1 | ! %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
---|
2 | ! Copyright (c) 2015, Regents of the University of Colorado |
---|
3 | ! All rights reserved. |
---|
4 | ! |
---|
5 | ! Redistribution and use in source and binary forms, with or without modification, are |
---|
6 | ! permitted provided that the following conditions are met: |
---|
7 | ! |
---|
8 | ! 1. Redistributions of source code must retain the above copyright notice, this list of |
---|
9 | ! conditions and the following disclaimer. |
---|
10 | ! |
---|
11 | ! 2. Redistributions in binary form must reproduce the above copyright notice, this list |
---|
12 | ! of conditions and the following disclaimer in the documentation and/or other |
---|
13 | ! materials provided with the distribution. |
---|
14 | ! |
---|
15 | ! 3. Neither the name of the copyright holder nor the names of its contributors may be |
---|
16 | ! used to endorse or promote products derived from this software without specific prior |
---|
17 | ! written permission. |
---|
18 | ! |
---|
19 | ! THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY |
---|
20 | ! EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF |
---|
21 | ! MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL |
---|
22 | ! THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
---|
23 | ! SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT |
---|
24 | ! OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS |
---|
25 | ! INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT |
---|
26 | ! LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
---|
27 | ! OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
---|
28 | ! |
---|
29 | ! History: |
---|
30 | ! 05/01/15 Dustin Swales - Original version |
---|
31 | ! 04/04/18 Rodrigo Guzman- Added CALIOP-like Ground LIDar routines (GLID) |
---|
32 | ! 10/04/18 Rodrigo Guzman- Added ATLID-like (EarthCare) lidar routines (ATLID) |
---|
33 | ! |
---|
34 | ! %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
---|
35 | module cosp_optics |
---|
36 | USE COSP_KINDS, ONLY: wp,dp |
---|
37 | USE COSP_MATH_CONSTANTS, ONLY: pi |
---|
38 | USE COSP_PHYS_CONSTANTS, ONLY: rholiq,km,rd,grav |
---|
39 | USE MOD_MODIS_SIM, ONLY: get_g_nir,get_ssa_nir,phaseIsLiquid,phaseIsIce |
---|
40 | implicit none |
---|
41 | |
---|
42 | real(wp),parameter :: & ! |
---|
43 | ice_density = 0.93_wp ! Ice density used in MODIS phase partitioning |
---|
44 | |
---|
45 | interface cosp_simulator_optics |
---|
46 | module procedure cosp_simulator_optics2D, cosp_simulator_optics3D |
---|
47 | end interface cosp_simulator_optics |
---|
48 | |
---|
49 | contains |
---|
50 | ! ########################################################################## |
---|
51 | ! COSP_SIMULATOR_OPTICS |
---|
52 | ! |
---|
53 | ! Used by: ISCCP, MISR and MODIS simulators |
---|
54 | ! ########################################################################## |
---|
55 | subroutine cosp_simulator_optics2D(dim1,dim2,dim3,flag,varIN1,varIN2,varOUT) |
---|
56 | ! INPUTS |
---|
57 | integer,intent(in) :: & |
---|
58 | dim1, & ! Dimension 1 extent (Horizontal) |
---|
59 | dim2, & ! Dimension 2 extent (Subcolumn) |
---|
60 | dim3 ! Dimension 3 extent (Vertical) |
---|
