source: LMDZ6/branches/blowing_snow/libf/phylmd/ener_conserv.F90 @ 5501

Last change on this file since 5501 was 4232, checked in by dcugnet, 2 years ago
  • fix typo in infotrac_phy for id_OCS_strato calculation that was erroneously set to 0. (SL+DC)
  • fix in ener_conserv to avoid problems with pqs0 argument in the case of a model without ice water (EM+dc)
  • Property copyright set to
    Name of program: LMDZ
    Creation date: 1984
    Version: LMDZ5
    License: CeCILL version 2
    Holder: Laboratoire de m\'et\'eorologie dynamique, CNRS, UMR 8539
    See the license file in the root directory
File size: 9.1 KB
Line 
1subroutine ener_conserv(klon,klev,pdtphys, &
2 &                      puo,pvo,pto,qx,ivap,iliq,isol, &
3 &                      pun,pvn,ptn,pqn,pqln,pqsn,dtke,masse,exner,d_t_ec)
4
5!=============================================================
6! Energy conservation
7! Based on the TKE equation
8! The M2 and N2 terms at the origin of TKE production are
9! concerted into heating in the d_t_ec term
10! Option 1 is the standard
11!        101 is for M2 term only
12!        101 for N2 term only
13!         -1 is a previours treatment for kinetic energy only
14!  FH (hourdin@lmd.jussieu.fr), 2013/04/25
15!=============================================================
16
17!=============================================================
18! Declarations
19!=============================================================
20
21! From module
22USE phys_local_var_mod, ONLY : d_u_vdf,d_v_vdf,d_t_vdf,d_u_ajs,d_v_ajs,d_t_ajs, &
23 &                             d_u_con,d_v_con,d_t_con,d_t_diss
24USE phys_local_var_mod, ONLY : d_t_eva,d_t_lsc,d_q_eva,d_q_lsc
25USE phys_local_var_mod, ONLY : d_u_oro,d_v_oro,d_u_lif,d_v_lif
26USE phys_local_var_mod, ONLY : du_gwd_hines,dv_gwd_hines,dv_gwd_front,dv_gwd_rando
27USE phys_state_var_mod, ONLY : du_gwd_front,du_gwd_rando
28USE phys_output_var_mod, ONLY : bils_ec,bils_ech,bils_tke,bils_kinetic,bils_enthalp,bils_latent,bils_diss
29USE add_phys_tend_mod, ONLY : fl_cor_ebil
30USE infotrac_phy, ONLY: nqtot
31
32
33IMPLICIT none
34#include "YOMCST.h"
35#include "YOETHF.h"
36#include "clesphys.h"
37#include "compbl.h"
38
39! Arguments
40INTEGER, INTENT(IN) :: klon,klev
41REAL, INTENT(IN) :: pdtphys
42REAL, DIMENSION(klon,klev), INTENT(IN)      :: puo,pvo,pto
43REAL, DIMENSION(klon,klev,nqtot), INTENT(IN):: qx
44INTEGER, INTENT(IN)                         :: ivap, iliq, isol
45REAL, DIMENSION(klon,klev), INTENT(IN)      :: pun,pvn,ptn,pqn,pqln,pqsn
46REAL, DIMENSION(klon,klev), INTENT(IN)      :: masse,exner
47REAL, DIMENSION(klon,klev+1), INTENT(IN)    :: dtke
48!
49REAL, DIMENSION(klon,klev), INTENT(OUT)     :: d_t_ec
50
51! Local
52      integer k,i
53REAL, DIMENSION(klon,klev+1) :: fluxu,fluxv,fluxt
54REAL, DIMENSION(klon,klev+1) :: dddu,dddv,dddt
55REAL, DIMENSION(klon,klev) :: d_u,d_v,d_t,zv,zu,d_t_ech, pqo, pql0, pqs0
56REAL ZRCPD
57
58character*80 abort_message
59character*20 :: modname
60
61
62modname='ener_conser'
63d_t_ec(:,:)=0.
