source: LMDZ6/branches/blowing_snow/libf/phylmd/cloudth_mod.F90 @ 5018

Last change on this file since 5018 was 4380, checked in by evignon, 22 months ago

premier commit d'un travail en cours sur l'externalisation de la routine lscp pour l'utilisation du replay
+ nettoyage

File size: 92.6 KB
Line 
1MODULE cloudth_mod
2
3  IMPLICIT NONE
4
5CONTAINS
6
7       SUBROUTINE cloudth(ngrid,klev,ind2,  &
8     &           ztv,po,zqta,fraca, &
9     &           qcloud,ctot,zpspsk,paprs,pplay,ztla,zthl, &
10     &           ratqs,zqs,t)
11
12
13      IMPLICIT NONE
14
15
16!===========================================================================
17! Auteur : Arnaud Octavio Jam (LMD/CNRS)
18! Date : 25 Mai 2010
19! Objet : calcule les valeurs de qc et rneb dans les thermiques
20!===========================================================================
21
22
23#include "YOMCST.h"
24#include "YOETHF.h"
25#include "FCTTRE.h"
26#include "nuage.h"
27
28      INTEGER itap,ind1,ind2
29      INTEGER ngrid,klev,klon,l,ig
30     
31      REAL ztv(ngrid,klev)
32      REAL po(ngrid)
33      REAL zqenv(ngrid)   
34      REAL zqta(ngrid,klev)
35         
36      REAL fraca(ngrid,klev+1)
37      REAL zpspsk(ngrid,klev)
38      REAL paprs(ngrid,klev+1)
39      REAL pplay(ngrid,klev)
40      REAL ztla(ngrid,klev)
41      REAL zthl(ngrid,klev)
42
43      REAL zqsatth(ngrid,klev)
44      REAL zqsatenv(ngrid,klev)
45     
46     
47      REAL sigma1(ngrid,klev)
48      REAL sigma2(ngrid,klev)
49      REAL qlth(ngrid,klev)
50      REAL qlenv(ngrid,klev)
51      REAL qltot(ngrid,klev)
52      REAL cth(ngrid,klev) 
53      REAL cenv(ngrid,klev)   
54      REAL ctot(ngrid,klev)
55      REAL rneb(ngrid,klev)
56      REAL t(ngrid,klev)
57      REAL qsatmmussig1,qsatmmussig2,sqrt2pi,pi
58      REAL rdd,cppd,Lv
59      REAL alth,alenv,ath,aenv
60      REAL sth,senv,sigma1s,sigma2s,xth,xenv
61      REAL Tbef,zdelta,qsatbef,zcor
62      REAL qlbef 
63      REAL ratqs(ngrid,klev) ! determine la largeur de distribution de vapeur
64     
65      REAL zpdf_sig(ngrid),zpdf_k(ngrid),zpdf_delta(ngrid)
66      REAL zpdf_a(ngrid),zpdf_b(ngrid),zpdf_e1(ngrid),zpdf_e2(ngrid)
67      REAL zqs(ngrid), qcloud(ngrid)
68      REAL erf
69
70
71
72
73!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
74! Gestion de deux versions de cloudth
75!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
76
77      IF (iflag_cloudth_vert.GE.1) THEN
78      CALL cloudth_vert(ngrid,klev,ind2,  &
79     &           ztv,po,zqta,fraca, &
80     &           qcloud,ctot,zpspsk,paprs,pplay,ztla,zthl, &
81     &           ratqs,zqs,t)
82      RETURN
83      ENDIF
84!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
85
86
87!-------------------------------------------------------------------------------
88! Initialisation des variables r?elles
89!-------------------------------------------------------------------------------
90      sigma1(:,:)=0.
91      sigma2(:,:)=0.
92      qlth(:,:)=0.
93      qlenv(:,:)=0. 
94      qltot(:,:)=0.
95      rneb(:,:)=0.
96      qcloud(:)=0.
97      cth(:,:)=0.
98      cenv(:,:)=0.
99      ctot(:,:)=0.
100      qsatmmussig1=0.
101      qsatmmussig2=0.
102      rdd=287.04
103      cppd=1005.7
104      pi=3.14159
105      Lv=2.5e6
106      sqrt2pi=sqrt(2.*pi)
107
108
109
110!-------------------------------------------------------------------------------
111! Calcul de la fraction du thermique et des ?cart-types des distributions
112!-------------------------------------------------------------------------------                 
113      do ind1=1,ngrid
114
115      if ((ztv(ind1,1).gt.ztv(ind1,2)).and.(fraca(ind1,ind2).gt.1.e-10)) then
116
117      zqenv(ind1)=(po(ind1)-fraca(ind1,ind2)*zqta(ind1,ind2))/(1.-fraca(ind1,ind2))
118
119
120!      zqenv(ind1)=po(ind1)
121      Tbef=zthl(ind1,ind2)*zpspsk(ind1,ind2)
122      zdelta=MAX(0.,SIGN(1.,RTT-Tbef))
123      qsatbef= R2ES * FOEEW(Tbef,zdelta)/paprs(ind1,ind2)
124      qsatbef=MIN(0.5,qsatbef)
125      zcor=1./(1.-retv*qsatbef)
126      qsatbef=qsatbef*zcor
127      zqsatenv(ind1,ind2)=qsatbef
128
129
130
131
132      alenv=(0.622*Lv*zqsatenv(ind1,ind2))/(rdd*zthl(ind1,ind2)**2) 
133      aenv=1./(1.+(alenv*Lv/cppd))
134      senv=aenv*(po(ind1)-zqsatenv(ind1,ind2))
135
136
137
138
139      Tbef=ztla(ind1,ind2)*zpspsk(ind1,ind2)
140      zdelta=MAX(0.,SIGN(1.,RTT-Tbef))
141      qsatbef= R2ES * FOEEW(Tbef,zdelta)/paprs(ind1,ind2)
142      qsatbef=MIN(0.5,qsatbef)
143      zcor=1./(1.-retv*qsatbef)
144      qsatbef=qsatbef*zcor
145      zqsatth(ind1,ind2)=qsatbef
146           
147      alth=(0.622*Lv*zqsatth(ind1,ind2))/(rdd*ztla(ind1,ind2)**2)   
148      ath=1./(1.+(alth*Lv/cppd))
149      sth=ath*(zqta(ind1,ind2)-zqsatth(ind1,ind2))
150     
151     
152
153!------------------------------------------------------------------------------
154! Calcul des ?cart-types pour s
155!------------------------------------------------------------------------------
156
157!      sigma1s=(1.1**0.5)*(fraca(ind1,ind2)**0.6)/(1-fraca(ind1,ind2))*((sth-senv)**2)**0.5+ratqs(ind1,ind2)*po(ind1)
158!      sigma2s=0.11*((sth-senv)**2)**0.5/(fraca(ind1,ind2)+0.02)**0.4+0.002*zqta(ind1,ind2)
159!       if (paprs(ind1,ind2).gt.90000) then
160!       ratqs(ind1,ind2)=0.002
161!       else
162!       ratqs(ind1,ind2)=0.002+0.0*(90000-paprs(ind1,ind2))/20000
163!       endif
164       sigma1s=(1.1**0.5)*(fraca(ind1,ind2)**0.6)/(1-fraca(ind1,ind2))*((sth-senv)**2)**0.5+0.002*po(ind1)
165       sigma2s=0.11*((sth-senv)**2)**0.5/(fraca(ind1,ind2)+0.01)**0.4+0.002*zqta(ind1,ind2)
166!       sigma1s=ratqs(ind1,ind2)*po(ind1)
167!      sigma2s=0.11*((sth-senv)**2)**0.5/(fraca(ind1,ind2)+0.02)**0.4+0.00003 
168 
169!------------------------------------------------------------------------------
170! Calcul de l'eau condens?e et de la couverture nuageuse
171!------------------------------------------------------------------------------
172      sqrt2pi=sqrt(2.*pi)
173      xth=sth/(sqrt(2.)*sigma2s)
174      xenv=senv/(sqrt(2.)*sigma1s)
175      cth(ind1,ind2)=0.5*(1.+1.*erf(xth))
176      cenv(ind1,ind2)=0.5*(1.+1.*erf(xenv))
177      ctot(ind1,ind2)=fraca(ind1,ind2)*cth(ind1,ind2)+(1.-1.*fraca(ind1,ind2))*cenv(ind1,ind2)   
178
179      qlth(ind1,ind2)=sigma2s*((exp(-1.*xth**2)/sqrt2pi)+xth*sqrt(2.)*cth(ind1,ind2))
180      qlenv(ind1,ind2)=sigma1s*((exp(-1.*xenv**2)/sqrt2pi)+xenv*sqrt(2.)*cenv(ind1,ind2))   
181      qltot(ind1,ind2)=fraca(ind1,ind2)*qlth(ind1,ind2)+(1.-1.*fraca(ind1,ind2))*qlenv(ind1,ind2)
182
183!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
184      if (ctot(ind1,ind2).lt.1.e-10) then
185      ctot(ind1,ind2)=0.
186      qcloud(ind1)=zqsatenv(ind1,ind2)
187
188      else   
189               
190      ctot(ind1,ind2)=ctot(ind1,ind2)
191      qcloud(ind1)=qltot(ind1,ind2)/ctot(ind1,ind2)+zqs(ind1)
192
193      endif                           
194     
195         
196!     print*,sth,sigma2s,qlth(ind1,ind2),ctot(ind1,ind2),qltot(ind1,ind2),'verif'
197
198
199      else  ! gaussienne environnement seule
200     
201      zqenv(ind1)=po(ind1)
202      Tbef=t(ind1,ind2)
203      zdelta=MAX(0.,SIGN(1.,RTT-Tbef))
204      qsatbef= R2ES * FOEEW(Tbef,zdelta)/paprs(ind1,ind2)
205      qsatbef=MIN(0.5,qsatbef)
206      zcor=1./(1.-retv*qsatbef)
207      qsatbef=qsatbef*zcor
208      zqsatenv(ind1,ind2)=qsatbef
209     
210
211!      qlbef=Max(po(ind1)-zqsatenv(ind1,ind2),0.)
212      zthl(ind1,ind2)=t(ind1,ind2)*(101325/paprs(ind1,ind2))**(rdd/cppd)
213      alenv=(0.622*Lv*zqsatenv(ind1,ind2))/(rdd*zthl(ind1,ind2)**2) 
214      aenv=1./(1.+(alenv*Lv/cppd))
215      senv=aenv*(po(ind1)-zqsatenv(ind1,ind2))
216     
217
218      sigma1s=ratqs(ind1,ind2)*zqenv(ind1)
219
220      sqrt2pi=sqrt(2.*pi)
221      xenv=senv/(sqrt(2.)*sigma1s)
222      ctot(ind1,ind2)=0.5*(1.+1.*erf(xenv))
223      qltot(ind1,ind2)=sigma1s*((exp(-1.*xenv**2)/sqrt2pi)+xenv*sqrt(2.)*cenv(ind1,ind2))
224     
225      if (ctot(ind1,ind2).lt.1.e-3) then
226      ctot(ind1,ind2)=0.
227      qcloud(ind1)=zqsatenv(ind1,ind2)
228
229      else   
230               
231      ctot(ind1,ind2)=ctot(ind1,ind2)
232      qcloud(ind1)=qltot(ind1,ind2)/ctot(ind1,ind2)+zqsatenv(ind1,ind2)
233
234      endif   
235 
236 
237 
238 
239 
240 
241      endif   
242      enddo
243     
244      return
245!     end
246END SUBROUTINE cloudth
247
248
249
250!===========================================================================
251     SUBROUTINE cloudth_vert(ngrid,klev,ind2,  &
252     &           ztv,po,zqta,fraca, &
253     &           qcloud,ctot,zpspsk,paprs,pplay,ztla,zthl, &
254     &           ratqs,zqs,t)
255
256!===========================================================================
257! Auteur : Arnaud Octavio Jam (LMD/CNRS)
258! Date : 25 Mai 2010
259! Objet : calcule les valeurs de qc et rneb dans les thermiques
260!===========================================================================
261
262
263      USE ioipsl_getin_p_mod, ONLY : getin_p
264
265      IMPLICIT NONE
266
267#include "YOMCST.h"
268#include "YOETHF.h"
269#include "FCTTRE.h"
270#include "nuage.h"
271     
272      INTEGER itap,ind1,ind2
273      INTEGER ngrid,klev,klon,l,ig
274     
275      REAL ztv(ngrid,klev)
276      REAL po(ngrid)
277      REAL zqenv(ngrid)   
278      REAL zqta(ngrid,klev)
279         
280      REAL fraca(ngrid,klev+1)
281      REAL zpspsk(ngrid,klev)
282      REAL paprs(ngrid,klev+1)
283      REAL pplay(ngrid,klev)
284      REAL ztla(ngrid,klev)
285      REAL zthl(ngrid,klev)
286
287      REAL zqsatth(ngrid,klev)
288      REAL zqsatenv(ngrid,klev)
289     
290     
291      REAL sigma1(ngrid,klev)                                                         
292      REAL sigma2(ngrid,klev)
293      REAL qlth(ngrid,klev)
294      REAL qlenv(ngrid,klev)
295      REAL qltot(ngrid,klev)
296      REAL cth(ngrid,klev) 
297      REAL cenv(ngrid,klev)   
298      REAL ctot(ngrid,klev)
299      REAL rneb(ngrid,klev)
300      REAL t(ngrid,klev)                                                                 
301      REAL qsatmmussig1,qsatmmussig2,sqrt2pi,pi
302      REAL rdd,cppd,Lv,sqrt2,sqrtpi
303      REAL alth,alenv,ath,aenv
304      REAL sth,senv,sigma1s,sigma2s,xth,xenv
305      REAL xth1,xth2,xenv1,xenv2,deltasth, deltasenv
306      REAL IntJ,IntI1,IntI2,IntI3,coeffqlenv,coeffqlth
307      REAL Tbef,zdelta,qsatbef,zcor
308      REAL qlbef 
309      REAL ratqs(ngrid,klev) ! determine la largeur de distribution de vapeur
310      ! Change the width of the PDF used for vertical subgrid scale heterogeneity
311      ! (J Jouhaud, JL Dufresne, JB Madeleine)
312      REAL,SAVE :: vert_alpha
313      !$OMP THREADPRIVATE(vert_alpha)
314      LOGICAL, SAVE :: firstcall = .TRUE.
315      !$OMP THREADPRIVATE(firstcall)
316     
317      REAL zpdf_sig(ngrid),zpdf_k(ngrid),zpdf_delta(ngrid)
318      REAL zpdf_a(ngrid),zpdf_b(ngrid),zpdf_e1(ngrid),zpdf_e2(ngrid)
319      REAL zqs(ngrid), qcloud(ngrid)
320      REAL erf
321
322!------------------------------------------------------------------------------
323! Initialisation des variables r?elles
324!------------------------------------------------------------------------------
325      sigma1(:,:)=0.
326      sigma2(:,:)=0.
327      qlth(:,:)=0.
328      qlenv(:,:)=0. 
329      qltot(:,:)=0.
330      rneb(:,:)=0.
331      qcloud(:)=0.
332      cth(:,:)=0.
333      cenv(:,:)=0.
334      ctot(:,:)=0.
335      qsatmmussig1=0.
336      qsatmmussig2=0.
337      rdd=287.04
338      cppd=1005.7
339      pi=3.14159
340      Lv=2.5e6
341      sqrt2pi=sqrt(2.*pi)
342      sqrt2=sqrt(2.)
343      sqrtpi=sqrt(pi)
344
345      IF (firstcall) THEN
346        vert_alpha=0.5
347        CALL getin_p('cloudth_vert_alpha',vert_alpha)
348        WRITE(*,*) 'cloudth_vert_alpha = ', vert_alpha
349        firstcall=.FALSE.
