0) |
|---|
| 1033 | zoliqi(i) = MAX(zoliq(i)*zfice(i)-1.*zsnow , 0.0) |
|---|
| 1034 | zoliq(i) = MAX(zoliq(i)-zprecip , 0.0) |
|---|
| 1035 | |
|---|
| 1036 | ! c_iso: call isotope_conversion (for readibility) or duplicate |
|---|
| 1037 | |
|---|
| 1038 | radocond(i,k) = radocond(i,k) + zoliq(i)/REAL(ninter+1) |
|---|
| 1039 | radocondl(i,k) = radocondl(i,k) + zoliql(i)/REAL(ninter+1) |
|---|
| 1040 | radocondi(i,k) = radocondi(i,k) + zoliqi(i)/REAL(ninter+1) |
|---|
| 1041 | |
|---|
| 1042 | ENDIF ! rneb >0 |
|---|
| 1043 | |
|---|
| 1044 | ENDDO ! i = 1,klon |
|---|
| 1045 | |
|---|
| 1046 | ENDDO ! n = 1,niter |
|---|
| 1047 | |
|---|
| 1048 | ! Precipitation flux calculation |
|---|
| 1049 | |
|---|
| 1050 | DO i = 1, klon |
|---|
| 1051 | |
|---|
| 1052 | IF (iflag_evap_prec.EQ.4) THEN |
|---|
| 1053 | ziflprev(i)=ziflcld(i) |
|---|
| 1054 | ELSE |
|---|
| 1055 | ziflprev(i)=zifl(i)*zneb(i) |
|---|
| 1056 | ENDIF |
|---|
| 1057 | |
|---|
| 1058 | IF (rneb(i,k) .GT. 0.0) THEN |
|---|
| 1059 | |
|---|
| 1060 | ! CR&JYG: We account for the Wegener-Findeisen-Bergeron process in the precipitation flux: |
|---|
| 1061 | ! If T<0C, liquid precip are converted into ice, which leads to an increase in |
|---|
| 1062 | ! temperature DeltaT. The effect of DeltaT on condensates and precipitation is roughly |
|---|
| 1063 | ! taken into account through a linearization of the equations and by approximating |
|---|
| 1064 | ! the liquid precipitation process with a "threshold" process. We assume that |
|---|
| 1065 | ! condensates are not modified during this operation. Liquid precipitation is |
|---|
| 1066 | ! removed (in the limit DeltaT<273.15-T). Solid precipitation increases. |
|---|
| 1067 | ! Water vapor increases as well |
|---|
| 1068 | ! Note that compared to fisrtilp, we always assume iflag_bergeron=2 |
|---|
| 1069 | |
|---|
| 1070 | zqpreci(i)=(zcond(i)-zoliq(i))*zfice(i) |
|---|
| 1071 | zqprecl(i)=(zcond(i)-zoliq(i))*(1.-zfice(i)) |
|---|
| 1072 | zcp=RCPD*(1.0+RVTMP2*(zq(i)+zmqc(i)+zcond(i))) |
|---|
| 1073 | coef1 = rneb(i,k)*RLSTT/zcp*zdqsdT_raw(i) |
|---|
| 1074 | ! Computation of DT if all the liquid precip freezes |
|---|
| 1075 | DeltaT = RLMLT*zqprecl(i) / (zcp*(1.+coef1)) |
|---|
| 1076 | ! T should not exceed the freezing point |
|---|
| 1077 | ! that is Delta > RTT-zt(i) |
|---|
| 1078 | DeltaT = max( min( RTT-zt(i), DeltaT) , 0. ) |
|---|
| 1079 | zt(i) = zt(i) + DeltaT |
|---|
| 1080 | ! water vaporization due to temp. increase |
|---|
| 1081 | Deltaq = rneb(i,k)*zdqsdT_raw(i)*DeltaT |
|---|
| 1082 | ! we add this vaporized water to the total vapor and we remove it from the precip |
|---|
| 1083 | zq(i) = zq(i) + Deltaq |
|---|
| 1084 | ! The three "max" lines herebelow protect from rounding errors |
