| 1 | MODULE cloudth_mod |
|---|
| 2 | |
|---|
| 3 | |
|---|
| 4 | IMPLICIT NONE |
|---|
| 5 | |
|---|
| 6 | CONTAINS |
|---|
| 7 | |
|---|
| 8 | SUBROUTINE cloudth(ngrid,klev,ind2, & |
|---|
| 9 | & ztv,po,zqta,fraca, & |
|---|
| 10 | & qcloud,ctot,zpspsk,paprs,pplay,ztla,zthl, & |
|---|
| 11 | & ratqs,zqs,t) |
|---|
| 12 | |
|---|
| 13 | |
|---|
| 14 | use lscp_ini_mod, only: iflag_cloudth_vert |
|---|
| 15 | |
|---|
| 16 | IMPLICIT NONE |
|---|
| 17 | |
|---|
| 18 | |
|---|
| 19 | !=========================================================================== |
|---|
| 20 | ! Auteur : Arnaud Octavio Jam (LMD/CNRS) |
|---|
| 21 | ! Date : 25 Mai 2010 |
|---|
| 22 | ! Objet : calcule les valeurs de qc et rneb dans les thermiques |
|---|
| 23 | !=========================================================================== |
|---|
| 24 | |
|---|
| 25 | |
|---|
| 26 | #include "YOMCST.h" |
|---|
| 27 | #include "YOETHF.h" |
|---|
| 28 | #include "FCTTRE.h" |
|---|
| 29 | |
|---|
| 30 | INTEGER itap,ind1,ind2 |
|---|
| 31 | INTEGER ngrid,klev,klon,l,ig |
|---|
| 32 | |
|---|
| 33 | REAL ztv(ngrid,klev) |
|---|
| 34 | REAL po(ngrid) |
|---|
| 35 | REAL zqenv(ngrid) |
|---|
| 36 | REAL zqta(ngrid,klev) |
|---|
| 37 | |
|---|
| 38 | REAL fraca(ngrid,klev+1) |
|---|
| 39 | REAL zpspsk(ngrid,klev) |
|---|
| 40 | REAL paprs(ngrid,klev+1) |
|---|
| 41 | REAL pplay(ngrid,klev) |
|---|
| 42 | REAL ztla(ngrid,klev) |
|---|
| 43 | REAL zthl(ngrid,klev) |
|---|
| 44 | |
|---|
| 45 | REAL zqsatth(ngrid,klev) |
|---|
| 46 | REAL zqsatenv(ngrid,klev) |
|---|
| 47 | |
|---|
| 48 | |
|---|
| 49 | REAL sigma1(ngrid,klev) |
|---|
| 50 | REAL sigma2(ngrid,klev) |
|---|
| 51 | REAL qlth(ngrid,klev) |
|---|
| 52 | REAL qlenv(ngrid,klev) |
|---|
| 53 | REAL qltot(ngrid,klev) |
|---|
| 54 | REAL cth(ngrid,klev) |
|---|
| 55 | REAL cenv(ngrid,klev) |
|---|
| 56 | REAL ctot(ngrid,klev) |
|---|
| 57 | REAL rneb(ngrid,klev) |
|---|
| 58 | REAL t(ngrid,klev) |
|---|
| 59 | REAL qsatmmussig1,qsatmmussig2,sqrt2pi,pi |
|---|
| 60 | REAL rdd,cppd,Lv |
|---|
| 61 | REAL alth,alenv,ath,aenv |
|---|
| 62 | REAL sth,senv,sigma1s,sigma2s,xth,xenv |
|---|
| 63 | REAL Tbef,zdelta,qsatbef,zcor |
|---|
| 64 | REAL qlbef |
|---|
| 65 | REAL ratqs(ngrid,klev) ! determine la largeur de distribution de vapeur |
|---|
| 66 | |
|---|
| 67 | REAL zpdf_sig(ngrid),zpdf_k(ngrid),zpdf_delta(ngrid) |
|---|
| 68 | REAL zpdf_a(ngrid),zpdf_b(ngrid),zpdf_e1(ngrid),zpdf_e2(ngrid) |
|---|
| 69 | REAL zqs(ngrid), qcloud(ngrid) |
|---|
| 70 | REAL erf |
|---|
| 71 | |
|---|
| 72 | |
|---|
| 73 | |
|---|
| 74 | |
|---|
| 75 | !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! |
|---|
| 76 | ! Gestion de deux versions de cloudth |
|---|
| 77 | !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! |
|---|
| 78 | |
|---|
| 79 | IF (iflag_cloudth_vert.GE.1) THEN |
|---|
| 80 | CALL cloudth_vert(ngrid,klev,ind2, & |
|---|
| 81 | & ztv,po,zqta,fraca, & |
|---|
| 82 | & qcloud,ctot,zpspsk,paprs,pplay,ztla,zthl, & |
|---|
| 83 | & ratqs,zqs,t) |
|---|
| 84 | RETURN |
|---|
| 85 | ENDIF |
|---|
| 86 | !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! |
|---|
| 87 | |
|---|
| 88 | |
|---|
| 89 | !------------------------------------------------------------------------------- |
|---|
| 90 | ! Initialisation des variables r?elles |
|---|
| 91 | !------------------------------------------------------------------------------- |
|---|
| 92 | sigma1(:,:)=0. |
|---|
| 93 | sigma2(:,:)=0. |
|---|
| 94 | qlth(:,:)=0. |
|---|
| 95 | qlenv(:,:)=0. |
|---|
| 96 | qltot(:,:)=0. |
|---|
| 97 | rneb(:,:)=0. |
|---|
| 98 | qcloud(:)=0. |
|---|
| 99 | cth(:,:)=0. |
|---|
| 100 | cenv(:,:)=0. |
|---|
| 101 | ctot(:,:)=0. |
|---|
| 102 | qsatmmussig1=0. |
|---|
| 103 | qsatmmussig2=0. |
|---|
| 104 | rdd=287.04 |
|---|
| 105 | cppd=1005.7 |
|---|
| 106 | pi=3.14159 |
|---|
| 107 | Lv=2.5e6 |
|---|
| 108 | sqrt2pi=sqrt(2.*pi) |
|---|
| 109 | |
|---|
| 110 | |
|---|
| 111 | |
|---|
| 112 | !------------------------------------------------------------------------------- |
|---|
| 113 | ! Calcul de la fraction du thermique et des ?cart-types des distributions |
|---|
| 114 | !------------------------------------------------------------------------------- |
|---|
| 115 | do ind1=1,ngrid |
|---|
| 116 | |
|---|
| 117 | if ((ztv(ind1,1).gt.ztv(ind1,2)).and.(fraca(ind1,ind2).gt.1.e-10)) then |
|---|
| 118 | |
|---|
| 119 | zqenv(ind1)=(po(ind1)-fraca(ind1,ind2)*zqta(ind1,ind2))/(1.-fraca(ind1,ind2)) |
|---|
| 120 | |
|---|
| 121 | |
|---|
| 122 | ! zqenv(ind1)=po(ind1) |
|---|
| 123 | Tbef=zthl(ind1,ind2)*zpspsk(ind1,ind2) |
|---|
| 124 | zdelta=MAX(0.,SIGN(1.,RTT-Tbef)) |
|---|
| 125 | qsatbef= R2ES * FOEEW(Tbef,zdelta)/paprs(ind1,ind2) |
|---|
| 126 | qsatbef=MIN(0.5,qsatbef) |
|---|
| 127 | zcor=1./(1.-retv*qsatbef) |
|---|
| 128 | qsatbef=qsatbef*zcor |
|---|
| 129 | zqsatenv(ind1,ind2)=qsatbef |
|---|
| 130 | |
|---|
| 131 | |
|---|
| 132 | |
|---|
| 133 | |
|---|
| 134 | alenv=(0.622*Lv*zqsatenv(ind1,ind2))/(rdd*zthl(ind1,ind2)**2) |
|---|
| 135 | aenv=1./(1.+(alenv*Lv/cppd)) |
|---|
| 136 | senv=aenv*(po(ind1)-zqsatenv(ind1,ind2)) |
|---|
| 137 | |
|---|
| 138 | |
|---|
| 139 | |
|---|
| 140 | |
|---|
| 141 | Tbef=ztla(ind1,ind2)*zpspsk(ind1,ind2) |
|---|
| 142 | zdelta=MAX(0.,SIGN(1.,RTT-Tbef)) |
|---|
| 143 | qsatbef= R2ES * FOEEW(Tbef,zdelta)/paprs(ind1,ind2) |
|---|
| 144 | qsatbef=MIN(0.5,qsatbef) |
|---|
| 145 | zcor=1./(1.-retv*qsatbef) |
|---|
| 146 | qsatbef=qsatbef*zcor |
|---|
| 147 | zqsatth(ind1,ind2)=qsatbef |
|---|
| 148 | |
|---|
| 149 | alth=(0.622*Lv*zqsatth(ind1,ind2))/(rdd*ztla(ind1,ind2)**2) |
|---|
| 150 | ath=1./(1.+(alth*Lv/cppd)) |
|---|
| 151 | sth=ath*(zqta(ind1,ind2)-zqsatth(ind1,ind2)) |
|---|
| 152 | |
|---|
| 153 | |
|---|
| 154 | |
|---|
| 155 | !------------------------------------------------------------------------------ |
|---|
| 156 | ! Calcul des ?cart-types pour s |
|---|
| 157 | !------------------------------------------------------------------------------ |
|---|
| 158 | |
|---|
| 159 | ! sigma1s=(1.1**0.5)*(fraca(ind1,ind2)**0.6)/(1-fraca(ind1,ind2))*((sth-senv)**2)**0.5+ratqs(ind1,ind2)*po(ind1) |
|---|
| 160 | ! sigma2s=0.11*((sth-senv)**2)**0.5/(fraca(ind1,ind2)+0.02)**0.4+0.002*zqta(ind1,ind2) |
|---|
| 161 | ! if (paprs(ind1,ind2).gt.90000) then |
|---|
| 162 | ! ratqs(ind1,ind2)=0.002 |
|---|
| 163 | ! else |
|---|
| 164 | ! ratqs(ind1,ind2)=0.002+0.0*(90000-paprs(ind1,ind2))/20000 |
|---|
| 165 | ! endif |
|---|
| 166 | sigma1s=(1.1**0.5)*(fraca(ind1,ind2)**0.6)/(1-fraca(ind1,ind2))*((sth-senv)**2)**0.5+0.002*po(ind1) |
|---|
| 167 | sigma2s=0.11*((sth-senv)**2)**0.5/(fraca(ind1,ind2)+0.01)**0.4+0.002*zqta(ind1,ind2) |
|---|
| 168 | ! sigma1s=ratqs(ind1,ind2)*po(ind1) |
|---|
| 169 | ! sigma2s=0.11*((sth-senv)**2)**0.5/(fraca(ind1,ind2)+0.02)**0.4+0.00003 |
|---|
| 170 | |
|---|
| 171 | !------------------------------------------------------------------------------ |
|---|
| 172 | ! Calcul de l'eau condens?e et de la couverture nuageuse |
|---|
| 173 | !------------------------------------------------------------------------------ |
|---|
| 174 | sqrt2pi=sqrt(2.*pi) |
|---|
| 175 | xth=sth/(sqrt(2.)*sigma2s) |
|---|
| 176 | xenv=senv/(sqrt(2.)*sigma1s) |
|---|
| 177 | cth(ind1,ind2)=0.5*(1.+1.*erf(xth)) |
|---|
| 178 | cenv(ind1,ind2)=0.5*(1.+1.*erf(xenv)) |
|---|
| 179 | ctot(ind1,ind2)=fraca(ind1,ind2)*cth(ind1,ind2)+(1.-1.*fraca(ind1,ind2))*cenv(ind1,ind2) |
|---|
| 180 | |
|---|
| 181 | qlth(ind1,ind2)=sigma2s*((exp(-1.*xth**2)/sqrt2pi)+xth*sqrt(2.)*cth(ind1,ind2)) |
|---|
| 182 | qlenv(ind1,ind2)=sigma1s*((exp(-1.*xenv**2)/sqrt2pi)+xenv*sqrt(2.)*cenv(ind1,ind2)) |
|---|
| 183 | qltot(ind1,ind2)=fraca(ind1,ind2)*qlth(ind1,ind2)+(1.-1.*fraca(ind1,ind2))*qlenv(ind1,ind2) |
|---|
| 184 | |
|---|
| 185 | !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! |
|---|
| 186 | if (ctot(ind1,ind2).lt.1.e-10) then |
|---|
| 187 | ctot(ind1,ind2)=0. |
|---|
| 188 | qcloud(ind1)=zqsatenv(ind1,ind2) |
|---|
| 189 | |
|---|
| 190 | else |
|---|
| 191 | |
|---|
| 192 | ctot(ind1,ind2)=ctot(ind1,ind2) |
|---|
| 193 | qcloud(ind1)=qltot(ind1,ind2)/ctot(ind1,ind2)+zqs(ind1) |
|---|
| 194 | |
|---|
| 195 | endif |
|---|
| 196 | |
|---|
| 197 | |
|---|
| 198 | ! print*,sth,sigma2s,qlth(ind1,ind2),ctot(ind1,ind2),qltot(ind1,ind2),'verif' |
|---|
| 199 | |
|---|
| 200 | |
|---|
| 201 | else ! gaussienne environnement seule |
|---|
| 202 | |
|---|
| 203 | zqenv(ind1)=po(ind1) |
|---|
| 204 | Tbef=t(ind1,ind2) |
|---|
| 205 | zdelta=MAX(0.,SIGN(1.,RTT-Tbef)) |
|---|
| 206 | qsatbef= R2ES * FOEEW(Tbef,zdelta)/paprs(ind1,ind2) |
|---|
| 207 | qsatbef=MIN(0.5,qsatbef) |
|---|
| 208 | zcor=1./(1.-retv*qsatbef) |
|---|
| 209 | qsatbef=qsatbef*zcor |
|---|
| 210 | zqsatenv(ind1,ind2)=qsatbef |
|---|
| 211 | |
|---|
| 212 | |
|---|
| 213 | ! qlbef=Max(po(ind1)-zqsatenv(ind1,ind2),0.) |
|---|
| 214 | zthl(ind1,ind2)=t(ind1,ind2)*(101325/paprs(ind1,ind2))**(rdd/cppd) |
|---|
| 215 | alenv=(0.622*Lv*zqsatenv(ind1,ind2))/(rdd*zthl(ind1,ind2)**2) |
|---|
| 216 | aenv=1./(1.+(alenv*Lv/cppd)) |
|---|
| 217 | senv=aenv*(po(ind1)-zqsatenv(ind1,ind2)) |
|---|
| 218 | |
|---|
| 219 | |
|---|
| 220 | sigma1s=ratqs(ind1,ind2)*zqenv(ind1) |
|---|
| 221 | |
|---|
| 222 | sqrt2pi=sqrt(2.*pi) |
|---|
| 223 | xenv=senv/(sqrt(2.)*sigma1s) |
|---|
| 224 | ctot(ind1,ind2)=0.5*(1.+1.*erf(xenv)) |
|---|
| 225 | qltot(ind1,ind2)=sigma1s*((exp(-1.*xenv**2)/sqrt2pi)+xenv*sqrt(2.)*cenv(ind1,ind2)) |
|---|
| 226 | |
|---|
| 227 | if (ctot(ind1,ind2).lt.1.e-3) then |
|---|
| 228 | ctot(ind1,ind2)=0. |
|---|
| 229 | qcloud(ind1)=zqsatenv(ind1,ind2) |
|---|
| 230 | |
|---|
| 231 | else |
|---|
| 232 | |
|---|
| 233 | ctot(ind1,ind2)=ctot(ind1,ind2) |
|---|
| 234 | qcloud(ind1)=qltot(ind1,ind2)/ctot(ind1,ind2)+zqsatenv(ind1,ind2) |
