source: LMDZ6/branches/Test_modipsl/libf/phylmd/ecrad/rrtm_taumol8.F90 @ 5458

Last change on this file since 5458 was 3908, checked in by idelkadi, 4 years ago

Online implementation of the radiative transfer code ECRAD in the LMDZ model.

  • Inclusion of the ecrad directory containing the sources of the ECRAD code
    • interface routine : radiation_scheme.F90
  • Adaptation of compilation scripts :
    • compilation under CPP key CPP_ECRAD
    • compilation with option "-rad ecard" or "-ecard true"
    • The "-rad old/rtm/ecran" build option will need to replace the "-rrtm true" and "-ecrad true" options in the future.
  • Runing LMDZ simulations with ecrad, you need :
    • logical key iflag_rrtm = 2 in physiq.def
    • namelist_ecrad (DefLists?)
    • the directory "data" containing the configuration files is temporarily placed in ../libfphylmd/ecrad/
  • Compilation and execution are tested in the 1D case. The repository under svn would allow to continue the implementation work: tests, verification of the results, ...
File size: 8.1 KB
Line 
1!*******************************************************************************
2SUBROUTINE RRTM_TAUMOL8 (KIDIA,KFDIA,KLEV,P_TAU,P_WX,&
3 & P_TAUAERL,P_FAC00,P_FAC01,P_FAC10,P_FAC11,P_FORFAC,P_FORFRAC,K_INDFOR,K_JP,K_JT,K_JT1,&
4 & P_COLH2O,P_COLO3,P_COLN2O,P_COLCO2,P_COLDRY,K_LAYTROP,P_SELFFAC,P_SELFFRAC,K_INDSELF,PFRAC, &
5 & PMINORFRAC,KINDMINOR) 
6
7!     BAND 8:  1080-1180 cm-1 (low (i.e.>~300mb) - H2O; high - O3)
8
9!     AUTHOR.
10!     -------
11!      JJMorcrette, ECMWF
12
13!     MODIFICATIONS.
14!     --------------
15!      M.Hamrud      01-Oct-2003 CY28 Cleaning
16!      NEC           25-Oct-2007 Optimisations
17!      JJMorcrette 20110613 flexible number of g-points
18!      ABozzo 201306 updated to rrtmg v4.85
19!     band 8:  1080-1180 cm-1 (low key - h2o; low minor - co2,o3,n2o)
20!                             (high key - o3; high minor - co2, n2o)
21! ---------------------------------------------------------------------------
22
23USE PARKIND1  ,ONLY : JPIM     ,JPRB
24USE YOMHOOK   ,ONLY : LHOOK,   DR_HOOK
25
26USE PARRRTM  , ONLY : JPBAND ,JPXSEC
27USE YOERRTM  , ONLY : JPGPT  ,NG8   ,NGS7
28USE YOERRTWN , ONLY : NSPA   ,NSPB
29USE YOERRTA8 , ONLY : ABSA   ,ABSB   ,FRACREFA, FRACREFB,SELFREF,KA_MCO2 ,KB_MCO2  ,&
30 & KA_MN2O , KB_MN2O,KA_MO3,CFC12  ,CFC22ADJ,FORREF 
31USE YOERRTRF, ONLY : CHI_MLS
32
33IMPLICIT NONE
34
35INTEGER(KIND=JPIM),INTENT(IN)    :: KIDIA
36INTEGER(KIND=JPIM),INTENT(IN)    :: KFDIA
37INTEGER(KIND=JPIM),INTENT(IN)    :: KLEV