61 | real(wp),intent(in),dimension(dim1,dim2,dim3) :: & |
---|
62 | flag ! Logical to determine the of merge var1IN and var2IN |
---|
63 | real(wp),intent(in),dimension(dim1, dim3) :: & |
---|
64 | varIN1, & ! Input field 1 |
---|
65 | varIN2 ! Input field 2 |
---|
66 | ! OUTPUTS |
---|
67 | real(wp),intent(out),dimension(dim1,dim2,dim3) :: & |
---|
68 | varOUT ! Merged output field |
---|
69 | ! LOCAL VARIABLES |
---|
70 | integer :: j |
---|
71 | |
---|
72 | varOUT(1:dim1,1:dim2,1:dim3) = 0._wp |
---|
73 | do j=1,dim2 |
---|
74 | where(flag(:,j,:) .eq. 1) |
---|
75 | varOUT(:,j,:) = varIN2 |
---|
76 | endwhere |
---|
77 | where(flag(:,j,:) .eq. 2) |
---|
78 | varOUT(:,j,:) = varIN1 |
---|
79 | endwhere |
---|
80 | enddo |
---|
81 | end subroutine cosp_simulator_optics2D |
---|
82 | subroutine cosp_simulator_optics3D(dim1,dim2,dim3,flag,varIN1,varIN2,varOUT) |
---|
83 | ! INPUTS |
---|
84 | integer,intent(in) :: & |
---|
85 | dim1, & ! Dimension 1 extent (Horizontal) |
---|
86 | dim2, & ! Dimension 2 extent (Subcolumn) |
---|
87 | dim3 ! Dimension 3 extent (Vertical) |
---|
88 | real(wp),intent(in),dimension(dim1,dim2,dim3) :: & |
---|
89 | flag ! Logical to determine the of merge var1IN and var2IN |
---|
90 | real(wp),intent(in),dimension(dim1,dim2,dim3) :: & |
---|
91 | varIN1, & ! Input field 1 |
---|
92 | varIN2 ! Input field 2 |
---|
93 | ! OUTPUTS |
---|
94 | real(wp),intent(out),dimension(dim1,dim2,dim3) :: & |
---|
95 | varOUT ! Merged output field |
---|
96 | |
---|
97 | varOUT(1:dim1,1:dim2,1:dim3) = 0._wp |
---|
98 | where(flag(:,:,:) .eq. 1) |
---|
99 | varOUT(:,:,:) = varIN2 |
---|
100 | endwhere |
---|
101 | where(flag(:,:,:) .eq. 2) |
---|
102 | varOUT(:,:,:) = varIN1 |
---|
103 | endwhere |
---|
104 | |
---|
105 | end subroutine cosp_simulator_optics3D |
---|
106 | |
---|
107 | ! ############################################################################## |
---|
108 | ! MODIS_OPTICS_PARTITION |
---|
109 | ! |
---|
110 | ! For the MODIS simulator, there are times when only a sinlge optical depth |
---|
111 | ! profile, cloud-ice and cloud-water are provided. In this case, the optical |
---|
112 | ! depth is partitioned by phase. |
---|
113 | ! ############################################################################## |
---|
114 | subroutine MODIS_OPTICS_PARTITION(npoints,nlev,ncolumns,cloudWater,cloudIce,waterSize, & |
---|
115 | iceSize,tau,tauL,tauI) |
---|
116 | ! INPUTS |
---|
117 | INTEGER,intent(in) :: & |
---|
118 | npoints, & ! Number of horizontal gridpoints |
---|
119 | nlev, & ! Number of levels |
---|
120 | ncolumns ! Number of subcolumns |
---|
121 | REAL(wp),intent(in),dimension(npoints,nlev,ncolumns) :: & |
---|
122 | cloudWater, & ! Subcolumn cloud water content |
---|
123 | cloudIce, & ! Subcolumn cloud ice content |
---|
124 | waterSize, & ! Subcolumn cloud water effective radius |
---|
125 | iceSize, & ! Subcolumn cloud ice effective radius |
---|
126 | tau ! Optical thickness |
---|
127 | |
---|
128 | ! OUTPUTS |
---|
129 | real(wp),intent(out),dimension(npoints,nlev,ncolumns) :: & |
---|
130 | tauL, & ! Partitioned liquid optical thickness. |
---|
131 | tauI ! Partitioned ice optical thickness. |
---|
132 | ! LOCAL VARIABLES |
---|
133 | real(wp),dimension(nlev,ncolumns) :: fracL |