|---|
| 235 | |
|---|
| 236 | endif |
|---|
| 237 | |
|---|
| 238 | |
|---|
| 239 | |
|---|
| 240 | |
|---|
| 241 | |
|---|
| 242 | |
|---|
| 243 | endif |
|---|
| 244 | enddo |
|---|
| 245 | |
|---|
| 246 | return |
|---|
| 247 | ! end |
|---|
| 248 | END SUBROUTINE cloudth |
|---|
| 249 | |
|---|
| 250 | |
|---|
| 251 | |
|---|
| 252 | !=========================================================================== |
|---|
| 253 | SUBROUTINE cloudth_vert(ngrid,klev,ind2, & |
|---|
| 254 | & ztv,po,zqta,fraca, & |
|---|
| 255 | & qcloud,ctot,zpspsk,paprs,pplay,ztla,zthl, & |
|---|
| 256 | & ratqs,zqs,t) |
|---|
| 257 | |
|---|
| 258 | !=========================================================================== |
|---|
| 259 | ! Auteur : Arnaud Octavio Jam (LMD/CNRS) |
|---|
| 260 | ! Date : 25 Mai 2010 |
|---|
| 261 | ! Objet : calcule les valeurs de qc et rneb dans les thermiques |
|---|
| 262 | !=========================================================================== |
|---|
| 263 | |
|---|
| 264 | |
|---|
| 265 | USE ioipsl_getin_p_mod, ONLY : getin_p |
|---|
| 266 | use lscp_ini_mod, only: iflag_cloudth_vert |
|---|
| 267 | |
|---|
| 268 | IMPLICIT NONE |
|---|
| 269 | |
|---|
| 270 | #include "YOMCST.h" |
|---|
| 271 | #include "YOETHF.h" |
|---|
| 272 | #include "FCTTRE.h" |
|---|
| 273 | |
|---|
| 274 | INTEGER itap,ind1,ind2 |
|---|
| 275 | INTEGER ngrid,klev,klon,l,ig |
|---|
| 276 | |
|---|
| 277 | REAL ztv(ngrid,klev) |
|---|
| 278 | REAL po(ngrid) |
|---|
| 279 | REAL zqenv(ngrid) |
|---|
| 280 | REAL zqta(ngrid,klev) |
|---|
| 281 | |
|---|
| 282 | REAL fraca(ngrid,klev+1) |
|---|
| 283 | REAL zpspsk(ngrid,klev) |
|---|
| 284 | REAL paprs(ngrid,klev+1) |
|---|
| 285 | REAL pplay(ngrid,klev) |
|---|
| 286 | REAL ztla(ngrid,klev) |
|---|
| 287 | REAL zthl(ngrid,klev) |
|---|
| 288 | |
|---|
| 289 | REAL zqsatth(ngrid,klev) |
|---|
| 290 | REAL zqsatenv(ngrid,klev) |
|---|
| 291 | |
|---|
| 292 | |
|---|
| 293 | REAL sigma1(ngrid,klev) |
|---|
| 294 | REAL sigma2(ngrid,klev) |
|---|
| 295 | REAL qlth(ngrid,klev) |
|---|
| 296 | REAL qlenv(ngrid,klev) |
|---|
| 297 | REAL qltot(ngrid,klev) |
|---|
| 298 | REAL cth(ngrid,klev) |
|---|
| 299 | REAL cenv(ngrid,klev) |
|---|
| 300 | REAL ctot(ngrid,klev) |
|---|
| 301 | REAL rneb(ngrid,klev) |
|---|
| 302 | REAL t(ngrid,klev) |
|---|
| 303 | REAL qsatmmussig1,qsatmmussig2,sqrt2pi,pi |
|---|
| 304 | REAL rdd,cppd,Lv,sqrt2,sqrtpi |
|---|
| 305 | REAL alth,alenv,ath,aenv |
|---|
| 306 | REAL sth,senv,sigma1s,sigma2s,xth,xenv |
|---|
| 307 | REAL xth1,xth2,xenv1,xenv2,deltasth, deltasenv |
|---|
| 308 | REAL IntJ,IntI1,IntI2,IntI3,coeffqlenv,coeffqlth |
|---|
| 309 | REAL Tbef,zdelta,qsatbef,zcor |
|---|
| 310 | REAL qlbef |
|---|
| 311 | REAL ratqs(ngrid,klev) ! determine la largeur de distribution de vapeur |
|---|
| 312 | ! Change the width of the PDF used for vertical subgrid scale heterogeneity |
|---|
| 313 | ! (J Jouhaud, JL Dufresne, JB Madeleine) |
|---|
| 314 | REAL,SAVE :: vert_alpha |
|---|
| 315 | !$OMP THREADPRIVATE(vert_alpha) |
|---|
| 316 | LOGICAL, SAVE :: firstcall = .TRUE. |
|---|
| 317 | !$OMP THREADPRIVATE(firstcall) |
|---|
| 318 | |
|---|
| 319 | REAL zpdf_sig(ngrid),zpdf_k(ngrid),zpdf_delta(ngrid) |
|---|
| 320 | REAL zpdf_a(ngrid),zpdf_b(ngrid),zpdf_e1(ngrid),zpdf_e2(ngrid) |
|---|
| 321 | REAL zqs(ngrid), qcloud(ngrid) |
|---|
| 322 | REAL erf |
|---|
| 323 | |
|---|
| 324 | !------------------------------------------------------------------------------ |
|---|
| 325 | ! Initialisation des variables r?elles |
|---|
| 326 | !------------------------------------------------------------------------------ |
|---|
| 327 | sigma1(:,:)=0. |
|---|
| 328 | sigma2(:,:)=0. |
|---|
| 329 | qlth(:,:)=0. |
|---|
| 330 | qlenv(:,:)=0. |
|---|
| 331 | qltot(:,:)=0. |
|---|
| 332 | rneb(:,:)=0. |
|---|
| 333 | qcloud(:)=0. |
|---|
| 334 | cth(:,:)=0. |
|---|
| 335 | cenv(:,:)=0. |
|---|
| 336 | ctot(:,:)=0. |
|---|
| 337 | qsatmmussig1=0. |
|---|
| 338 | qsatmmussig2=0. |
|---|
| 339 | rdd=287.04 |
|---|
| 340 | cppd=1005.7 |
|---|
| 341 | pi=3.14159 |
|---|
| 342 | Lv=2.5e6 |
|---|
| 343 | sqrt2pi=sqrt(2.*pi) |
|---|
| 344 | sqrt2=sqrt(2.) |
|---|
| 345 | sqrtpi=sqrt(pi) |
|---|
| 346 | |
|---|
| 347 | IF (firstcall) THEN |
|---|
| 348 | vert_alpha=0.5 |
|---|
| 349 | CALL getin_p('cloudth_vert_alpha',vert_alpha) |
|---|
| 350 | WRITE(*,*) 'cloudth_vert_alpha = ', vert_alpha |
|---|
| 351 | firstcall=.FALSE. |
|---|
| 352 | ENDIF |
|---|
| 353 | |
|---|
| 354 | !------------------------------------------------------------------------------- |
|---|
| 355 | ! Calcul de la fraction du thermique et des ?cart-types des distributions |
|---|
| 356 | !------------------------------------------------------------------------------- |
|---|
| 357 | do ind1=1,ngrid |
|---|
| 358 | |
|---|
| 359 | if ((ztv(ind1,1).gt.ztv(ind1,2)).and.(fraca(ind1,ind2).gt.1.e-10)) then |
|---|
| 360 | |
|---|
| 361 | zqenv(ind1)=(po(ind1)-fraca(ind1,ind2)*zqta(ind1,ind2))/(1.-fraca(ind1,ind2)) |
|---|
| 362 | |
|---|
| 363 | |
|---|
| 364 | ! zqenv(ind1)=po(ind1) |
|---|
| 365 | Tbef=zthl(ind1,ind2)*zpspsk(ind1,ind2) |
|---|
| 366 | zdelta=MAX(0.,SIGN(1.,RTT-Tbef)) |
|---|
| 367 | qsatbef= R2ES * FOEEW(Tbef,zdelta)/paprs(ind1,ind2) |
|---|
| 368 | qsatbef=MIN(0.5,qsatbef) |
|---|
| 369 | zcor=1./(1.-retv*qsatbef) |
|---|
| 370 | qsatbef=qsatbef*zcor |
|---|
| 371 | zqsatenv(ind1,ind2)=qsatbef |
|---|
| 372 | |
|---|
| 373 | |
|---|
| 374 | |
|---|
| 375 | |
|---|
| 376 | alenv=(0.622*Lv*zqsatenv(ind1,ind2))/(rdd*zthl(ind1,ind2)**2) |
|---|
| 377 | aenv=1./(1.+(alenv*Lv/cppd)) |
|---|
| 378 | senv=aenv*(po(ind1)-zqsatenv(ind1,ind2)) |
|---|
| 379 | |
|---|
| 380 | |
|---|
| 381 | |
|---|
| 382 | |
|---|
| 383 | Tbef=ztla(ind1,ind2)*zpspsk(ind1,ind2) |
|---|
| 384 | zdelta=MAX(0.,SIGN(1.,RTT-Tbef)) |
|---|
| 385 | qsatbef= R2ES * FOEEW(Tbef,zdelta)/paprs(ind1,ind2) |
|---|
| 386 | qsatbef=MIN(0.5,qsatbef) |
|---|
| 387 | zcor=1./(1.-retv*qsatbef) |
|---|
| 388 | qsatbef=qsatbef*zcor |
|---|
| 389 | zqsatth(ind1,ind2)=qsatbef |
|---|
| 390 | |
|---|
| 391 | alth=(0.622*Lv*zqsatth(ind1,ind2))/(rdd*ztla(ind1,ind2)**2) |
|---|
| 392 | ath=1./(1.+(alth*Lv/cppd)) |
|---|
| 393 | sth=ath*(zqta(ind1,ind2)-zqsatth(ind1,ind2)) |
|---|
| 394 | |
|---|
| 395 | |
|---|
| 396 | |
|---|
| 397 | !------------------------------------------------------------------------------ |
|---|
| 398 | ! Calcul des ?cart-types pour s |
|---|
| 399 | !------------------------------------------------------------------------------ |
|---|
| 400 | |
|---|
| 401 | sigma1s=(0.92**0.5)*(fraca(ind1,ind2)**0.5)/(1-fraca(ind1,ind2))*((sth-senv)**2)**0.5+ratqs(ind1,ind2)*po(ind1) |
|---|
| 402 | sigma2s=0.09*((sth-senv)**2)**0.5/(fraca(ind1,ind2)+0.02)**0.5+0.002*zqta(ind1,ind2) |
|---|
| 403 | ! if (paprs(ind1,ind2).gt.90000) then |
|---|
| 404 | ! ratqs(ind1,ind2)=0.002 |
|---|
| 405 | ! else |
|---|
| 406 | ! ratqs(ind1,ind2)=0.002+0.0*(90000-paprs(ind1,ind2))/20000 |
|---|
| 407 | ! endif |
|---|
| 408 | ! sigma1s=(1.1**0.5)*(fraca(ind1,ind2)**0.6)/(1-fraca(ind1,ind2))*((sth-senv)**2)**0.5+0.002*po(ind1) |
|---|
| 409 | ! sigma2s=0.11*((sth-senv)**2)**0.5/(fraca(ind1,ind2)+0.01)**0.4+0.002*zqta(ind1,ind2) |
|---|
| 410 | ! sigma1s=ratqs(ind1,ind2)*po(ind1) |
|---|
| 411 | ! sigma2s=0.11*((sth-senv)**2)**0.5/(fraca(ind1,ind2)+0.02)**0.4+0.00003 |
|---|
| 412 | |
|---|
| 413 | !------------------------------------------------------------------------------ |
|---|
| 414 | ! Calcul de l'eau condens?e et de la couverture nuageuse |
|---|
| 415 | !------------------------------------------------------------------------------ |
|---|
| 416 | sqrt2pi=sqrt(2.*pi) |
|---|
| 417 | xth=sth/(sqrt(2.)*sigma2s) |
|---|
| 418 | xenv=senv/(sqrt(2.)*sigma1s) |
|---|
| 419 | cth(ind1,ind2)=0.5*(1.+1.*erf(xth)) |
|---|
| 420 | cenv(ind1,ind2)=0.5*(1.+1.*erf(xenv)) |
|---|
| 421 | ctot(ind1,ind2)=fraca(ind1,ind2)*cth(ind1,ind2)+(1.-1.*fraca(ind1,ind2))*cenv(ind1,ind2) |
|---|
| 422 | |
|---|
| 423 | qlth(ind1,ind2)=sigma2s*((exp(-1.*xth**2)/sqrt2pi)+xth*sqrt(2.)*cth(ind1,ind2)) |
|---|
| 424 | qlenv(ind1,ind2)=sigma1s*((exp(-1.*xenv**2)/sqrt2pi)+xenv*sqrt(2.)*cenv(ind1,ind2)) |
|---|
| 425 | qltot(ind1,ind2)=fraca(ind1,ind2)*qlth(ind1,ind2)+(1.-1.*fraca(ind1,ind2))*qlenv(ind1,ind2) |
|---|
| 426 | |
|---|
| 427 | IF (iflag_cloudth_vert == 1) THEN |
|---|
| 428 | !------------------------------------------------------------------------------- |
|---|
| 429 | ! Version 2: Modification selon J.-Louis. On condense ?? partir de qsat-ratqs |
|---|
| 430 | !------------------------------------------------------------------------------- |
|---|
| 431 | ! deltasenv=aenv*ratqs(ind1,ind2)*po(ind1) |
|---|
| 432 | ! deltasth=ath*ratqs(ind1,ind2)*zqta(ind1,ind2) |
|---|
| 433 | deltasenv=aenv*ratqs(ind1,ind2)*zqsatenv(ind1,ind2) |
|---|
| 434 | deltasth=ath*ratqs(ind1,ind2)*zqsatth(ind1,ind2) |
|---|
| 435 | ! deltasenv=aenv*0.01*po(ind1) |
|---|
| 436 | ! deltasth=ath*0.01*zqta(ind1,ind2) |
|---|
| 437 | xenv1=(senv-deltasenv)/(sqrt(2.)*sigma1s) |
|---|
| 438 | xenv2=(senv+deltasenv)/(sqrt(2.)*sigma1s) |
|---|
| 439 | xth1=(sth-deltasth)/(sqrt(2.)*sigma2s) |
|---|
| 440 | xth2=(sth+deltasth)/(sqrt(2.)*sigma2s) |
|---|
| 441 | coeffqlenv=(sigma1s)**2/(2*sqrtpi*deltasenv) |
|---|
| 442 | coeffqlth=(sigma2s)**2/(2*sqrtpi*deltasth) |
|---|
| 443 | |
|---|
| 444 | cth(ind1,ind2)=0.5*(1.+1.*erf(xth2)) |
|---|
| 445 | cenv(ind1,ind2)=0.5*(1.+1.*erf(xenv2)) |
|---|
| 446 | ctot(ind1,ind2)=fraca(ind1,ind2)*cth(ind1,ind2)+(1.-1.*fraca(ind1,ind2))*cenv(ind1,ind2) |
|---|
| 447 | |
|---|
| 448 | IntJ=sigma1s*(exp(-1.*xenv1**2)/sqrt2pi)+0.5*senv*(1+erf(xenv1)) |
|---|
| 449 | IntI1=coeffqlenv*0.5*(0.5*sqrtpi*(erf(xenv2)-erf(xenv1))+xenv1*exp(-1.*xenv1**2)-xenv2*exp(-1.*xenv2**2)) |