350      ENDIF
351
352!-------------------------------------------------------------------------------
353! Calcul de la fraction du thermique et des ?cart-types des distributions
354!-------------------------------------------------------------------------------                 
355      do ind1=1,ngrid
356
357      if ((ztv(ind1,1).gt.ztv(ind1,2)).and.(fraca(ind1,ind2).gt.1.e-10)) then
358
359      zqenv(ind1)=(po(ind1)-fraca(ind1,ind2)*zqta(ind1,ind2))/(1.-fraca(ind1,ind2))
360
361
362!      zqenv(ind1)=po(ind1)
363      Tbef=zthl(ind1,ind2)*zpspsk(ind1,ind2)
364      zdelta=MAX(0.,SIGN(1.,RTT-Tbef))
365      qsatbef= R2ES * FOEEW(Tbef,zdelta)/paprs(ind1,ind2)
366      qsatbef=MIN(0.5,qsatbef)
367      zcor=1./(1.-retv*qsatbef)
368      qsatbef=qsatbef*zcor
369      zqsatenv(ind1,ind2)=qsatbef
370
371
372
373
374      alenv=(0.622*Lv*zqsatenv(ind1,ind2))/(rdd*zthl(ind1,ind2)**2) 
375      aenv=1./(1.+(alenv*Lv/cppd))
376      senv=aenv*(po(ind1)-zqsatenv(ind1,ind2))
377
378
379
380
381      Tbef=ztla(ind1,ind2)*zpspsk(ind1,ind2)
382      zdelta=MAX(0.,SIGN(1.,RTT-Tbef))
383      qsatbef= R2ES * FOEEW(Tbef,zdelta)/paprs(ind1,ind2)
384      qsatbef=MIN(0.5,qsatbef)
385      zcor=1./(1.-retv*qsatbef)
386      qsatbef=qsatbef*zcor
387      zqsatth(ind1,ind2)=qsatbef
388           
389      alth=(0.622*Lv*zqsatth(ind1,ind2))/(rdd*ztla(ind1,ind2)**2)   
390      ath=1./(1.+(alth*Lv/cppd))
391      sth=ath*(zqta(ind1,ind2)-zqsatth(ind1,ind2))
392     
393     
394
395!------------------------------------------------------------------------------
396! Calcul des ?cart-types pour s
397!------------------------------------------------------------------------------
398
399      sigma1s=(0.92**0.5)*(fraca(ind1,ind2)**0.5)/(1-fraca(ind1,ind2))*((sth-senv)**2)**0.5+ratqs(ind1,ind2)*po(ind1)
400      sigma2s=0.09*((sth-senv)**2)**0.5/(fraca(ind1,ind2)+0.02)**0.5+0.002*zqta(ind1,ind2)
401!       if (paprs(ind1,ind2).gt.90000) then
402!       ratqs(ind1,ind2)=0.002
403!       else
404!       ratqs(ind1,ind2)=0.002+0.0*(90000-paprs(ind1,ind2))/20000
405!       endif
406!       sigma1s=(1.1**0.5)*(fraca(ind1,ind2)**0.6)/(1-fraca(ind1,ind2))*((sth-senv)**2)**0.5+0.002*po(ind1)
407!       sigma2s=0.11*((sth-senv)**2)**0.5/(fraca(ind1,ind2)+0.01)**0.4+0.002*zqta(ind1,ind2)
408!       sigma1s=ratqs(ind1,ind2)*po(ind1)
409!      sigma2s=0.11*((sth-senv)**2)**0.5/(fraca(ind1,ind2)+0.02)**0.4+0.00003 
410 
411!------------------------------------------------------------------------------
412! Calcul de l'eau condens?e et de la couverture nuageuse
413!------------------------------------------------------------------------------
414      sqrt2pi=sqrt(2.*pi)
415      xth=sth/(sqrt(2.)*sigma2s)
416      xenv=senv/(sqrt(2.)*sigma1s)
417      cth(ind1,ind2)=0.5*(1.+1.*erf(xth))
418      cenv(ind1,ind2)=0.5*(1.+1.*erf(xenv))
419      ctot(ind1,ind2)=fraca(ind1,ind2)*cth(ind1,ind2)+(1.-1.*fraca(ind1,ind2))*cenv(ind1,ind2)   
420
421      qlth(ind1,ind2)=sigma2s*((exp(-1.*xth**2)/sqrt2pi)+xth*sqrt(2.)*cth(ind1,ind2))
422      qlenv(ind1,ind2)=sigma1s*((exp(-1.*xenv**2)/sqrt2pi)+xenv*sqrt(2.)*cenv(ind1,ind2))   
423      qltot(ind1,ind2)=fraca(ind1,ind2)*qlth(ind1,ind2)+(1.-1.*fraca(ind1,ind2))*qlenv(ind1,ind2)
424     
425       IF (iflag_cloudth_vert == 1) THEN
426!-------------------------------------------------------------------------------
427!  Version 2: Modification selon J.-Louis. On condense ?? partir de qsat-ratqs
428!-------------------------------------------------------------------------------
429!      deltasenv=aenv*ratqs(ind1,ind2)*po(ind1)
430!      deltasth=ath*ratqs(ind1,ind2)*zqta(ind1,ind2)
431      deltasenv=aenv*ratqs(ind1,ind2)*zqsatenv(ind1,ind2)
432      deltasth=ath*ratqs(ind1,ind2)*zqsatth(ind1,ind2)
433!      deltasenv=aenv*0.01*po(ind1)
434!     deltasth=ath*0.01*zqta(ind1,ind2)   
435      xenv1=(senv-deltasenv)/(sqrt(2.)*sigma1s)
436      xenv2=(senv+deltasenv)/(sqrt(2.)*sigma1s)
437      xth1=(sth-deltasth)/(sqrt(2.)*sigma2s)
438      xth2=(sth+deltasth)/(sqrt(2.)*sigma2s)
439      coeffqlenv=(sigma1s)**2/(2*sqrtpi*deltasenv)
440      coeffqlth=(sigma2s)**2/(2*sqrtpi*deltasth)
441     
442      cth(ind1,ind2)=0.5*(1.+1.*erf(xth2))
443      cenv(ind1,ind2)=0.5*(1.+1.*erf(xenv2))
444      ctot(ind1,ind2)=fraca(ind1,ind2)*cth(ind1,ind2)+(1.-1.*fraca(ind1,ind2))*cenv(ind1,ind2)   
445
446      IntJ=sigma1s*(exp(-1.*xenv1**2)/sqrt2pi)+0.5*senv*(1+erf(xenv1))
447      IntI1=coeffqlenv*0.5*(0.5*sqrtpi*(erf(xenv2)-erf(xenv1))+xenv1*exp(-1.*xenv1**2)-xenv2*exp(-1.*xenv2**2))
448      IntI2=coeffqlenv*xenv2*(exp(-1.*xenv2**2)-exp(-1.*xenv1**2))
449      IntI3=coeffqlenv*0.5*sqrtpi*xenv2**2*(erf(xenv2)-erf(xenv1))
450
451      qlenv(ind1,ind2)=IntJ+IntI1+IntI2+IntI3
452!      qlenv(ind1,ind2)=IntJ
453!      print*, qlenv(ind1,ind2),'VERIF EAU'
454
455
456      IntJ=sigma2s*(exp(-1.*xth1**2)/sqrt2pi)+0.5*sth*(1+erf(xth1))
457!      IntI1=coeffqlth*((0.5*xth1-xth2)*exp(-1.*xth1**2)+0.5*xth2*exp(-1.*xth2**2))
458!      IntI2=coeffqlth*0.5*sqrtpi*(0.5+xth2**2)*(erf(xth2)-erf(xth1))
459      IntI1=coeffqlth*0.5*(0.5*sqrtpi*(erf(xth2)-erf(xth1))+xth1*exp(-1.*xth1**2)-xth2*exp(-1.*xth2**2))
460      IntI2=coeffqlth*xth2*(exp(-1.*xth2**2)-exp(-1.*xth1**2))
461      IntI3=coeffqlth*0.5*sqrtpi*xth2**2*(erf(xth2)-erf(xth1))
462      qlth(ind1,ind2)=IntJ+IntI1+IntI2+IntI3
463!      qlth(ind1,ind2)=IntJ
464!      print*, IntJ,IntI1,IntI2,IntI3,qlth(ind1,ind2),'VERIF EAU2'
465      qltot(ind1,ind2)=fraca(ind1,ind2)*qlth(ind1,ind2)+(1.-1.*fraca(ind1,ind2))*qlenv(ind1,ind2)
466
467      ELSE IF (iflag_cloudth_vert == 2) THEN
468
469!-------------------------------------------------------------------------------
470!  Version 3: Modification Jean Jouhaud. On condense a partir de -delta s
471!-------------------------------------------------------------------------------
472!      deltasenv=aenv*ratqs(ind1,ind2)*po(ind1)
473!      deltasth=ath*ratqs(ind1,ind2)*zqta(ind1,ind2)
474!      deltasenv=aenv*ratqs(ind1,ind2)*zqsatenv(ind1,ind2)
475!      deltasth=ath*ratqs(ind1,ind2)*zqsatth(ind1,ind2)
476      deltasenv=aenv*vert_alpha*sigma1s
477      deltasth=ath*vert_alpha*sigma2s
478     
479      xenv1=-(senv+deltasenv)/(sqrt(2.)*sigma1s)
480      xenv2=-(senv-deltasenv)/(sqrt(2.)*sigma1s)
481      xth1=-(sth+deltasth)/(sqrt(2.)*sigma2s)
482      xth2=-(sth-deltasth)/(sqrt(2.)*sigma2s)
483!     coeffqlenv=(sigma1s)**2/(2*sqrtpi*deltasenv)
484!     coeffqlth=(sigma2s)**2/(2*sqrtpi*deltasth)
485     
486      cth(ind1,ind2)=0.5*(1.-1.*erf(xth1))
487      cenv(ind1,ind2)=0.5*(1.-1.*erf(xenv1))
488      ctot(ind1,ind2)=fraca(ind1,ind2)*cth(ind1,ind2)+(1.-1.*fraca(ind1,ind2))*cenv(ind1,ind2)
489
490      IntJ=0.5*senv*(1-erf(xenv2))+(sigma1s/sqrt2pi)*exp(-1.*xenv2**2)
491      IntI1=(((senv+deltasenv)**2+(sigma1s)**2)/(8*deltasenv))*(erf(xenv2)-erf(xenv1))
492      IntI2=(sigma1s**2/(4*deltasenv*sqrtpi))*(xenv1*exp(-1.*xenv1**2)-xenv2*exp(-1.*xenv2**2))
493      IntI3=((sqrt2*sigma1s*(senv+deltasenv))/(4*sqrtpi*deltasenv))*(exp(-1.*xenv1**2)-exp(-1.*xenv2**2))
494
495!      IntI1=0.5*(0.5*sqrtpi*(erf(xenv2)-erf(xenv1))+xenv1*exp(-1.*xenv1**2)-xenv2*exp(-1.*xenv2**2))
496!      IntI2=xenv2*(exp(-1.*xenv2**2)-exp(-1.*xenv1**2))
497!      IntI3=0.5*sqrtpi*xenv2**2*(erf(xenv2)-erf(xenv1))
498
499      qlenv(ind1,ind2)=IntJ+IntI1+IntI2+IntI3
500!      qlenv(ind1,ind2)=IntJ
501!      print*, qlenv(ind1,ind2),'VERIF EAU'
502
503      IntJ=0.5*sth*(1-erf(xth2))+(sigma2s/sqrt2pi)*exp(-1.*xth2**2)
504      IntI1=(((sth+deltasth)**2+(sigma2s)**2)/(8*deltasth))*(erf(xth2)-erf(xth1))
505      IntI2=(sigma2s**2/(4*deltasth*sqrtpi))*(xth1*exp(-1.*xth1**2)-xth2*exp(-1.*xth2**2))
506      IntI3=((sqrt2*sigma2s*(sth+deltasth))/(4*sqrtpi*deltasth))*(exp(-1.*xth1**2)-exp(-1.*xth2**2))
507     
508      qlth(ind1,ind2)=IntJ+IntI1+IntI2+IntI3
509!      qlth(ind1,ind2)=IntJ
510!      print*, IntJ,IntI1,IntI2,IntI3,qlth(ind1,ind2),'VERIF EAU2'
511      qltot(ind1,ind2)=fraca(ind1,ind2)*qlth(ind1,ind2)+(1.-1.*fraca(ind1,ind2))*qlenv(ind1,ind2)
512     
513
514
515
516      ENDIF ! of if (iflag_cloudth_vert==1 or 2)
517
518!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
519
520      if (cenv(ind1,ind2).lt.1.e-10.or.cth(ind1,ind2).lt.1.e-10) then
521      ctot(ind1,ind2)=0.
522      qcloud(ind1)=zqsatenv(ind1,ind2)
523
524      else
525               
526      ctot(ind1,ind2)=ctot(ind1,ind2)
527      qcloud(ind1)=qltot(ind1,ind2)/ctot(ind1,ind2)+zqs(ind1)
528!      qcloud(ind1)=fraca(ind1,ind2)*qlth(ind1,ind2)/cth(ind1,ind2) &
529!    &             +(1.-1.*fraca(ind1,ind2))*qlenv(ind1,ind2)/cenv(ind1,ind2)+zqs(ind1)
530
531      endif 
532                       
533     
534         
535!     print*,sth,sigma2s,qlth(ind1,ind2),ctot(ind1,ind2),qltot(ind1,ind2),'verif'
536
537
538      else  ! gaussienne environnement seule
539     
540      zqenv(ind1)=po(ind1)
541      Tbef=t(ind1,ind2)
542      zdelta=MAX(0.,SIGN(1.,RTT-Tbef))
543      qsatbef= R2ES * FOEEW(Tbef,zdelta)/paprs(ind1,ind2)
544      qsatbef=MIN(0.5,qsatbef)
545      zcor=1./(1.-retv*qsatbef)
546      qsatbef=qsatbef*zcor
547      zqsatenv(ind1,ind2)=qsatbef
548     
549
550!      qlbef=Max(po(ind1)-zqsatenv(ind1,ind2),0.)
551      zthl(ind1,ind2)=t(ind1,ind2)*(101325/paprs(ind1,ind2))**(rdd/cppd)
552      alenv=(0.622*Lv*zqsatenv(ind1,ind2))/(rdd*zthl(ind1,ind2)**2) 
553      aenv=1./(1.+(alenv*Lv/cppd))
554      senv=aenv*(po(ind1)-zqsatenv(ind1,ind2))
555     
556
557      sigma1s=ratqs(ind1,ind2)*zqenv(ind1)
558
559      sqrt2pi=sqrt(2.*pi)
560      xenv=senv/(sqrt(2.)*sigma1s)
561      ctot(ind1,ind2)=0.5*(1.+1.*erf(xenv))
562      qltot(ind1,ind2)=sigma1s*((exp(-1.*xenv**2)/sqrt2pi)+xenv*sqrt(2.)*cenv(ind1,ind2))
563     
564      if (ctot(ind1,ind2).lt.1.e-3) then
565      ctot(ind1,ind2)=0.
566      qcloud(ind1)=zqsatenv(ind1,ind2)
567
568      else   
569               
570      ctot(ind1,ind2)=ctot(ind1,ind2)
571      qcloud(ind1)=qltot(ind1,ind2)/ctot(ind1,ind2)+zqsatenv(ind1,ind2)
572
573      endif   
574 
575 
576 
577 
578 
579 
580      endif   
581      enddo
582     
583      return
584!     end
585END SUBROUTINE cloudth_vert
586
587
588
589
590       SUBROUTINE cloudth_v3(ngrid,klev,ind2,  &
591     &           ztv,po,zqta,fraca, &
592     &           qcloud,ctot,ctot_vol,zpspsk,paprs,pplay,ztla,zthl, &
593     &           ratqs,zqs,t)
594
595
596      IMPLICIT NONE
597
598
599!===========================================================================
600! Author : Arnaud Octavio Jam (LMD/CNRS)
601! Date : 25 Mai 2010
602! Objet : calcule les valeurs de qc et rneb dans les thermiques
603!===========================================================================
604
605
606#include "YOMCST.h"
607#include "YOETHF.h"
608#include "FCTTRE.h"
609#include "nuage.h"
610
611      INTEGER itap,ind1,ind2
612      INTEGER ngrid,klev,klon,l,ig
613     
614      REAL ztv(ngrid,klev)
615      REAL po(ngrid)
616      REAL zqenv(ngrid)   
617      REAL zqta(ngrid,klev)
618         
619      REAL fraca(ngrid,klev+1)
620      REAL zpspsk(ngrid,klev)
621      REAL paprs(ngrid,klev+1)
622      REAL pplay(ngrid,klev)
623      REAL ztla(ngrid,klev)
624      REAL zthl(ngrid,klev)
625
626      REAL zqsatth(ngrid,klev)
627      REAL zqsatenv(ngrid,klev)
628     
629      REAL sigma1(ngrid,klev)                                                         
630      REAL sigma2(ngrid,klev)
631      REAL qlth(ngrid,klev)
632      REAL qlenv(ngrid,klev)
633      REAL qltot(ngrid,klev)
634      REAL cth(ngrid,klev)
635      REAL cenv(ngrid,klev)   
636      REAL ctot(ngrid,klev)
637      REAL cth_vol(ngrid,klev)
638      REAL cenv_vol(ngrid,klev)
639      REAL ctot_vol(ngrid,klev)
640      REAL rneb(ngrid,klev)     
641      REAL t(ngrid,klev)
642      REAL qsatmmussig1,qsatmmussig2,sqrt2pi,sqrt2,sqrtpi,pi
643      REAL rdd,cppd,Lv
644      REAL alth,alenv,ath,aenv
645      REAL sth,senv,sigma1s,sigma2s,xth,xenv, exp_xenv1, exp_xenv2,exp_xth1,exp_xth2
646      REAL inverse_rho,beta,a_Brooks,b_Brooks,A_Maj_Brooks,Dx_Brooks,f_Brooks
647      REAL Tbef,zdelta,qsatbef,zcor
648      REAL qlbef 
649      REAL ratqs(ngrid,klev) ! Determine the width of the vapour distribution
650      REAL zpdf_sig(ngrid),zpdf_k(ngrid),zpdf_delta(ngrid)
651      REAL zpdf_a(ngrid),zpdf_b(ngrid),zpdf_e1(ngrid),zpdf_e2(ngrid)
652      REAL zqs(ngrid), qcloud(ngrid)
653      REAL erf
654
655
656      IF (iflag_cloudth_vert.GE.1) THEN
657      CALL cloudth_vert_v3(ngrid,klev,ind2,  &
658     &           ztv,po,zqta,fraca, &
659     &           qcloud,ctot,ctot_vol,zpspsk,paprs,pplay,ztla,zthl, &
660     &           ratqs,zqs,t)
661      RETURN
662      ENDIF
663!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
664
665
666!-------------------------------------------------------------------------------
667! Initialisation des variables r?elles
668!-------------------------------------------------------------------------------
669      sigma1(:,:)=0.
670      sigma2(:,:)=0.
671      qlth(:,:)=0.
672      qlenv(:,:)=0. 
673      qltot(:,:)=0.
674      rneb(:,:)=0.
675      qcloud(:)=0.
676      cth(:,:)=0.
677      cenv(:,:)=0.
678      ctot(:,:)=0.
679      cth_vol(:,:)=0.