38REAL(KIND=JPRB)   ,INTENT(OUT)   :: P_TAU(KIDIA:KFDIA,JPGPT,KLEV)
39REAL(KIND=JPRB)   ,INTENT(IN)    :: P_WX(KIDIA:KFDIA,JPXSEC,KLEV) ! Amount of trace gases
40REAL(KIND=JPRB)   ,INTENT(IN)    :: P_TAUAERL(KIDIA:KFDIA,KLEV,JPBAND)
41REAL(KIND=JPRB)   ,INTENT(IN)    :: P_FAC00(KIDIA:KFDIA,KLEV)
42REAL(KIND=JPRB)   ,INTENT(IN)    :: P_FAC01(KIDIA:KFDIA,KLEV)
43REAL(KIND=JPRB)   ,INTENT(IN)    :: P_FAC10(KIDIA:KFDIA,KLEV)
44REAL(KIND=JPRB)   ,INTENT(IN)    :: P_FAC11(KIDIA:KFDIA,KLEV)
45INTEGER(KIND=JPIM),INTENT(IN)    :: K_JP(KIDIA:KFDIA,KLEV)
46INTEGER(KIND=JPIM),INTENT(IN)    :: K_JT(KIDIA:KFDIA,KLEV)
47INTEGER(KIND=JPIM),INTENT(IN)    :: K_JT1(KIDIA:KFDIA,KLEV)
48REAL(KIND=JPRB)   ,INTENT(IN)    :: P_COLH2O(KIDIA:KFDIA,KLEV)
49REAL(KIND=JPRB)   ,INTENT(IN)    :: P_COLO3(KIDIA:KFDIA,KLEV)
50REAL(KIND=JPRB)   ,INTENT(IN)    :: P_COLN2O(KIDIA:KFDIA,KLEV)
51REAL(KIND=JPRB)   ,INTENT(IN)    :: P_COLCO2(KIDIA:KFDIA,KLEV)
52REAL(KIND=JPRB)   ,INTENT(IN)    :: P_COLDRY(KIDIA:KFDIA,KLEV)
53INTEGER(KIND=JPIM),INTENT(IN)    :: K_LAYTROP(KIDIA:KFDIA)
54REAL(KIND=JPRB)   ,INTENT(IN)    :: P_SELFFAC(KIDIA:KFDIA,KLEV)
55REAL(KIND=JPRB)   ,INTENT(IN)    :: P_SELFFRAC(KIDIA:KFDIA,KLEV)
56INTEGER(KIND=JPIM),INTENT(IN)    :: K_INDSELF(KIDIA:KFDIA,KLEV)
57REAL(KIND=JPRB)   ,INTENT(OUT)   :: PFRAC(KIDIA:KFDIA,JPGPT,KLEV)
58
59INTEGER(KIND=JPIM),INTENT(IN)   :: K_INDFOR(KIDIA:KFDIA,KLEV)
60REAL(KIND=JPRB)   ,INTENT(IN)   :: P_FORFRAC(KIDIA:KFDIA,KLEV)
61REAL(KIND=JPRB)   ,INTENT(IN)   :: P_FORFAC(KIDIA:KFDIA,KLEV)
62REAL(KIND=JPRB)   ,INTENT(IN)   :: PMINORFRAC(KIDIA:KFDIA,KLEV)
63INTEGER(KIND=JPIM),INTENT(IN)   :: KINDMINOR(KIDIA:KFDIA,KLEV)
64
65! ---------------------------------------------------------------------------
66
67INTEGER(KIND=JPIM) :: IND0(KLEV),IND1(KLEV),INDS(KLEV),INDF(KLEV),INDM(KLEV)
68
69INTEGER(KIND=JPIM) :: IG, JLAY
70INTEGER(KIND=JPIM) :: JLON
71
72REAL(KIND=JPRB) :: ZCHI_CO2, ZRATCO2, ZADJFAC, ZADJCOLCO2(KIDIA:KFDIA,KLEV)
73REAL(KIND=JPRB) :: ZTAUFOR,ZTAUSELF, ZABSO3, ZABSCO2, ZABSN2O
74REAL(KIND=JPRB) :: ZHOOK_HANDLE
75
76! Minor gas mapping level:
77!     lower - co2, p = 1053.63 mb, t = 294.2 k
78!     lower - o3,  p = 317.348 mb, t = 240.77 k
79!     lower - n2o, p = 706.2720 mb, t= 278.94 k
80!     lower - cfc12,cfc11
81!     upper - co2, p = 35.1632 mb, t = 223.28 k
82!     upper - n2o, p = 8.716e-2 mb, t = 226.03 k
83
84! Compute the optical depth by interpolating in ln(pressure) and
85! temperature, and appropriate species.  Below laytrop, the water vapor
86! self-continuum and foreign continuum is interpolated (in temperature)
87! separately.