|---|
| 450 | IntI2=coeffqlenv*xenv2*(exp(-1.*xenv2**2)-exp(-1.*xenv1**2)) |
|---|
| 451 | IntI3=coeffqlenv*0.5*sqrtpi*xenv2**2*(erf(xenv2)-erf(xenv1)) |
|---|
| 452 | |
|---|
| 453 | qlenv(ind1,ind2)=IntJ+IntI1+IntI2+IntI3 |
|---|
| 454 | ! qlenv(ind1,ind2)=IntJ |
|---|
| 455 | ! print*, qlenv(ind1,ind2),'VERIF EAU' |
|---|
| 456 | |
|---|
| 457 | |
|---|
| 458 | IntJ=sigma2s*(exp(-1.*xth1**2)/sqrt2pi)+0.5*sth*(1+erf(xth1)) |
|---|
| 459 | ! IntI1=coeffqlth*((0.5*xth1-xth2)*exp(-1.*xth1**2)+0.5*xth2*exp(-1.*xth2**2)) |
|---|
| 460 | ! IntI2=coeffqlth*0.5*sqrtpi*(0.5+xth2**2)*(erf(xth2)-erf(xth1)) |
|---|
| 461 | IntI1=coeffqlth*0.5*(0.5*sqrtpi*(erf(xth2)-erf(xth1))+xth1*exp(-1.*xth1**2)-xth2*exp(-1.*xth2**2)) |
|---|
| 462 | IntI2=coeffqlth*xth2*(exp(-1.*xth2**2)-exp(-1.*xth1**2)) |
|---|
| 463 | IntI3=coeffqlth*0.5*sqrtpi*xth2**2*(erf(xth2)-erf(xth1)) |
|---|
| 464 | qlth(ind1,ind2)=IntJ+IntI1+IntI2+IntI3 |
|---|
| 465 | ! qlth(ind1,ind2)=IntJ |
|---|
| 466 | ! print*, IntJ,IntI1,IntI2,IntI3,qlth(ind1,ind2),'VERIF EAU2' |
|---|
| 467 | qltot(ind1,ind2)=fraca(ind1,ind2)*qlth(ind1,ind2)+(1.-1.*fraca(ind1,ind2))*qlenv(ind1,ind2) |
|---|
| 468 | |
|---|
| 469 | ELSE IF (iflag_cloudth_vert == 2) THEN |
|---|
| 470 | |
|---|
| 471 | !------------------------------------------------------------------------------- |
|---|
| 472 | ! Version 3: Modification Jean Jouhaud. On condense a partir de -delta s |
|---|
| 473 | !------------------------------------------------------------------------------- |
|---|
| 474 | ! deltasenv=aenv*ratqs(ind1,ind2)*po(ind1) |
|---|
| 475 | ! deltasth=ath*ratqs(ind1,ind2)*zqta(ind1,ind2) |
|---|
| 476 | ! deltasenv=aenv*ratqs(ind1,ind2)*zqsatenv(ind1,ind2) |
|---|
| 477 | ! deltasth=ath*ratqs(ind1,ind2)*zqsatth(ind1,ind2) |
|---|
| 478 | deltasenv=aenv*vert_alpha*sigma1s |
|---|
| 479 | deltasth=ath*vert_alpha*sigma2s |
|---|
| 480 | |
|---|
| 481 | xenv1=-(senv+deltasenv)/(sqrt(2.)*sigma1s) |
|---|
| 482 | xenv2=-(senv-deltasenv)/(sqrt(2.)*sigma1s) |
|---|
| 483 | xth1=-(sth+deltasth)/(sqrt(2.)*sigma2s) |
|---|
| 484 | xth2=-(sth-deltasth)/(sqrt(2.)*sigma2s) |
|---|
| 485 | ! coeffqlenv=(sigma1s)**2/(2*sqrtpi*deltasenv) |
|---|
| 486 | ! coeffqlth=(sigma2s)**2/(2*sqrtpi*deltasth) |
|---|
| 487 | |
|---|
| 488 | cth(ind1,ind2)=0.5*(1.-1.*erf(xth1)) |
|---|
| 489 | cenv(ind1,ind2)=0.5*(1.-1.*erf(xenv1)) |
|---|
| 490 | ctot(ind1,ind2)=fraca(ind1,ind2)*cth(ind1,ind2)+(1.-1.*fraca(ind1,ind2))*cenv(ind1,ind2) |
|---|
| 491 | |
|---|
| 492 | IntJ=0.5*senv*(1-erf(xenv2))+(sigma1s/sqrt2pi)*exp(-1.*xenv2**2) |
|---|
| 493 | IntI1=(((senv+deltasenv)**2+(sigma1s)**2)/(8*deltasenv))*(erf(xenv2)-erf(xenv1)) |
|---|
| 494 | IntI2=(sigma1s**2/(4*deltasenv*sqrtpi))*(xenv1*exp(-1.*xenv1**2)-xenv2*exp(-1.*xenv2**2)) |
|---|
| 495 | IntI3=((sqrt2*sigma1s*(senv+deltasenv))/(4*sqrtpi*deltasenv))*(exp(-1.*xenv1**2)-exp(-1.*xenv2**2)) |
|---|
| 496 | |
|---|
| 497 | ! IntI1=0.5*(0.5*sqrtpi*(erf(xenv2)-erf(xenv1))+xenv1*exp(-1.*xenv1**2)-xenv2*exp(-1.*xenv2**2)) |
|---|
| 498 | ! IntI2=xenv2*(exp(-1.*xenv2**2)-exp(-1.*xenv1**2)) |
|---|
| 499 | ! IntI3=0.5*sqrtpi*xenv2**2*(erf(xenv2)-erf(xenv1)) |
|---|
| 500 | |
|---|
| 501 | qlenv(ind1,ind2)=IntJ+IntI1+IntI2+IntI3 |
|---|
| 502 | ! qlenv(ind1,ind2)=IntJ |
|---|
| 503 | ! print*, qlenv(ind1,ind2),'VERIF EAU' |
|---|
| 504 | |
|---|
| 505 | IntJ=0.5*sth*(1-erf(xth2))+(sigma2s/sqrt2pi)*exp(-1.*xth2**2) |
|---|
| 506 | IntI1=(((sth+deltasth)**2+(sigma2s)**2)/(8*deltasth))*(erf(xth2)-erf(xth1)) |
|---|
| 507 | IntI2=(sigma2s**2/(4*deltasth*sqrtpi))*(xth1*exp(-1.*xth1**2)-xth2*exp(-1.*xth2**2)) |
|---|
| 508 | IntI3=((sqrt2*sigma2s*(sth+deltasth))/(4*sqrtpi*deltasth))*(exp(-1.*xth1**2)-exp(-1.*xth2**2)) |
|---|
| 509 | |
|---|
| 510 | qlth(ind1,ind2)=IntJ+IntI1+IntI2+IntI3 |
|---|
| 511 | ! qlth(ind1,ind2)=IntJ |
|---|
| 512 | ! print*, IntJ,IntI1,IntI2,IntI3,qlth(ind1,ind2),'VERIF EAU2' |
|---|
| 513 | qltot(ind1,ind2)=fraca(ind1,ind2)*qlth(ind1,ind2)+(1.-1.*fraca(ind1,ind2))*qlenv(ind1,ind2) |
|---|
| 514 | |
|---|
| 515 | |
|---|
| 516 | |
|---|
| 517 | |
|---|
| 518 | ENDIF ! of if (iflag_cloudth_vert==1 or 2) |
|---|
| 519 | |
|---|
| 520 | !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! |
|---|
| 521 | |
|---|
| 522 | if (cenv(ind1,ind2).lt.1.e-10.or.cth(ind1,ind2).lt.1.e-10) then |
|---|
| 523 | ctot(ind1,ind2)=0. |
|---|
| 524 | qcloud(ind1)=zqsatenv(ind1,ind2) |
|---|
| 525 | |
|---|
| 526 | else |
|---|
| 527 | |
|---|
| 528 | ctot(ind1,ind2)=ctot(ind1,ind2) |
|---|
| 529 | qcloud(ind1)=qltot(ind1,ind2)/ctot(ind1,ind2)+zqs(ind1) |
|---|
| 530 | ! qcloud(ind1)=fraca(ind1,ind2)*qlth(ind1,ind2)/cth(ind1,ind2) & |
|---|
| 531 | ! & +(1.-1.*fraca(ind1,ind2))*qlenv(ind1,ind2)/cenv(ind1,ind2)+zqs(ind1) |
|---|
| 532 | |
|---|
| 533 | endif |
|---|
| 534 | |
|---|
| 535 | |
|---|
| 536 | |
|---|
| 537 | ! print*,sth,sigma2s,qlth(ind1,ind2),ctot(ind1,ind2),qltot(ind1,ind2),'verif' |
|---|
| 538 | |
|---|
| 539 | |
|---|
| 540 | else ! gaussienne environnement seule |
|---|
| 541 | |
|---|
| 542 | zqenv(ind1)=po(ind1) |
|---|
| 543 | Tbef=t(ind1,ind2) |
|---|
| 544 | zdelta=MAX(0.,SIGN(1.,RTT-Tbef)) |
|---|
| 545 | qsatbef= R2ES * FOEEW(Tbef,zdelta)/paprs(ind1,ind2) |
|---|
| 546 | qsatbef=MIN(0.5,qsatbef) |
|---|
| 547 | zcor=1./(1.-retv*qsatbef) |
|---|
| 548 | qsatbef=qsatbef*zcor |
|---|
| 549 | zqsatenv(ind1,ind2)=qsatbef |
|---|
| 550 | |
|---|
| 551 | |
|---|
| 552 | ! qlbef=Max(po(ind1)-zqsatenv(ind1,ind2),0.) |
|---|
| 553 | zthl(ind1,ind2)=t(ind1,ind2)*(101325/paprs(ind1,ind2))**(rdd/cppd) |
|---|
| 554 | alenv=(0.622*Lv*zqsatenv(ind1,ind2))/(rdd*zthl(ind1,ind2)**2) |
|---|
| 555 | aenv=1./(1.+(alenv*Lv/cppd)) |
|---|
| 556 | senv=aenv*(po(ind1)-zqsatenv(ind1,ind2)) |
|---|
| 557 | |
|---|
| 558 | |
|---|
| 559 | sigma1s=ratqs(ind1,ind2)*zqenv(ind1) |
|---|
| 560 | |
|---|
| 561 | sqrt2pi=sqrt(2.*pi) |
|---|
| 562 | xenv=senv/(sqrt(2.)*sigma1s) |
|---|
| 563 | ctot(ind1,ind2)=0.5*(1.+1.*erf(xenv)) |
|---|
| 564 | qltot(ind1,ind2)=sigma1s*((exp(-1.*xenv**2)/sqrt2pi)+xenv*sqrt(2.)*cenv(ind1,ind2)) |
|---|
| 565 | |
|---|
| 566 | if (ctot(ind1,ind2).lt.1.e-3) then |
|---|
| 567 | ctot(ind1,ind2)=0. |
|---|
| 568 | qcloud(ind1)=zqsatenv(ind1,ind2) |
|---|
| 569 | |
|---|
| 570 | else |
|---|
| 571 | |
|---|
| 572 | ctot(ind1,ind2)=ctot(ind1,ind2) |
|---|
| 573 | qcloud(ind1)=qltot(ind1,ind2)/ctot(ind1,ind2)+zqsatenv(ind1,ind2) |
|---|
| 574 | |
|---|
| 575 | endif |
|---|
| 576 | |
|---|
| 577 | |
|---|
| 578 | |
|---|
| 579 | |
|---|
| 580 | |
|---|
| 581 | |
|---|
| 582 | endif |
|---|
| 583 | enddo |
|---|
| 584 | |
|---|
| 585 | return |
|---|
| 586 | ! end |
|---|
| 587 | END SUBROUTINE cloudth_vert |
|---|
| 588 | |
|---|
| 589 | |
|---|
| 590 | |
|---|
| 591 | |
|---|
| 592 | SUBROUTINE cloudth_v3(ngrid,klev,ind2, & |
|---|
| 593 | & ztv,po,zqta,fraca, & |
|---|
| 594 | & qcloud,ctot,ctot_vol,zpspsk,paprs,pplay,ztla,zthl, & |
|---|
| 595 | & ratqs,zqs,t) |
|---|
| 596 | |
|---|
| 597 | use lscp_ini_mod, only: iflag_cloudth_vert |
|---|
| 598 | |
|---|
| 599 | IMPLICIT NONE |
|---|
| 600 | |
|---|
| 601 | |
|---|
| 602 | !=========================================================================== |
|---|
| 603 | ! Author : Arnaud Octavio Jam (LMD/CNRS) |
|---|
| 604 | ! Date : 25 Mai 2010 |
|---|
| 605 | ! Objet : calcule les valeurs de qc et rneb dans les thermiques |
|---|
| 606 | !=========================================================================== |
|---|
| 607 | |
|---|
| 608 | |
|---|
| 609 | #include "YOMCST.h" |
|---|
| 610 | #include "YOETHF.h" |
|---|
| 611 | #include "FCTTRE.h" |
|---|
| 612 | |
|---|
| 613 | INTEGER itap,ind1,ind2 |
|---|
| 614 | INTEGER ngrid,klev,klon,l,ig |
|---|
| 615 | |
|---|
| 616 | REAL ztv(ngrid,klev) |
|---|
| 617 | REAL po(ngrid) |
|---|
| 618 | REAL zqenv(ngrid) |
|---|
| 619 | REAL zqta(ngrid,klev) |
|---|
| 620 | |
|---|
| 621 | REAL fraca(ngrid,klev+1) |
|---|
| 622 | REAL zpspsk(ngrid,klev) |
|---|
| 623 | REAL paprs(ngrid,klev+1) |
|---|
| 624 | REAL pplay(ngrid,klev) |
|---|
| 625 | REAL ztla(ngrid,klev) |
|---|
| 626 | REAL zthl(ngrid,klev) |
|---|
| 627 | |
|---|
| 628 | REAL zqsatth(ngrid,klev) |
|---|
| 629 | REAL zqsatenv(ngrid,klev) |
|---|
| 630 | |
|---|
| 631 | REAL sigma1(ngrid,klev) |
|---|
| 632 | REAL sigma2(ngrid,klev) |
|---|
| 633 | REAL qlth(ngrid,klev) |
|---|
| 634 | REAL qlenv(ngrid,klev) |
|---|
| 635 | REAL qltot(ngrid,klev) |
|---|
| 636 | REAL cth(ngrid,klev) |
|---|
| 637 | REAL cenv(ngrid,klev) |
|---|
| 638 | REAL ctot(ngrid,klev) |
|---|
| 639 | REAL cth_vol(ngrid,klev) |
|---|
| 640 | REAL cenv_vol(ngrid,klev) |
|---|
| 641 | REAL ctot_vol(ngrid,klev) |
|---|
| 642 | REAL rneb(ngrid,klev) |
|---|
| 643 | REAL t(ngrid,klev) |
|---|
| 644 | REAL qsatmmussig1,qsatmmussig2,sqrt2pi,sqrt2,sqrtpi,pi |
|---|
| 645 | REAL rdd,cppd,Lv |
|---|
| 646 | REAL alth,alenv,ath,aenv |
|---|
| 647 | REAL sth,senv,sigma1s,sigma2s,xth,xenv, exp_xenv1, exp_xenv2,exp_xth1,exp_xth2 |
|---|
| 648 | REAL inverse_rho,beta,a_Brooks,b_Brooks,A_Maj_Brooks,Dx_Brooks,f_Brooks |
|---|
| 649 | REAL Tbef,zdelta,qsatbef,zcor |
|---|
| 650 | REAL qlbef |
|---|
| 651 | REAL ratqs(ngrid,klev) ! Determine the width of the vapour distribution |
|---|
| 652 | REAL zpdf_sig(ngrid),zpdf_k(ngrid),zpdf_delta(ngrid) |
|---|
| 653 | REAL zpdf_a(ngrid),zpdf_b(ngrid),zpdf_e1(ngrid),zpdf_e2(ngrid) |
|---|
| 654 | REAL zqs(ngrid), qcloud(ngrid) |
|---|
| 655 | REAL erf |
|---|
| 656 | |
|---|
| 657 | |
|---|
| 658 | IF (iflag_cloudth_vert.GE.1) THEN |
|---|
| 659 | CALL cloudth_vert_v3(ngrid,klev,ind2, & |
|---|
| 660 | & ztv,po,zqta,fraca, & |
|---|
| 661 | & qcloud,ctot,ctot_vol,zpspsk,paprs,pplay,ztla,zthl, & |
|---|
| 662 | & ratqs,zqs,t) |
|---|
| 663 | RETURN |
|---|
| 664 | ENDIF |
|---|
| 665 | !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! |