64
65IF(ivap == 0) CALL abort_physic (modname,'can''t run without water vapour',1)
66IF(iliq == 0) CALL abort_physic (modname,'can''t run without liquid water',1)
67pqo  = qx(:,:,ivap)
68pql0 = qx(:,:,iliq)
69IF(isol /= 0) pqs0 = qx(:,:,isol)
70
71IF (iflag_ener_conserv==-1) THEN
72!+jld ec_conser
73   DO k = 1, klev
74   DO i = 1, klon
75     IF (fl_cor_ebil .GT. 0) then
76       ZRCPD = RCPD*(1.0+RVTMP2*(pqn(i,k)+pqln(i,k)+pqsn(i,k)))
77     ELSE
78       ZRCPD = RCPD*(1.0+RVTMP2*pqn(i,k))
79     ENDIF
80     d_t_ec(i,k)=0.5/ZRCPD &
81 &     *(puo(i,k)**2+pvo(i,k)**2-pun(i,k)**2-pvn(i,k)**2)
82   ENDDO
83   ENDDO
84!-jld ec_conser
85
86
87
88ELSEIF (iflag_ener_conserv>=1) THEN
89
90   IF (iflag_ener_conserv<=2) THEN
91!     print*,'ener_conserv pbl=',iflag_pbl
92      IF (iflag_pbl>=20 .AND. iflag_pbl<=27) THEN !d_t_diss accounts for conserv
93         d_t(:,:)=d_t_ajs(:,:)   ! d_t_ajs = adjust + thermals
94         d_u(:,:)=d_u_ajs(:,:)+d_u_con(:,:)
95         d_v(:,:)=d_v_ajs(:,:)+d_v_con(:,:)
96      ELSE
97         d_t(:,:)=d_t_vdf(:,:)+d_t_ajs(:,:)   ! d_t_ajs = adjust + thermals
98         d_u(:,:)=d_u_vdf(:,:)+d_u_ajs(:,:)+d_u_con(:,:)
99         d_v(:,:)=d_v_vdf(:,:)+d_v_ajs(:,:)+d_v_con(:,:)
100      ENDIF
101   ELSEIF (iflag_ener_conserv==101) THEN
102      d_t(:,:)=0.
103      d_u(:,:)=d_u_vdf(:,:)+d_u_ajs(:,:)+d_u_con(:,:)
104      d_v(:,:)=d_v_vdf(:,:)+d_v_ajs(:,:)+d_v_con(:,:)
105   ELSEIF (iflag_ener_conserv==110) THEN
106      d_t(:,:)=d_t_vdf(:,:)+d_t_ajs(:,:)
107      d_u(:,:)=0.
108      d_v(:,:)=0.
109
110   ELSEIF (iflag_ener_conserv==3) THEN
111      d_t(:,:)=0.
112      d_u(:,:)=0.
113      d_v(:,:)=0.
114   ELSEIF (iflag_ener_conserv==4) THEN
115      d_t(:,:)=0.
116      d_u(:,:)=d_u_vdf(:,:)
117      d_v(:,:)=d_v_vdf(:,:)
118   ELSEIF (iflag_ener_conserv==5) THEN
119      d_t(:,:)=d_t_vdf(:,:)
120      d_u(:,:)=d_u_vdf(:,:)
121      d_v(:,:)=d_v_vdf(:,:)
122   ELSEIF (iflag_ener_conserv==6) THEN
123      d_t(:,:)=d_t_vdf(:,:)
124      d_u(:,:)=d_u_vdf(:,:)+d_u_ajs(:,:)
125      d_v(:,:)=d_v_vdf(:,:)+d_v_ajs(:,:)
126   ELSEIF (iflag_ener_conserv==7) THEN
127      d_t(:,:)=d_t_vdf(:,:)+d_t_ajs(:,:)
128      d_u(:,:)=d_u_vdf(:,:)+d_u_ajs(:,:)
129      d_v(:,:)=d_v_vdf(:,:)+d_v_ajs(:,:)
130   ELSEIF (iflag_ener_conserv==8) THEN
131      d_t(:,:)=d_t_vdf(:,:)
132      d_u(:,:)=d_u_vdf(:,:)+d_u_ajs(:,:)+d_u_con(:,:)
133      d_v(:,:)=d_v_vdf(:,:)+d_v_ajs(:,:)+d_v_con(:,:)
134   ELSEIF (iflag_ener_conserv==9) THEN
135      d_t(:,:)=d_t_vdf(:,:)