|---|
| 1085 | zcond(i) = max( zcond(i)- Deltaq, 0. ) |
|---|
| 1086 | ! liquid precipitation converted to ice precip |
|---|
| 1087 | Deltaqprecl = -zcp/RLMLT*(1.+coef1)*DeltaT |
|---|
| 1088 | zqprecl(i) = max( zqprecl(i) + Deltaqprecl, 0. ) |
|---|
| 1089 | ! iced water budget |
|---|
| 1090 | zqpreci(i) = max (zqpreci(i) - Deltaqprecl - Deltaq, 0.) |
|---|
| 1091 | |
|---|
| 1092 | ! c_iso : mv here condensation of isotopes + redispatchage en precip |
|---|
| 1093 | |
|---|
| 1094 | IF (iflag_evap_prec.EQ.4) THEN |
|---|
| 1095 | zrflcld(i) = zrflcld(i)+zqprecl(i) & |
|---|
| 1096 | *(paprs(i,k)-paprs(i,k+1))/(RG*dtime) |
|---|
| 1097 | ziflcld(i) = ziflcld(i)+ zqpreci(i) & |
|---|
| 1098 | *(paprs(i,k)-paprs(i,k+1))/(RG*dtime) |
|---|
| 1099 | znebprecipcld(i) = rneb(i,k) |
|---|
| 1100 | zrfl(i) = zrflcld(i) + zrflclr(i) |
|---|
| 1101 | zifl(i) = ziflcld(i) + ziflclr(i) |
|---|
| 1102 | ELSE |
|---|
| 1103 | zrfl(i) = zrfl(i)+ zqprecl(i) & |
|---|
| 1104 | *(paprs(i,k)-paprs(i,k+1))/(RG*dtime) |
|---|
| 1105 | zifl(i) = zifl(i)+ zqpreci(i) & |
|---|
| 1106 | *(paprs(i,k)-paprs(i,k+1))/(RG*dtime) |
|---|
| 1107 | ENDIF |
|---|
| 1108 | ! c_iso : same for isotopes |
|---|
| 1109 | |
|---|
| 1110 | ENDIF ! rneb>0 |
|---|
| 1111 | |
|---|
| 1112 | ENDDO |
|---|
| 1113 | |
|---|
| 1114 | ! LTP: limit of surface cloud fraction covered by precipitation when the local intensity of the flux is below rain_int_min |
|---|
| 1115 | ! if iflag_evap_pre=4 |
|---|
| 1116 | IF (iflag_evap_prec.EQ.4) THEN |
|---|
| 1117 | |
|---|
| 1118 | DO i=1,klon |
|---|
| 1119 | |
|---|
| 1120 | IF ((zrflclr(i) + ziflclr(i)) .GT. 0. ) THEN |
|---|
| 1121 | znebprecipclr(i) = min(znebprecipclr(i),max(zrflclr(i)/ & |
|---|
| 1122 | (MAX(znebprecipclr(i),seuil_neb)*rain_int_min), ziflclr(i)/(MAX(znebprecipclr(i),seuil_neb)*rain_int_min))) |
|---|
| 1123 | ELSE |
|---|
| 1124 | znebprecipclr(i)=0.0 |
|---|
| 1125 | ENDIF |
|---|
| 1126 | |
|---|
| 1127 | IF ((zrflcld(i) + ziflcld(i)) .GT. 0.) THEN |
|---|
| 1128 | znebprecipcld(i) = min(znebprecipcld(i), max(zrflcld(i)/ & |
|---|
| 1129 | (MAX(znebprecipcld(i),seuil_neb)*rain_int_min), ziflcld(i)/(MAX(znebprecipcld(i),seuil_neb)*rain_int_min))) |
|---|
| 1130 | ELSE |
|---|
| 1131 | znebprecipcld(i)=0.0 |
|---|
| 1132 | ENDIF |
|---|
| 1133 | |
|---|
| 1134 | ENDDO |
|---|
| 1135 | |
|---|
| 1136 | ENDIF |
|---|
| 1137 | |
|---|
| 1138 | ! End of precipitation formation |
|---|
| 1139 | ! -------------------------------- |
|---|
| 1140 | |
|---|
| 1141 | ! Outputs: |
|---|
| 1142 | ! Precipitation fluxes at layer interfaces |
|---|
| 1143 | ! and temperature and water species tendencies |
|---|
| 1144 | DO i = 1, klon |
|---|
| 1145 | psfl(i,k)=zifl(i) |
|---|