|---|
| 666 | |
|---|
| 667 | |
|---|
| 668 | !------------------------------------------------------------------------------- |
|---|
| 669 | ! Initialisation des variables r?elles |
|---|
| 670 | !------------------------------------------------------------------------------- |
|---|
| 671 | sigma1(:,:)=0. |
|---|
| 672 | sigma2(:,:)=0. |
|---|
| 673 | qlth(:,:)=0. |
|---|
| 674 | qlenv(:,:)=0. |
|---|
| 675 | qltot(:,:)=0. |
|---|
| 676 | rneb(:,:)=0. |
|---|
| 677 | qcloud(:)=0. |
|---|
| 678 | cth(:,:)=0. |
|---|
| 679 | cenv(:,:)=0. |
|---|
| 680 | ctot(:,:)=0. |
|---|
| 681 | cth_vol(:,:)=0. |
|---|
| 682 | cenv_vol(:,:)=0. |
|---|
| 683 | ctot_vol(:,:)=0. |
|---|
| 684 | qsatmmussig1=0. |
|---|
| 685 | qsatmmussig2=0. |
|---|
| 686 | rdd=287.04 |
|---|
| 687 | cppd=1005.7 |
|---|
| 688 | pi=3.14159 |
|---|
| 689 | Lv=2.5e6 |
|---|
| 690 | sqrt2pi=sqrt(2.*pi) |
|---|
| 691 | sqrt2=sqrt(2.) |
|---|
| 692 | sqrtpi=sqrt(pi) |
|---|
| 693 | |
|---|
| 694 | |
|---|
| 695 | !------------------------------------------------------------------------------- |
|---|
| 696 | ! Cloud fraction in the thermals and standard deviation of the PDFs |
|---|
| 697 | !------------------------------------------------------------------------------- |
|---|
| 698 | do ind1=1,ngrid |
|---|
| 699 | |
|---|
| 700 | if ((ztv(ind1,1).gt.ztv(ind1,2)).and.(fraca(ind1,ind2).gt.1.e-10)) then |
|---|
| 701 | |
|---|
| 702 | zqenv(ind1)=(po(ind1)-fraca(ind1,ind2)*zqta(ind1,ind2))/(1.-fraca(ind1,ind2)) |
|---|
| 703 | |
|---|
| 704 | Tbef=zthl(ind1,ind2)*zpspsk(ind1,ind2) |
|---|
| 705 | zdelta=MAX(0.,SIGN(1.,RTT-Tbef)) |
|---|
| 706 | qsatbef= R2ES*FOEEW(Tbef,zdelta)/paprs(ind1,ind2) |
|---|
| 707 | qsatbef=MIN(0.5,qsatbef) |
|---|
| 708 | zcor=1./(1.-retv*qsatbef) |
|---|
| 709 | qsatbef=qsatbef*zcor |
|---|
| 710 | zqsatenv(ind1,ind2)=qsatbef |
|---|
| 711 | |
|---|
| 712 | |
|---|
| 713 | alenv=(0.622*Lv*zqsatenv(ind1,ind2))/(rdd*zthl(ind1,ind2)**2) !qsl, p84 |
|---|
| 714 | aenv=1./(1.+(alenv*Lv/cppd)) !al, p84 |
|---|
| 715 | senv=aenv*(po(ind1)-zqsatenv(ind1,ind2)) !s, p84 |
|---|
| 716 | |
|---|
| 717 | !po = qt de l'environnement ET des thermique |
|---|
| 718 | !zqenv = qt environnement |
|---|
| 719 | !zqsatenv = qsat environnement |
|---|
| 720 | !zthl = Tl environnement |
|---|
| 721 | |
|---|
| 722 | |
|---|
| 723 | Tbef=ztla(ind1,ind2)*zpspsk(ind1,ind2) |
|---|
| 724 | zdelta=MAX(0.,SIGN(1.,RTT-Tbef)) |
|---|
| 725 | qsatbef= R2ES * FOEEW(Tbef,zdelta)/paprs(ind1,ind2) |
|---|
| 726 | qsatbef=MIN(0.5,qsatbef) |
|---|
| 727 | zcor=1./(1.-retv*qsatbef) |
|---|
| 728 | qsatbef=qsatbef*zcor |
|---|
| 729 | zqsatth(ind1,ind2)=qsatbef |
|---|
| 730 | |
|---|
| 731 | alth=(0.622*Lv*zqsatth(ind1,ind2))/(rdd*ztla(ind1,ind2)**2) !qsl, p84 |
|---|
| 732 | ath=1./(1.+(alth*Lv/cppd)) !al, p84 |
|---|
| 733 | sth=ath*(zqta(ind1,ind2)-zqsatth(ind1,ind2)) !s, p84 |
|---|
| 734 | |
|---|
| 735 | !zqta = qt thermals |
|---|
| 736 | !zqsatth = qsat thermals |
|---|
| 737 | !ztla = Tl thermals |
|---|
| 738 | |
|---|
| 739 | !------------------------------------------------------------------------------ |
|---|
| 740 | ! s standard deviations |
|---|
| 741 | !------------------------------------------------------------------------------ |
|---|
| 742 | |
|---|
| 743 | ! tests |
|---|
| 744 | ! sigma1s=(1.1**0.5)*(fraca(ind1,ind2)**0.6)/(1-fraca(ind1,ind2))*((sth-senv)**2)**0.5+0.002*po(ind1) |
|---|
| 745 | ! sigma1s=(0.92*(fraca(ind1,ind2)**0.5)/(1-fraca(ind1,ind2))*(((sth-senv)**2)**0.5))+ratqs(ind1,ind2)*po(ind1) |
|---|
| 746 | ! sigma2s=(0.09*(((sth-senv)**2)**0.5)/((fraca(ind1,ind2)+0.02)**0.5))+0.002*zqta(ind1,ind2) |
|---|
| 747 | ! final option |
|---|
| 748 | sigma1s=(1.1**0.5)*(fraca(ind1,ind2)**0.6)/(1-fraca(ind1,ind2))*((sth-senv)**2)**0.5+ratqs(ind1,ind2)*po(ind1) |
|---|
| 749 | sigma2s=0.11*((sth-senv)**2)**0.5/(fraca(ind1,ind2)+0.01)**0.4+0.002*zqta(ind1,ind2) |
|---|
| 750 | |
|---|
| 751 | !------------------------------------------------------------------------------ |
|---|
| 752 | ! Condensed water and cloud cover |
|---|
| 753 | !------------------------------------------------------------------------------ |
|---|
| 754 | xth=sth/(sqrt2*sigma2s) |
|---|
| 755 | xenv=senv/(sqrt2*sigma1s) |
|---|
| 756 | cth(ind1,ind2)=0.5*(1.+1.*erf(xth)) !4.18 p 111, l.7 p115 & 4.20 p 119 thesis Arnaud Jam |
|---|
| 757 | cenv(ind1,ind2)=0.5*(1.+1.*erf(xenv)) !4.18 p 111, l.7 p115 & 4.20 p 119 thesis Arnaud Jam |
|---|
| 758 | ctot(ind1,ind2)=fraca(ind1,ind2)*cth(ind1,ind2)+(1.-1.*fraca(ind1,ind2))*cenv(ind1,ind2) |
|---|
| 759 | ctot_vol(ind1,ind2)=ctot(ind1,ind2) |
|---|
| 760 | |
|---|
| 761 | qlth(ind1,ind2)=sigma2s*((exp(-1.*xth**2)/sqrt2pi)+xth*sqrt2*cth(ind1,ind2)) |
|---|
| 762 | qlenv(ind1,ind2)=sigma1s*((exp(-1.*xenv**2)/sqrt2pi)+xenv*sqrt2*cenv(ind1,ind2)) |
|---|
| 763 | qltot(ind1,ind2)=fraca(ind1,ind2)*qlth(ind1,ind2)+(1.-1.*fraca(ind1,ind2))*qlenv(ind1,ind2) |
|---|
| 764 | |
|---|
| 765 | if (ctot(ind1,ind2).lt.1.e-10) then |
|---|
| 766 | ctot(ind1,ind2)=0. |
|---|
| 767 | qcloud(ind1)=zqsatenv(ind1,ind2) |
|---|
| 768 | else |
|---|
| 769 | qcloud(ind1)=qltot(ind1,ind2)/ctot(ind1,ind2)+zqs(ind1) |
|---|
| 770 | endif |
|---|
| 771 | |
|---|
| 772 | else ! Environnement only, follow the if l.110 |
|---|
| 773 | |
|---|
| 774 | zqenv(ind1)=po(ind1) |
|---|
| 775 | Tbef=t(ind1,ind2) |
|---|
| 776 | zdelta=MAX(0.,SIGN(1.,RTT-Tbef)) |
|---|
| 777 | qsatbef= R2ES * FOEEW(Tbef,zdelta)/paprs(ind1,ind2) |
|---|
| 778 | qsatbef=MIN(0.5,qsatbef) |
|---|
| 779 | zcor=1./(1.-retv*qsatbef) |
|---|
| 780 | qsatbef=qsatbef*zcor |
|---|
| 781 | zqsatenv(ind1,ind2)=qsatbef |
|---|
| 782 | |
|---|
| 783 | ! qlbef=Max(po(ind1)-zqsatenv(ind1,ind2),0.) |
|---|
| 784 | zthl(ind1,ind2)=t(ind1,ind2)*(101325/paprs(ind1,ind2))**(rdd/cppd) |
|---|
| 785 | alenv=(0.622*Lv*zqsatenv(ind1,ind2))/(rdd*zthl(ind1,ind2)**2) |
|---|
| 786 | aenv=1./(1.+(alenv*Lv/cppd)) |
|---|
| 787 | senv=aenv*(po(ind1)-zqsatenv(ind1,ind2)) |
|---|
| 788 | |
|---|
| 789 | sigma1s=ratqs(ind1,ind2)*zqenv(ind1) |
|---|
| 790 | |
|---|
| 791 | xenv=senv/(sqrt2*sigma1s) |
|---|
| 792 | ctot(ind1,ind2)=0.5*(1.+1.*erf(xenv)) |
|---|
| 793 | ctot_vol(ind1,ind2)=ctot(ind1,ind2) |
|---|
| 794 | qltot(ind1,ind2)=sigma1s*((exp(-1.*xenv**2)/sqrt2pi)+xenv*sqrt2*cenv(ind1,ind2)) |
|---|
| 795 | |
|---|
| 796 | if (ctot(ind1,ind2).lt.1.e-3) then |
|---|
| 797 | ctot(ind1,ind2)=0. |
|---|
| 798 | qcloud(ind1)=zqsatenv(ind1,ind2) |
|---|
| 799 | else |
|---|
| 800 | qcloud(ind1)=qltot(ind1,ind2)/ctot(ind1,ind2)+zqsatenv(ind1,ind2) |
|---|
| 801 | endif |
|---|
| 802 | |
|---|
| 803 | |
|---|
| 804 | endif ! From the separation (thermal/envrionnement) et (environnement) only, l.110 et l.183 |
|---|
| 805 | enddo ! from the loop on ngrid l.108 |
|---|
| 806 | return |
|---|
| 807 | ! end |
|---|
| 808 | END SUBROUTINE cloudth_v3 |
|---|
| 809 | |
|---|
| 810 | |
|---|
| 811 | |
|---|
| 812 | !=========================================================================== |
|---|
| 813 | SUBROUTINE cloudth_vert_v3(ngrid,klev,ind2, & |
|---|
| 814 | & ztv,po,zqta,fraca, & |
|---|
| 815 | & qcloud,ctot,ctot_vol,zpspsk,paprs,pplay,ztla,zthl, & |
|---|
| 816 | & ratqs,zqs,t) |
|---|
| 817 | |
|---|
| 818 | !=========================================================================== |
|---|
| 819 | ! Auteur : Arnaud Octavio Jam (LMD/CNRS) |
|---|
| 820 | ! Date : 25 Mai 2010 |
|---|
| 821 | ! Objet : calcule les valeurs de qc et rneb dans les thermiques |
|---|
| 822 | !=========================================================================== |
|---|
| 823 | |
|---|
| 824 | use lscp_ini_mod, only: iflag_cloudth_vert |
|---|
| 825 | USE ioipsl_getin_p_mod, ONLY : getin_p |
|---|
| 826 | USE phys_output_var_mod, ONLY : cloudth_sth,cloudth_senv, & |
|---|
| 827 | & cloudth_sigmath,cloudth_sigmaenv |
|---|
| 828 | |
|---|
| 829 | IMPLICIT NONE |
|---|
| 830 | |
|---|
| 831 | #include "YOMCST.h" |
|---|
| 832 | #include "YOETHF.h" |
|---|
| 833 | #include "FCTTRE.h" |
|---|
| 834 | |
|---|
| 835 | INTEGER itap,ind1,ind2 |
|---|
| 836 | INTEGER ngrid,klev,klon,l,ig |
|---|
| 837 | |
|---|
| 838 | REAL ztv(ngrid,klev) |
|---|
| 839 | REAL po(ngrid) |
|---|
| 840 | REAL zqenv(ngrid) |
|---|
| 841 | REAL zqta(ngrid,klev) |
|---|
| 842 | |
|---|
| 843 | REAL fraca(ngrid,klev+1) |
|---|
| 844 | REAL zpspsk(ngrid,klev) |
|---|
| 845 | REAL paprs(ngrid,klev+1) |
|---|
| 846 | REAL pplay(ngrid,klev) |
|---|
| 847 | REAL ztla(ngrid,klev) |
|---|
| 848 | REAL zthl(ngrid,klev) |
|---|
| 849 | |
|---|
| 850 | REAL zqsatth(ngrid,klev) |
|---|
| 851 | REAL zqsatenv(ngrid,klev) |
|---|
| 852 | |
|---|
| 853 | REAL sigma1(ngrid,klev) |
|---|
| 854 | REAL sigma2(ngrid,klev) |
|---|
| 855 | REAL qlth(ngrid,klev) |
|---|
| 856 | REAL qlenv(ngrid,klev) |
|---|
| 857 | REAL qltot(ngrid,klev) |
|---|
| 858 | REAL cth(ngrid,klev) |
|---|
| 859 | REAL cenv(ngrid,klev) |
|---|
| 860 | REAL ctot(ngrid,klev) |
|---|
| 861 | REAL cth_vol(ngrid,klev) |
|---|
| 862 | REAL cenv_vol(ngrid,klev) |
|---|
| 863 | REAL ctot_vol(ngrid,klev) |
|---|
| 864 | REAL rneb(ngrid,klev) |
|---|
| 865 | REAL t(ngrid,klev) |
|---|
| 866 | REAL qsatmmussig1,qsatmmussig2,sqrtpi,sqrt2,sqrt2pi,pi |
|---|
| 867 | REAL rdd,cppd,Lv |
|---|
| 868 | REAL alth,alenv,ath,aenv |
|---|
| 869 | REAL sth,senv,sigma1s,sigma2s,sigma1s_fraca,sigma1s_ratqs |
|---|
| 870 | REAL inverse_rho,beta,a_Brooks,b_Brooks,A_Maj_Brooks,Dx_Brooks,f_Brooks |
|---|
| 871 | REAL xth,xenv,exp_xenv1,exp_xenv2,exp_xth1,exp_xth2 |
|---|
| 872 | REAL xth1,xth2,xenv1,xenv2,deltasth, deltasenv |
|---|
| 873 | REAL IntJ,IntI1,IntI2,IntI3,IntJ_CF,IntI1_CF,IntI3_CF,coeffqlenv,coeffqlth |
|---|
| 874 | REAL Tbef,zdelta,qsatbef,zcor |
|---|
| 875 | REAL qlbef |
|---|