136      d_u(:,:)=d_u_vdf(:,:)+d_u_ajs(:,:)+d_u_con(:,:)+d_u_oro(:,:)
137      d_v(:,:)=d_v_vdf(:,:)+d_v_ajs(:,:)+d_v_con(:,:)+d_v_oro(:,:)
138   ELSEIF (iflag_ener_conserv==10) THEN
139      d_t(:,:)=d_t_vdf(:,:)
140      d_u(:,:)=d_u_vdf(:,:)+d_u_ajs(:,:)+d_u_con(:,:)+d_u_oro(:,:)+d_u_lif(:,:)
141      d_v(:,:)=d_v_vdf(:,:)+d_v_ajs(:,:)+d_v_con(:,:)+d_v_oro(:,:)+d_v_lif(:,:)
142   ELSEIF (iflag_ener_conserv==11) THEN
143      d_t(:,:)=d_t_vdf(:,:)
144      d_u(:,:)=d_u_vdf(:,:)+d_u_ajs(:,:)+d_u_con(:,:)+d_u_oro(:,:)+d_u_lif(:,:)
145      d_v(:,:)=d_v_vdf(:,:)+d_v_ajs(:,:)+d_v_con(:,:)+d_v_oro(:,:)+d_v_lif(:,:)
146      IF (ok_hines) THEN
147         d_u_vdf(:,:)=d_u_vdf(:,:)+du_gwd_hines(:,:)
148         d_v_vdf(:,:)=d_v_vdf(:,:)+dv_gwd_hines(:,:)
149      ENDIF
150      IF (.not. ok_hines .and. ok_gwd_rando) THEN
151         d_u_vdf(:,:)=d_u_vdf(:,:)+du_gwd_front(:,:)
152         d_v_vdf(:,:)=d_v_vdf(:,:)+dv_gwd_front(:,:)
153      ENDIF
154      IF (ok_gwd_rando) THEN
155         d_u_vdf(:,:)=d_u_vdf(:,:)+du_gwd_rando(:,:)
156         d_v_vdf(:,:)=d_v_vdf(:,:)+dv_gwd_rando(:,:)
157      ENDIF
158   ELSE
159      abort_message = 'iflag_ener_conserv non prevu'
160      CALL abort_physic (modname,abort_message,1)
161   ENDIF
162
163!----------------------------------------------------------------------------
164! Two options wether we consider time integration in the energy conservation
165!----------------------------------------------------------------------------
166
167   if (iflag_ener_conserv==2) then
168      zu(:,:)=puo(:,:)
169      zv(:,:)=pvo(:,:)
170   else
171      IF (iflag_pbl>=20 .AND. iflag_pbl<=27) THEN
172         zu(:,:)=puo(:,:)+d_u_vdf(:,:)+0.5*d_u(:,:)
173         zv(:,:)=pvo(:,:)+d_v_vdf(:,:)+0.5*d_v(:,:)
174      ELSE
175         zu(:,:)=puo(:,:)+0.5*d_u(:,:)
176         zv(:,:)=pvo(:,:)+0.5*d_v(:,:)
177      ENDIF
178   endif
179
180   fluxu(:,klev+1)=0.
181   fluxv(:,klev+1)=0.
182   fluxt(:,klev+1)=0.
183
184   do k=klev,1,-1
185      fluxu(:,k)=fluxu(:,k+1)+masse(:,k)*d_u(:,k)
186      fluxv(:,k)=fluxv(:,k+1)+masse(:,k)*d_v(:,k)
187      fluxt(:,k)=fluxt(:,k+1)+masse(:,k)*d_t(:,k)/exner(:,k)
188   enddo
189
190   dddu(:,1)=2*zu(:,1)*fluxu(:,1)
191   dddv(:,1)=2*zv(:,1)*fluxv(:,1)
192   dddt(:,1)=(exner(:,1)-1.)*fluxt(:,1)
193
194   do k=2,klev
195      dddu(:,k)=(zu(:,k)-zu(:,k-1))*fluxu(:,k)
196      dddv(:,k)=(zv(:,k)-zv(:,k-1))*fluxv(:,k)
197      dddt(:,k)=(exner(:,k)-exner(:,k-1))*fluxt(:,k)
198   enddo
199   dddu(:,klev+1)=0.