680      cenv_vol(:,:)=0.
681      ctot_vol(:,:)=0.
682      qsatmmussig1=0.
683      qsatmmussig2=0.
684      rdd=287.04
685      cppd=1005.7
686      pi=3.14159
687      Lv=2.5e6
688      sqrt2pi=sqrt(2.*pi)
689      sqrt2=sqrt(2.)
690      sqrtpi=sqrt(pi)
691
692
693!-------------------------------------------------------------------------------
694! Cloud fraction in the thermals and standard deviation of the PDFs
695!-------------------------------------------------------------------------------                 
696      do ind1=1,ngrid
697
698      if ((ztv(ind1,1).gt.ztv(ind1,2)).and.(fraca(ind1,ind2).gt.1.e-10)) then
699
700      zqenv(ind1)=(po(ind1)-fraca(ind1,ind2)*zqta(ind1,ind2))/(1.-fraca(ind1,ind2))
701
702      Tbef=zthl(ind1,ind2)*zpspsk(ind1,ind2)
703      zdelta=MAX(0.,SIGN(1.,RTT-Tbef))
704      qsatbef= R2ES*FOEEW(Tbef,zdelta)/paprs(ind1,ind2)
705      qsatbef=MIN(0.5,qsatbef)
706      zcor=1./(1.-retv*qsatbef)
707      qsatbef=qsatbef*zcor
708      zqsatenv(ind1,ind2)=qsatbef
709
710
711      alenv=(0.622*Lv*zqsatenv(ind1,ind2))/(rdd*zthl(ind1,ind2)**2)     !qsl, p84
712      aenv=1./(1.+(alenv*Lv/cppd))                                      !al, p84
713      senv=aenv*(po(ind1)-zqsatenv(ind1,ind2))                          !s, p84
714
715!po = qt de l'environnement ET des thermique
716!zqenv = qt environnement
717!zqsatenv = qsat environnement
718!zthl = Tl environnement
719
720
721      Tbef=ztla(ind1,ind2)*zpspsk(ind1,ind2)
722      zdelta=MAX(0.,SIGN(1.,RTT-Tbef))
723      qsatbef= R2ES * FOEEW(Tbef,zdelta)/paprs(ind1,ind2)
724      qsatbef=MIN(0.5,qsatbef)
725      zcor=1./(1.-retv*qsatbef)
726      qsatbef=qsatbef*zcor
727      zqsatth(ind1,ind2)=qsatbef
728           
729      alth=(0.622*Lv*zqsatth(ind1,ind2))/(rdd*ztla(ind1,ind2)**2)       !qsl, p84
730      ath=1./(1.+(alth*Lv/cppd))                                        !al, p84
731      sth=ath*(zqta(ind1,ind2)-zqsatth(ind1,ind2))                      !s, p84
732     
733!zqta = qt thermals
734!zqsatth = qsat thermals
735!ztla = Tl thermals
736
737!------------------------------------------------------------------------------
738! s standard deviations
739!------------------------------------------------------------------------------
740
741!     tests
742!     sigma1s=(1.1**0.5)*(fraca(ind1,ind2)**0.6)/(1-fraca(ind1,ind2))*((sth-senv)**2)**0.5+0.002*po(ind1)
743!     sigma1s=(0.92*(fraca(ind1,ind2)**0.5)/(1-fraca(ind1,ind2))*(((sth-senv)**2)**0.5))+ratqs(ind1,ind2)*po(ind1)
744!     sigma2s=(0.09*(((sth-senv)**2)**0.5)/((fraca(ind1,ind2)+0.02)**0.5))+0.002*zqta(ind1,ind2)
745!     final option
746      sigma1s=(1.1**0.5)*(fraca(ind1,ind2)**0.6)/(1-fraca(ind1,ind2))*((sth-senv)**2)**0.5+ratqs(ind1,ind2)*po(ind1)
747      sigma2s=0.11*((sth-senv)**2)**0.5/(fraca(ind1,ind2)+0.01)**0.4+0.002*zqta(ind1,ind2)
748 
749!------------------------------------------------------------------------------
750! Condensed water and cloud cover
751!------------------------------------------------------------------------------
752      xth=sth/(sqrt2*sigma2s)
753      xenv=senv/(sqrt2*sigma1s)
754      cth(ind1,ind2)=0.5*(1.+1.*erf(xth))       !4.18 p 111, l.7 p115 & 4.20 p 119 thesis Arnaud Jam
755      cenv(ind1,ind2)=0.5*(1.+1.*erf(xenv))     !4.18 p 111, l.7 p115 & 4.20 p 119 thesis Arnaud Jam
756      ctot(ind1,ind2)=fraca(ind1,ind2)*cth(ind1,ind2)+(1.-1.*fraca(ind1,ind2))*cenv(ind1,ind2)
757      ctot_vol(ind1,ind2)=ctot(ind1,ind2)
758
759      qlth(ind1,ind2)=sigma2s*((exp(-1.*xth**2)/sqrt2pi)+xth*sqrt2*cth(ind1,ind2))
760      qlenv(ind1,ind2)=sigma1s*((exp(-1.*xenv**2)/sqrt2pi)+xenv*sqrt2*cenv(ind1,ind2))
761      qltot(ind1,ind2)=fraca(ind1,ind2)*qlth(ind1,ind2)+(1.-1.*fraca(ind1,ind2))*qlenv(ind1,ind2)
762
763      if (ctot(ind1,ind2).lt.1.e-10) then
764      ctot(ind1,ind2)=0.
765      qcloud(ind1)=zqsatenv(ind1,ind2)
766      else
767      qcloud(ind1)=qltot(ind1,ind2)/ctot(ind1,ind2)+zqs(ind1)
768      endif
769
770      else  ! Environnement only, follow the if l.110
771     
772      zqenv(ind1)=po(ind1)
773      Tbef=t(ind1,ind2)
774      zdelta=MAX(0.,SIGN(1.,RTT-Tbef))
775      qsatbef= R2ES * FOEEW(Tbef,zdelta)/paprs(ind1,ind2)
776      qsatbef=MIN(0.5,qsatbef)
777      zcor=1./(1.-retv*qsatbef)
778      qsatbef=qsatbef*zcor
779      zqsatenv(ind1,ind2)=qsatbef
780
781!     qlbef=Max(po(ind1)-zqsatenv(ind1,ind2),0.)
782      zthl(ind1,ind2)=t(ind1,ind2)*(101325/paprs(ind1,ind2))**(rdd/cppd)
783      alenv=(0.622*Lv*zqsatenv(ind1,ind2))/(rdd*zthl(ind1,ind2)**2) 
784      aenv=1./(1.+(alenv*Lv/cppd))
785      senv=aenv*(po(ind1)-zqsatenv(ind1,ind2))
786     
787      sigma1s=ratqs(ind1,ind2)*zqenv(ind1)
788
789      xenv=senv/(sqrt2*sigma1s)
790      ctot(ind1,ind2)=0.5*(1.+1.*erf(xenv))
791      ctot_vol(ind1,ind2)=ctot(ind1,ind2)
792      qltot(ind1,ind2)=sigma1s*((exp(-1.*xenv**2)/sqrt2pi)+xenv*sqrt2*cenv(ind1,ind2))
793
794      if (ctot(ind1,ind2).lt.1.e-3) then
795      ctot(ind1,ind2)=0.
796      qcloud(ind1)=zqsatenv(ind1,ind2)
797      else   
798      qcloud(ind1)=qltot(ind1,ind2)/ctot(ind1,ind2)+zqsatenv(ind1,ind2)
799      endif
800
801
802      endif       ! From the separation (thermal/envrionnement) et (environnement) only, l.110 et l.183
803      enddo       ! from the loop on ngrid l.108
804      return
805!     end
806END SUBROUTINE cloudth_v3
807
808
809
810!===========================================================================
811     SUBROUTINE cloudth_vert_v3(ngrid,klev,ind2,  &
812     &           ztv,po,zqta,fraca, &
813     &           qcloud,ctot,ctot_vol,zpspsk,paprs,pplay,ztla,zthl, &
814     &           ratqs,zqs,t)
815
816!===========================================================================
817! Auteur : Arnaud Octavio Jam (LMD/CNRS)
818! Date : 25 Mai 2010
819! Objet : calcule les valeurs de qc et rneb dans les thermiques
820!===========================================================================
821
822
823      USE ioipsl_getin_p_mod, ONLY : getin_p
824      USE phys_output_var_mod, ONLY : cloudth_sth,cloudth_senv, &
825     &                                cloudth_sigmath,cloudth_sigmaenv
826
827      IMPLICIT NONE
828
829#include "YOMCST.h"
830#include "YOETHF.h"
831#include "FCTTRE.h"
832#include "nuage.h"
833     
834      INTEGER itap,ind1,ind2
835      INTEGER ngrid,klev,klon,l,ig
836     
837      REAL ztv(ngrid,klev)
838      REAL po(ngrid)
839      REAL zqenv(ngrid)   
840      REAL zqta(ngrid,klev)
841         
842      REAL fraca(ngrid,klev+1)
843      REAL zpspsk(ngrid,klev)
844      REAL paprs(ngrid,klev+1)
845      REAL pplay(ngrid,klev)
846      REAL ztla(ngrid,klev)
847      REAL zthl(ngrid,klev)
848
849      REAL zqsatth(ngrid,klev)
850      REAL zqsatenv(ngrid,klev)
851     
852      REAL sigma1(ngrid,klev)                                                         
853      REAL sigma2(ngrid,klev)
854      REAL qlth(ngrid,klev)
855      REAL qlenv(ngrid,klev)
856      REAL qltot(ngrid,klev)
857      REAL cth(ngrid,klev)
858      REAL cenv(ngrid,klev)   
859      REAL ctot(ngrid,klev)
860      REAL cth_vol(ngrid,klev)
861      REAL cenv_vol(ngrid,klev)
862      REAL ctot_vol(ngrid,klev)
863      REAL rneb(ngrid,klev)
864      REAL t(ngrid,klev)                                                                 
865      REAL qsatmmussig1,qsatmmussig2,sqrtpi,sqrt2,sqrt2pi,pi
866      REAL rdd,cppd,Lv
867      REAL alth,alenv,ath,aenv
868      REAL sth,senv,sigma1s,sigma2s,sigma1s_fraca,sigma1s_ratqs
869      REAL inverse_rho,beta,a_Brooks,b_Brooks,A_Maj_Brooks,Dx_Brooks,f_Brooks
870      REAL xth,xenv,exp_xenv1,exp_xenv2,exp_xth1,exp_xth2
871      REAL xth1,xth2,xenv1,xenv2,deltasth, deltasenv
872      REAL IntJ,IntI1,IntI2,IntI3,IntJ_CF,IntI1_CF,IntI3_CF,coeffqlenv,coeffqlth
873      REAL Tbef,zdelta,qsatbef,zcor
874      REAL qlbef 
875      REAL ratqs(ngrid,klev) ! determine la largeur de distribution de vapeur
876      ! Change the width of the PDF used for vertical subgrid scale heterogeneity
877      ! (J Jouhaud, JL Dufresne, JB Madeleine)
878      REAL,SAVE :: vert_alpha, vert_alpha_th
879      !$OMP THREADPRIVATE(vert_alpha, vert_alpha_th)
880      REAL,SAVE :: sigma1s_factor=1.1
881      REAL,SAVE :: sigma1s_power=0.6
882      REAL,SAVE :: sigma2s_factor=0.09
883      REAL,SAVE :: sigma2s_power=0.5
884      REAL,SAVE :: cloudth_ratqsmin=-1.
885      !$OMP THREADPRIVATE(sigma1s_factor,sigma1s_power,sigma2s_factor,sigma2s_power,cloudth_ratqsmin)
886      INTEGER, SAVE :: iflag_cloudth_vert_noratqs=0
887      !$OMP THREADPRIVATE(iflag_cloudth_vert_noratqs)
888
889      LOGICAL, SAVE :: firstcall = .TRUE.
890      !$OMP THREADPRIVATE(firstcall)
891
892      REAL zpdf_sig(ngrid),zpdf_k(ngrid),zpdf_delta(ngrid)
893      REAL zpdf_a(ngrid),zpdf_b(ngrid),zpdf_e1(ngrid),zpdf_e2(ngrid)
894      REAL zqs(ngrid), qcloud(ngrid)
895      REAL erf
896
897      REAL rhodz(ngrid,klev)
898      REAL zrho(ngrid,klev)
899      REAL dz(ngrid,klev)
900
901      DO ind1 = 1, ngrid
902        !Layer calculation
903        rhodz(ind1,ind2) = (paprs(ind1,ind2)-paprs(ind1,ind2+1))/rg !kg/m2
904        zrho(ind1,ind2) = pplay(ind1,ind2)/t(ind1,ind2)/rd !kg/m3
905        dz(ind1,ind2) = rhodz(ind1,ind2)/zrho(ind1,ind2) !m : epaisseur de la couche en metre
906      END DO
907
908!------------------------------------------------------------------------------
909! Initialize
910!------------------------------------------------------------------------------
911
912      sigma1(:,:)=0.
913      sigma2(:,:)=0.
914      qlth(:,:)=0.
915      qlenv(:,:)=0. 
916      qltot(:,:)=0.
917      rneb(:,:)=0.
918      qcloud(:)=0.
919      cth(:,:)=0.
920      cenv(:,:)=0.
921      ctot(:,:)=0.
922      cth_vol(:,:)=0.
923      cenv_vol(:,:)=0.
924      ctot_vol(:,:)=0.
925      qsatmmussig1=0.
926      qsatmmussig2=0.
927      rdd=287.04
928      cppd=1005.7
929      pi=3.14159
930      Lv=2.5e6
931      sqrt2pi=sqrt(2.*pi)
932      sqrt2=sqrt(2.)
933      sqrtpi=sqrt(pi)
934
935      IF (firstcall) THEN
936        vert_alpha=0.5
937        CALL getin_p('cloudth_vert_alpha',vert_alpha)
938        WRITE(*,*) 'cloudth_vert_alpha = ', vert_alpha
939        ! The factor used for the thermal is equal to that of the environment
940        !   if nothing is explicitly specified in the def file
941        vert_alpha_th=vert_alpha
942        CALL getin_p('cloudth_vert_alpha_th',vert_alpha_th)
943        WRITE(*,*) 'cloudth_vert_alpha_th = ', vert_alpha_th
944        ! Factor used in the calculation of sigma1s
945        CALL getin_p('cloudth_sigma1s_factor',sigma1s_factor)
946        WRITE(*,*) 'cloudth_sigma1s_factor = ', sigma1s_factor
947        ! Power used in the calculation of sigma1s
948        CALL getin_p('cloudth_sigma1s_power',sigma1s_power)
949        WRITE(*,*) 'cloudth_sigma1s_power = ', sigma1s_power
950        ! Factor used in the calculation of sigma2s
951        CALL getin_p('cloudth_sigma2s_factor',sigma2s_factor)
952        WRITE(*,*) 'cloudth_sigma2s_factor = ', sigma2s_factor
953        ! Power used in the calculation of sigma2s
954        CALL getin_p('cloudth_sigma2s_power',sigma2s_power)
955        WRITE(*,*) 'cloudth_sigma2s_power = ', sigma2s_power
956        ! Minimum value for the environmental air subgrid water distrib
957        CALL getin_p('cloudth_ratqsmin',cloudth_ratqsmin)
958        WRITE(*,*) 'cloudth_ratqsmin = ', cloudth_ratqsmin
959        ! Remove the dependency to ratqs from the variance of the vertical PDF
960        CALL getin_p('iflag_cloudth_vert_noratqs',iflag_cloudth_vert_noratqs)
961        WRITE(*,*) 'iflag_cloudth_vert_noratqs = ', iflag_cloudth_vert_noratqs
962
963        firstcall=.FALSE.