| 876 | REAL ratqs(ngrid,klev) ! determine la largeur de distribution de vapeur |
|---|
| 877 | ! Change the width of the PDF used for vertical subgrid scale heterogeneity |
|---|
| 878 | ! (J Jouhaud, JL Dufresne, JB Madeleine) |
|---|
| 879 | REAL,SAVE :: vert_alpha, vert_alpha_th |
|---|
| 880 | !$OMP THREADPRIVATE(vert_alpha, vert_alpha_th) |
|---|
| 881 | REAL,SAVE :: sigma1s_factor=1.1 |
|---|
| 882 | REAL,SAVE :: sigma1s_power=0.6 |
|---|
| 883 | REAL,SAVE :: sigma2s_factor=0.09 |
|---|
| 884 | REAL,SAVE :: sigma2s_power=0.5 |
|---|
| 885 | REAL,SAVE :: cloudth_ratqsmin=-1. |
|---|
| 886 | !$OMP THREADPRIVATE(sigma1s_factor,sigma1s_power,sigma2s_factor,sigma2s_power,cloudth_ratqsmin) |
|---|
| 887 | INTEGER, SAVE :: iflag_cloudth_vert_noratqs=0 |
|---|
| 888 | !$OMP THREADPRIVATE(iflag_cloudth_vert_noratqs) |
|---|
| 889 | |
|---|
| 890 | LOGICAL, SAVE :: firstcall = .TRUE. |
|---|
| 891 | !$OMP THREADPRIVATE(firstcall) |
|---|
| 892 | |
|---|
| 893 | REAL zpdf_sig(ngrid),zpdf_k(ngrid),zpdf_delta(ngrid) |
|---|
| 894 | REAL zpdf_a(ngrid),zpdf_b(ngrid),zpdf_e1(ngrid),zpdf_e2(ngrid) |
|---|
| 895 | REAL zqs(ngrid), qcloud(ngrid) |
|---|
| 896 | REAL erf |
|---|
| 897 | |
|---|
| 898 | REAL rhodz(ngrid,klev) |
|---|
| 899 | REAL zrho(ngrid,klev) |
|---|
| 900 | REAL dz(ngrid,klev) |
|---|
| 901 | |
|---|
| 902 | DO ind1 = 1, ngrid |
|---|
| 903 | !Layer calculation |
|---|
| 904 | rhodz(ind1,ind2) = (paprs(ind1,ind2)-paprs(ind1,ind2+1))/rg !kg/m2 |
|---|
| 905 | zrho(ind1,ind2) = pplay(ind1,ind2)/t(ind1,ind2)/rd !kg/m3 |
|---|
| 906 | dz(ind1,ind2) = rhodz(ind1,ind2)/zrho(ind1,ind2) !m : epaisseur de la couche en metre |
|---|
| 907 | END DO |
|---|
| 908 | |
|---|
| 909 | !------------------------------------------------------------------------------ |
|---|
| 910 | ! Initialize |
|---|
| 911 | !------------------------------------------------------------------------------ |
|---|
| 912 | |
|---|
| 913 | sigma1(:,:)=0. |
|---|
| 914 | sigma2(:,:)=0. |
|---|
| 915 | qlth(:,:)=0. |
|---|
| 916 | qlenv(:,:)=0. |
|---|
| 917 | qltot(:,:)=0. |
|---|
| 918 | rneb(:,:)=0. |
|---|
| 919 | qcloud(:)=0. |
|---|
| 920 | cth(:,:)=0. |
|---|
| 921 | cenv(:,:)=0. |
|---|
| 922 | ctot(:,:)=0. |
|---|
| 923 | cth_vol(:,:)=0. |
|---|
| 924 | cenv_vol(:,:)=0. |
|---|
| 925 | ctot_vol(:,:)=0. |
|---|
| 926 | qsatmmussig1=0. |
|---|
| 927 | qsatmmussig2=0. |
|---|
| 928 | rdd=287.04 |
|---|
| 929 | cppd=1005.7 |
|---|
| 930 | pi=3.14159 |
|---|
| 931 | Lv=2.5e6 |
|---|
| 932 | sqrt2pi=sqrt(2.*pi) |
|---|
| 933 | sqrt2=sqrt(2.) |
|---|
| 934 | sqrtpi=sqrt(pi) |
|---|
| 935 | |
|---|
| 936 | IF (firstcall) THEN |
|---|
| 937 | vert_alpha=0.5 |
|---|
| 938 | CALL getin_p('cloudth_vert_alpha',vert_alpha) |
|---|
| 939 | WRITE(*,*) 'cloudth_vert_alpha = ', vert_alpha |
|---|
| 940 | ! The factor used for the thermal is equal to that of the environment |
|---|
| 941 | ! if nothing is explicitly specified in the def file |
|---|
| 942 | vert_alpha_th=vert_alpha |
|---|
| 943 | CALL getin_p('cloudth_vert_alpha_th',vert_alpha_th) |
|---|
| 944 | WRITE(*,*) 'cloudth_vert_alpha_th = ', vert_alpha_th |
|---|
| 945 | ! Factor used in the calculation of sigma1s |
|---|
| 946 | CALL getin_p('cloudth_sigma1s_factor',sigma1s_factor) |
|---|
| 947 | WRITE(*,*) 'cloudth_sigma1s_factor = ', sigma1s_factor |
|---|
| 948 | ! Power used in the calculation of sigma1s |
|---|
| 949 | CALL getin_p('cloudth_sigma1s_power',sigma1s_power) |
|---|
| 950 | WRITE(*,*) 'cloudth_sigma1s_power = ', sigma1s_power |
|---|
| 951 | ! Factor used in the calculation of sigma2s |
|---|
| 952 | CALL getin_p('cloudth_sigma2s_factor',sigma2s_factor) |
|---|
| 953 | WRITE(*,*) 'cloudth_sigma2s_factor = ', sigma2s_factor |
|---|
| 954 | ! Power used in the calculation of sigma2s |
|---|
| 955 | CALL getin_p('cloudth_sigma2s_power',sigma2s_power) |
|---|
| 956 | WRITE(*,*) 'cloudth_sigma2s_power = ', sigma2s_power |
|---|
| 957 | ! Minimum value for the environmental air subgrid water distrib |
|---|
| 958 | CALL getin_p('cloudth_ratqsmin',cloudth_ratqsmin) |
|---|
| 959 | WRITE(*,*) 'cloudth_ratqsmin = ', cloudth_ratqsmin |
|---|
| 960 | ! Remove the dependency to ratqs from the variance of the vertical PDF |
|---|
| 961 | CALL getin_p('iflag_cloudth_vert_noratqs',iflag_cloudth_vert_noratqs) |
|---|
| 962 | WRITE(*,*) 'iflag_cloudth_vert_noratqs = ', iflag_cloudth_vert_noratqs |
|---|
| 963 | |
|---|
| 964 | firstcall=.FALSE. |
|---|
| 965 | ENDIF |
|---|
| 966 | |
|---|
| 967 | !------------------------------------------------------------------------------- |
|---|
| 968 | ! Calcul de la fraction du thermique et des ecart-types des distributions |
|---|
| 969 | !------------------------------------------------------------------------------- |
|---|
| 970 | do ind1=1,ngrid |
|---|
| 971 | |
|---|
| 972 | if ((ztv(ind1,1).gt.ztv(ind1,2)).and.(fraca(ind1,ind2).gt.1.e-10)) then !Thermal and environnement |
|---|
| 973 | |
|---|
| 974 | zqenv(ind1)=(po(ind1)-fraca(ind1,ind2)*zqta(ind1,ind2))/(1.-fraca(ind1,ind2)) !qt = a*qtth + (1-a)*qtenv |
|---|
| 975 | |
|---|
| 976 | |
|---|
| 977 | Tbef=zthl(ind1,ind2)*zpspsk(ind1,ind2) |
|---|
| 978 | zdelta=MAX(0.,SIGN(1.,RTT-Tbef)) |
|---|
| 979 | qsatbef= R2ES*FOEEW(Tbef,zdelta)/paprs(ind1,ind2) |
|---|
| 980 | qsatbef=MIN(0.5,qsatbef) |
|---|
| 981 | zcor=1./(1.-retv*qsatbef) |
|---|
| 982 | qsatbef=qsatbef*zcor |
|---|
| 983 | zqsatenv(ind1,ind2)=qsatbef |
|---|
| 984 | |
|---|
| 985 | |
|---|
| 986 | alenv=(0.622*Lv*zqsatenv(ind1,ind2))/(rdd*zthl(ind1,ind2)**2) !qsl, p84 |
|---|
| 987 | aenv=1./(1.+(alenv*Lv/cppd)) !al, p84 |
|---|
| 988 | senv=aenv*(po(ind1)-zqsatenv(ind1,ind2)) !s, p84 |
|---|
| 989 | |
|---|
| 990 | !zqenv = qt environnement |
|---|
| 991 | !zqsatenv = qsat environnement |
|---|
| 992 | !zthl = Tl environnement |
|---|
| 993 | |
|---|
| 994 | |
|---|
| 995 | Tbef=ztla(ind1,ind2)*zpspsk(ind1,ind2) |
|---|
| 996 | zdelta=MAX(0.,SIGN(1.,RTT-Tbef)) |
|---|
| 997 | qsatbef= R2ES * FOEEW(Tbef,zdelta)/paprs(ind1,ind2) |
|---|
| 998 | qsatbef=MIN(0.5,qsatbef) |
|---|
| 999 | zcor=1./(1.-retv*qsatbef) |
|---|
| 1000 | qsatbef=qsatbef*zcor |
|---|
| 1001 | zqsatth(ind1,ind2)=qsatbef |
|---|
| 1002 | |
|---|
| 1003 | alth=(0.622*Lv*zqsatth(ind1,ind2))/(rdd*ztla(ind1,ind2)**2) !qsl, p84 |
|---|
| 1004 | ath=1./(1.+(alth*Lv/cppd)) !al, p84 |
|---|
| 1005 | sth=ath*(zqta(ind1,ind2)-zqsatth(ind1,ind2)) !s, p84 |
|---|
| 1006 | |
|---|
| 1007 | |
|---|
| 1008 | !zqta = qt thermals |
|---|
| 1009 | !zqsatth = qsat thermals |
|---|
| 1010 | !ztla = Tl thermals |
|---|
| 1011 | !------------------------------------------------------------------------------ |
|---|
| 1012 | ! s standard deviation |
|---|
| 1013 | !------------------------------------------------------------------------------ |
|---|
| 1014 | |
|---|
| 1015 | sigma1s_fraca = (sigma1s_factor**0.5)*(fraca(ind1,ind2)**sigma1s_power) / & |
|---|
| 1016 | & (1-fraca(ind1,ind2))*((sth-senv)**2)**0.5 |
|---|
| 1017 | ! sigma1s_fraca = (1.1**0.5)*(fraca(ind1,ind2)**0.6)/(1-fraca(ind1,ind2))*((sth-senv)**2)**0.5 |
|---|
| 1018 | IF (cloudth_ratqsmin>0.) THEN |
|---|
| 1019 | sigma1s_ratqs = cloudth_ratqsmin*po(ind1) |
|---|
| 1020 | ELSE |
|---|
| 1021 | sigma1s_ratqs = ratqs(ind1,ind2)*po(ind1) |
|---|
| 1022 | ENDIF |
|---|
| 1023 | sigma1s = sigma1s_fraca + sigma1s_ratqs |
|---|
| 1024 | sigma2s=(sigma2s_factor*(((sth-senv)**2)**0.5)/((fraca(ind1,ind2)+0.02)**sigma2s_power))+0.002*zqta(ind1,ind2) |
|---|
| 1025 | ! tests |
|---|
| 1026 | ! sigma1s=(0.92**0.5)*(fraca(ind1,ind2)**0.5)/(1-fraca(ind1,ind2))*((sth-senv)**2)**0.5+ratqs(ind1,ind2)*po(ind1) |
|---|
| 1027 | ! sigma1s=(0.92*(fraca(ind1,ind2)**0.5)/(1-fraca(ind1,ind2))*(((sth-senv)**2)**0.5))+0.002*zqenv(ind1) |
|---|
| 1028 | ! sigma2s=0.09*((sth-senv)**2)**0.5/(fraca(ind1,ind2)+0.02)**0.5+0.002*zqta(ind1,ind2) |
|---|
| 1029 | ! sigma2s=(0.09*(((sth-senv)**2)**0.5)/((fraca(ind1,ind2)+0.02)**0.5))+ratqs(ind1,ind2)*zqta(ind1,ind2) |
|---|
| 1030 | ! if (paprs(ind1,ind2).gt.90000) then |
|---|
| 1031 | ! ratqs(ind1,ind2)=0.002 |
|---|
| 1032 | ! else |
|---|
| 1033 | ! ratqs(ind1,ind2)=0.002+0.0*(90000-paprs(ind1,ind2))/20000 |
|---|
| 1034 | ! endif |
|---|
| 1035 | ! sigma1s=(1.1**0.5)*(fraca(ind1,ind2)**0.6)/(1-fraca(ind1,ind2))*((sth-senv)**2)**0.5+0.002*po(ind1) |
|---|
| 1036 | ! sigma2s=0.11*((sth-senv)**2)**0.5/(fraca(ind1,ind2)+0.01)**0.4+0.002*zqta(ind1,ind2) |
|---|
| 1037 | ! sigma1s=ratqs(ind1,ind2)*po(ind1) |
|---|
| 1038 | ! sigma2s=0.11*((sth-senv)**2)**0.5/(fraca(ind1,ind2)+0.02)**0.4+0.00003 |
|---|
| 1039 | |
|---|
| 1040 | IF (iflag_cloudth_vert == 1) THEN |
|---|
| 1041 | !------------------------------------------------------------------------------- |
|---|
| 1042 | ! Version 2: Modification from Arnaud Jam according to JL Dufrense. Condensate from qsat-ratqs |
|---|
| 1043 | !------------------------------------------------------------------------------- |
|---|
| 1044 | |
|---|
| 1045 | deltasenv=aenv*ratqs(ind1,ind2)*zqsatenv(ind1,ind2) |
|---|
| 1046 | deltasth=ath*ratqs(ind1,ind2)*zqsatth(ind1,ind2) |
|---|
| 1047 | |
|---|
| 1048 | xenv1=(senv-deltasenv)/(sqrt(2.)*sigma1s) |
|---|
| 1049 | xenv2=(senv+deltasenv)/(sqrt(2.)*sigma1s) |
|---|
| 1050 | xth1=(sth-deltasth)/(sqrt(2.)*sigma2s) |
|---|
| 1051 | xth2=(sth+deltasth)/(sqrt(2.)*sigma2s) |
|---|
| 1052 | coeffqlenv=(sigma1s)**2/(2*sqrtpi*deltasenv) |
|---|
| 1053 | coeffqlth=(sigma2s)**2/(2*sqrtpi*deltasth) |
|---|
| 1054 | |
|---|
| 1055 | cth(ind1,ind2)=0.5*(1.+1.*erf(xth2)) |
|---|
| 1056 | cenv(ind1,ind2)=0.5*(1.+1.*erf(xenv2)) |
|---|
| 1057 | ctot(ind1,ind2)=fraca(ind1,ind2)*cth(ind1,ind2)+(1.-1.*fraca(ind1,ind2))*cenv(ind1,ind2) |
|---|
| 1058 | |
|---|
| 1059 | ! Environment |
|---|
| 1060 | IntJ=sigma1s*(exp(-1.*xenv1**2)/sqrt2pi)+0.5*senv*(1+erf(xenv1)) |
|---|