---|
134 | integer :: i |
---|
135 | |
---|
136 | |
---|
137 | do i=1,npoints |
---|
138 | where(cloudIce(i,:, :) <= 0.) |
---|
139 | fracL(:, :) = 1._wp |
---|
140 | elsewhere |
---|
141 | where (cloudWater(i,:, :) <= 0.) |
---|
142 | fracL(:, :) = 0._wp |
---|
143 | elsewhere |
---|
144 | ! Geometic optics limit - tau as LWP/re (proportional to LWC/re) |
---|
145 | fracL(:, :) = (cloudWater(i,:, :)/waterSize(i,:, :)) / & |
---|
146 | (cloudWater(i,:, :)/waterSize(i,:, :) + cloudIce(i,:, :)/(ice_density * iceSize(i,:, :)) ) |
---|
147 | end where |
---|
148 | end where |
---|
149 | tauL(i,:, :) = fracL(:, :) * tau(i,:, :) |
---|
150 | tauI(i,:, :) = tau(i,:, :) - tauL(i,:, :) |
---|
151 | enddo |
---|
152 | |
---|
153 | end subroutine MODIS_OPTICS_PARTITION |
---|
154 | ! ######################################################################################## |
---|
155 | ! MODIS_OPTICS |
---|
156 | ! |
---|
157 | ! ######################################################################################## |
---|
158 | subroutine modis_optics(nPoints,nLevels,nSubCols,tauLIQ,sizeLIQ,tauICE,sizeICE,fracLIQ, g, w0) |
---|
159 | ! INPUTS |
---|
160 | integer, intent(in) :: nPoints,nLevels,nSubCols |
---|
161 | real(wp),intent(in),dimension(nPoints,nSubCols,nLevels) :: tauLIQ, sizeLIQ, tauICE, sizeICE |
---|
162 | ! OUTPUTS |
---|
163 | real(wp),intent(out),dimension(nPoints,nSubCols,nLevels) :: g,w0,fracLIQ |
---|
164 | ! LOCAL VARIABLES |
---|
165 | real(wp), dimension(nLevels) :: water_g, water_w0, ice_g, ice_w0,tau |
---|
166 | integer :: i,j |
---|
167 | |
---|
168 | ! Initialize |
---|
169 | g(1:nPoints,1:nSubCols,1:nLevels) = 0._wp |
---|
170 | w0(1:nPoints,1:nSubCols,1:nLevels) = 0._wp |
---|
171 | |
---|
172 | do j =1,nPoints |
---|
173 | do i=1,nSubCols |
---|
174 | water_g(1:nLevels) = get_g_nir( phaseIsLiquid, sizeLIQ(j,i,1:nLevels)) |
---|
175 | water_w0(1:nLevels) = get_ssa_nir(phaseIsLiquid, sizeLIQ(j,i,1:nLevels)) |
---|
176 | ice_g(1:nLevels) = get_g_nir( phaseIsIce, sizeICE(j,i,1:nLevels)) |
---|
177 | ice_w0(1:nLevels) = get_ssa_nir(phaseIsIce, sizeICE(j,i,1:nLevels)) |
---|
178 | |
---|
179 | ! Combine ice and water optical properties |
---|
180 | tau(1:nLevels) = tauICE(j,i,1:nLevels) + tauLIQ(j,i,1:nLevels) |
---|
181 | where (tau(1:nLevels) > 0) |
---|
182 | w0(j,i,1:nLevels) = (tauLIQ(j,i,1:nLevels)*water_w0(1:nLevels) + tauICE(j,i,1:nLevels) *ice_w0(1:nLevels)) / & |
---|
183 | (tau(1:nLevels)) |
---|
184 | g(j,i,1:nLevels) = (tauLIQ(j,i,1:nLevels)*water_g(1:nLevels)*water_w0(1:nLevels) + tauICE(j,i,1:nLevels) * & |
---|
185 | ice_g(1:nLevels) * ice_w0(1:nLevels)) / (w0(j,i,1:nLevels) * tau(1:nLevels)) |
---|
186 | end where |
---|
187 | enddo |
---|
188 | enddo |
---|
189 | |
---|
190 | ! Compute the total optical thickness and the proportion due to liquid in each cell |
---|
191 | do i=1,npoints |
---|
192 | where(tauLIQ(i,1:nSubCols,1:nLevels) + tauICE(i,1:nSubCols,1:nLevels) > 0.) |
---|
193 | fracLIQ(i,1:nSubCols,1:nLevels) = tauLIQ(i,1:nSubCols,1:nLevels)/ & |
---|
194 | (tauLIQ(i,1:nSubCols,1:nLevels) + tauICE(i,1:nSubCols,1:nLevels)) |
---|
195 | elsewhere |
---|
196 | fracLIQ(i,1:nSubCols,1:nLevels) = 0._wp |
---|
197 | end where |
---|
198 | enddo |