964      ENDIF
965
966!-------------------------------------------------------------------------------
967! Calcul de la fraction du thermique et des ecart-types des distributions
968!-------------------------------------------------------------------------------                 
969      do ind1=1,ngrid
970
971      if ((ztv(ind1,1).gt.ztv(ind1,2)).and.(fraca(ind1,ind2).gt.1.e-10)) then !Thermal and environnement
972
973      zqenv(ind1)=(po(ind1)-fraca(ind1,ind2)*zqta(ind1,ind2))/(1.-fraca(ind1,ind2)) !qt = a*qtth + (1-a)*qtenv
974
975
976      Tbef=zthl(ind1,ind2)*zpspsk(ind1,ind2)
977      zdelta=MAX(0.,SIGN(1.,RTT-Tbef))
978      qsatbef= R2ES*FOEEW(Tbef,zdelta)/paprs(ind1,ind2)
979      qsatbef=MIN(0.5,qsatbef)
980      zcor=1./(1.-retv*qsatbef)
981      qsatbef=qsatbef*zcor
982      zqsatenv(ind1,ind2)=qsatbef
983
984
985      alenv=(0.622*Lv*zqsatenv(ind1,ind2))/(rdd*zthl(ind1,ind2)**2)     !qsl, p84
986      aenv=1./(1.+(alenv*Lv/cppd))                                      !al, p84
987      senv=aenv*(po(ind1)-zqsatenv(ind1,ind2))                          !s, p84
988
989!zqenv = qt environnement
990!zqsatenv = qsat environnement
991!zthl = Tl environnement
992
993
994      Tbef=ztla(ind1,ind2)*zpspsk(ind1,ind2)
995      zdelta=MAX(0.,SIGN(1.,RTT-Tbef))
996      qsatbef= R2ES * FOEEW(Tbef,zdelta)/paprs(ind1,ind2)
997      qsatbef=MIN(0.5,qsatbef)
998      zcor=1./(1.-retv*qsatbef)
999      qsatbef=qsatbef*zcor
1000      zqsatth(ind1,ind2)=qsatbef
1001           
1002      alth=(0.622*Lv*zqsatth(ind1,ind2))/(rdd*ztla(ind1,ind2)**2)       !qsl, p84
1003      ath=1./(1.+(alth*Lv/cppd))                                        !al, p84
1004      sth=ath*(zqta(ind1,ind2)-zqsatth(ind1,ind2))                      !s, p84
1005     
1006     
1007!zqta = qt thermals
1008!zqsatth = qsat thermals
1009!ztla = Tl thermals
1010!------------------------------------------------------------------------------
1011! s standard deviation
1012!------------------------------------------------------------------------------
1013
1014      sigma1s_fraca = (sigma1s_factor**0.5)*(fraca(ind1,ind2)**sigma1s_power) / &
1015     &                (1-fraca(ind1,ind2))*((sth-senv)**2)**0.5
1016!     sigma1s_fraca = (1.1**0.5)*(fraca(ind1,ind2)**0.6)/(1-fraca(ind1,ind2))*((sth-senv)**2)**0.5
1017      IF (cloudth_ratqsmin>0.) THEN
1018         sigma1s_ratqs = cloudth_ratqsmin*po(ind1)
1019      ELSE
1020         sigma1s_ratqs = ratqs(ind1,ind2)*po(ind1)
1021      ENDIF
1022      sigma1s = sigma1s_fraca + sigma1s_ratqs
1023      sigma2s=(sigma2s_factor*(((sth-senv)**2)**0.5)/((fraca(ind1,ind2)+0.02)**sigma2s_power))+0.002*zqta(ind1,ind2)
1024!      tests
1025!      sigma1s=(0.92**0.5)*(fraca(ind1,ind2)**0.5)/(1-fraca(ind1,ind2))*((sth-senv)**2)**0.5+ratqs(ind1,ind2)*po(ind1)
1026!      sigma1s=(0.92*(fraca(ind1,ind2)**0.5)/(1-fraca(ind1,ind2))*(((sth-senv)**2)**0.5))+0.002*zqenv(ind1)
1027!      sigma2s=0.09*((sth-senv)**2)**0.5/(fraca(ind1,ind2)+0.02)**0.5+0.002*zqta(ind1,ind2)
1028!      sigma2s=(0.09*(((sth-senv)**2)**0.5)/((fraca(ind1,ind2)+0.02)**0.5))+ratqs(ind1,ind2)*zqta(ind1,ind2)
1029!       if (paprs(ind1,ind2).gt.90000) then
1030!       ratqs(ind1,ind2)=0.002
1031!       else
1032!       ratqs(ind1,ind2)=0.002+0.0*(90000-paprs(ind1,ind2))/20000
1033!       endif
1034!       sigma1s=(1.1**0.5)*(fraca(ind1,ind2)**0.6)/(1-fraca(ind1,ind2))*((sth-senv)**2)**0.5+0.002*po(ind1)
1035!       sigma2s=0.11*((sth-senv)**2)**0.5/(fraca(ind1,ind2)+0.01)**0.4+0.002*zqta(ind1,ind2)
1036!       sigma1s=ratqs(ind1,ind2)*po(ind1)
1037!      sigma2s=0.11*((sth-senv)**2)**0.5/(fraca(ind1,ind2)+0.02)**0.4+0.00003 
1038 
1039       IF (iflag_cloudth_vert == 1) THEN
1040!-------------------------------------------------------------------------------
1041!  Version 2: Modification from Arnaud Jam according to JL Dufrense. Condensate from qsat-ratqs
1042!-------------------------------------------------------------------------------
1043
1044      deltasenv=aenv*ratqs(ind1,ind2)*zqsatenv(ind1,ind2)
1045      deltasth=ath*ratqs(ind1,ind2)*zqsatth(ind1,ind2)
1046
1047      xenv1=(senv-deltasenv)/(sqrt(2.)*sigma1s)
1048      xenv2=(senv+deltasenv)/(sqrt(2.)*sigma1s)
1049      xth1=(sth-deltasth)/(sqrt(2.)*sigma2s)
1050      xth2=(sth+deltasth)/(sqrt(2.)*sigma2s)
1051      coeffqlenv=(sigma1s)**2/(2*sqrtpi*deltasenv)
1052      coeffqlth=(sigma2s)**2/(2*sqrtpi*deltasth)
1053     
1054      cth(ind1,ind2)=0.5*(1.+1.*erf(xth2))
1055      cenv(ind1,ind2)=0.5*(1.+1.*erf(xenv2))
1056      ctot(ind1,ind2)=fraca(ind1,ind2)*cth(ind1,ind2)+(1.-1.*fraca(ind1,ind2))*cenv(ind1,ind2)   
1057
1058      ! Environment
1059      IntJ=sigma1s*(exp(-1.*xenv1**2)/sqrt2pi)+0.5*senv*(1+erf(xenv1))
1060      IntI1=coeffqlenv*0.5*(0.5*sqrtpi*(erf(xenv2)-erf(xenv1))+xenv1*exp(-1.*xenv1**2)-xenv2*exp(-1.*xenv2**2))
1061      IntI2=coeffqlenv*xenv2*(exp(-1.*xenv2**2)-exp(-1.*xenv1**2))
1062      IntI3=coeffqlenv*0.5*sqrtpi*xenv2**2*(erf(xenv2)-erf(xenv1))
1063
1064      qlenv(ind1,ind2)=IntJ+IntI1+IntI2+IntI3
1065
1066      ! Thermal
1067      IntJ=sigma2s*(exp(-1.*xth1**2)/sqrt2pi)+0.5*sth*(1+erf(xth1))
1068      IntI1=coeffqlth*0.5*(0.5*sqrtpi*(erf(xth2)-erf(xth1))+xth1*exp(-1.*xth1**2)-xth2*exp(-1.*xth2**2))
1069      IntI2=coeffqlth*xth2*(exp(-1.*xth2**2)-exp(-1.*xth1**2))
1070      IntI3=coeffqlth*0.5*sqrtpi*xth2**2*(erf(xth2)-erf(xth1))
1071      qlth(ind1,ind2)=IntJ+IntI1+IntI2+IntI3
1072      qltot(ind1,ind2)=fraca(ind1,ind2)*qlth(ind1,ind2)+(1.-1.*fraca(ind1,ind2))*qlenv(ind1,ind2)
1073
1074      ELSE IF (iflag_cloudth_vert >= 3) THEN
1075      IF (iflag_cloudth_vert < 5) THEN
1076!-------------------------------------------------------------------------------
1077!  Version 3: Changes by J. Jouhaud; condensation for q > -delta s
1078!-------------------------------------------------------------------------------
1079!      deltasenv=aenv*ratqs(ind1,ind2)*po(ind1)
1080!      deltasth=ath*ratqs(ind1,ind2)*zqta(ind1,ind2)
1081!      deltasenv=aenv*ratqs(ind1,ind2)*zqsatenv(ind1,ind2)
1082!      deltasth=ath*ratqs(ind1,ind2)*zqsatth(ind1,ind2)
1083      IF (iflag_cloudth_vert == 3) THEN
1084        deltasenv=aenv*vert_alpha*sigma1s
1085        deltasth=ath*vert_alpha_th*sigma2s
1086      ELSE IF (iflag_cloudth_vert == 4) THEN
1087        IF (iflag_cloudth_vert_noratqs == 1) THEN
1088          deltasenv=vert_alpha*max(sigma1s_fraca,1e-10)
1089          deltasth=vert_alpha_th*sigma2s
1090        ELSE
1091          deltasenv=vert_alpha*sigma1s
1092          deltasth=vert_alpha_th*sigma2s
1093        ENDIF
1094      ENDIF
1095     
1096      xenv1=-(senv+deltasenv)/(sqrt(2.)*sigma1s)
1097      xenv2=-(senv-deltasenv)/(sqrt(2.)*sigma1s)
1098      exp_xenv1 = exp(-1.*xenv1**2)
1099      exp_xenv2 = exp(-1.*xenv2**2)
1100      xth1=-(sth+deltasth)/(sqrt(2.)*sigma2s)
1101      xth2=-(sth-deltasth)/(sqrt(2.)*sigma2s)
1102      exp_xth1 = exp(-1.*xth1**2)
1103      exp_xth2 = exp(-1.*xth2**2)
1104     
1105      !CF_surfacique
1106      cth(ind1,ind2)=0.5*(1.-1.*erf(xth1))
1107      cenv(ind1,ind2)=0.5*(1.-1.*erf(xenv1))
1108      ctot(ind1,ind2)=fraca(ind1,ind2)*cth(ind1,ind2)+(1.-1.*fraca(ind1,ind2))*cenv(ind1,ind2)
1109
1110
1111      !CF_volumique & eau condense
1112      !environnement
1113      IntJ=0.5*senv*(1-erf(xenv2))+(sigma1s/sqrt2pi)*exp_xenv2
1114      IntJ_CF=0.5*(1.-1.*erf(xenv2))
1115      if (deltasenv .lt. 1.e-10) then
1116      qlenv(ind1,ind2)=IntJ
1117      cenv_vol(ind1,ind2)=IntJ_CF
1118      else
1119      IntI1=(((senv+deltasenv)**2+(sigma1s)**2)/(8*deltasenv))*(erf(xenv2)-erf(xenv1))
1120      IntI2=(sigma1s**2/(4*deltasenv*sqrtpi))*(xenv1*exp_xenv1-xenv2*exp_xenv2)
1121      IntI3=((sqrt2*sigma1s*(senv+deltasenv))/(4*sqrtpi*deltasenv))*(exp_xenv1-exp_xenv2)
1122      IntI1_CF=((senv+deltasenv)*(erf(xenv2)-erf(xenv1)))/(4*deltasenv)
1123      IntI3_CF=(sqrt2*sigma1s*(exp_xenv1-exp_xenv2))/(4*sqrtpi*deltasenv)
1124      qlenv(ind1,ind2)=IntJ+IntI1+IntI2+IntI3
1125      cenv_vol(ind1,ind2)=IntJ_CF+IntI1_CF+IntI3_CF
1126      endif
1127
1128      !thermique
1129      IntJ=0.5*sth*(1-erf(xth2))+(sigma2s/sqrt2pi)*exp_xth2
1130      IntJ_CF=0.5*(1.-1.*erf(xth2))
1131      if (deltasth .lt. 1.e-10) then
1132      qlth(ind1,ind2)=IntJ
1133      cth_vol(ind1,ind2)=IntJ_CF
1134      else
1135      IntI1=(((sth+deltasth)**2+(sigma2s)**2)/(8*deltasth))*(erf(xth2)-erf(xth1))
1136      IntI2=(sigma2s**2/(4*deltasth*sqrtpi))*(xth1*exp_xth1-xth2*exp_xth2)
1137      IntI3=((sqrt2*sigma2s*(sth+deltasth))/(4*sqrtpi*deltasth))*(exp_xth1-exp_xth2)
1138      IntI1_CF=((sth+deltasth)*(erf(xth2)-erf(xth1)))/(4*deltasth)
1139      IntI3_CF=(sqrt2*sigma2s*(exp_xth1-exp_xth2))/(4*sqrtpi*deltasth)
1140      qlth(ind1,ind2)=IntJ+IntI1+IntI2+IntI3
1141      cth_vol(ind1,ind2)=IntJ_CF+IntI1_CF+IntI3_CF
1142      endif
1143
1144      qltot(ind1,ind2)=fraca(ind1,ind2)*qlth(ind1,ind2)+(1.-1.*fraca(ind1,ind2))*qlenv(ind1,ind2)
1145      ctot_vol(ind1,ind2)=fraca(ind1,ind2)*cth_vol(ind1,ind2)+(1.-1.*fraca(ind1,ind2))*cenv_vol(ind1,ind2)
1146
1147      ELSE IF (iflag_cloudth_vert == 5) THEN
1148         sigma1s=(0.71794+0.000498239*dz(ind1,ind2))*(fraca(ind1,ind2)**0.5) &
1149              /(1-fraca(ind1,ind2))*(((sth-senv)**2)**0.5) &
1150              +ratqs(ind1,ind2)*po(ind1) !Environment
1151      sigma2s=(0.03218+0.000092655*dz(ind1,ind2))/((fraca(ind1,ind2)+0.02)**0.5)*(((sth-senv)**2)**0.5)+0.002*zqta(ind1,ind2)                   !Thermals
1152      !sigma1s=(1.1**0.5)*(fraca(ind1,ind2)**0.6)/(1-fraca(ind1,ind2))*((sth-senv)**2)**0.5+0.002*po(ind1)
1153      !sigma2s=0.11*((sth-senv)**2)**0.5/(fraca(ind1,ind2)+0.01)**0.4+0.002*zqta(ind1,ind2)
1154      xth=sth/(sqrt(2.)*sigma2s)
1155      xenv=senv/(sqrt(2.)*sigma1s)
1156
1157      !Volumique
1158      cth_vol(ind1,ind2)=0.5*(1.+1.*erf(xth))
1159      cenv_vol(ind1,ind2)=0.5*(1.+1.*erf(xenv))
1160      ctot_vol(ind1,ind2)=fraca(ind1,ind2)*cth_vol(ind1,ind2)+(1.-1.*fraca(ind1,ind2))*cenv_vol(ind1,ind2)
1161      !print *,'jeanjean_CV=',ctot_vol(ind1,ind2)
1162
1163      qlth(ind1,ind2)=sigma2s*((exp(-1.*xth**2)/sqrt2pi)+xth*sqrt(2.)*cth_vol(ind1,ind2))
1164      qlenv(ind1,ind2)=sigma1s*((exp(-1.*xenv**2)/sqrt2pi)+xenv*sqrt(2.)*cenv_vol(ind1,ind2)) 
1165      qltot(ind1,ind2)=fraca(ind1,ind2)*qlth(ind1,ind2)+(1.-1.*fraca(ind1,ind2))*qlenv(ind1,ind2)
1166
1167      !Surfacique
1168      !Neggers
1169      !beta=0.0044
1170      !inverse_rho=1.+beta*dz(ind1,ind2)
1171      !print *,'jeanjean : beta=',beta
1172      !cth(ind1,ind2)=cth_vol(ind1,ind2)*inverse_rho
1173      !cenv(ind1,ind2)=cenv_vol(ind1,ind2)*inverse_rho
1174      !ctot(ind1,ind2)=fraca(ind1,ind2)*cth(ind1,ind2)+(1.-1.*fraca(ind1,ind2))*cenv(ind1,ind2)
1175
1176      !Brooks
1177      a_Brooks=0.6694
1178      b_Brooks=0.1882
1179      A_Maj_Brooks=0.1635 !-- sans shear
1180      !A_Maj_Brooks=0.17   !-- ARM LES
1181      !A_Maj_Brooks=0.18   !-- RICO LES
1182      !A_Maj_Brooks=0.19   !-- BOMEX LES
1183      Dx_Brooks=200000.
1184      f_Brooks=A_Maj_Brooks*(dz(ind1,ind2)**(a_Brooks))*(Dx_Brooks**(-b_Brooks))
1185      !print *,'jeanjean_f=',f_Brooks
1186
1187      cth(ind1,ind2)=1./(1.+exp(-1.*f_Brooks)*((1./max(1.e-15,min(cth_vol(ind1,ind2),1.)))- 1.))
1188      cenv(ind1,ind2)=1./(1.+exp(-1.*f_Brooks)*((1./max(1.e-15,min(cenv_vol(ind1,ind2),1.)))- 1.))
1189      ctot(ind1,ind2)=1./(1.+exp(-1.*f_Brooks)*((1./max(1.e-15,min(ctot_vol(ind1,ind2),1.)))- 1.))
1190      !print *,'JJ_ctot_1',ctot(ind1,ind2)
1191
1192
1193
1194
1195
1196      ENDIF ! of if (iflag_cloudth_vert<5)
1197      ENDIF ! of if (iflag_cloudth_vert==1 or 3 or 4)
1198
1199!      if (ctot(ind1,ind2).lt.1.e-10) then
1200      if (cenv(ind1,ind2).lt.1.e-10.or.cth(ind1,ind2).lt.1.e-10) then
1201      ctot(ind1,ind2)=0.
1202      ctot_vol(ind1,ind2)=0.
1203      qcloud(ind1)=zqsatenv(ind1,ind2)
1204
1205      else
1206               
1207      qcloud(ind1)=qltot(ind1,ind2)/ctot(ind1,ind2)+zqs(ind1)
1208!      qcloud(ind1)=fraca(ind1,ind2)*qlth(ind1,ind2)/cth(ind1,ind2) &
1209!    &             +(1.-1.*fraca(ind1,ind2))*qlenv(ind1,ind2)/cenv(ind1,ind2)+zqs(ind1)
1210
1211      endif 
1212
1213      else  ! gaussienne environnement seule
1214     
1215
1216      zqenv(ind1)=po(ind1)
1217      Tbef=t(ind1,ind2)
1218      zdelta=MAX(0.,SIGN(1.,RTT-Tbef))
1219      qsatbef= R2ES * FOEEW(Tbef,zdelta)/paprs(ind1,ind2)
1220      qsatbef=MIN(0.5,qsatbef)
1221      zcor=1./(1.-retv*qsatbef)
1222      qsatbef=qsatbef*zcor
1223      zqsatenv(ind1,ind2)=qsatbef
1224     
1225
1226!      qlbef=Max(po(ind1)-zqsatenv(ind1,ind2),0.)