| 1061 | IntI1=coeffqlenv*0.5*(0.5*sqrtpi*(erf(xenv2)-erf(xenv1))+xenv1*exp(-1.*xenv1**2)-xenv2*exp(-1.*xenv2**2)) |
|---|
| 1062 | IntI2=coeffqlenv*xenv2*(exp(-1.*xenv2**2)-exp(-1.*xenv1**2)) |
|---|
| 1063 | IntI3=coeffqlenv*0.5*sqrtpi*xenv2**2*(erf(xenv2)-erf(xenv1)) |
|---|
| 1064 | |
|---|
| 1065 | qlenv(ind1,ind2)=IntJ+IntI1+IntI2+IntI3 |
|---|
| 1066 | |
|---|
| 1067 | ! Thermal |
|---|
| 1068 | IntJ=sigma2s*(exp(-1.*xth1**2)/sqrt2pi)+0.5*sth*(1+erf(xth1)) |
|---|
| 1069 | IntI1=coeffqlth*0.5*(0.5*sqrtpi*(erf(xth2)-erf(xth1))+xth1*exp(-1.*xth1**2)-xth2*exp(-1.*xth2**2)) |
|---|
| 1070 | IntI2=coeffqlth*xth2*(exp(-1.*xth2**2)-exp(-1.*xth1**2)) |
|---|
| 1071 | IntI3=coeffqlth*0.5*sqrtpi*xth2**2*(erf(xth2)-erf(xth1)) |
|---|
| 1072 | qlth(ind1,ind2)=IntJ+IntI1+IntI2+IntI3 |
|---|
| 1073 | qltot(ind1,ind2)=fraca(ind1,ind2)*qlth(ind1,ind2)+(1.-1.*fraca(ind1,ind2))*qlenv(ind1,ind2) |
|---|
| 1074 | |
|---|
| 1075 | ELSE IF (iflag_cloudth_vert >= 3) THEN |
|---|
| 1076 | IF (iflag_cloudth_vert < 5) THEN |
|---|
| 1077 | !------------------------------------------------------------------------------- |
|---|
| 1078 | ! Version 3: Changes by J. Jouhaud; condensation for q > -delta s |
|---|
| 1079 | !------------------------------------------------------------------------------- |
|---|
| 1080 | ! deltasenv=aenv*ratqs(ind1,ind2)*po(ind1) |
|---|
| 1081 | ! deltasth=ath*ratqs(ind1,ind2)*zqta(ind1,ind2) |
|---|
| 1082 | ! deltasenv=aenv*ratqs(ind1,ind2)*zqsatenv(ind1,ind2) |
|---|
| 1083 | ! deltasth=ath*ratqs(ind1,ind2)*zqsatth(ind1,ind2) |
|---|
| 1084 | IF (iflag_cloudth_vert == 3) THEN |
|---|
| 1085 | deltasenv=aenv*vert_alpha*sigma1s |
|---|
| 1086 | deltasth=ath*vert_alpha_th*sigma2s |
|---|
| 1087 | ELSE IF (iflag_cloudth_vert == 4) THEN |
|---|
| 1088 | IF (iflag_cloudth_vert_noratqs == 1) THEN |
|---|
| 1089 | deltasenv=vert_alpha*max(sigma1s_fraca,1e-10) |
|---|
| 1090 | deltasth=vert_alpha_th*sigma2s |
|---|
| 1091 | ELSE |
|---|
| 1092 | deltasenv=vert_alpha*sigma1s |
|---|
| 1093 | deltasth=vert_alpha_th*sigma2s |
|---|
| 1094 | ENDIF |
|---|
| 1095 | ENDIF |
|---|
| 1096 | |
|---|
| 1097 | xenv1=-(senv+deltasenv)/(sqrt(2.)*sigma1s) |
|---|
| 1098 | xenv2=-(senv-deltasenv)/(sqrt(2.)*sigma1s) |
|---|
| 1099 | exp_xenv1 = exp(-1.*xenv1**2) |
|---|
| 1100 | exp_xenv2 = exp(-1.*xenv2**2) |
|---|
| 1101 | xth1=-(sth+deltasth)/(sqrt(2.)*sigma2s) |
|---|
| 1102 | xth2=-(sth-deltasth)/(sqrt(2.)*sigma2s) |
|---|
| 1103 | exp_xth1 = exp(-1.*xth1**2) |
|---|
| 1104 | exp_xth2 = exp(-1.*xth2**2) |
|---|
| 1105 | |
|---|
| 1106 | !CF_surfacique |
|---|
| 1107 | cth(ind1,ind2)=0.5*(1.-1.*erf(xth1)) |
|---|
| 1108 | cenv(ind1,ind2)=0.5*(1.-1.*erf(xenv1)) |
|---|
| 1109 | ctot(ind1,ind2)=fraca(ind1,ind2)*cth(ind1,ind2)+(1.-1.*fraca(ind1,ind2))*cenv(ind1,ind2) |
|---|
| 1110 | |
|---|
| 1111 | |
|---|
| 1112 | !CF_volumique & eau condense |
|---|
| 1113 | !environnement |
|---|
| 1114 | IntJ=0.5*senv*(1-erf(xenv2))+(sigma1s/sqrt2pi)*exp_xenv2 |
|---|
| 1115 | IntJ_CF=0.5*(1.-1.*erf(xenv2)) |
|---|
| 1116 | if (deltasenv .lt. 1.e-10) then |
|---|
| 1117 | qlenv(ind1,ind2)=IntJ |
|---|
| 1118 | cenv_vol(ind1,ind2)=IntJ_CF |
|---|
| 1119 | else |
|---|
| 1120 | IntI1=(((senv+deltasenv)**2+(sigma1s)**2)/(8*deltasenv))*(erf(xenv2)-erf(xenv1)) |
|---|
| 1121 | IntI2=(sigma1s**2/(4*deltasenv*sqrtpi))*(xenv1*exp_xenv1-xenv2*exp_xenv2) |
|---|
| 1122 | IntI3=((sqrt2*sigma1s*(senv+deltasenv))/(4*sqrtpi*deltasenv))*(exp_xenv1-exp_xenv2) |
|---|
| 1123 | IntI1_CF=((senv+deltasenv)*(erf(xenv2)-erf(xenv1)))/(4*deltasenv) |
|---|
| 1124 | IntI3_CF=(sqrt2*sigma1s*(exp_xenv1-exp_xenv2))/(4*sqrtpi*deltasenv) |
|---|
| 1125 | qlenv(ind1,ind2)=IntJ+IntI1+IntI2+IntI3 |
|---|
| 1126 | cenv_vol(ind1,ind2)=IntJ_CF+IntI1_CF+IntI3_CF |
|---|
| 1127 | endif |
|---|
| 1128 | |
|---|
| 1129 | !thermique |
|---|
| 1130 | IntJ=0.5*sth*(1-erf(xth2))+(sigma2s/sqrt2pi)*exp_xth2 |
|---|
| 1131 | IntJ_CF=0.5*(1.-1.*erf(xth2)) |
|---|
| 1132 | if (deltasth .lt. 1.e-10) then |
|---|
| 1133 | qlth(ind1,ind2)=IntJ |
|---|
| 1134 | cth_vol(ind1,ind2)=IntJ_CF |
|---|
| 1135 | else |
|---|
| 1136 | IntI1=(((sth+deltasth)**2+(sigma2s)**2)/(8*deltasth))*(erf(xth2)-erf(xth1)) |
|---|
| 1137 | IntI2=(sigma2s**2/(4*deltasth*sqrtpi))*(xth1*exp_xth1-xth2*exp_xth2) |
|---|
| 1138 | IntI3=((sqrt2*sigma2s*(sth+deltasth))/(4*sqrtpi*deltasth))*(exp_xth1-exp_xth2) |
|---|
| 1139 | IntI1_CF=((sth+deltasth)*(erf(xth2)-erf(xth1)))/(4*deltasth) |
|---|
| 1140 | IntI3_CF=(sqrt2*sigma2s*(exp_xth1-exp_xth2))/(4*sqrtpi*deltasth) |
|---|
| 1141 | qlth(ind1,ind2)=IntJ+IntI1+IntI2+IntI3 |
|---|
| 1142 | cth_vol(ind1,ind2)=IntJ_CF+IntI1_CF+IntI3_CF |
|---|
| 1143 | endif |
|---|
| 1144 | |
|---|
| 1145 | qltot(ind1,ind2)=fraca(ind1,ind2)*qlth(ind1,ind2)+(1.-1.*fraca(ind1,ind2))*qlenv(ind1,ind2) |
|---|
| 1146 | ctot_vol(ind1,ind2)=fraca(ind1,ind2)*cth_vol(ind1,ind2)+(1.-1.*fraca(ind1,ind2))*cenv_vol(ind1,ind2) |
|---|
| 1147 | |
|---|
| 1148 | ELSE IF (iflag_cloudth_vert == 5) THEN |
|---|
| 1149 | sigma1s=(0.71794+0.000498239*dz(ind1,ind2))*(fraca(ind1,ind2)**0.5) & |
|---|
| 1150 | /(1-fraca(ind1,ind2))*(((sth-senv)**2)**0.5) & |
|---|
| 1151 | +ratqs(ind1,ind2)*po(ind1) !Environment |
|---|
| 1152 | sigma2s=(0.03218+0.000092655*dz(ind1,ind2))/((fraca(ind1,ind2)+0.02)**0.5)*(((sth-senv)**2)**0.5)+0.002*zqta(ind1,ind2) !Thermals |
|---|
| 1153 | !sigma1s=(1.1**0.5)*(fraca(ind1,ind2)**0.6)/(1-fraca(ind1,ind2))*((sth-senv)**2)**0.5+0.002*po(ind1) |
|---|
| 1154 | !sigma2s=0.11*((sth-senv)**2)**0.5/(fraca(ind1,ind2)+0.01)**0.4+0.002*zqta(ind1,ind2) |
|---|
| 1155 | xth=sth/(sqrt(2.)*sigma2s) |
|---|
| 1156 | xenv=senv/(sqrt(2.)*sigma1s) |
|---|
| 1157 | |
|---|
| 1158 | !Volumique |
|---|
| 1159 | cth_vol(ind1,ind2)=0.5*(1.+1.*erf(xth)) |
|---|
| 1160 | cenv_vol(ind1,ind2)=0.5*(1.+1.*erf(xenv)) |
|---|
| 1161 | ctot_vol(ind1,ind2)=fraca(ind1,ind2)*cth_vol(ind1,ind2)+(1.-1.*fraca(ind1,ind2))*cenv_vol(ind1,ind2) |
|---|
| 1162 | !print *,'jeanjean_CV=',ctot_vol(ind1,ind2) |
|---|
| 1163 | |
|---|
| 1164 | qlth(ind1,ind2)=sigma2s*((exp(-1.*xth**2)/sqrt2pi)+xth*sqrt(2.)*cth_vol(ind1,ind2)) |
|---|
| 1165 | qlenv(ind1,ind2)=sigma1s*((exp(-1.*xenv**2)/sqrt2pi)+xenv*sqrt(2.)*cenv_vol(ind1,ind2)) |
|---|
| 1166 | qltot(ind1,ind2)=fraca(ind1,ind2)*qlth(ind1,ind2)+(1.-1.*fraca(ind1,ind2))*qlenv(ind1,ind2) |
|---|
| 1167 | |
|---|
| 1168 | !Surfacique |
|---|
| 1169 | !Neggers |
|---|
| 1170 | !beta=0.0044 |
|---|
| 1171 | !inverse_rho=1.+beta*dz(ind1,ind2) |
|---|
| 1172 | !print *,'jeanjean : beta=',beta |
|---|
| 1173 | !cth(ind1,ind2)=cth_vol(ind1,ind2)*inverse_rho |
|---|
| 1174 | !cenv(ind1,ind2)=cenv_vol(ind1,ind2)*inverse_rho |
|---|
| 1175 | !ctot(ind1,ind2)=fraca(ind1,ind2)*cth(ind1,ind2)+(1.-1.*fraca(ind1,ind2))*cenv(ind1,ind2) |
|---|
| 1176 | |
|---|
| 1177 | !Brooks |
|---|
| 1178 | a_Brooks=0.6694 |
|---|
| 1179 | b_Brooks=0.1882 |
|---|
| 1180 | A_Maj_Brooks=0.1635 !-- sans shear |
|---|
| 1181 | !A_Maj_Brooks=0.17 !-- ARM LES |
|---|
| 1182 | !A_Maj_Brooks=0.18 !-- RICO LES |
|---|
| 1183 | !A_Maj_Brooks=0.19 !-- BOMEX LES |
|---|
| 1184 | Dx_Brooks=200000. |
|---|
| 1185 | f_Brooks=A_Maj_Brooks*(dz(ind1,ind2)**(a_Brooks))*(Dx_Brooks**(-b_Brooks)) |
|---|
| 1186 | !print *,'jeanjean_f=',f_Brooks |
|---|
| 1187 | |
|---|
| 1188 | cth(ind1,ind2)=1./(1.+exp(-1.*f_Brooks)*((1./max(1.e-15,min(cth_vol(ind1,ind2),1.)))- 1.)) |
|---|
| 1189 | cenv(ind1,ind2)=1./(1.+exp(-1.*f_Brooks)*((1./max(1.e-15,min(cenv_vol(ind1,ind2),1.)))- 1.)) |
|---|
| 1190 | ctot(ind1,ind2)=1./(1.+exp(-1.*f_Brooks)*((1./max(1.e-15,min(ctot_vol(ind1,ind2),1.)))- 1.)) |
|---|
| 1191 | !print *,'JJ_ctot_1',ctot(ind1,ind2) |
|---|
| 1192 | |
|---|
| 1193 | |
|---|
| 1194 | |
|---|
| 1195 | |
|---|
| 1196 | |
|---|
| 1197 | ENDIF ! of if (iflag_cloudth_vert<5) |
|---|
| 1198 | ENDIF ! of if (iflag_cloudth_vert==1 or 3 or 4) |
|---|
| 1199 | |
|---|
| 1200 | ! if (ctot(ind1,ind2).lt.1.e-10) then |
|---|
| 1201 | if (cenv(ind1,ind2).lt.1.e-10.or.cth(ind1,ind2).lt.1.e-10) then |
|---|
| 1202 | ctot(ind1,ind2)=0. |
|---|
| 1203 | ctot_vol(ind1,ind2)=0. |
|---|
| 1204 | qcloud(ind1)=zqsatenv(ind1,ind2) |
|---|
| 1205 | |
|---|
| 1206 | else |
|---|
| 1207 | |
|---|
| 1208 | qcloud(ind1)=qltot(ind1,ind2)/ctot(ind1,ind2)+zqs(ind1) |
|---|
| 1209 | ! qcloud(ind1)=fraca(ind1,ind2)*qlth(ind1,ind2)/cth(ind1,ind2) & |
|---|
| 1210 | ! & +(1.-1.*fraca(ind1,ind2))*qlenv(ind1,ind2)/cenv(ind1,ind2)+zqs(ind1) |
|---|
| 1211 | |
|---|
| 1212 | endif |
|---|
| 1213 | |
|---|
| 1214 | else ! gaussienne environnement seule |
|---|
| 1215 | |
|---|
| 1216 | |
|---|
| 1217 | zqenv(ind1)=po(ind1) |
|---|
| 1218 | Tbef=t(ind1,ind2) |
|---|
| 1219 | zdelta=MAX(0.,SIGN(1.,RTT-Tbef)) |
|---|
| 1220 | qsatbef= R2ES * FOEEW(Tbef,zdelta)/paprs(ind1,ind2) |
|---|
| 1221 | qsatbef=MIN(0.5,qsatbef) |
|---|
| 1222 | zcor=1./(1.-retv*qsatbef) |
|---|
| 1223 | qsatbef=qsatbef*zcor |
|---|
| 1224 | zqsatenv(ind1,ind2)=qsatbef |
|---|
| 1225 | |
|---|
| 1226 | |
|---|
| 1227 | ! qlbef=Max(po(ind1)-zqsatenv(ind1,ind2),0.) |
|---|
| 1228 | zthl(ind1,ind2)=t(ind1,ind2)*(101325/paprs(ind1,ind2))**(rdd/cppd) |
|---|
| 1229 | alenv=(0.622*Lv*zqsatenv(ind1,ind2))/(rdd*zthl(ind1,ind2)**2) |
|---|
| 1230 | aenv=1./(1.+(alenv*Lv/cppd)) |
|---|
| 1231 | senv=aenv*(po(ind1)-zqsatenv(ind1,ind2)) |
|---|
| 1232 | sth=0. |
|---|
| 1233 | |
|---|
| 1234 | |
|---|
| 1235 | sigma1s=ratqs(ind1,ind2)*zqenv(ind1) |
|---|
| 1236 | sigma2s=0. |
|---|
| 1237 | |
|---|
| 1238 | sqrt2pi=sqrt(2.*pi) |
|---|
| 1239 | xenv=senv/(sqrt(2.)*sigma1s) |
|---|
| 1240 | ctot(ind1,ind2)=0.5*(1.+1.*erf(xenv)) |
|---|
| 1241 | ctot_vol(ind1,ind2)=ctot(ind1,ind2) |
|---|
| 1242 | qltot(ind1,ind2)=sigma1s*((exp(-1.*xenv**2)/sqrt2pi)+xenv*sqrt(2.)*cenv(ind1,ind2)) |
|---|
| 1243 | |
|---|
| 1244 | if (ctot(ind1,ind2).lt.1.e-3) then |