88
89ASSOCIATE(NFLEVG=>KLEV)
90IF (LHOOK) CALL DR_HOOK('RRTM_TAUMOL8',0,ZHOOK_HANDLE)
91
92DO JLAY = 1, KLEV
93  DO JLON = KIDIA, KFDIA
94    IF (JLAY <= K_LAYTROP(JLON)) THEN
95! In atmospheres where the amount of CO2 is too great to be considered
96! a minor species, adjust the column amount of CO2 by an empirical factor
97! to obtain the proper contribution.
98      ZCHI_CO2 = P_COLCO2(JLON,JLAY)/P_COLDRY(JLON,JLAY)
99      ZRATCO2 = 1.E20_JPRB*ZCHI_CO2/CHI_MLS(2,K_JP(JLON,JLAY)+1)
100      IF (ZRATCO2 > 3.0_JPRB) THEN
101         ZADJFAC = 2.0_JPRB+(ZRATCO2-2.0_JPRB)**0.65_JPRB
102         ZADJCOLCO2(JLON,JLAY) = ZADJFAC*CHI_MLS(2,K_JP(JLON,JLAY)+1)*P_COLDRY(JLON,JLAY)*1.E-20_JPRB
103      ELSE
104         ZADJCOLCO2(JLON,JLAY) = P_COLCO2(JLON,JLAY)
105      ENDIF
106
107   
108      IND0(JLAY) = ((K_JP(JLON,JLAY)-1)*5+(K_JT(JLON,JLAY)-1))*NSPA(8) + 1
109      IND1(JLAY) = (K_JP(JLON,JLAY)*5+(K_JT1(JLON,JLAY)-1))*NSPA(8) + 1
110      INDS(JLAY) = K_INDSELF(JLON,JLAY)
111      INDF(JLAY) = K_INDFOR(JLON,JLAY)
112      INDM(JLAY) = KINDMINOR(JLON,JLAY)
113     
114!-- DS_000515
115!CDIR UNROLL=NG8
116      DO IG = 1, NG8
117!-- DS_000515
118         ZTAUSELF = P_SELFFAC(JLON,JLAY)* (SELFREF(INDS(JLAY),IG) + P_SELFFRAC(JLON,JLAY) * &
119           &      (SELFREF(INDS(JLAY)+1,IG) - SELFREF(INDS(JLAY),IG)))
120         ZTAUFOR = P_FORFAC(JLON,JLAY) * (FORREF(INDF(JLAY),IG) + P_FORFRAC(JLON,JLAY) * &
121           &      (FORREF(INDF(JLAY)+1,IG) - FORREF(INDF(JLAY),IG)))
122         ZABSCO2 =  (KA_MCO2(INDM(JLAY),IG) + PMINORFRAC(JLON,JLAY) * &
123           &      (KA_MCO2(INDM(JLAY)+1,IG) - KA_MCO2(INDM(JLAY),IG)))
124         ZABSO3 =  (KA_MO3(INDM(JLAY),IG) + PMINORFRAC(JLON,JLAY) * &
125           &      (KA_MO3(INDM(JLAY)+1,IG) - KA_MO3(INDM(JLAY),IG)))
126         ZABSN2O =  (KA_MN2O(INDM(JLAY),IG) + PMINORFRAC(JLON,JLAY) * &
127           &      (KA_MN2O(INDM(JLAY)+1,IG) - KA_MN2O(INDM(JLAY),IG)))
128
129        P_TAU(JLON,NGS7+IG,JLAY) = P_COLH2O(JLON,JLAY) *&
130         & (P_FAC00(JLON,JLAY) * ABSA(IND0(JLAY)  ,IG) +&
131         & P_FAC10(JLON,JLAY) * ABSA(IND0(JLAY)+1,IG) +&
132         & P_FAC01(JLON,JLAY) * ABSA(IND1(JLAY)  ,IG) +&
133         & P_FAC11(JLON,JLAY) * ABSA(IND1(JLAY)+1,IG)) &
134         & + ZTAUSELF + ZTAUFOR &
135         & + ZADJCOLCO2(JLON,JLAY)*ZABSCO2 &
136         & + P_COLO3(JLON,JLAY)*ZABSO3 &
137         & + P_COLN2O(JLON,JLAY)*ZABSN2O &
138         & + P_WX(JLON,3,JLAY) * CFC12(IG)&
139         & + P_WX(JLON,4,JLAY) * CFC22ADJ(IG)&
140         & + P_TAUAERL(JLON,JLAY,8) 
141        PFRAC(JLON,NGS7+IG,JLAY) = FRACREFA(IG)
142      ENDDO
143    ENDIF
144
145    IF (JLAY > K_LAYTROP(JLON)) THEN
146
147! In atmospheres where the amount of CO2 is too great to be considered
148! a minor species, adjust the column amount of CO2 by an empirical factor
149! to obtain the proper contribution.