---|
199 | |
---|
200 | end subroutine modis_optics |
---|
201 | |
---|
202 | ! ###################################################################################### |
---|
203 | ! SUBROUTINE lidar_optics |
---|
204 | ! ###################################################################################### |
---|
205 | subroutine lidar_optics(npoints, ncolumns, nlev, npart, ice_type, lidar_freq, lground, & |
---|
206 | q_lsliq, q_lsice, q_cvliq, q_cvice, ls_radliq, ls_radice, cv_radliq, cv_radice, & |
---|
207 | pres, presf, temp, beta_mol, betatot, tau_mol, tautot, tautot_S_liq, tautot_S_ice,& |
---|
208 | betatot_ice, betatot_liq, tautot_ice, tautot_liq) |
---|
209 | |
---|
210 | ! #################################################################################### |
---|
211 | ! NOTE: Using "grav" from cosp_constants.f90, instead of grav=9.81, introduces |
---|
212 | ! changes of up to 2% in atb532 adn 0.003% in parasolRefl and lidarBetaMol532. |
---|
213 | ! This also results in small changes in the joint-histogram, cfadLidarsr532. |
---|
214 | ! #################################################################################### |
---|
215 | |
---|
216 | ! INPUTS |
---|
217 | INTEGER,intent(in) :: & |
---|
218 | npoints, & ! Number of gridpoints |
---|
219 | ncolumns, & ! Number of subcolumns |
---|
220 | nlev, & ! Number of levels |
---|
221 | npart, & ! Number of cloud meteors (stratiform_liq, stratiform_ice, conv_liq, conv_ice). |
---|
222 | ice_type, & ! Ice particle shape hypothesis (0 for spheres, 1 for non-spherical) |
---|
223 | lidar_freq ! Lidar frequency (nm). Use to change between lidar platforms |
---|
224 | logical,intent(in) :: & |
---|
225 | lground ! True for ground-based lidar |
---|
226 | REAL(WP),intent(in),dimension(npoints,nlev) :: & |
---|
227 | temp, & ! Temperature of layer k |
---|
228 | pres, & ! Pressure at full levels |
---|
229 | ls_radliq, & ! Effective radius of LS liquid particles (meters) |
---|
230 | ls_radice, & ! Effective radius of LS ice particles (meters) |
---|
231 | cv_radliq, & ! Effective radius of CONV liquid particles (meters) |
---|
232 | cv_radice ! Effective radius of CONV ice particles (meters) |
---|
233 | REAL(WP),intent(in),dimension(npoints,ncolumns,nlev) :: & |
---|
234 | q_lsliq, & ! LS sub-column liquid water mixing ratio (kg/kg) |
---|
235 | q_lsice, & ! LS sub-column ice water mixing ratio (kg/kg) |
---|
236 | q_cvliq, & ! CONV sub-column liquid water mixing ratio (kg/kg) |
---|
237 | q_cvice ! CONV sub-column ice water mixing ratio (kg/kg) |
---|
238 | REAL(WP),intent(in),dimension(npoints,nlev+1) :: & |
---|
239 | presf ! Pressure at half levels |
---|
240 | |
---|
241 | ! OUTPUTS |
---|
242 | REAL(WP),intent(out),dimension(npoints,ncolumns,nlev) :: & |
---|
243 | betatot, & ! |
---|
244 | tautot ! Optical thickess integrated from top |
---|
245 | REAL(WP),intent(out),dimension(npoints,nlev) :: & |
---|
246 | beta_mol, & ! Molecular backscatter coefficient |
---|
247 | tau_mol ! Molecular optical depth |
---|
248 | ! OUTPUTS (optional) |
---|
249 | REAL(WP),optional,intent(out),dimension(npoints,ncolumns) :: & |
---|
250 | tautot_S_liq, & ! TOA optical depth for liquid |
---|
251 | tautot_S_ice ! TOA optical depth for ice |
---|