|---|
| 1245 | ctot(ind1,ind2)=0. |
|---|
| 1246 | qcloud(ind1)=zqsatenv(ind1,ind2) |
|---|
| 1247 | |
|---|
| 1248 | else |
|---|
| 1249 | |
|---|
| 1250 | ! ctot(ind1,ind2)=ctot(ind1,ind2) |
|---|
| 1251 | qcloud(ind1)=qltot(ind1,ind2)/ctot(ind1,ind2)+zqsatenv(ind1,ind2) |
|---|
| 1252 | |
|---|
| 1253 | endif |
|---|
| 1254 | |
|---|
| 1255 | |
|---|
| 1256 | |
|---|
| 1257 | |
|---|
| 1258 | endif ! From the separation (thermal/envrionnement) et (environnement) only, l.335 et l.492 |
|---|
| 1259 | ! Outputs used to check the PDFs |
|---|
| 1260 | cloudth_senv(ind1,ind2) = senv |
|---|
| 1261 | cloudth_sth(ind1,ind2) = sth |
|---|
| 1262 | cloudth_sigmaenv(ind1,ind2) = sigma1s |
|---|
| 1263 | cloudth_sigmath(ind1,ind2) = sigma2s |
|---|
| 1264 | |
|---|
| 1265 | enddo ! from the loop on ngrid l.333 |
|---|
| 1266 | return |
|---|
| 1267 | ! end |
|---|
| 1268 | END SUBROUTINE cloudth_vert_v3 |
|---|
| 1269 | ! |
|---|
| 1270 | |
|---|
| 1271 | |
|---|
| 1272 | |
|---|
| 1273 | |
|---|
| 1274 | |
|---|
| 1275 | |
|---|
| 1276 | |
|---|
| 1277 | |
|---|
| 1278 | |
|---|
| 1279 | |
|---|
| 1280 | |
|---|
| 1281 | SUBROUTINE cloudth_v6(ngrid,klev,ind2, & |
|---|
| 1282 | & ztv,po,zqta,fraca, & |
|---|
| 1283 | & qcloud,ctot_surf,ctot_vol,zpspsk,paprs,pplay,ztla,zthl, & |
|---|
| 1284 | & ratqs,zqs,T) |
|---|
| 1285 | |
|---|
| 1286 | use lscp_ini_mod, only: iflag_cloudth_vert |
|---|
| 1287 | USE ioipsl_getin_p_mod, ONLY : getin_p |
|---|
| 1288 | USE phys_output_var_mod, ONLY : cloudth_sth,cloudth_senv, & |
|---|
| 1289 | & cloudth_sigmath,cloudth_sigmaenv |
|---|
| 1290 | |
|---|
| 1291 | IMPLICIT NONE |
|---|
| 1292 | |
|---|
| 1293 | #include "YOMCST.h" |
|---|
| 1294 | #include "YOETHF.h" |
|---|
| 1295 | #include "FCTTRE.h" |
|---|
| 1296 | |
|---|
| 1297 | |
|---|
| 1298 | !Domain variables |
|---|
| 1299 | INTEGER ngrid !indice Max lat-lon |
|---|
| 1300 | INTEGER klev !indice Max alt |
|---|
| 1301 | INTEGER ind1 !indice in [1:ngrid] |
|---|
| 1302 | INTEGER ind2 !indice in [1:klev] |
|---|
| 1303 | !thermal plume fraction |
|---|
| 1304 | REAL fraca(ngrid,klev+1) !thermal plumes fraction in the gridbox |
|---|
| 1305 | !temperatures |
|---|
| 1306 | REAL T(ngrid,klev) !temperature |
|---|
| 1307 | REAL zpspsk(ngrid,klev) !factor (p/p0)**kappa (used for potential variables) |
|---|
| 1308 | REAL ztv(ngrid,klev) !potential temperature (voir thermcell_env.F90) |
|---|
| 1309 | REAL ztla(ngrid,klev) !liquid temperature in the thermals (Tl_th) |
|---|
| 1310 | REAL zthl(ngrid,klev) !liquid temperature in the environment (Tl_env) |
|---|
| 1311 | !pressure |
|---|
| 1312 | REAL paprs(ngrid,klev+1) !pressure at the interface of levels |
|---|
| 1313 | REAL pplay(ngrid,klev) !pressure at the middle of the level |
|---|
| 1314 | !humidity |
|---|
| 1315 | REAL ratqs(ngrid,klev) !width of the total water subgrid-scale distribution |
|---|
| 1316 | REAL po(ngrid) !total water (qt) |
|---|
| 1317 | REAL zqenv(ngrid) !total water in the environment (qt_env) |
|---|
| 1318 | REAL zqta(ngrid,klev) !total water in the thermals (qt_th) |
|---|
| 1319 | REAL zqsatth(ngrid,klev) !water saturation level in the thermals (q_sat_th) |
|---|
| 1320 | REAL zqsatenv(ngrid,klev) !water saturation level in the environment (q_sat_env) |
|---|
| 1321 | REAL qlth(ngrid,klev) !condensed water in the thermals |
|---|
| 1322 | REAL qlenv(ngrid,klev) !condensed water in the environment |
|---|
| 1323 | REAL qltot(ngrid,klev) !condensed water in the gridbox |
|---|
| 1324 | !cloud fractions |
|---|
| 1325 | REAL cth_vol(ngrid,klev) !cloud fraction by volume in the thermals |
|---|
| 1326 | REAL cenv_vol(ngrid,klev) !cloud fraction by volume in the environment |
|---|
| 1327 | REAL ctot_vol(ngrid,klev) !cloud fraction by volume in the gridbox |
|---|
| 1328 | REAL cth_surf(ngrid,klev) !cloud fraction by surface in the thermals |
|---|
| 1329 | REAL cenv_surf(ngrid,klev) !cloud fraction by surface in the environment |
|---|
| 1330 | REAL ctot_surf(ngrid,klev) !cloud fraction by surface in the gridbox |
|---|
| 1331 | !PDF of saturation deficit variables |
|---|
| 1332 | REAL rdd,cppd,Lv |
|---|
| 1333 | REAL Tbef,zdelta,qsatbef,zcor |
|---|
| 1334 | REAL alth,alenv,ath,aenv |
|---|
| 1335 | REAL sth,senv !saturation deficits in the thermals and environment |
|---|
| 1336 | REAL sigma_env,sigma_th !standard deviations of the biGaussian PDF |
|---|
| 1337 | !cloud fraction variables |
|---|
| 1338 | REAL xth,xenv |
|---|
| 1339 | REAL inverse_rho,beta !Neggers et al. (2011) method |
|---|
| 1340 | REAL a_Brooks,b_Brooks,A_Maj_Brooks,Dx_Brooks,f_Brooks !Brooks et al. (2005) method |
|---|
| 1341 | !Incloud total water variables |
|---|
| 1342 | REAL zqs(ngrid) !q_sat |
|---|
| 1343 | REAL qcloud(ngrid) !eau totale dans le nuage |
|---|
| 1344 | !Some arithmetic variables |
|---|
| 1345 | REAL erf,pi,sqrt2,sqrt2pi |
|---|
| 1346 | !Depth of the layer |
|---|
| 1347 | REAL dz(ngrid,klev) !epaisseur de la couche en metre |
|---|
| 1348 | REAL rhodz(ngrid,klev) |
|---|
| 1349 | REAL zrho(ngrid,klev) |
|---|
| 1350 | DO ind1 = 1, ngrid |
|---|
| 1351 | rhodz(ind1,ind2) = (paprs(ind1,ind2)-paprs(ind1,ind2+1))/rg ![kg/m2] |
|---|
| 1352 | zrho(ind1,ind2) = pplay(ind1,ind2)/T(ind1,ind2)/rd ![kg/m3] |
|---|
| 1353 | dz(ind1,ind2) = rhodz(ind1,ind2)/zrho(ind1,ind2) ![m] |
|---|
| 1354 | END DO |
|---|
| 1355 | |
|---|
| 1356 | !------------------------------------------------------------------------------ |
|---|
| 1357 | ! Initialization |
|---|
| 1358 | !------------------------------------------------------------------------------ |
|---|
| 1359 | qlth(:,:)=0. |
|---|
| 1360 | qlenv(:,:)=0. |
|---|
| 1361 | qltot(:,:)=0. |
|---|
| 1362 | cth_vol(:,:)=0. |
|---|
| 1363 | cenv_vol(:,:)=0. |
|---|
| 1364 | ctot_vol(:,:)=0. |
|---|
| 1365 | cth_surf(:,:)=0. |
|---|
| 1366 | cenv_surf(:,:)=0. |
|---|
| 1367 | ctot_surf(:,:)=0. |
|---|
| 1368 | qcloud(:)=0. |
|---|
| 1369 | rdd=287.04 |
|---|
| 1370 | cppd=1005.7 |
|---|
| 1371 | pi=3.14159 |
|---|
| 1372 | Lv=2.5e6 |
|---|
| 1373 | sqrt2=sqrt(2.) |
|---|
| 1374 | sqrt2pi=sqrt(2.*pi) |
|---|
| 1375 | |
|---|
| 1376 | |
|---|
| 1377 | DO ind1=1,ngrid |
|---|
| 1378 | !------------------------------------------------------------------------------- |
|---|
| 1379 | !Both thermal and environment in the gridbox |
|---|
| 1380 | !------------------------------------------------------------------------------- |
|---|
| 1381 | IF ((ztv(ind1,1).gt.ztv(ind1,2)).and.(fraca(ind1,ind2).gt.1.e-10)) THEN |
|---|
| 1382 | !-------------------------------------------- |
|---|
| 1383 | !calcul de qsat_env |
|---|
| 1384 | !-------------------------------------------- |
|---|
| 1385 | Tbef=zthl(ind1,ind2)*zpspsk(ind1,ind2) |
|---|
| 1386 | zdelta=MAX(0.,SIGN(1.,RTT-Tbef)) |
|---|
| 1387 | qsatbef= R2ES*FOEEW(Tbef,zdelta)/paprs(ind1,ind2) |
|---|
| 1388 | qsatbef=MIN(0.5,qsatbef) |
|---|
| 1389 | zcor=1./(1.-retv*qsatbef) |
|---|
| 1390 | qsatbef=qsatbef*zcor |
|---|
| 1391 | zqsatenv(ind1,ind2)=qsatbef |
|---|
| 1392 | !-------------------------------------------- |
|---|
| 1393 | !calcul de s_env |
|---|
| 1394 | !-------------------------------------------- |
|---|
| 1395 | alenv=(0.622*Lv*zqsatenv(ind1,ind2))/(rdd*zthl(ind1,ind2)**2) !qsl, p84 these Arnaud Jam |
|---|
| 1396 | aenv=1./(1.+(alenv*Lv/cppd)) !al, p84 these Arnaud Jam |
|---|
| 1397 | senv=aenv*(po(ind1)-zqsatenv(ind1,ind2)) !s, p84 these Arnaud Jam |
|---|
| 1398 | !-------------------------------------------- |
|---|
| 1399 | !calcul de qsat_th |
|---|
| 1400 | !-------------------------------------------- |
|---|
| 1401 | Tbef=ztla(ind1,ind2)*zpspsk(ind1,ind2) |
|---|
| 1402 | zdelta=MAX(0.,SIGN(1.,RTT-Tbef)) |
|---|
| 1403 | qsatbef= R2ES * FOEEW(Tbef,zdelta)/paprs(ind1,ind2) |
|---|
| 1404 | qsatbef=MIN(0.5,qsatbef) |
|---|
| 1405 | zcor=1./(1.-retv*qsatbef) |
|---|
| 1406 | qsatbef=qsatbef*zcor |
|---|
| 1407 | zqsatth(ind1,ind2)=qsatbef |
|---|
| 1408 | !-------------------------------------------- |
|---|
| 1409 | !calcul de s_th |
|---|
| 1410 | !-------------------------------------------- |
|---|
| 1411 | alth=(0.622*Lv*zqsatth(ind1,ind2))/(rdd*ztla(ind1,ind2)**2) !qsl, p84 these Arnaud Jam |
|---|
| 1412 | ath=1./(1.+(alth*Lv/cppd)) !al, p84 these Arnaud Jam |
|---|
| 1413 | sth=ath*(zqta(ind1,ind2)-zqsatth(ind1,ind2)) !s, p84 these Arnaud Jam |
|---|
| 1414 | !-------------------------------------------- |
|---|
| 1415 | !calcul standard deviations bi-Gaussian PDF |
|---|
| 1416 | !-------------------------------------------- |
|---|
| 1417 | sigma_th=(0.03218+0.000092655*dz(ind1,ind2))/((fraca(ind1,ind2)+0.01)**0.5)*(((sth-senv)**2)**0.5)+0.002*zqta(ind1,ind2) |
|---|
| 1418 | sigma_env=(0.71794+0.000498239*dz(ind1,ind2))*(fraca(ind1,ind2)**0.5) & |
|---|
| 1419 | /(1-fraca(ind1,ind2))*(((sth-senv)**2)**0.5) & |
|---|
| 1420 | +ratqs(ind1,ind2)*po(ind1) |
|---|
| 1421 | xth=sth/(sqrt2*sigma_th) |
|---|
| 1422 | xenv=senv/(sqrt2*sigma_env) |
|---|
| 1423 | !-------------------------------------------- |
|---|
| 1424 | !Cloud fraction by volume CF_vol |
|---|
| 1425 | !-------------------------------------------- |
|---|
| 1426 | cth_vol(ind1,ind2)=0.5*(1.+1.*erf(xth)) |
|---|
| 1427 | cenv_vol(ind1,ind2)=0.5*(1.+1.*erf(xenv)) |
|---|
| 1428 | ctot_vol(ind1,ind2)=fraca(ind1,ind2)*cth_vol(ind1,ind2)+(1.-1.*fraca(ind1,ind2))*cenv_vol(ind1,ind2) |
|---|
| 1429 | !-------------------------------------------- |
|---|
| 1430 | !Condensed water qc |
|---|
| 1431 | !-------------------------------------------- |
|---|
| 1432 | qlth(ind1,ind2)=sigma_th*((exp(-1.*xth**2)/sqrt2pi)+xth*sqrt2*cth_vol(ind1,ind2)) |
|---|
| 1433 | qlenv(ind1,ind2)=sigma_env*((exp(-1.*xenv**2)/sqrt2pi)+xenv*sqrt2*cenv_vol(ind1,ind2)) |
|---|