1227      zthl(ind1,ind2)=t(ind1,ind2)*(101325/paprs(ind1,ind2))**(rdd/cppd)
1228      alenv=(0.622*Lv*zqsatenv(ind1,ind2))/(rdd*zthl(ind1,ind2)**2)
1229      aenv=1./(1.+(alenv*Lv/cppd))
1230      senv=aenv*(po(ind1)-zqsatenv(ind1,ind2))
1231      sth=0.
1232     
1233
1234      sigma1s=ratqs(ind1,ind2)*zqenv(ind1)
1235      sigma2s=0.
1236
1237      sqrt2pi=sqrt(2.*pi)
1238      xenv=senv/(sqrt(2.)*sigma1s)
1239      ctot(ind1,ind2)=0.5*(1.+1.*erf(xenv))
1240      ctot_vol(ind1,ind2)=ctot(ind1,ind2)
1241      qltot(ind1,ind2)=sigma1s*((exp(-1.*xenv**2)/sqrt2pi)+xenv*sqrt(2.)*cenv(ind1,ind2))
1242     
1243      if (ctot(ind1,ind2).lt.1.e-3) then
1244      ctot(ind1,ind2)=0.
1245      qcloud(ind1)=zqsatenv(ind1,ind2)
1246
1247      else   
1248               
1249!      ctot(ind1,ind2)=ctot(ind1,ind2)
1250      qcloud(ind1)=qltot(ind1,ind2)/ctot(ind1,ind2)+zqsatenv(ind1,ind2)
1251
1252      endif 
1253 
1254
1255
1256
1257      endif       ! From the separation (thermal/envrionnement) et (environnement) only, l.335 et l.492
1258      ! Outputs used to check the PDFs
1259      cloudth_senv(ind1,ind2) = senv
1260      cloudth_sth(ind1,ind2) = sth
1261      cloudth_sigmaenv(ind1,ind2) = sigma1s
1262      cloudth_sigmath(ind1,ind2) = sigma2s
1263
1264      enddo       ! from the loop on ngrid l.333
1265      return
1266!     end
1267END SUBROUTINE cloudth_vert_v3
1268!
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280       SUBROUTINE cloudth_v6(ngrid,klev,ind2,  &
1281     &           ztv,po,zqta,fraca, &
1282     &           qcloud,ctot_surf,ctot_vol,zpspsk,paprs,pplay,ztla,zthl, &
1283     &           ratqs,zqs,T)
1284
1285
1286      USE ioipsl_getin_p_mod, ONLY : getin_p
1287      USE phys_output_var_mod, ONLY : cloudth_sth,cloudth_senv, &
1288     &                                cloudth_sigmath,cloudth_sigmaenv
1289
1290      IMPLICIT NONE
1291
1292#include "YOMCST.h"
1293#include "YOETHF.h"
1294#include "FCTTRE.h"
1295#include "nuage.h"
1296
1297
1298        !Domain variables
1299      INTEGER ngrid !indice Max lat-lon
1300      INTEGER klev  !indice Max alt
1301      INTEGER ind1  !indice in [1:ngrid]
1302      INTEGER ind2  !indice in [1:klev]
1303        !thermal plume fraction
1304      REAL fraca(ngrid,klev+1)   !thermal plumes fraction in the gridbox
1305        !temperatures
1306      REAL T(ngrid,klev)       !temperature
1307      REAL zpspsk(ngrid,klev)  !factor (p/p0)**kappa (used for potential variables)
1308      REAL ztv(ngrid,klev)     !potential temperature (voir thermcell_env.F90)
1309      REAL ztla(ngrid,klev)    !liquid temperature in the thermals (Tl_th)
1310      REAL zthl(ngrid,klev)    !liquid temperature in the environment (Tl_env)
1311        !pressure
1312      REAL paprs(ngrid,klev+1)   !pressure at the interface of levels
1313      REAL pplay(ngrid,klev)     !pressure at the middle of the level
1314        !humidity
1315      REAL ratqs(ngrid,klev)   !width of the total water subgrid-scale distribution
1316      REAL po(ngrid)           !total water (qt)
1317      REAL zqenv(ngrid)        !total water in the environment (qt_env)
1318      REAL zqta(ngrid,klev)    !total water in the thermals (qt_th)
1319      REAL zqsatth(ngrid,klev)   !water saturation level in the thermals (q_sat_th)
1320      REAL zqsatenv(ngrid,klev)  !water saturation level in the environment (q_sat_env)
1321      REAL qlth(ngrid,klev)    !condensed water in the thermals
1322      REAL qlenv(ngrid,klev)   !condensed water in the environment
1323      REAL qltot(ngrid,klev)   !condensed water in the gridbox
1324        !cloud fractions
1325      REAL cth_vol(ngrid,klev)   !cloud fraction by volume in the thermals
1326      REAL cenv_vol(ngrid,klev)  !cloud fraction by volume in the environment
1327      REAL ctot_vol(ngrid,klev)  !cloud fraction by volume in the gridbox
1328      REAL cth_surf(ngrid,klev)  !cloud fraction by surface in the thermals
1329      REAL cenv_surf(ngrid,klev) !cloud fraction by surface in the environment 
1330      REAL ctot_surf(ngrid,klev) !cloud fraction by surface in the gridbox
1331        !PDF of saturation deficit variables
1332      REAL rdd,cppd,Lv
1333      REAL Tbef,zdelta,qsatbef,zcor
1334      REAL alth,alenv,ath,aenv
1335      REAL sth,senv              !saturation deficits in the thermals and environment
1336      REAL sigma_env,sigma_th    !standard deviations of the biGaussian PDF
1337        !cloud fraction variables
1338      REAL xth,xenv
1339      REAL inverse_rho,beta                                  !Neggers et al. (2011) method
1340      REAL a_Brooks,b_Brooks,A_Maj_Brooks,Dx_Brooks,f_Brooks !Brooks et al. (2005) method
1341        !Incloud total water variables
1342      REAL zqs(ngrid)    !q_sat
1343      REAL qcloud(ngrid) !eau totale dans le nuage
1344        !Some arithmetic variables
1345      REAL erf,pi,sqrt2,sqrt2pi
1346        !Depth of the layer
1347      REAL dz(ngrid,klev)    !epaisseur de la couche en metre
1348      REAL rhodz(ngrid,klev)
1349      REAL zrho(ngrid,klev)
1350      DO ind1 = 1, ngrid
1351        rhodz(ind1,ind2) = (paprs(ind1,ind2)-paprs(ind1,ind2+1))/rg ![kg/m2]
1352        zrho(ind1,ind2) = pplay(ind1,ind2)/T(ind1,ind2)/rd          ![kg/m3]
1353        dz(ind1,ind2) = rhodz(ind1,ind2)/zrho(ind1,ind2)            ![m]
1354      END DO
1355
1356!------------------------------------------------------------------------------
1357! Initialization
1358!------------------------------------------------------------------------------
1359      qlth(:,:)=0.
1360      qlenv(:,:)=0. 
1361      qltot(:,:)=0.
1362      cth_vol(:,:)=0.
1363      cenv_vol(:,:)=0.
1364      ctot_vol(:,:)=0.
1365      cth_surf(:,:)=0.
1366      cenv_surf(:,:)=0.
1367      ctot_surf(:,:)=0.
1368      qcloud(:)=0.
1369      rdd=287.04
1370      cppd=1005.7
1371      pi=3.14159
1372      Lv=2.5e6
1373      sqrt2=sqrt(2.)
1374      sqrt2pi=sqrt(2.*pi)
1375
1376
1377      DO ind1=1,ngrid
1378!-------------------------------------------------------------------------------
1379!Both thermal and environment in the gridbox
1380!-------------------------------------------------------------------------------
1381      IF ((ztv(ind1,1).gt.ztv(ind1,2)).and.(fraca(ind1,ind2).gt.1.e-10)) THEN
1382        !--------------------------------------------
1383        !calcul de qsat_env
1384        !--------------------------------------------
1385      Tbef=zthl(ind1,ind2)*zpspsk(ind1,ind2)
1386      zdelta=MAX(0.,SIGN(1.,RTT-Tbef))
1387      qsatbef= R2ES*FOEEW(Tbef,zdelta)/paprs(ind1,ind2)
1388      qsatbef=MIN(0.5,qsatbef)
1389      zcor=1./(1.-retv*qsatbef)
1390      qsatbef=qsatbef*zcor
1391      zqsatenv(ind1,ind2)=qsatbef
1392        !--------------------------------------------
1393        !calcul de s_env
1394        !--------------------------------------------
1395      alenv=(0.622*Lv*zqsatenv(ind1,ind2))/(rdd*zthl(ind1,ind2)**2)     !qsl, p84 these Arnaud Jam
1396      aenv=1./(1.+(alenv*Lv/cppd))                                      !al, p84 these Arnaud Jam
1397      senv=aenv*(po(ind1)-zqsatenv(ind1,ind2))                          !s, p84 these Arnaud Jam
1398        !--------------------------------------------
1399        !calcul de qsat_th
1400        !--------------------------------------------
1401      Tbef=ztla(ind1,ind2)*zpspsk(ind1,ind2)
1402      zdelta=MAX(0.,SIGN(1.,RTT-Tbef))
1403      qsatbef= R2ES * FOEEW(Tbef,zdelta)/paprs(ind1,ind2)
1404      qsatbef=MIN(0.5,qsatbef)
1405      zcor=1./(1.-retv*qsatbef)
1406      qsatbef=qsatbef*zcor
1407      zqsatth(ind1,ind2)=qsatbef
1408        !--------------------------------------------
1409        !calcul de s_th 
1410        !--------------------------------------------
1411      alth=(0.622*Lv*zqsatth(ind1,ind2))/(rdd*ztla(ind1,ind2)**2)       !qsl, p84 these Arnaud Jam
1412      ath=1./(1.+(alth*Lv/cppd))                                        !al, p84 these Arnaud Jam
1413      sth=ath*(zqta(ind1,ind2)-zqsatth(ind1,ind2))                      !s, p84 these Arnaud Jam
1414        !--------------------------------------------
1415        !calcul standard deviations bi-Gaussian PDF
1416        !--------------------------------------------
1417      sigma_th=(0.03218+0.000092655*dz(ind1,ind2))/((fraca(ind1,ind2)+0.01)**0.5)*(((sth-senv)**2)**0.5)+0.002*zqta(ind1,ind2)
1418      sigma_env=(0.71794+0.000498239*dz(ind1,ind2))*(fraca(ind1,ind2)**0.5) &
1419           /(1-fraca(ind1,ind2))*(((sth-senv)**2)**0.5) &
1420           +ratqs(ind1,ind2)*po(ind1)
1421      xth=sth/(sqrt2*sigma_th)
1422      xenv=senv/(sqrt2*sigma_env)
1423        !--------------------------------------------
1424        !Cloud fraction by volume CF_vol
1425        !--------------------------------------------
1426      cth_vol(ind1,ind2)=0.5*(1.+1.*erf(xth))
1427      cenv_vol(ind1,ind2)=0.5*(1.+1.*erf(xenv))
1428      ctot_vol(ind1,ind2)=fraca(ind1,ind2)*cth_vol(ind1,ind2)+(1.-1.*fraca(ind1,ind2))*cenv_vol(ind1,ind2)
1429        !--------------------------------------------
1430        !Condensed water qc
1431        !--------------------------------------------
1432      qlth(ind1,ind2)=sigma_th*((exp(-1.*xth**2)/sqrt2pi)+xth*sqrt2*cth_vol(ind1,ind2))
1433      qlenv(ind1,ind2)=sigma_env*((exp(-1.*xenv**2)/sqrt2pi)+xenv*sqrt2*cenv_vol(ind1,ind2)) 
1434      qltot(ind1,ind2)=fraca(ind1,ind2)*qlth(ind1,ind2)+(1.-1.*fraca(ind1,ind2))*qlenv(ind1,ind2)
1435        !--------------------------------------------
1436        !Cloud fraction by surface CF_surf
1437        !--------------------------------------------
1438        !Method Neggers et al. (2011) : ok for cumulus clouds only
1439      !beta=0.0044 (Jouhaud et al.2018)
1440      !inverse_rho=1.+beta*dz(ind1,ind2)
1441      !ctot_surf(ind1,ind2)=ctot_vol(ind1,ind2)*inverse_rho
1442        !Method Brooks et al. (2005) : ok for all types of clouds
1443      a_Brooks=0.6694
1444      b_Brooks=0.1882
1445      A_Maj_Brooks=0.1635 !-- sans dependence au cisaillement de vent
1446      Dx_Brooks=200000.   !-- si l'on considere des mailles de 200km de cote
1447      f_Brooks=A_Maj_Brooks*(dz(ind1,ind2)**(a_Brooks))*(Dx_Brooks**(-b_Brooks))
1448      ctot_surf(ind1,ind2)=1./(1.+exp(-1.*f_Brooks)*((1./max(1.e-15,min(ctot_vol(ind1,ind2),1.)))- 1.))
1449        !--------------------------------------------
1450        !Incloud Condensed water qcloud
1451        !--------------------------------------------
1452      if (ctot_surf(ind1,ind2) .lt. 1.e-10) then
1453      ctot_vol(ind1,ind2)=0.
1454      ctot_surf(ind1,ind2)=0.
1455      qcloud(ind1)=zqsatenv(ind1,ind2)
1456      else
1457      qcloud(ind1)=qltot(ind1,ind2)/ctot_vol(ind1,ind2)+zqs(ind1)
1458      endif
1459
1460
1461
1462!-------------------------------------------------------------------------------
1463!Environment only in the gridbox
1464!-------------------------------------------------------------------------------
1465      ELSE
1466        !--------------------------------------------
1467        !calcul de qsat_env
1468        !--------------------------------------------
1469      Tbef=zthl(ind1,ind2)*zpspsk(ind1,ind2)
1470      zdelta=MAX(0.,SIGN(1.,RTT-Tbef))
1471      qsatbef= R2ES * FOEEW(Tbef,zdelta)/paprs(ind1,ind2)
1472      qsatbef=MIN(0.5,qsatbef)
1473      zcor=1./(1.-retv*qsatbef)
1474      qsatbef=qsatbef*zcor
1475      zqsatenv(ind1,ind2)=qsatbef
1476        !--------------------------------------------
1477        !calcul de s_env
1478        !--------------------------------------------
1479      alenv=(0.622*Lv*zqsatenv(ind1,ind2))/(rdd*zthl(ind1,ind2)**2)     !qsl, p84 these Arnaud Jam
1480      aenv=1./(1.+(alenv*Lv/cppd))                                      !al, p84 these Arnaud Jam
1481      senv=aenv*(po(ind1)-zqsatenv(ind1,ind2))                          !s, p84 these Arnaud Jam
1482        !--------------------------------------------
1483        !calcul standard deviations Gaussian PDF
1484        !--------------------------------------------
1485      zqenv(ind1)=po(ind1)
1486      sigma_env=ratqs(ind1,ind2)*zqenv(ind1)
1487      xenv=senv/(sqrt2*sigma_env)
1488        !--------------------------------------------
1489        !Cloud fraction by volume CF_vol
1490        !--------------------------------------------
1491      ctot_vol(ind1,ind2)=0.5*(1.+1.*erf(xenv))
1492        !--------------------------------------------
1493        !Condensed water qc
1494        !--------------------------------------------
1495      qltot(ind1,ind2)=sigma_env*((exp(-1.*xenv**2)/sqrt2pi)+xenv*sqrt2*ctot_vol(ind1,ind2))
1496        !--------------------------------------------
1497        !Cloud fraction by surface CF_surf
1498        !--------------------------------------------
1499        !Method Neggers et al. (2011) : ok for cumulus clouds only
1500      !beta=0.0044 (Jouhaud et al.2018)
1501      !inverse_rho=1.+beta*dz(ind1,ind2)
1502      !ctot_surf(ind1,ind2)=ctot_vol(ind1,ind2)*inverse_rho
1503        !Method Brooks et al. (2005) : ok for all types of clouds
1504      a_Brooks=0.6694
1505      b_Brooks=0.1882
1506      A_Maj_Brooks=0.1635 !-- sans dependence au shear
1507      Dx_Brooks=200000.
1508      f_Brooks=A_Maj_Brooks*(dz(ind1,ind2)**(a_Brooks))*(Dx_Brooks**(-b_Brooks))
1509      ctot_surf(ind1,ind2)=1./(1.+exp(-1.*f_Brooks)*((1./max(1.e-15,min(ctot_vol(ind1,ind2),1.)))- 1.))
1510        !--------------------------------------------
1511        !Incloud Condensed water qcloud
1512        !--------------------------------------------
1513      if (ctot_surf(ind1,ind2) .lt. 1.e-8) then
1514      ctot_vol(ind1,ind2)=0.
1515      ctot_surf(ind1,ind2)=0.