| 1146 | prfl(i,k)=zrfl(i) |
|---|
| 1147 | d_ql(i,k) = (1-zfice(i))*zoliq(i) |
|---|
| 1148 | d_qi(i,k) = zfice(i)*zoliq(i) |
|---|
| 1149 | d_q(i,k) = zq(i) - q(i,k) |
|---|
| 1150 | ! c_iso: same for isotopes |
|---|
| 1151 | d_t(i,k) = zt(i) - t(i,k) |
|---|
| 1152 | ENDDO |
|---|
| 1153 | |
|---|
| 1154 | ! Calculation of the concentration of condensates seen by the radiation scheme |
|---|
| 1155 | ! for liquid phase, we take radocondl |
|---|
| 1156 | ! for ice phase, we take radocondi if we neglect snowfall, otherwise (ok_radocond_snow=true) |
|---|
| 1157 | ! we recaulate radocondi to account for contributions from the precipitation flux |
|---|
| 1158 | |
|---|
| 1159 | IF ((ok_radocond_snow) .AND. (k .LT. klev)) THEN |
|---|
| 1160 | ! for the solid phase (crystals + snowflakes) |
|---|
| 1161 | ! we recalculate radocondi by summing |
|---|
| 1162 | ! the ice content calculated in the mesh |
|---|
| 1163 | ! + the contribution of the non-evaporated snowfall |
|---|
| 1164 | ! from the overlying layer |
|---|
| 1165 | DO i=1,klon |
|---|
| 1166 | IF (ziflprev(i) .NE. 0.0) THEN |
|---|
| 1167 | radocondi(i,k)=zoliq(i)*zfice(i)+zqpreci(i)+ziflprev(i)/zrho(i,k+1)/velo(i,k+1) |
|---|
| 1168 | ELSE |
|---|
| 1169 | radocondi(i,k)=zoliq(i)*zfice(i)+zqpreci(i) |
|---|
| 1170 | ENDIF |
|---|
| 1171 | radocond(i,k)=radocondl(i,k)+radocondi(i,k) |
|---|
| 1172 | ENDDO |
|---|
| 1173 | ENDIF |
|---|
| 1174 | |
|---|
| 1175 | ! caculate the percentage of ice in "radocond" so cloud+precip seen by the radiation scheme |
|---|
| 1176 | DO i=1,klon |
|---|
| 1177 | IF (radocond(i,k) .GT. 0.) THEN |
|---|
| 1178 | radicefrac(i,k)=MIN(MAX(radocondi(i,k)/radocond(i,k),0.),1.) |
|---|
| 1179 | ENDIF |
|---|
| 1180 | ENDDO |
|---|
| 1181 | |
|---|
| 1182 | ! ---------------------------------------------------------------- |
|---|
| 1183 | ! P4> Wet scavenging |
|---|
| 1184 | ! ---------------------------------------------------------------- |
|---|
| 1185 | |
|---|
| 1186 | !Scavenging through nucleation in the layer |
|---|
| 1187 | |
|---|
| 1188 | DO i = 1,klon |
|---|
| 1189 | |
|---|
| 1190 | IF(zcond(i).GT.zoliq(i)+1.e-10) THEN |
|---|
| 1191 | beta(i,k) = (zcond(i)-zoliq(i))/zcond(i)/dtime |
|---|
| 1192 | ELSE |
|---|
| 1193 | beta(i,k) = 0. |
|---|
| 1194 | ENDIF |
|---|
| 1195 | |
|---|
| 1196 | zprec_cond(i) = MAX(zcond(i)-zoliq(i),0.0)*(paprs(i,k)-paprs(i,k+1))/RG |
|---|
| 1197 | |
|---|
| 1198 | IF (rneb(i,k).GT.0.0.AND.zprec_cond(i).GT.0.) THEN |
|---|
| 1199 | |
|---|
| 1200 | IF (t(i,k) .GE. t_glace_min) THEN |
|---|
| 1201 | zalpha_tr = a_tr_sca(3) |
|---|
| 1202 | ELSE |
|---|
| 1203 | zalpha_tr = a_tr_sca(4) |
|---|
| 1204 | ENDIF |
|---|
| 1205 | |
|---|
| 1206 | zfrac_lessi = 1. - EXP(zalpha_tr*zprec_cond(i)/zneb(i)) |