252 | REAL(WP),optional,intent(out),dimension(npoints,ncolumns,nlev) :: & |
---|
253 | betatot_ice, & ! Backscatter coefficient for ice particles |
---|
254 | betatot_liq, & ! Backscatter coefficient for liquid particles |
---|
255 | tautot_ice, & ! Total optical thickness of ice |
---|
256 | tautot_liq ! Total optical thickness of liq |
---|
257 | |
---|
258 | ! LOCAL VARIABLES |
---|
259 | REAL(WP),dimension(npart) :: rhopart |
---|
260 | REAL(WP),dimension(npart,5) :: polpart |
---|
261 | REAL(WP),dimension(npoints,nlev) :: rhoair,alpha_mol |
---|
262 | REAL(WP),dimension(npoints,nlev+1) :: zheight |
---|
263 | REAL(WP),dimension(npoints,nlev,npart) :: rad_part,kp_part,qpart,alpha_part,tau_part |
---|
264 | real(wp) :: Cmol,rdiffm |
---|
265 | logical :: lparasol,lphaseoptics |
---|
266 | INTEGER :: i,k,icol,zi,zf,zinc,zoffset |
---|
267 | |
---|
268 | ! Local data |
---|
269 | REAL(WP),PARAMETER :: rhoice = 0.5e+03 ! Density of ice (kg/m3) |
---|
270 | REAL(WP),PARAMETER :: Cmol_532nm = 6.2446e-32 ! Wavelength dependent |
---|
271 | REAL(WP),PARAMETER :: Cmol_355nm = 3.2662e-31! Wavelength dependent |
---|
272 | REAL(WP),PARAMETER :: rdiffm_532nm = 0.7_wp ! Multiple scattering correction parameter |
---|
273 | REAL(WP),PARAMETER :: rdiffm_355nm = 0.6_wp ! Multiple scattering correction parameter |
---|
274 | REAL(WP),PARAMETER :: Qscat = 2.0_wp ! Particle scattering efficiency at 532 nm |
---|
275 | ! Local indicies for large-scale and convective ice and liquid |
---|
276 | INTEGER,PARAMETER :: INDX_LSLIQ = 1 |
---|
277 | INTEGER,PARAMETER :: INDX_LSICE = 2 |
---|
278 | INTEGER,PARAMETER :: INDX_CVLIQ = 3 |
---|
279 | INTEGER,PARAMETER :: INDX_CVICE = 4 |
---|
280 | |
---|
281 | ! Polarized optics parameterization |
---|
282 | ! Polynomial coefficients for spherical liq/ice particles derived from Mie theory. |
---|
283 | ! Polynomial coefficients for non spherical particles derived from a composite of |
---|
284 | ! Ray-tracing theory for large particles (e.g. Noel et al., Appl. Opt., 2001) |
---|
285 | ! and FDTD theory for very small particles (Yang et al., JQSRT, 2003). |
---|
286 | ! We repeat the same coefficients for LS and CONV cloud to make code more readable |
---|
287 | REAL(WP),PARAMETER,dimension(5) :: & |
---|
288 | polpartCVLIQ = (/ 2.6980e-8_wp, -3.7701e-6_wp, 1.6594e-4_wp, -0.0024_wp, 0.0626_wp/), & |
---|
289 | polpartLSLIQ = (/ 2.6980e-8_wp, -3.7701e-6_wp, 1.6594e-4_wp, -0.0024_wp, 0.0626_wp/), & |
---|
290 | polpartCVICE0 = (/-1.0176e-8_wp, 1.7615e-6_wp, -1.0480e-4_wp, 0.0019_wp, 0.0460_wp/), & |
---|
291 | polpartLSICE0 = (/-1.0176e-8_wp, 1.7615e-6_wp, -1.0480e-4_wp, 0.0019_wp, 0.0460_wp/), & |
---|
292 | polpartCVICE1 = (/ 1.3615e-8_wp, -2.04206e-6_wp, 7.51799e-5_wp, 0.00078213_wp, 0.0182131_wp/), & |
---|
293 | polpartLSICE1 = (/ 1.3615e-8_wp, -2.04206e-6_wp, 7.51799e-5_wp, 0.00078213_wp, 0.0182131_wp/) |
---|
294 | ! ############################################################################## |
---|
295 | |
---|
296 | ! Which LIDAR frequency are we using? |
---|
297 | if (lidar_freq .eq. 355) then |
---|
298 | Cmol = Cmol_355nm |
---|
299 | rdiffm = rdiffm_355nm |
---|
300 | endif |
---|
301 | if (lidar_freq .eq. 532) then |
---|
302 | Cmol = Cmol_532nm |
---|