1516      qcloud(ind1)=zqsatenv(ind1,ind2)
1517      else
1518      qcloud(ind1)=qltot(ind1,ind2)/ctot_vol(ind1,ind2)+zqsatenv(ind1,ind2)
1519      endif
1520
1521
1522      END IF  ! From the separation (thermal/envrionnement) et (environnement only)
1523
1524      ! Outputs used to check the PDFs
1525      cloudth_senv(ind1,ind2) = senv
1526      cloudth_sth(ind1,ind2) = sth
1527      cloudth_sigmaenv(ind1,ind2) = sigma_env
1528      cloudth_sigmath(ind1,ind2) = sigma_th
1529
1530      END DO  ! From the loop on ngrid
1531      return
1532
1533END SUBROUTINE cloudth_v6
1534
1535
1536
1537
1538
1539!+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
1540SUBROUTINE cloudth_mpc(klon,klev,ind2,iflag_mpc_bl,mpc_bl_points,           &
1541&           temp,ztv,po,zqta,fraca,zpspsk,paprs,pplay,ztla,zthl,            &
1542&           ratqs,zqs,snowflux,qcloud,qincloud,icefrac,ctot,ctot_vol)
1543!+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
1544! Author : Arnaud Octavio Jam (LMD/CNRS), Etienne Vignon (LMDZ/CNRS)
1545! Date: Adapted from cloudth_vert_v3 in 2021
1546! Aim : computes qc and rneb in thermals with cold microphysical considerations
1547!       + for mixed phase boundary layer clouds, calculate ql and qi from
1548!       a stationary MPC model
1549! IMPORTANT NOTE: we assume iflag_clouth_vert=3
1550!+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
1551
1552
1553      USE ioipsl_getin_p_mod, ONLY : getin_p
1554      USE phys_output_var_mod, ONLY : cloudth_sth,cloudth_senv,cloudth_sigmath,cloudth_sigmaenv
1555      USE lscp_tools_mod, ONLY: CALC_QSAT_ECMWF, FALLICE_VELOCITY
1556      USE phys_local_var_mod, ONLY : qlth, qith, qsith, wiceth
1557
1558      IMPLICIT NONE
1559
1560#include "YOMCST.h"
1561#include "YOETHF.h"
1562#include "FCTTRE.h"
1563#include "nuage.h"
1564     
1565
1566!------------------------------------------------------------------------------
1567! Declaration
1568!------------------------------------------------------------------------------
1569
1570! INPUT/OUTPUT
1571
1572      INTEGER, INTENT(IN)                         :: klon,klev,ind2
1573     
1574
1575      REAL, DIMENSION(klon,klev), INTENT(IN)      ::  temp          ! Temperature [K]
1576      REAL, DIMENSION(klon,klev), INTENT(IN)      ::  ztv           ! Virtual potential temp [K]
1577      REAL, DIMENSION(klon),      INTENT(IN)      ::  po            ! specific humidity [kg/kg]
1578      REAL, DIMENSION(klon,klev), INTENT(IN)      ::  zqta          ! specific humidity within thermals [kg/kg]
1579      REAL, DIMENSION(klon,klev+1), INTENT(IN)    ::  fraca         ! Fraction of the mesh covered by thermals [0-1]
1580      REAL, DIMENSION(klon,klev), INTENT(IN)      ::  zpspsk
1581      REAL, DIMENSION(klon,klev+1), INTENT(IN)    ::  paprs         ! Pressure at layer interfaces [Pa]
1582      REAL, DIMENSION(klon,klev), INTENT(IN)      ::  pplay         ! Pressure at the center of layers [Pa]
1583      REAL, DIMENSION(klon,klev), INTENT(IN)      ::  ztla          ! Liquid temp [K]
1584      REAL, DIMENSION(klon,klev), INTENT(INOUT)      ::  zthl       ! Liquid potential temp [K]
1585      REAL, DIMENSION(klon,klev), INTENT(IN)      ::  ratqs         ! Parameter that determines the width of the total water distrib.
1586      REAL, DIMENSION(klon),      INTENT(IN)      ::  zqs           ! Saturation specific humidity in the mesh [kg/kg]
1587      REAL, DIMENSION(klon,klev+1), INTENT(IN)    ::  snowflux      ! snow flux at the interface of the layer [kg/m2/s]
1588      INTEGER,                      INTENT(IN)    ::  iflag_mpc_bl  ! option flag for mpc boundary layer clouds param.
1589
1590
1591      INTEGER, DIMENSION(klon,klev), INTENT(INOUT) :: mpc_bl_points  ! grid points with convective (thermals) mixed phase clouds
1592     
1593      REAL, DIMENSION(klon,klev), INTENT(OUT)      ::  ctot         ! Cloud fraction [0-1]
1594      REAL, DIMENSION(klon,klev), INTENT(OUT)      ::  ctot_vol     ! Volume cloud fraction [0-1]
1595      REAL, DIMENSION(klon),      INTENT(OUT)      ::  qcloud       ! In cloud total water content [kg/kg]
1596      REAL, DIMENSION(klon),      INTENT(OUT)      ::  qincloud       ! In cloud condensed water content [kg/kg]
1597      REAL, DIMENSION(klon,klev), INTENT(OUT)      ::  icefrac      ! Fraction of ice in clouds [0-1]
1598
1599
1600! LOCAL VARIABLES
1601
1602      INTEGER itap,ind1,l,ig,iter,k
1603      INTEGER iflag_topthermals, niter
1604      LOGICAL falseklon(klon)
1605
1606      REAL zqsatth(klon), zqsatenv(klon), zqsatenvonly(klon)
1607      REAL sigma1(klon,klev)                                                         
1608      REAL sigma2(klon,klev)
1609      REAL qcth(klon,klev)
1610      REAL qcenv(klon,klev)
1611      REAL qctot(klon,klev)
1612      REAL cth(klon,klev)
1613      REAL cenv(klon,klev)   
1614      REAL cth_vol(klon,klev)
1615      REAL cenv_vol(klon,klev)
1616      REAL rneb(klon,klev)
1617      REAL zqenv(klon), zqth(klon), zqenvonly(klon)
1618      REAL qsatmmussig1,qsatmmussig2,sqrtpi,sqrt2,sqrt2pi,pi
1619      REAL rdd,cppd,Lv
1620      REAL alth,alenv,ath,aenv
1621      REAL sth,senv,sigma1s,sigma2s,sigma1s_fraca,sigma1s_ratqs
1622      REAL inverse_rho,beta,a_Brooks,b_Brooks,A_Maj_Brooks,Dx_Brooks,f_Brooks
1623      REAL xth,xenv,exp_xenv1,exp_xenv2,exp_xth1,exp_xth2
1624      REAL xth1,xth2,xenv1,xenv2,deltasth, deltasenv
1625      REAL IntJ,IntI1,IntI2,IntI3,IntJ_CF,IntI1_CF,IntI3_CF,coeffqlenv,coeffqlth
1626      REAL zdelta,qsatbef,zcor
1627      REAL Tbefth(klon), Tbefenv(klon), Tbefenvonly(klon), rhoth(klon)
1628      REAL qlbef
1629      REAL dqsatenv(klon), dqsatth(klon), dqsatenvonly(klon)
1630      REAL erf
1631      REAL zpdf_sig(klon),zpdf_k(klon),zpdf_delta(klon)
1632      REAL zpdf_a(klon),zpdf_b(klon),zpdf_e1(klon),zpdf_e2(klon)
1633      REAL rhodz(klon,klev)
1634      REAL zrho(klon,klev)
1635      REAL dz(klon,klev)
1636      REAL qslenv(klon), qslth(klon)
1637      REAL alenvl, aenvl
1638      REAL sthi, sthl, sthil, althl, athl, althi, athi, sthlc, deltasthc, sigma2sc
1639      REAL senvi, senvl, qbase, sbase, qliqth, qiceth
1640      REAL qmax, ttarget, stmp, cout, coutref, fraci
1641      REAL maxi, mini, pas, temp_lim
1642      REAL deltazlev_mpc(klev), temp_mpc(klev), pres_mpc(klev), fraca_mpc(klev+1), snowf_mpc(klev+1)
1643
1644      ! Modifty the saturation deficit PDF in thermals
1645      ! in the presence of ice crystals
1646      REAL,SAVE :: C_mpc
1647      !$OMP THREADPRIVATE(C_mpc)
1648      REAL, SAVE    :: Ni,C_cap,Ei,d_top
1649      !$OMP THREADPRIVATE(Ni,C_cap,Ei,d_top)
1650      ! Change the width of the PDF used for vertical subgrid scale heterogeneity
1651      ! (J Jouhaud, JL Dufresne, JB Madeleine)
1652      REAL,SAVE :: vert_alpha, vert_alpha_th
1653      !$OMP THREADPRIVATE(vert_alpha, vert_alpha_th)
1654      REAL,SAVE :: sigma1s_factor=1.1
1655      REAL,SAVE :: sigma1s_power=0.6
1656      REAL,SAVE :: sigma2s_factor=0.09
1657      REAL,SAVE :: sigma2s_power=0.5
1658      REAL,SAVE :: cloudth_ratqsmin=-1.
1659      !$OMP THREADPRIVATE(sigma1s_factor,sigma1s_power,sigma2s_factor,sigma2s_power,cloudth_ratqsmin)
1660      INTEGER, SAVE :: iflag_cloudth_vert_noratqs=0
1661      !$OMP THREADPRIVATE(iflag_cloudth_vert_noratqs)
1662      LOGICAL, SAVE :: firstcall = .TRUE.
1663      !$OMP THREADPRIVATE(firstcall)
1664
1665      CHARACTER (len = 80) :: abort_message
1666      CHARACTER (len = 20) :: routname = 'cloudth_mpc'
1667
1668
1669!------------------------------------------------------------------------------
1670! Initialisation
1671!------------------------------------------------------------------------------
1672
1673
1674! Few initial checksS
1675
1676      IF (iflag_cloudth_vert.NE.3) THEN
1677         abort_message = 'clouth_mpc cannot be used if iflag_cloudth_vert .NE. 3'
1678         CALL abort_physic(routname,abort_message,1)
1679      ENDIF
1680
1681      DO k = 1,klev
1682      DO ind1 = 1, klon
1683        rhodz(ind1,k) = (paprs(ind1,k)-paprs(ind1,k+1))/rg !kg/m2
1684        zrho(ind1,k) = pplay(ind1,k)/temp(ind1,k)/rd !kg/m3
1685        dz(ind1,k) = rhodz(ind1,k)/zrho(ind1,k) !m : epaisseur de la couche en metre
1686      END DO
1687      END DO
1688
1689
1690      sigma1(:,:)=0.
1691      sigma2(:,:)=0.
1692      qcth(:,:)=0.
1693      qcenv(:,:)=0. 
1694      qctot(:,:)=0.
1695      qlth(:,ind2)=0.
1696      qith(:,ind2)=0.
1697      wiceth(:,ind2)=0.
1698      rneb(:,:)=0.
1699      qcloud(:)=0.
1700      cth(:,:)=0.
1701      cenv(:,:)=0.
1702      ctot(:,:)=0.
1703      cth_vol(:,:)=0.
1704      cenv_vol(:,:)=0.
1705      ctot_vol(:,:)=0.
1706      falseklon(:)=.false.
1707      qsatmmussig1=0.
1708      qsatmmussig2=0.
1709      rdd=287.04
1710      cppd=1005.7
1711      pi=3.14159
1712      sqrt2pi=sqrt(2.*pi)
1713      sqrt2=sqrt(2.)
1714      sqrtpi=sqrt(pi)
1715      icefrac(:,ind2)=0.
1716      althl=0.
1717      althi=0.
1718      athl=0.
1719      athi=0.
1720      senvl=0.
1721      senvi=0.
1722      sthi=0.
1723      sthl=0.
1724      sthil=0.
1725
1726
1727
1728      IF (firstcall) THEN
1729
1730        vert_alpha=0.5
1731        CALL getin_p('cloudth_vert_alpha',vert_alpha)
1732        WRITE(*,*) 'cloudth_vert_alpha = ', vert_alpha
1733        ! The factor used for the thermal is equal to that of the environment
1734        !   if nothing is explicitly specified in the def file
1735        vert_alpha_th=vert_alpha
1736        CALL getin_p('cloudth_vert_alpha_th',vert_alpha_th)
1737        WRITE(*,*) 'cloudth_vert_alpha_th = ', vert_alpha_th
1738        ! Factor used in the calculation of sigma1s
1739        CALL getin_p('cloudth_sigma1s_factor',sigma1s_factor)
1740        WRITE(*,*) 'cloudth_sigma1s_factor = ', sigma1s_factor
1741        ! Power used in the calculation of sigma1s
1742        CALL getin_p('cloudth_sigma1s_power',sigma1s_power)
1743        WRITE(*,*) 'cloudth_sigma1s_power = ', sigma1s_power
1744        ! Factor used in the calculation of sigma2s
1745        CALL getin_p('cloudth_sigma2s_factor',sigma2s_factor)
1746        WRITE(*,*) 'cloudth_sigma2s_factor = ', sigma2s_factor
1747        ! Power used in the calculation of sigma2s
1748        CALL getin_p('cloudth_sigma2s_power',sigma2s_power)
1749        WRITE(*,*) 'cloudth_sigma2s_power = ', sigma2s_power
1750        ! Minimum value for the environmental air subgrid water distrib
1751        CALL getin_p('cloudth_ratqsmin',cloudth_ratqsmin)
1752        WRITE(*,*) 'cloudth_ratqsmin = ', cloudth_ratqsmin
1753        ! Remove the dependency to ratqs from the variance of the vertical PDF
1754        CALL getin_p('iflag_cloudth_vert_noratqs',iflag_cloudth_vert_noratqs)
1755        WRITE(*,*) 'iflag_cloudth_vert_noratqs = ', iflag_cloudth_vert_noratqs
1756        ! Modifies the PDF in thermals when ice crystals are present
1757        C_mpc=1.e4
1758        CALL getin_p('C_mpc',C_mpc)
1759        WRITE(*,*) 'C_mpc = ', C_mpc
1760        Ni=2.0e3
1761        CALL getin_p('Ni', Ni)
1762        WRITE(*,*) 'Ni = ', Ni
1763        Ei=0.5
1764        CALL getin_p('Ei', Ei)
1765        WRITE(*,*) 'Ei = ', Ei
1766        C_cap=0.5
1767        CALL getin_p('C_cap', C_cap)
1768        WRITE(*,*) 'C_cap = ', C_cap
1769        d_top=1.2
1770        CALL getin_p('d_top', d_top)
1771        WRITE(*,*) 'd_top = ', d_top
1772
1773        firstcall=.FALSE.