200   dddv(:,klev+1)=0.
201   dddt(:,klev+1)=0.
202
203   do k=1,klev
204      d_t_ech(:,k)=-(rcpd*(dddt(:,k)+dddt(:,k+1)))/(2.*rcpd*masse(:,k))
205      d_t_ec(:,k)=-(dddu(:,k)+dddu(:,k+1)+dddv(:,k)+dddv(:,k+1))/(2.*rcpd*masse(:,k))+d_t_ech(:,k)
206   enddo
207
208ENDIF
209
210!================================================================
211!  Computation of integrated enthalpie and kinetic energy variation
212!  FH (hourdin@lmd.jussieu.fr), 2013/04/25
213!  bils_ec : energie conservation term
214!  bils_ech : part of this term linked to temperature
215!  bils_tke : change of TKE
216!  bils_diss : dissipation of TKE (when activated)
217!  bils_kinetic : change of kinetic energie of the column
218!  bils_enthalp : change of enthalpie
219!  bils_latent  : change of latent heat. Computed between
220!          after reevaporation (at the beginning of the physics)
221!          and before large scale condensation (fisrtilp)
222!================================================================
223
224      bils_ec(:)=0.
225      bils_ech(:)=0.
226      bils_tke(:)=0.
227      bils_diss(:)=0.
228      bils_kinetic(:)=0.
229      bils_enthalp(:)=0.
230      bils_latent(:)=0.
231      DO k=1,klev
232        bils_ec(:)=bils_ec(:)-d_t_ec(:,k)*masse(:,k)
233        bils_diss(:)=bils_diss(:)-d_t_diss(:,k)*masse(:,k)
234        bils_kinetic(:)=bils_kinetic(:)+masse(:,k)* &
235     &           (pun(:,k)*pun(:,k)+pvn(:,k)*pvn(:,k) &
236     &            -puo(:,k)*puo(:,k)-pvo(:,k)*pvo(:,k))
237        bils_enthalp(:)= &
238     &  bils_enthalp(:)+masse(:,k)*(ptn(:,k)-pto(:,k)+d_t_ec(:,k)-d_t_eva(:,k)-d_t_lsc(:,k))
239!    &  bils_enthalp(:)+masse(:,k)*(ptn(:,k)-pto(:,k)+d_t_ec(:,k))
240        bils_latent(:)=bils_latent(:)+masse(:,k)* &
241!    &             (pqn(:,k)-pqo(:,k))
242     &             (pqn(:,k)-pqo(:,k)-d_q_eva(:,k)-d_q_lsc(:,k))
243      ENDDO
244      bils_ec(:)=rcpd*bils_ec(:)/pdtphys
245      bils_diss(:)=rcpd*bils_diss(:)/pdtphys
246      bils_kinetic(:)= 0.5*bils_kinetic(:)/pdtphys
247      bils_enthalp(:)=rcpd*bils_enthalp(:)/pdtphys
248      bils_latent(:)=rlvtt*bils_latent(:)/pdtphys
249!jyg<
250      IF (iflag_pbl > 1) THEN
251        DO k=1,klev
252          bils_tke(:)=bils_tke(:)+0.5*(dtke(:,k)+dtke(:,k+1))*masse(:,k)
253        ENDDO
254        bils_tke(:)=bils_tke(:)/pdtphys
255      ENDIF  ! (iflag_pbl > 1)
256!>jyg
257
258IF (iflag_ener_conserv>=1) THEN
259      bils_ech(:)=0.
260      DO k=1,klev
261        bils_ech(:)=bils_ech(:)-d_t_ech(:,k)*masse(:,k)
262      ENDDO
263      bils_ech(:)=rcpd*bils_ech(:)/pdtphys
264ENDIF
265
266RETURN
267
268END
Note: See TracBrowser for help on using the repository browser.