303 | rdiffm = rdiffm_532nm |
---|
304 | endif |
---|
305 | |
---|
306 | ! Do we need to generate optical inputs for Parasol simulator? |
---|
307 | lparasol = .false. |
---|
308 | if (present(tautot_S_liq) .and. present(tautot_S_ice)) lparasol = .true. |
---|
309 | |
---|
310 | ! Are optical-depths and backscatter coefficients for ice and liquid requested? |
---|
311 | lphaseoptics=.false. |
---|
312 | if (present(betatot_ice) .and. present(betatot_liq) .and. present(tautot_liq) .and. & |
---|
313 | present(tautot_ice)) lphaseoptics=.true. |
---|
314 | |
---|
315 | ! Is this lidar spaceborne (default) or ground-based (lground=.true.)? |
---|
316 | zi = 2 |
---|
317 | zf = nlev |
---|
318 | zinc = 1 |
---|
319 | zoffset = -1 |
---|
320 | if (lground) then |
---|
321 | zi = nlev-1 |
---|
322 | zf = 1 |
---|
323 | zinc = -1 |
---|
324 | zoffset = 1 |
---|
325 | endif |
---|
326 | |
---|
327 | ! Liquid/ice particles |
---|
328 | rhopart(INDX_LSLIQ) = rholiq |
---|
329 | rhopart(INDX_LSICE) = rhoice |
---|
330 | rhopart(INDX_CVLIQ) = rholiq |
---|
331 | rhopart(INDX_CVICE) = rhoice |
---|
332 | |
---|
333 | ! LS and CONV Liquid water coefficients |
---|
334 | polpart(INDX_LSLIQ,1:5) = polpartLSLIQ |
---|
335 | polpart(INDX_CVLIQ,1:5) = polpartCVLIQ |
---|
336 | |
---|
337 | ! LS and CONV Ice water coefficients |
---|
338 | if (ice_type .eq. 0) then |
---|
339 | polpart(INDX_LSICE,1:5) = polpartLSICE0 |
---|
340 | polpart(INDX_CVICE,1:5) = polpartCVICE0 |
---|
341 | endif |
---|
342 | if (ice_type .eq. 1) then |
---|
343 | polpart(INDX_LSICE,1:5) = polpartLSICE1 |
---|
344 | polpart(INDX_CVICE,1:5) = polpartCVICE1 |
---|
345 | endif |
---|
346 | |
---|
347 | ! Effective radius particles: |
---|
348 | rad_part(1:npoints,1:nlev,INDX_LSLIQ) = ls_radliq(1:npoints,1:nlev) |
---|
349 | rad_part(1:npoints,1:nlev,INDX_LSICE) = ls_radice(1:npoints,1:nlev) |
---|
350 | rad_part(1:npoints,1:nlev,INDX_CVLIQ) = cv_radliq(1:npoints,1:nlev) |
---|
351 | rad_part(1:npoints,1:nlev,INDX_CVICE) = cv_radice(1:npoints,1:nlev) |
---|
352 | rad_part(1:npoints,1:nlev,1:npart) = MAX(rad_part(1:npoints,1:nlev,1:npart),0._wp) |
---|
353 | rad_part(1:npoints,1:nlev,1:npart) = MIN(rad_part(1:npoints,1:nlev,1:npart),70.0e-6_wp) |
---|
354 | |
---|
355 | ! Density (clear-sky air) |
---|
356 | rhoair(1:npoints,1:nlev) = pres(1:npoints,1:nlev)/(rd*temp(1:npoints,1:nlev)) |
---|
357 | |
---|
358 | ! Altitude at half pressure levels: |
---|
359 | zheight(1:npoints,nlev+1) = 0._wp |
---|
360 | do k=nlev,1,-1 |
---|
361 | zheight(1:npoints,k) = zheight(1:npoints,k+1) & |
---|
362 | -(presf(1:npoints,k)-presf(1:npoints,k+1))/(rhoair(1:npoints,k)*grav) |
---|
363 | enddo |
---|
364 | |
---|
365 | ! ############################################################################## |
---|
366 | ! *) Molecular alpha, beta and optical thickness |
---|
367 | ! ############################################################################## |
---|
368 | |
---|
369 | beta_mol(1:npoints,1:nlev) = pres(1:npoints,1:nlev)/km/temp(1:npoints,1:nlev)*Cmol |
---|
370 | alpha_mol(1:npoints,1:nlev) = 8._wp*pi/3._wp * beta_mol(1:npoints,1:nlev) |
---|
371 | |
---|
372 | ! Optical thickness of each layer (molecular) |
---|