1774
1775      ENDIF
1776
1777
1778
1779!-------------------------------------------------------------------------------
1780! Identify grid points with potential mixed-phase conditions
1781!-------------------------------------------------------------------------------
1782
1783      temp_lim=RTT-40.0
1784
1785      DO ind1=1,klon
1786            IF ((temp(ind1,ind2) .LT. RTT) .AND. (temp(ind1,ind2) .GT. temp_lim) &
1787            .AND. (iflag_mpc_bl .GE. 1) .AND. (ind2<=klev-2)  &
1788            .AND. (ztv(ind1,1).GT.ztv(ind1,2)) .AND.(fraca(ind1,ind2).GT.1.e-10)) THEN
1789                mpc_bl_points(ind1,ind2)=1
1790            ELSE
1791                mpc_bl_points(ind1,ind2)=0
1792            ENDIF
1793      ENDDO
1794
1795
1796!-------------------------------------------------------------------------------
1797! Thermal fraction calculation and standard deviation of the distribution
1798!------------------------------------------------------------------------------- 
1799
1800! calculation of temperature, humidity and saturation specific humidity
1801
1802Tbefenv(:)=zthl(:,ind2)*zpspsk(:,ind2)
1803Tbefth(:)=ztla(:,ind2)*zpspsk(:,ind2)
1804Tbefenvonly(:)=temp(:,ind2)
1805rhoth(:)=paprs(:,ind2)/Tbefth(:)/RD
1806
1807zqenv(:)=(po(:)-fraca(:,ind2)*zqta(:,ind2))/(1.-fraca(:,ind2)) !qt = a*qtth + (1-a)*qtenv
1808zqth(:)=zqta(:,ind2)
1809zqenvonly(:)=po(:)
1810
1811
1812CALL CALC_QSAT_ECMWF(klon,Tbefenvonly,zqenvonly,paprs(:,ind2),RTT,0,.false.,zqsatenvonly,dqsatenv)
1813
1814CALL CALC_QSAT_ECMWF(klon,Tbefenv,zqenv,paprs(:,ind2),RTT,0,.false.,zqsatenv,dqsatenv)
1815CALL CALC_QSAT_ECMWF(klon,Tbefenv,zqenv,paprs(:,ind2),RTT,1,.false.,qslenv,dqsatenv)
1816
1817CALL CALC_QSAT_ECMWF(klon,Tbefth,zqth,paprs(:,ind2),RTT,1,.false.,qslth,dqsatth)
1818CALL CALC_QSAT_ECMWF(klon,Tbefth,zqth,paprs(:,ind2),RTT,2,.false.,qsith(:,ind2),dqsatth)
1819CALL CALC_QSAT_ECMWF(klon,Tbefth,zqth,paprs(:,ind2),RTT,0,.false.,zqsatth,dqsatth)
1820
1821
1822  DO ind1=1,klon
1823
1824
1825    IF ((ztv(ind1,1).GT.ztv(ind1,2)).AND.(fraca(ind1,ind2).GT.1.e-10)) THEN !Thermal and environnement
1826
1827
1828! Environment:
1829
1830
1831        IF (Tbefenv(ind1) .GE. RTT) THEN
1832               Lv=RLVTT
1833        ELSE
1834               Lv=RLSTT
1835        ENDIF
1836       
1837
1838        alenv=(0.622*Lv*zqsatenv(ind1))/(rdd*zthl(ind1,ind2)**2)     !qsl, p84
1839        aenv=1./(1.+(alenv*Lv/cppd))                                      !al, p84
1840        senv=aenv*(po(ind1)-zqsatenv(ind1))                          !s, p84
1841     
1842        ! For MPCs:
1843        IF (mpc_bl_points(ind1,ind2) .EQ. 1) THEN
1844        alenvl=(0.622*RLVTT*qslenv(ind1))/(rdd*zthl(ind1,ind2)**2)     
1845        aenvl=1./(1.+(alenv*Lv/cppd))         
1846        senvl=aenvl*(po(ind1)-qslenv(ind1))   
1847        senvi=senv
1848        ENDIF
1849
1850
1851! Thermals:
1852
1853
1854        IF (Tbefth(ind1) .GE. RTT) THEN
1855            Lv=RLVTT
1856        ELSE
1857            Lv=RLSTT
1858        ENDIF
1859
1860       
1861        alth=(0.622*Lv*zqsatth(ind1))/(rdd*ztla(ind1,ind2)**2)       
1862        ath=1./(1.+(alth*Lv/cppd))                                                         
1863        sth=ath*(zqta(ind1,ind2)-zqsatth(ind1))                     
1864
1865       ! For MPCs:
1866        IF (mpc_bl_points(ind1,ind2) .GT. 0) THEN
1867         althi=alth
1868         althl=(0.622*RLVTT*qslth(ind1))/(rdd*ztla(ind1,ind2)**2)                   
1869         athl=1./(1.+(alth*RLVTT/cppd))
1870         athi=alth     
1871         sthl=athl*(zqta(ind1,ind2)-qslth(ind1))   
1872         sthi=athi*(zqta(ind1,ind2)-qsith(ind1,ind2)) 
1873         sthil=athi*(zqta(ind1,ind2)-qslth(ind1))
1874        ENDIF     
1875
1876
1877
1878!-------------------------------------------------------------------------------
1879!  Version 3: Changes by J. Jouhaud; condensation for q > -delta s
1880!  Rq: in this subroutine, we assume iflag_clouth_vert .EQ. 3
1881!-------------------------------------------------------------------------------
1882
1883        IF (mpc_bl_points(ind1,ind2) .EQ. 0) THEN ! No BL MPC
1884
1885       ! Standard deviation of the distributions
1886
1887           sigma1s_fraca = (sigma1s_factor**0.5)*(fraca(ind1,ind2)**sigma1s_power) / &
1888           &                (1-fraca(ind1,ind2))*((sth-senv)**2)**0.5
1889
1890           IF (cloudth_ratqsmin>0.) THEN
1891             sigma1s_ratqs = cloudth_ratqsmin*po(ind1)
1892           ELSE
1893             sigma1s_ratqs = ratqs(ind1,ind2)*po(ind1)
1894           ENDIF
1895 
1896           sigma1s = sigma1s_fraca + sigma1s_ratqs
1897           sigma2s=(sigma2s_factor*(((sth-senv)**2)**0.5)/((fraca(ind1,ind2)+0.02)**sigma2s_power))+0.002*zqta(ind1,ind2)
1898
1899
1900           deltasenv=aenv*vert_alpha*sigma1s
1901           deltasth=ath*vert_alpha_th*sigma2s
1902
1903           xenv1=-(senv+deltasenv)/(sqrt(2.)*sigma1s)
1904           xenv2=-(senv-deltasenv)/(sqrt(2.)*sigma1s)
1905           exp_xenv1 = exp(-1.*xenv1**2)
1906           exp_xenv2 = exp(-1.*xenv2**2)
1907           xth1=-(sth+deltasth)/(sqrt(2.)*sigma2s)
1908           xth2=-(sth-deltasth)/(sqrt(2.)*sigma2s)
1909           exp_xth1 = exp(-1.*xth1**2)
1910           exp_xth2 = exp(-1.*xth2**2)
1911     
1912      !surface CF
1913
1914           cth(ind1,ind2)=0.5*(1.-1.*erf(xth1))
1915           cenv(ind1,ind2)=0.5*(1.-1.*erf(xenv1))
1916           ctot(ind1,ind2)=fraca(ind1,ind2)*cth(ind1,ind2)+(1.-1.*fraca(ind1,ind2))*cenv(ind1,ind2)
1917
1918
1919      !volume CF and condensed water
1920
1921            !environnement
1922
1923            IntJ=0.5*senv*(1-erf(xenv2))+(sigma1s/sqrt2pi)*exp_xenv2
1924            IntJ_CF=0.5*(1.-1.*erf(xenv2))
1925
1926            IF (deltasenv .LT. 1.e-10) THEN
1927              qcenv(ind1,ind2)=IntJ
1928              cenv_vol(ind1,ind2)=IntJ_CF
1929            ELSE
1930              IntI1=(((senv+deltasenv)**2+(sigma1s)**2)/(8*deltasenv))*(erf(xenv2)-erf(xenv1))
1931              IntI2=(sigma1s**2/(4*deltasenv*sqrtpi))*(xenv1*exp_xenv1-xenv2*exp_xenv2)
1932              IntI3=((sqrt2*sigma1s*(senv+deltasenv))/(4*sqrtpi*deltasenv))*(exp_xenv1-exp_xenv2)
1933              IntI1_CF=((senv+deltasenv)*(erf(xenv2)-erf(xenv1)))/(4*deltasenv)
1934              IntI3_CF=(sqrt2*sigma1s*(exp_xenv1-exp_xenv2))/(4*sqrtpi*deltasenv)
1935              qcenv(ind1,ind2)=IntJ+IntI1+IntI2+IntI3
1936              cenv_vol(ind1,ind2)=IntJ_CF+IntI1_CF+IntI3_CF
1937            ENDIF
1938             
1939
1940
1941            !thermals
1942
1943            IntJ=0.5*sth*(1-erf(xth2))+(sigma2s/sqrt2pi)*exp_xth2
1944            IntJ_CF=0.5*(1.-1.*erf(xth2))
1945     
1946            IF (deltasth .LT. 1.e-10) THEN
1947              qcth(ind1,ind2)=IntJ
1948              cth_vol(ind1,ind2)=IntJ_CF
1949            ELSE
1950              IntI1=(((sth+deltasth)**2+(sigma2s)**2)/(8*deltasth))*(erf(xth2)-erf(xth1))
1951              IntI2=(sigma2s**2/(4*deltasth*sqrtpi))*(xth1*exp_xth1-xth2*exp_xth2)
1952              IntI3=((sqrt2*sigma2s*(sth+deltasth))/(4*sqrtpi*deltasth))*(exp_xth1-exp_xth2)
1953              IntI1_CF=((sth+deltasth)*(erf(xth2)-erf(xth1)))/(4*deltasth)
1954              IntI3_CF=(sqrt2*sigma2s*(exp_xth1-exp_xth2))/(4*sqrtpi*deltasth)
1955              qlth(ind1,ind2)=IntJ+IntI1+IntI2+IntI3
1956              cth_vol(ind1,ind2)=IntJ_CF+IntI1_CF+IntI3_CF
1957            ENDIF
1958
1959              qctot(ind1,ind2)=fraca(ind1,ind2)*qcth(ind1,ind2)+(1.-1.*fraca(ind1,ind2))*qcenv(ind1,ind2)
1960              ctot_vol(ind1,ind2)=fraca(ind1,ind2)*cth_vol(ind1,ind2)+(1.-1.*fraca(ind1,ind2))*cenv_vol(ind1,ind2)
1961             
1962
1963            IF (cenv(ind1,ind2).LT.1.e-10.or.cth(ind1,ind2).LT.1.e-10) THEN
1964                ctot(ind1,ind2)=0.
1965                ctot_vol(ind1,ind2)=0.
1966                qcloud(ind1)=zqsatenv(ind1)
1967                qincloud(ind1)=0.
1968            ELSE               
1969                qcloud(ind1)=qctot(ind1,ind2)/ctot(ind1,ind2)+zqs(ind1)
1970                qincloud(ind1)=qctot(ind1,ind2)/ctot(ind1,ind2)
1971            ENDIF
1972
1973
1974        ELSE ! mpc_bl_points>0
1975
1976            ! Treat boundary layer mixed phase clouds
1977           
1978            ! thermals
1979            !=========
1980
1981            ! ice phase
1982            !...........
1983
1984            qiceth=0.
1985            deltazlev_mpc=dz(ind1,:)
1986            temp_mpc=ztla(ind1,:)*zpspsk(ind1,:)
1987            pres_mpc=pplay(ind1,:)
1988            fraca_mpc=fraca(ind1,:)
1989            snowf_mpc=snowflux(ind1,:)
1990            iflag_topthermals=0
1991            IF ((mpc_bl_points(ind1,ind2) .EQ. 1) .AND. (mpc_bl_points(ind1,ind2+1) .EQ. 0))  THEN
1992                iflag_topthermals = 1
1993            ELSE IF ((mpc_bl_points(ind1,ind2) .EQ. 1) .AND. (mpc_bl_points(ind1,ind2+1) .EQ. 1) &
1994                    .AND. (mpc_bl_points(ind1,ind2+2) .EQ. 0) ) THEN
1995                iflag_topthermals = 2
1996            ELSE
1997                iflag_topthermals = 0
1998            ENDIF
1999
2000            CALL ICE_MPC_BL_CLOUDS(ind1,ind2,klev,Ni,Ei,C_cap,d_top,iflag_topthermals,temp_mpc,pres_mpc,zqta(ind1,:), &
2001                                   qsith(ind1,:),qlth(ind1,:),deltazlev_mpc,wiceth(ind1,:),fraca_mpc,qith(ind1,:))
2002
2003            ! qmax calculation
2004            sigma2s=(sigma2s_factor*((MAX((sthl-senvl),0.)**2)**0.5)/((fraca(ind1,ind2)+0.02)**sigma2s_power))+0.002*zqta(ind1,ind2)
2005            deltasth=athl*vert_alpha_th*sigma2s
2006            xth1=-(sthl+deltasth)/(sqrt(2.)*sigma2s)
2007            xth2=-(sthl-deltasth)/(sqrt(2.)*sigma2s)
2008            exp_xth1 = exp(-1.*xth1**2)
2009            exp_xth2 = exp(-1.*xth2**2)
2010            IntJ=0.5*sthl*(1-erf(xth2))+(sigma2s/sqrt2pi)*exp_xth2
2011            IntJ_CF=0.5*(1.-1.*erf(xth2))
2012            IntI1=(((sthl+deltasth)**2+(sigma2s)**2)/(8*deltasth))*(erf(xth2)-erf(xth1))
2013            IntI2=(sigma2s**2/(4*deltasth*sqrtpi))*(xth1*exp_xth1-xth2*exp_xth2)
2014            IntI3=((sqrt2*sigma2s*(sthl+deltasth))/(4*sqrtpi*deltasth))*(exp_xth1-exp_xth2)
2015            IntI1_CF=((sthl+deltasth)*(erf(xth2)-erf(xth1)))/(4*deltasth)
2016            IntI3_CF=(sqrt2*sigma2s*(exp_xth1-exp_xth2))/(4*sqrtpi*deltasth)
2017            qmax=MAX(IntJ+IntI1+IntI2+IntI3,0.)
2018
2019
2020            ! Liquid phase
2021            !................
2022            ! We account for the effect of ice crystals in thermals on sthl
2023            ! and on the width of the distribution
2024
2025            sthlc=sthl*1./(1.+C_mpc*qith(ind1,ind2))  &
2026                + (1.-1./(1.+C_mpc*qith(ind1,ind2))) * athl*(qsith(ind1,ind2)-qslth(ind1)) 
2027
2028            sigma2sc=(sigma2s_factor*((MAX((sthlc-senvl),0.)**2)**0.5) &
2029                 /((fraca(ind1,ind2)+0.02)**sigma2s_power)) &
2030                 +0.002*zqta(ind1,ind2)
2031            deltasthc=athl*vert_alpha_th*sigma2sc
2032     
2033           
2034            xth1=-(sthlc+deltasthc)/(sqrt(2.)*sigma2sc)
2035            xth2=-(sthlc-deltasthc)/(sqrt(2.)*sigma2sc)           
2036            exp_xth1 = exp(-1.*xth1**2)
2037            exp_xth2 = exp(-1.*xth2**2)
2038            IntJ=0.5*sthlc*(1-erf(xth2))+(sigma2sc/sqrt2pi)*exp_xth2
2039            IntJ_CF=0.5*(1.-1.*erf(xth2))
2040            IntI1=(((sthlc+deltasthc)**2+(sigma2sc)**2)/(8*deltasthc))*(erf(xth2)-erf(xth1))
2041            IntI2=(sigma2sc**2/(4*deltasthc*sqrtpi))*(xth1*exp_xth1-xth2*exp_xth2)
2042            IntI3=((sqrt2*sigma2sc*(sthlc+deltasthc))/(4*sqrtpi*deltasthc))*(exp_xth1-exp_xth2)
2043            IntI1_CF=((sthlc+deltasthc)*(erf(xth2)-erf(xth1)))/(4*deltasthc)
2044            IntI3_CF=(sqrt2*sigma2sc*(exp_xth1-exp_xth2))/(4*sqrtpi*deltasthc)
2045            qliqth=IntJ+IntI1+IntI2+IntI3
2046           
2047            qlth(ind1,ind2)=MAX(0.,qliqth)
2048
2049            ! Condensed water
2050           
2051            qcth(ind1,ind2)=qlth(ind1,ind2)+qith(ind1,ind2)
2052
2053
2054            ! consistency with subgrid distribution
2055           
2056             IF ((qcth(ind1,ind2) .GT. qmax) .AND. (qcth(ind1,ind2) .GT. 0)) THEN
2057                 fraci=qith(ind1,ind2)/qcth(ind1,ind2)
2058                 qcth(ind1,ind2)=qmax
2059                 qith(ind1,ind2)=fraci*qmax
2060                 qlth(ind1,ind2)=(1.-fraci)*qmax
2061             ENDIF
2062
2063            ! Cloud Fraction
2064            !...............
2065            ! calculation of qbase which is the value of the water vapor within mixed phase clouds
2066            ! such that the total water in cloud = qbase+qliqth+qiceth
2067            ! sbase is the value of s such that int_sbase^\intfy s ds = cloud fraction
2068            ! sbase and qbase calculation (note that sbase is wrt liq so negative)
2069            ! look for an approximate solution with iteration
2070           
2071            ttarget=qcth(ind1,ind2)
2072            mini= athl*(qsith(ind1,ind2)-qslth(ind1))
2073            maxi= 0. !athl*(3.*sqrt(sigma2s))
2074            niter=20
2075            pas=(maxi-mini)/niter
2076            stmp=mini
2077            sbase=stmp
2078            coutref=1.E6
2079            DO iter=1,niter
2080                cout=ABS(sigma2s/SQRT(2.*RPI)*EXP(-((sthl-stmp)/sigma2s)**2)+(sthl-stmp)/SQRT(2.)*(1.-erf(-(sthl-stmp)/sigma2s)) &
2081                     + stmp/2.*(1.-erf(-(sthl-stmp)/sigma2s)) -ttarget)
2082               IF (cout .LT. coutref) THEN
2083                     sbase=stmp
2084                     coutref=cout
2085                ELSE
2086                     stmp=stmp+pas
2087                ENDIF
2088            ENDDO
2089            qbase=MAX(0., sbase/athl+qslth(ind1))
2090
2091            ! surface cloud fraction in thermals
2092            cth(ind1,ind2)=0.5*(1.-erf((sbase-sthl)/sqrt(2.)/sigma2s))
2093            cth(ind1,ind2)=MIN(MAX(cth(ind1,ind2),0.),1.)
2094
2095
2096            !volume cloud fraction in thermals
2097            !to be checked
2098            xth1=-(sthl+deltasth-sbase)/(sqrt(2.)*sigma2s)
2099            xth2=-(sthl-deltasth-sbase)/(sqrt(2.)*sigma2s)           
2100            exp_xth1 = exp(-1.*xth1**2)
2101            exp_xth2 = exp(-1.*xth2**2)
2102
2103            IntJ=0.5*sthl*(1-erf(xth2))+(sigma2s/sqrt2pi)*exp_xth2
2104            IntJ_CF=0.5*(1.-1.*erf(xth2))
2105     
2106            IF (deltasth .LT. 1.e-10) THEN
2107              cth_vol(ind1,ind2)=IntJ_CF
2108            ELSE
2109              IntI1=(((sthl+deltasth-sbase)**2+(sigma2s)**2)/(8*deltasth))*(erf(xth2)-erf(xth1))
2110              IntI2=(sigma2s**2/(4*deltasth*sqrtpi))*(xth1*exp_xth1-xth2*exp_xth2)
2111              IntI3=((sqrt2*sigma2s*(sthl+deltasth))/(4*sqrtpi*deltasth))*(exp_xth1-exp_xth2)
2112              IntI1_CF=((sthl-sbase+deltasth)*(erf(xth2)-erf(xth1)))/(4*deltasth)
2113              IntI3_CF=(sqrt2*sigma2s*(exp_xth1-exp_xth2))/(4*sqrtpi*deltasth)
2114              cth_vol(ind1,ind2)=IntJ_CF+IntI1_CF+IntI3_CF
2115            ENDIF
2116              cth_vol(ind1,ind2)=MIN(MAX(0.,cth_vol(ind1,ind2)),1.)