|---|
| 1207 | frac_nucl(i,k)= 1.-zneb(i)*zfrac_lessi |
|---|
| 1208 | |
|---|
| 1209 | ! Nucleation with a factor of -1 instead of -0.5 |
|---|
| 1210 | zfrac_lessi = 1. - EXP(-zprec_cond(i)/zneb(i)) |
|---|
| 1211 | |
|---|
| 1212 | ENDIF |
|---|
| 1213 | |
|---|
| 1214 | ENDDO |
|---|
| 1215 | |
|---|
| 1216 | ! Scavenging through impaction in the underlying layer |
|---|
| 1217 | |
|---|
| 1218 | DO kk = k-1, 1, -1 |
|---|
| 1219 | |
|---|
| 1220 | DO i = 1, klon |
|---|
| 1221 | |
|---|
| 1222 | IF (rneb(i,k).GT.0.0.AND.zprec_cond(i).GT.0.) THEN |
|---|
| 1223 | |
|---|
| 1224 | IF (t(i,kk) .GE. t_glace_min) THEN |
|---|
| 1225 | zalpha_tr = a_tr_sca(1) |
|---|
| 1226 | ELSE |
|---|
| 1227 | zalpha_tr = a_tr_sca(2) |
|---|
| 1228 | ENDIF |
|---|
| 1229 | |
|---|
| 1230 | zfrac_lessi = 1. - EXP(zalpha_tr*zprec_cond(i)/zneb(i)) |
|---|
| 1231 | frac_impa(i,kk)= 1.-zneb(i)*zfrac_lessi |
|---|
| 1232 | |
|---|
| 1233 | ENDIF |
|---|
| 1234 | |
|---|
| 1235 | ENDDO |
|---|
| 1236 | |
|---|
| 1237 | ENDDO |
|---|
| 1238 | |
|---|
| 1239 | !--save some variables for ice supersaturation |
|---|
| 1240 | ! |
|---|
| 1241 | DO i = 1, klon |
|---|
| 1242 | ! for memory |
|---|
| 1243 | rneb_seri(i,k) = rneb(i,k) |
|---|
| 1244 | |
|---|
| 1245 | ! for diagnostics |
|---|
| 1246 | rnebclr(i,k) = 1.0 - rneb(i,k) - rnebss(i,k) |
|---|
| 1247 | |
|---|
| 1248 | qvc(i,k) = zqs(i) * rneb(i,k) |
|---|
| 1249 | qclr(i,k) = MAX(1.e-10,zq(i) - qvc(i,k) - qss(i,k)) !--added by OB because of pathologic cases with the lognormal |
|---|
| 1250 | qcld(i,k) = qvc(i,k) + zcond(i) |
|---|
| 1251 | ENDDO |
|---|
| 1252 | !q_sat |
|---|
| 1253 | CALL calc_qsat_ecmwf(klon,Tbef(:),qzero(:),pplay(:,k),RTT,1,.false.,qsatl(:,k),zdqs(:)) |
|---|
| 1254 | CALL calc_qsat_ecmwf(klon,Tbef(:),qzero(:),pplay(:,k),RTT,2,.false.,qsats(:,k),zdqs(:)) |
|---|
| 1255 | |
|---|
| 1256 | ENDDO |
|---|
| 1257 | |
|---|
| 1258 | !====================================================================== |
|---|
| 1259 | ! END OF VERTICAL LOOP |
|---|
| 1260 | !====================================================================== |
|---|
| 1261 | |
|---|
| 1262 | ! Rain or snow at the surface (depending on the first layer temperature) |
|---|
| 1263 | DO i = 1, klon |
|---|
| 1264 | snow(i) = zifl(i) |
|---|
| 1265 | rain(i) = zrfl(i) |
|---|
| 1266 | ! c_iso final output |
|---|
| 1267 | ENDDO |
|---|
| 1268 | |
|---|
| 1269 | IF (ncoreczq>0) THEN |
|---|
| 1270 | WRITE(lunout,*)'WARNING : ZQ in LSCP ',ncoreczq,' val < 1.e-15.' |
|---|
| 1271 | ENDIF |
|---|
| 1272 | |
|---|
| 1273 | END SUBROUTINE lscp |
|---|
| 1274 | !+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ |
|---|
| 1275 | |
|---|
| 1276 | END MODULE lscp_mod |
|---|