373 | tau_mol(1:npoints,1:nlev) = alpha_mol(1:npoints,1:nlev)*(zheight(1:npoints,1:nlev)-& |
---|
374 | zheight(1:npoints,2:nlev+1)) |
---|
375 | |
---|
376 | ! Optical thickness from TOA to layer k (molecular) |
---|
377 | DO k = zi,zf,zinc |
---|
378 | tau_mol(1:npoints,k) = tau_mol(1:npoints,k) + tau_mol(1:npoints,k+zoffset) |
---|
379 | ENDDO |
---|
380 | |
---|
381 | betatot (1:npoints,1:ncolumns,1:nlev) = spread(beta_mol(1:npoints,1:nlev), dim=2, NCOPIES=ncolumns) |
---|
382 | tautot (1:npoints,1:ncolumns,1:nlev) = spread(tau_mol (1:npoints,1:nlev), dim=2, NCOPIES=ncolumns) |
---|
383 | if (lphaseoptics) then |
---|
384 | betatot_liq(1:npoints,1:ncolumns,1:nlev) = betatot(1:npoints,1:ncolumns,1:nlev) |
---|
385 | betatot_ice(1:npoints,1:ncolumns,1:nlev) = betatot(1:npoints,1:ncolumns,1:nlev) |
---|
386 | tautot_liq (1:npoints,1:ncolumns,1:nlev) = tautot(1:npoints,1:ncolumns,1:nlev) |
---|
387 | tautot_ice (1:npoints,1:ncolumns,1:nlev) = tautot(1:npoints,1:ncolumns,1:nlev) |
---|
388 | endif |
---|
389 | |
---|
390 | ! ############################################################################## |
---|
391 | ! *) Particles alpha, beta and optical thickness |
---|
392 | ! ############################################################################## |
---|
393 | ! Polynomials kp_lidar derived from Mie theory |
---|
394 | do i = 1, npart |
---|
395 | where (rad_part(1:npoints,1:nlev,i) .gt. 0.0) |
---|
396 | kp_part(1:npoints,1:nlev,i) = & |
---|
397 | polpart(i,1)*(rad_part(1:npoints,1:nlev,i)*1e6)**4 & |
---|
398 | + polpart(i,2)*(rad_part(1:npoints,1:nlev,i)*1e6)**3 & |
---|
399 | + polpart(i,3)*(rad_part(1:npoints,1:nlev,i)*1e6)**2 & |
---|
400 | + polpart(i,4)*(rad_part(1:npoints,1:nlev,i)*1e6) & |
---|
401 | + polpart(i,5) |
---|
402 | elsewhere |
---|
403 | kp_part(1:npoints,1:nlev,i) = 0._wp |
---|
404 | endwhere |
---|
405 | enddo |
---|
406 | |
---|
407 | ! Initialize (if necessary) |
---|
408 | if (lparasol) then |
---|
409 | tautot_S_liq(1:npoints,1:ncolumns) = 0._wp |
---|
410 | tautot_S_ice(1:npoints,1:ncolumns) = 0._wp |
---|
411 | endif |
---|
412 | |
---|
413 | ! Loop over all subcolumns |
---|
414 | do icol=1,ncolumns |
---|
415 | ! ############################################################################## |
---|
416 | ! Mixing ratio particles in each subcolum |
---|
417 | ! ############################################################################## |
---|
418 | qpart(1:npoints,1:nlev,INDX_LSLIQ) = q_lsliq(1:npoints,icol,1:nlev) |
---|
419 | qpart(1:npoints,1:nlev,INDX_LSICE) = q_lsice(1:npoints,icol,1:nlev) |
---|
420 | qpart(1:npoints,1:nlev,INDX_CVLIQ) = q_cvliq(1:npoints,icol,1:nlev) |
---|
421 | qpart(1:npoints,1:nlev,INDX_CVICE) = q_cvice(1:npoints,icol,1:nlev) |
---|
422 | |
---|
423 | ! ############################################################################## |
---|
424 | ! Alpha and optical thickness (particles) |
---|
425 | ! ############################################################################## |
---|
426 | ! Alpha of particles in each subcolumn: |
---|
427 | do i = 1, npart |
---|
428 | where (rad_part(1:npoints,1:nlev,i) .gt. 0.0) |
---|
429 | alpha_part(1:npoints,1:nlev,i) = 3._wp/4._wp * Qscat & |
---|
430 | * rhoair(1:npoints,1:nlev) * qpart(1:npoints,1:nlev,i) & |
---|