2117
2118
2119
2120            ! Environment
2121            !=============
2122            ! In the environment/downdrafts, only liquid clouds
2123            ! See Shupe et al. 2008, JAS
2124
2125            ! standard deviation of the distribution in the environment
2126            sth=sthl
2127            senv=senvl
2128            sigma1s_fraca = (sigma1s_factor**0.5)*(fraca(ind1,ind2)**sigma1s_power) / &
2129                          &                (1-fraca(ind1,ind2))*(MAX((sth-senv),0.)**2)**0.5
2130            ! for mixed phase clouds, there is no contribution from large scale ratqs to the distribution
2131            ! in the environement
2132
2133            sigma1s_ratqs=1E-10
2134            IF (cloudth_ratqsmin>0.) THEN
2135                sigma1s_ratqs = cloudth_ratqsmin*po(ind1)
2136            ENDIF
2137
2138            sigma1s = sigma1s_fraca + sigma1s_ratqs
2139            deltasenv=aenvl*vert_alpha*sigma1s
2140            xenv1=-(senvl+deltasenv)/(sqrt(2.)*sigma1s)
2141            xenv2=-(senvl-deltasenv)/(sqrt(2.)*sigma1s)
2142            exp_xenv1 = exp(-1.*xenv1**2)
2143            exp_xenv2 = exp(-1.*xenv2**2)
2144
2145            !surface CF
2146            cenv(ind1,ind2)=0.5*(1.-1.*erf(xenv1))
2147
2148            !volume CF and condensed water
2149            IntJ=0.5*senvl*(1-erf(xenv2))+(sigma1s/sqrt2pi)*exp_xenv2
2150            IntJ_CF=0.5*(1.-1.*erf(xenv2))
2151
2152            IF (deltasenv .LT. 1.e-10) THEN
2153              qcenv(ind1,ind2)=IntJ
2154              cenv_vol(ind1,ind2)=IntJ_CF
2155            ELSE
2156              IntI1=(((senvl+deltasenv)**2+(sigma1s)**2)/(8*deltasenv))*(erf(xenv2)-erf(xenv1))
2157              IntI2=(sigma1s**2/(4*deltasenv*sqrtpi))*(xenv1*exp_xenv1-xenv2*exp_xenv2)
2158              IntI3=((sqrt2*sigma1s*(senv+deltasenv))/(4*sqrtpi*deltasenv))*(exp_xenv1-exp_xenv2)
2159              IntI1_CF=((senvl+deltasenv)*(erf(xenv2)-erf(xenv1)))/(4*deltasenv)
2160              IntI3_CF=(sqrt2*sigma1s*(exp_xenv1-exp_xenv2))/(4*sqrtpi*deltasenv)
2161              qcenv(ind1,ind2)=IntJ+IntI1+IntI2+IntI3 ! only liquid water in environment
2162              cenv_vol(ind1,ind2)=IntJ_CF+IntI1_CF+IntI3_CF
2163            ENDIF
2164
2165            qcenv(ind1,ind2)=MAX(qcenv(ind1,ind2),0.)
2166            cenv_vol(ind1,ind2)=MIN(MAX(cenv_vol(ind1,ind2),0.),1.)
2167
2168
2169           
2170            ! Thermals + environment
2171            ! =======================
2172            ctot(ind1,ind2)=fraca(ind1,ind2)*cth(ind1,ind2)+(1.-1.*fraca(ind1,ind2))*cenv(ind1,ind2)
2173            qctot(ind1,ind2)=fraca(ind1,ind2)*qcth(ind1,ind2)+(1.-1.*fraca(ind1,ind2))*qcenv(ind1,ind2)
2174            ctot_vol(ind1,ind2)=fraca(ind1,ind2)*cth_vol(ind1,ind2)+(1.-1.*fraca(ind1,ind2))*cenv_vol(ind1,ind2)
2175            IF (qcth(ind1,ind2) .GT. 0) THEN
2176               icefrac(ind1,ind2)=fraca(ind1,ind2)*qith(ind1,ind2) &
2177                    /(fraca(ind1,ind2)*qcth(ind1,ind2) &
2178                    +(1.-1.*fraca(ind1,ind2))*qcenv(ind1,ind2))
2179                icefrac(ind1,ind2)=MAX(MIN(1.,icefrac(ind1,ind2)),0.)
2180            ELSE
2181                icefrac(ind1,ind2)=0.
2182            ENDIF
2183
2184            IF (cenv(ind1,ind2).LT.1.e-10.or.cth(ind1,ind2).LT.1.e-10) THEN
2185                ctot(ind1,ind2)=0.
2186                ctot_vol(ind1,ind2)=0.
2187                qincloud(ind1)=0.
2188                qcloud(ind1)=zqsatenv(ind1)
2189            ELSE               
2190                qcloud(ind1)=fraca(ind1,ind2)*(qcth(ind1,ind2)/cth(ind1,ind2)+qbase) &
2191                            +(1.-1.*fraca(ind1,ind2))*(qcenv(ind1,ind2)/cenv(ind1,ind2)+qslenv(ind1))
2192                qincloud(ind1)=MAX(fraca(ind1,ind2)*(qcth(ind1,ind2)/cth(ind1,ind2)) &
2193                            +(1.-1.*fraca(ind1,ind2))*(qcenv(ind1,ind2)/cenv(ind1,ind2)),0.)
2194            ENDIF
2195
2196        ENDIF ! mpc_bl_points
2197
2198
2199    ELSE  ! gaussian for environment only
2200
2201     
2202
2203
2204        IF (Tbefenvonly(ind1) .GE. RTT) THEN
2205                Lv=RLVTT
2206        ELSE
2207                Lv=RLSTT
2208        ENDIF
2209       
2210
2211        zthl(ind1,ind2)=temp(ind1,ind2)*(101325./paprs(ind1,ind2))**(rdd/cppd)
2212        alenv=(0.622*Lv*zqsatenvonly(ind1))/(rdd*zthl(ind1,ind2)**2)
2213        aenv=1./(1.+(alenv*Lv/cppd))
2214        senv=aenv*(po(ind1)-zqsatenvonly(ind1))
2215        sth=0.
2216     
2217        sigma1s=ratqs(ind1,ind2)*zqenvonly(ind1)
2218        sigma2s=0.
2219
2220        sqrt2pi=sqrt(2.*pi)
2221        xenv=senv/(sqrt(2.)*sigma1s)
2222        ctot(ind1,ind2)=0.5*(1.+1.*erf(xenv))
2223        ctot_vol(ind1,ind2)=ctot(ind1,ind2)
2224        qctot(ind1,ind2)=sigma1s*((exp(-1.*xenv**2)/sqrt2pi)+xenv*sqrt(2.)*cenv(ind1,ind2))
2225     
2226        IF (ctot(ind1,ind2).LT.1.e-3) THEN
2227          ctot(ind1,ind2)=0.
2228          qcloud(ind1)=zqsatenvonly(ind1)
2229          qincloud(ind1)=0.
2230        ELSE
2231          qcloud(ind1)=qctot(ind1,ind2)/ctot(ind1,ind2)+zqsatenvonly(ind1)
2232          qincloud(ind1)=MAX(qctot(ind1,ind2)/ctot(ind1,ind2),0.)
2233        ENDIF
2234 
2235
2236    ENDIF       ! From the separation (thermal/envrionnement) and (environnement only,) l.335 et l.492
2237
2238    ! Outputs used to check the PDFs
2239    cloudth_senv(ind1,ind2) = senv
2240    cloudth_sth(ind1,ind2) = sth
2241    cloudth_sigmaenv(ind1,ind2) = sigma1s
2242    cloudth_sigmath(ind1,ind2) = sigma2s
2243
2244
2245    ENDDO       !loop on klon
2246
2247    ! Calcule ice fall velocity in thermals
2248
2249    CALL FALLICE_VELOCITY(klon,qith(:,ind2),Tbefth(:),rhoth(:),paprs(:,ind2),falseklon(:),wiceth(:,ind2))
2250
2251RETURN
2252
2253
2254END SUBROUTINE cloudth_mpc
2255
2256!++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
2257SUBROUTINE ICE_MPC_BL_CLOUDS(ind1,ind2,klev,Ni,Ei,C_cap,d_top,iflag_topthermals,temp,pres,qth,qsith,qlth,deltazlev,vith,fraca,qith)
2258
2259! parameterization of ice for boundary
2260! layer mixed-phase clouds assuming a stationary system
2261!
2262! Note that vapor deposition on ice crystals and riming of liquid droplets
2263! depend on the ice number concentration Ni
2264! One could assume that Ni depends on qi, e.g.,  Ni=beta*(qi*rho)**xi
2265! and use values from Hong et al. 2004, MWR for instance
2266! One may also estimate Ni as a function of T, as in Meyers 1922 or Fletcher 1962
2267! One could also think of a more complex expression of Ni;
2268! function of qi, T, the concentration in aerosols or INP ..
2269! Here we prefer fixing Ni to a tuning parameter
2270! By default we take 2.0L-1=2.0e3m-3, median value from measured vertical profiles near Svalbard
2271! in Mioche et al. 2017
2272!
2273!
2274! References:
2275!------------
2276! This parameterization is thoroughly described in Vignon et al.
2277!
2278! More specifically
2279! for the Water vapor deposition process:
2280!
2281! Rotstayn, L. D., 1997: A physically based scheme for the treat-
2282! ment of stratiform cloudfs and precipitation in large-scale
2283! models. I: Description and evaluation of the microphysical
2284! processes. Quart. J. Roy. Meteor. Soc., 123, 1227–1282.
2285!
2286!  Morrison, H., and A. Gettelman, 2008: A new two-moment bulk
2287!  stratiform cloud microphysics scheme in the NCAR Com-
2288!  munity Atmosphere Model (CAM3). Part I: Description and
2289!  numerical tests. J. Climate, 21, 3642–3659
2290!
2291! for the Riming process:
2292!
2293! Rutledge, S. A., and P. V. Hobbs, 1983: The mesoscale and micro-
2294! scale structure and organization of clouds and precipitation in
2295! midlatitude cyclones. VII: A model for the ‘‘seeder-feeder’’
2296! process in warm-frontal rainbands. J. Atmos. Sci., 40, 1185–1206
2297!
2298! Thompson, G., R. M. Rasmussen, and K. Manning, 004: Explicit
2299! forecasts of winter precipitation using an improved bulk
2300! microphysics scheme. Part I: Description and sensitivityThompson, G., R. M. Rasmussen, and K. Manning, 2004: Explicit
2301! forecasts of winter precipitation using an improved bulk
2302! microphysics scheme. Part I: Description and sensitivity analysis. Mon. Wea. Rev., 132, 519–542
2303!
2304! For the formation of clouds by thermals:
2305!
2306! Rio, C., & Hourdin, F. (2008). A thermal plume model for the convective boundary layer : Representation of cumulus clouds. Journal of
2307! the Atmospheric Sciences, 65, 407–425.
2308!
2309! Jam, A., Hourdin, F., Rio, C., & Couvreux, F. (2013). Resolved versus parametrized boundary-layer plumes. Part III: Derivation of a
2310! statistical scheme for cumulus clouds. Boundary-layer Meteorology, 147, 421–441. https://doi.org/10.1007/s10546-012-9789-3
2311!
2312!
2313!
2314! Contact: Etienne Vignon, etienne.vignon@lmd.ipsl.fr
2315!=============================================================================
2316
2317    USE ioipsl_getin_p_mod, ONLY : getin_p
2318    USE phys_state_var_mod, ONLY : fm_therm, detr_therm, entr_therm
2319
2320    IMPLICIT none
2321
2322    INCLUDE "YOMCST.h"
2323    INCLUDE "nuage.h"
2324
2325    INTEGER, INTENT(IN) :: ind1,ind2, klev           ! horizontal and vertical indices and dimensions
2326    INTEGER, INTENT(IN) :: iflag_topthermals         ! uppermost layer of thermals ?
2327    REAL, INTENT(IN)    :: Ni                        ! ice number concentration [m-3]
2328    REAL, INTENT(IN)    :: Ei                        ! ice-droplet collision efficiency
2329    REAL, INTENT(IN)    :: C_cap                     ! ice crystal capacitance
2330    REAL, INTENT(IN)    :: d_top                     ! cloud-top ice crystal mixing parameter
2331    REAL,  DIMENSION(klev), INTENT(IN) :: temp       ! temperature [K] within thermals
2332    REAL,  DIMENSION(klev), INTENT(IN) :: pres       ! pressure [Pa]
2333    REAL,  DIMENSION(klev), INTENT(IN) :: qth        ! mean specific water content in thermals [kg/kg]
2334    REAL,  DIMENSION(klev), INTENT(IN) :: qsith        ! saturation specific humidity wrt ice in thermals [kg/kg]
2335    REAL,  DIMENSION(klev), INTENT(IN) :: qlth       ! condensed liquid water in thermals, approximated value [kg/kg]
2336    REAL,  DIMENSION(klev), INTENT(IN) :: deltazlev  ! layer thickness [m]
2337    REAL,  DIMENSION(klev), INTENT(IN) :: vith       ! ice crystal fall velocity [m/s]
2338    REAL,  DIMENSION(klev+1), INTENT(IN) :: fraca      ! fraction of the mesh covered by thermals
2339    REAL,  DIMENSION(klev), INTENT(INOUT) :: qith       ! condensed ice water , thermals [kg/kg]
2340
2341
2342    INTEGER ind2p1,ind2p2
2343    REAL rho(klev)
2344    REAL unsurtaudet, unsurtaustardep, unsurtaurim
2345    REAL qi, AA, BB, Ka, Dv, rhoi
2346    REAL p0, t0, fp1, fp2
2347    REAL alpha, flux_term
2348    REAL det_term, precip_term, rim_term, dep_term
2349
2350
2351    ind2p1=ind2+1
2352    ind2p2=ind2+2
2353
2354    rho=pres/temp/RD  ! air density kg/m3
2355
2356    Ka=2.4e-2      ! thermal conductivity of the air, SI
2357    p0=101325.0    ! ref pressure
2358    T0=273.15      ! ref temp
2359    rhoi=500.0     ! cloud ice density following Reisner et al. 1998
2360    alpha=700.     ! fallvelocity param
2361
2362
2363    IF (iflag_topthermals .GT. 0) THEN ! uppermost thermals levels
2364
2365    Dv=0.0001*0.211*(p0/pres(ind2))*((temp(ind2)/T0)**1.94) ! water vapor diffusivity in air, SI
2366
2367    ! Detrainment term:
2368
2369    unsurtaudet=detr_therm(ind1,ind2)/rho(ind2)/deltazlev(ind2)
2370 
2371
2372    ! Deposition term
2373    AA=RLSTT/Ka/temp(ind2)*(RLSTT/RV/temp(ind2)-1.)
2374    BB=1./(rho(ind2)*Dv*qsith(ind2))
2375    unsurtaustardep=C_cap*(Ni**0.66)*(qth(ind2)-qsith(ind2))/qsith(ind2) &
2376                    *4.*RPI/(AA+BB)*(6.*rho(ind2)/rhoi/RPI/Gamma(4.))**(0.33)
2377
2378    ! Riming term  neglected at this level
2379    !unsurtaurim=rho(ind2)*alpha*3./rhoi/2.*Ei*qlth(ind2)*((p0/pres(ind2))**0.4)
2380
2381    qi=fraca(ind2)*unsurtaustardep/MAX((d_top*unsurtaudet),1E-12)
2382    qi=MAX(qi,0.)**(3./2.)
2383
2384    ELSE ! other levels, estimate qi(k) from variables at k+1 and k+2
2385
2386    Dv=0.0001*0.211*(p0/pres(ind2p1))*((temp(ind2p1)/T0)**1.94) ! water vapor diffusivity in air, SI
2387
2388    ! Detrainment term:
2389
2390    unsurtaudet=detr_therm(ind1,ind2p1)/rho(ind2p1)/deltazlev(ind2p1)
2391    det_term=-unsurtaudet*qith(ind2p1)*rho(ind2p1)
2392   
2393   
2394    ! Deposition term
2395
2396    AA=RLSTT/Ka/temp(ind2p1)*(RLSTT/RV/temp(ind2p1)-1.)
2397    BB=1./(rho(ind2p1)*Dv*qsith(ind2p1))
2398    unsurtaustardep=C_cap*(Ni**0.66)*(qth(ind2p1)-qsith(ind2p1)) &
2399         /qsith(ind2p1)*4.*RPI/(AA+BB) &
2400         *(6.*rho(ind2p1)/rhoi/RPI/Gamma(4.))**(0.33)
2401    dep_term=rho(ind2p1)*fraca(ind2p1)*(qith(ind2p1)**0.33)*unsurtaustardep
2402 
2403    ! Riming term
2404
2405    unsurtaurim=rho(ind2p1)*alpha*3./rhoi/2.*Ei*qlth(ind2p1)*((p0/pres(ind2p1))**0.4)
2406    rim_term=rho(ind2p1)*fraca(ind2p1)*qith(ind2p1)*unsurtaurim
2407
2408    ! Precip term
2409
2410    ! We assume that there is no solid precipitation outside thermals
2411    ! so the precipitation flux within thermals is equal to the precipitation flux
2412    ! at mesh-scale divided by  thermals fraction
2413   
2414    fp2=0.
2415    fp1=0.
2416    IF (fraca(ind2p1) .GT. 0.) THEN
2417    fp2=-qith(ind2p2)*rho(ind2p2)*vith(ind2p2)*fraca(ind2p2)! flux defined positive upward
2418    fp1=-qith(ind2p1)*rho(ind2p1)*vith(ind2p1)*fraca(ind2p1)
2419    ENDIF
2420
2421    precip_term=-1./deltazlev(ind2p1)*(fp2-fp1)
2422
2423    ! Calculation in a top-to-bottom loop
2424
2425    IF (fm_therm(ind1,ind2p1) .GT. 0.) THEN
2426          qi= 1./fm_therm(ind1,ind2p1)* &
2427              (deltazlev(ind2p1)*(-rim_term-dep_term-det_term-precip_term) + &
2428              fm_therm(ind1,ind2p2)*(qith(ind2p1)))
2429    END IF
2430
2431    ENDIF ! top thermals
2432
2433    qith(ind2)=MAX(0.,qi)
2434
2435    RETURN
2436
2437END SUBROUTINE ICE_MPC_BL_CLOUDS
2438
2439
2440
2441
2442END MODULE cloudth_mod
2443
2444
2445
2446
Note: See TracBrowser for help on using the repository browser.