150      ZCHI_CO2 = P_COLCO2(JLON,JLAY)/P_COLDRY(JLON,JLAY)
151      ZRATCO2 = 1.E20_JPRB*ZCHI_CO2/CHI_MLS(2,K_JP(JLON,JLAY)+1)
152      IF (ZRATCO2 > 3.0_JPRB) THEN
153         ZADJFAC = 2.0_JPRB+(ZRATCO2-2.0_JPRB)**0.65_JPRB
154         ZADJCOLCO2(JLON,JLAY) = ZADJFAC*CHI_MLS(2,K_JP(JLON,JLAY)+1)*P_COLDRY(JLON,JLAY)*1.E-20_JPRB
155      ELSE
156         ZADJCOLCO2(JLON,JLAY) = P_COLCO2(JLON,JLAY)
157      ENDIF
158
159
160      IND0(JLAY) = ((K_JP(JLON,JLAY)-13)*5+(K_JT(JLON,JLAY)-1))*NSPB(8) + 1
161      IND1(JLAY) = ((K_JP(JLON,JLAY)-12)*5+(K_JT1(JLON,JLAY)-1))*NSPB(8) + 1
162      INDM(JLAY) = KINDMINOR(JLON,JLAY)
163!-- JJM_000517
164!CDIR UNROLL=NG8
165      DO IG = 1, NG8
166!-- JJM_000517
167        ZABSCO2 =  (KB_MCO2(INDM(JLAY),IG) + PMINORFRAC(JLON,JLAY) * &
168         &        (KB_MCO2(INDM(JLAY)+1,IG) - KB_MCO2(INDM(JLAY),IG)))
169        ZABSN2O =  (KB_MN2O(INDM(JLAY),IG) + PMINORFRAC(JLON,JLAY) * &
170         &        (KB_MN2O(INDM(JLAY)+1,IG) - KB_MN2O(INDM(JLAY),IG)))
171        P_TAU(JLON,NGS7+IG,JLAY) = P_COLO3(JLON,JLAY) *&
172         & (P_FAC00(JLON,JLAY) * ABSB(IND0(JLAY)  ,IG) +&
173         & P_FAC10(JLON,JLAY) * ABSB(IND0(JLAY)+1,IG) +&
174         & P_FAC01(JLON,JLAY) * ABSB(IND1(JLAY)  ,IG) +&
175         & P_FAC11(JLON,JLAY) * ABSB(IND1(JLAY)+1,IG)) &
176         & + ZADJCOLCO2(JLON,JLAY)*ZABSCO2 &
177         & + P_COLN2O(JLON,JLAY)*ZABSN2O &
178         & + P_WX(JLON,3,JLAY) * CFC12(IG)&
179         & + P_WX(JLON,4,JLAY) * CFC22ADJ(IG)&
180         & + P_TAUAERL(JLON,JLAY,8) 
181        PFRAC(JLON,NGS7+IG,JLAY) = FRACREFB(IG)
182      ENDDO
183    ENDIF
184  ENDDO
185ENDDO
186
187IF (LHOOK) CALL DR_HOOK('RRTM_TAUMOL8',1,ZHOOK_HANDLE)
188
189END ASSOCIATE
190END SUBROUTINE RRTM_TAUMOL8
Note: See TracBrowser for help on using the repository browser.