431 | / (rhopart(i) * rad_part(1:npoints,1:nlev,i) ) |
---|
432 | elsewhere |
---|
433 | alpha_part(1:npoints,1:nlev,i) = 0._wp |
---|
434 | endwhere |
---|
435 | enddo |
---|
436 | |
---|
437 | ! Optical thicknes |
---|
438 | tau_part(1:npoints,1:nlev,1:npart) = rdiffm * alpha_part(1:npoints,1:nlev,1:npart) |
---|
439 | do i = 1, npart |
---|
440 | ! Optical thickness of each layer (particles) |
---|
441 | tau_part(1:npoints,1:nlev,i) = tau_part(1:npoints,1:nlev,i) & |
---|
442 | & * (zheight(1:npoints,1:nlev)-zheight(1:npoints,2:nlev+1) ) |
---|
443 | ! Optical thickness from TOA to layer k (particles) |
---|
444 | do k=zi,zf,zinc |
---|
445 | tau_part(1:npoints,k,i) = tau_part(1:npoints,k,i) + tau_part(1:npoints,k+zoffset,i) |
---|
446 | enddo |
---|
447 | enddo |
---|
448 | |
---|
449 | ! ############################################################################## |
---|
450 | ! Beta and optical thickness (total=molecular + particules) |
---|
451 | ! ############################################################################## |
---|
452 | |
---|
453 | DO i = 1, npart |
---|
454 | betatot(1:npoints,icol,1:nlev) = betatot(1:npoints,icol,1:nlev) + & |
---|
455 | kp_part(1:npoints,1:nlev,i)*alpha_part(1:npoints,1:nlev,i) |
---|
456 | tautot(1:npoints,icol,1:nlev) = tautot(1:npoints,icol,1:nlev) + & |
---|
457 | tau_part(1:npoints,1:nlev,i) |
---|
458 | ENDDO |
---|
459 | |
---|
460 | ! ############################################################################## |
---|
461 | ! Beta and optical thickness (liquid/ice) |
---|
462 | ! ############################################################################## |
---|
463 | if (lphaseoptics) then |
---|
464 | ! Ice |
---|
465 | betatot_ice(1:npoints,icol,1:nlev) = betatot_ice(1:npoints,icol,1:nlev)+ & |
---|
466 | kp_part(1:npoints,1:nlev,INDX_LSICE)*alpha_part(1:npoints,1:nlev,INDX_LSICE)+ & |
---|
467 | kp_part(1:npoints,1:nlev,INDX_CVICE)*alpha_part(1:npoints,1:nlev,INDX_CVICE) |
---|
468 | tautot_ice(1:npoints,icol,1:nlev) = tautot_ice(1:npoints,icol,1:nlev) + & |
---|
469 | tau_part(1:npoints,1:nlev,INDX_LSICE) + & |
---|
470 | tau_part(1:npoints,1:nlev,INDX_CVICE) |
---|
471 | |
---|
472 | ! Liquid |
---|
473 | betatot_liq(1:npoints,icol,1:nlev) = betatot_liq(1:npoints,icol,1:nlev)+ & |
---|
474 | kp_part(1:npoints,1:nlev,INDX_LSLIQ)*alpha_part(1:npoints,1:nlev,INDX_LSLIQ)+ & |
---|
475 | kp_part(1:npoints,1:nlev,INDX_CVLIQ)*alpha_part(1:npoints,1:nlev,INDX_CVLIQ) |
---|
476 | tautot_liq(1:npoints,icol,1:nlev) = tautot_liq(1:npoints,icol,1:nlev) + & |
---|
477 | tau_part(1:npoints,1:nlev,INDX_LSLIQ) + & |
---|
478 | tau_part(1:npoints,1:nlev,INDX_CVLIQ) |
---|
479 | endif |
---|
480 | |
---|
481 | ! ############################################################################## |
---|
482 | ! Optical depths used by the PARASOL simulator |
---|
483 | ! ############################################################################## |
---|
484 | if (lparasol) then |
---|
485 | tautot_S_liq(:,icol) = tau_part(:,nlev,1)+tau_part(:,nlev,3) |
---|
486 | tautot_S_ice(:,icol) = tau_part(:,nlev,2)+tau_part(:,nlev,4) |
---|
487 | endif |
---|
488 | enddo |
---|
489 | |
---|
490 | end subroutine lidar_optics |
---|
491 | |
---|
492 | end module cosp_optics |
---|