| 1434 | qltot(ind1,ind2)=fraca(ind1,ind2)*qlth(ind1,ind2)+(1.-1.*fraca(ind1,ind2))*qlenv(ind1,ind2) |
|---|
| 1435 | !-------------------------------------------- |
|---|
| 1436 | !Cloud fraction by surface CF_surf |
|---|
| 1437 | !-------------------------------------------- |
|---|
| 1438 | !Method Neggers et al. (2011) : ok for cumulus clouds only |
|---|
| 1439 | !beta=0.0044 (Jouhaud et al.2018) |
|---|
| 1440 | !inverse_rho=1.+beta*dz(ind1,ind2) |
|---|
| 1441 | !ctot_surf(ind1,ind2)=ctot_vol(ind1,ind2)*inverse_rho |
|---|
| 1442 | !Method Brooks et al. (2005) : ok for all types of clouds |
|---|
| 1443 | a_Brooks=0.6694 |
|---|
| 1444 | b_Brooks=0.1882 |
|---|
| 1445 | A_Maj_Brooks=0.1635 !-- sans dependence au cisaillement de vent |
|---|
| 1446 | Dx_Brooks=200000. !-- si l'on considere des mailles de 200km de cote |
|---|
| 1447 | f_Brooks=A_Maj_Brooks*(dz(ind1,ind2)**(a_Brooks))*(Dx_Brooks**(-b_Brooks)) |
|---|
| 1448 | ctot_surf(ind1,ind2)=1./(1.+exp(-1.*f_Brooks)*((1./max(1.e-15,min(ctot_vol(ind1,ind2),1.)))- 1.)) |
|---|
| 1449 | !-------------------------------------------- |
|---|
| 1450 | !Incloud Condensed water qcloud |
|---|
| 1451 | !-------------------------------------------- |
|---|
| 1452 | if (ctot_surf(ind1,ind2) .lt. 1.e-10) then |
|---|
| 1453 | ctot_vol(ind1,ind2)=0. |
|---|
| 1454 | ctot_surf(ind1,ind2)=0. |
|---|
| 1455 | qcloud(ind1)=zqsatenv(ind1,ind2) |
|---|
| 1456 | else |
|---|
| 1457 | qcloud(ind1)=qltot(ind1,ind2)/ctot_vol(ind1,ind2)+zqs(ind1) |
|---|
| 1458 | endif |
|---|
| 1459 | |
|---|
| 1460 | |
|---|
| 1461 | |
|---|
| 1462 | !------------------------------------------------------------------------------- |
|---|
| 1463 | !Environment only in the gridbox |
|---|
| 1464 | !------------------------------------------------------------------------------- |
|---|
| 1465 | ELSE |
|---|
| 1466 | !-------------------------------------------- |
|---|
| 1467 | !calcul de qsat_env |
|---|
| 1468 | !-------------------------------------------- |
|---|
| 1469 | Tbef=zthl(ind1,ind2)*zpspsk(ind1,ind2) |
|---|
| 1470 | zdelta=MAX(0.,SIGN(1.,RTT-Tbef)) |
|---|
| 1471 | qsatbef= R2ES * FOEEW(Tbef,zdelta)/paprs(ind1,ind2) |
|---|
| 1472 | qsatbef=MIN(0.5,qsatbef) |
|---|
| 1473 | zcor=1./(1.-retv*qsatbef) |
|---|
| 1474 | qsatbef=qsatbef*zcor |
|---|
| 1475 | zqsatenv(ind1,ind2)=qsatbef |
|---|
| 1476 | !-------------------------------------------- |
|---|
| 1477 | !calcul de s_env |
|---|
| 1478 | !-------------------------------------------- |
|---|
| 1479 | alenv=(0.622*Lv*zqsatenv(ind1,ind2))/(rdd*zthl(ind1,ind2)**2) !qsl, p84 these Arnaud Jam |
|---|
| 1480 | aenv=1./(1.+(alenv*Lv/cppd)) !al, p84 these Arnaud Jam |
|---|
| 1481 | senv=aenv*(po(ind1)-zqsatenv(ind1,ind2)) !s, p84 these Arnaud Jam |
|---|
| 1482 | !-------------------------------------------- |
|---|
| 1483 | !calcul standard deviations Gaussian PDF |
|---|
| 1484 | !-------------------------------------------- |
|---|
| 1485 | zqenv(ind1)=po(ind1) |
|---|
| 1486 | sigma_env=ratqs(ind1,ind2)*zqenv(ind1) |
|---|
| 1487 | xenv=senv/(sqrt2*sigma_env) |
|---|
| 1488 | !-------------------------------------------- |
|---|
| 1489 | !Cloud fraction by volume CF_vol |
|---|
| 1490 | !-------------------------------------------- |
|---|
| 1491 | ctot_vol(ind1,ind2)=0.5*(1.+1.*erf(xenv)) |
|---|
| 1492 | !-------------------------------------------- |
|---|
| 1493 | !Condensed water qc |
|---|
| 1494 | !-------------------------------------------- |
|---|
| 1495 | qltot(ind1,ind2)=sigma_env*((exp(-1.*xenv**2)/sqrt2pi)+xenv*sqrt2*ctot_vol(ind1,ind2)) |
|---|
| 1496 | !-------------------------------------------- |
|---|
| 1497 | !Cloud fraction by surface CF_surf |
|---|
| 1498 | !-------------------------------------------- |
|---|
| 1499 | !Method Neggers et al. (2011) : ok for cumulus clouds only |
|---|
| 1500 | !beta=0.0044 (Jouhaud et al.2018) |
|---|
| 1501 | !inverse_rho=1.+beta*dz(ind1,ind2) |
|---|
| 1502 | !ctot_surf(ind1,ind2)=ctot_vol(ind1,ind2)*inverse_rho |
|---|
| 1503 | !Method Brooks et al. (2005) : ok for all types of clouds |
|---|
| 1504 | a_Brooks=0.6694 |
|---|
| 1505 | b_Brooks=0.1882 |
|---|
| 1506 | A_Maj_Brooks=0.1635 !-- sans dependence au shear |
|---|
| 1507 | Dx_Brooks=200000. |
|---|
| 1508 | f_Brooks=A_Maj_Brooks*(dz(ind1,ind2)**(a_Brooks))*(Dx_Brooks**(-b_Brooks)) |
|---|
| 1509 | ctot_surf(ind1,ind2)=1./(1.+exp(-1.*f_Brooks)*((1./max(1.e-15,min(ctot_vol(ind1,ind2),1.)))- 1.)) |
|---|
| 1510 | !-------------------------------------------- |
|---|
| 1511 | !Incloud Condensed water qcloud |
|---|
| 1512 | !-------------------------------------------- |
|---|
| 1513 | if (ctot_surf(ind1,ind2) .lt. 1.e-8) then |
|---|
| 1514 | ctot_vol(ind1,ind2)=0. |
|---|
| 1515 | ctot_surf(ind1,ind2)=0. |
|---|
| 1516 | qcloud(ind1)=zqsatenv(ind1,ind2) |
|---|
| 1517 | else |
|---|
| 1518 | qcloud(ind1)=qltot(ind1,ind2)/ctot_vol(ind1,ind2)+zqsatenv(ind1,ind2) |
|---|
| 1519 | endif |
|---|
| 1520 | |
|---|
| 1521 | |
|---|
| 1522 | END IF ! From the separation (thermal/envrionnement) et (environnement only) |
|---|
| 1523 | |
|---|
| 1524 | ! Outputs used to check the PDFs |
|---|
| 1525 | cloudth_senv(ind1,ind2) = senv |
|---|
| 1526 | cloudth_sth(ind1,ind2) = sth |
|---|
| 1527 | cloudth_sigmaenv(ind1,ind2) = sigma_env |
|---|
| 1528 | cloudth_sigmath(ind1,ind2) = sigma_th |
|---|
| 1529 | |
|---|
| 1530 | END DO ! From the loop on ngrid |
|---|
| 1531 | return |
|---|
| 1532 | |
|---|
| 1533 | END SUBROUTINE cloudth_v6 |
|---|
| 1534 | |
|---|
| 1535 | |
|---|
| 1536 | |
|---|
| 1537 | |
|---|
| 1538 | |
|---|
| 1539 | !+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ |
|---|
| 1540 | SUBROUTINE cloudth_mpc(klon,klev,ind2,iflag_mpc_bl,mpc_bl_points, & |
|---|
| 1541 | & temp,ztv,po,zqta,fraca,zpspsk,paprs,pplay,ztla,zthl, & |
|---|
| 1542 | & ratqs,zqs,snowflux,qcloud,qincloud,icefrac,ctot,ctot_vol) |
|---|
| 1543 | !+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ |
|---|
| 1544 | ! Author : Arnaud Octavio Jam (LMD/CNRS), Etienne Vignon (LMDZ/CNRS) |
|---|
| 1545 | ! Date: Adapted from cloudth_vert_v3 in 2021 |
|---|
| 1546 | ! Aim : computes qc and rneb in thermals with cold microphysical considerations |
|---|
| 1547 | ! + for mixed phase boundary layer clouds, calculate ql and qi from |
|---|
| 1548 | ! a stationary MPC model |
|---|
| 1549 | ! IMPORTANT NOTE: we assume iflag_clouth_vert=3 |
|---|
| 1550 | !+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ |
|---|
| 1551 | |
|---|
| 1552 | use lscp_ini_mod, only: iflag_cloudth_vert |
|---|
| 1553 | USE ioipsl_getin_p_mod, ONLY : getin_p |
|---|
| 1554 | USE phys_output_var_mod, ONLY : cloudth_sth,cloudth_senv,cloudth_sigmath,cloudth_sigmaenv |
|---|
| 1555 | USE lscp_tools_mod, ONLY: CALC_QSAT_ECMWF, FALLICE_VELOCITY |
|---|
| 1556 | USE phys_local_var_mod, ONLY : qlth, qith, qsith, wiceth |
|---|
| 1557 | |
|---|
| 1558 | IMPLICIT NONE |
|---|
| 1559 | |
|---|
| 1560 | #include "YOMCST.h" |
|---|
| 1561 | #include "YOETHF.h" |
|---|
| 1562 | #include "FCTTRE.h" |
|---|
| 1563 | |
|---|
| 1564 | |
|---|
| 1565 | !------------------------------------------------------------------------------ |
|---|
| 1566 | ! Declaration |
|---|
| 1567 | !------------------------------------------------------------------------------ |
|---|
| 1568 | |
|---|
| 1569 | ! INPUT/OUTPUT |
|---|
| 1570 | |
|---|
| 1571 | INTEGER, INTENT(IN) :: klon,klev,ind2 |
|---|
| 1572 | |
|---|
| 1573 | |
|---|
| 1574 | REAL, DIMENSION(klon,klev), INTENT(IN) :: temp ! Temperature [K] |
|---|
| 1575 | REAL, DIMENSION(klon,klev), INTENT(IN) :: ztv ! Virtual potential temp [K] |
|---|
| 1576 | REAL, DIMENSION(klon), INTENT(IN) :: po ! specific humidity [kg/kg] |
|---|
| 1577 | REAL, DIMENSION(klon,klev), INTENT(IN) :: zqta ! specific humidity within thermals [kg/kg] |
|---|
| 1578 | REAL, DIMENSION(klon,klev+1), INTENT(IN) :: fraca ! Fraction of the mesh covered by thermals [0-1] |
|---|
| 1579 | REAL, DIMENSION(klon,klev), INTENT(IN) :: zpspsk |
|---|
| 1580 | REAL, DIMENSION(klon,klev+1), INTENT(IN) :: paprs ! Pressure at layer interfaces [Pa] |
|---|
| 1581 | REAL, DIMENSION(klon,klev), INTENT(IN) :: pplay ! Pressure at the center of layers [Pa] |
|---|
| 1582 | REAL, DIMENSION(klon,klev), INTENT(IN) :: ztla ! Liquid temp [K] |
|---|
| 1583 | REAL, DIMENSION(klon,klev), INTENT(INOUT) :: zthl ! Liquid potential temp [K] |
|---|
| 1584 | REAL, DIMENSION(klon,klev), INTENT(IN) :: ratqs ! Parameter that determines the width of the total water distrib. |
|---|
| 1585 | REAL, DIMENSION(klon), INTENT(IN) :: zqs ! Saturation specific humidity in the mesh [kg/kg] |
|---|
| 1586 | REAL, DIMENSION(klon,klev+1), INTENT(IN) :: snowflux ! snow flux at the interface of the layer [kg/m2/s] |
|---|
| 1587 | INTEGER, INTENT(IN) :: iflag_mpc_bl ! option flag for mpc boundary layer clouds param. |
|---|
| 1588 | |
|---|
| 1589 | |
|---|
| 1590 | INTEGER, DIMENSION(klon,klev), INTENT(INOUT) :: mpc_bl_points ! grid points with convective (thermals) mixed phase clouds |
|---|
| 1591 | |
|---|
| 1592 | REAL, DIMENSION(klon,klev), INTENT(OUT) :: ctot ! Cloud fraction [0-1] |
|---|
| 1593 | REAL, DIMENSION(klon,klev), INTENT(OUT) :: ctot_vol ! Volume cloud fraction [0-1] |
|---|
| 1594 | REAL, DIMENSION(klon), INTENT(OUT) :: qcloud ! In cloud total water content [kg/kg] |
|---|
| 1595 | REAL, DIMENSION(klon), INTENT(OUT) :: qincloud ! In cloud condensed water content [kg/kg] |
|---|
| 1596 | REAL, DIMENSION(klon,klev), INTENT(OUT) :: icefrac ! Fraction of ice in clouds [0-1] |
|---|
| 1597 | |
|---|
| 1598 | |
|---|
| 1599 | ! LOCAL VARIABLES |
|---|
| 1600 | |
|---|
| 1601 | INTEGER itap,ind1,l,ig,iter,k |
|---|
| 1602 | INTEGER iflag_topthermals, niter |
|---|
| 1603 | LOGICAL falseklon(klon) |
|---|
| 1604 | |
|---|
| 1605 | REAL zqsatth(klon), zqsatenv(klon), zqsatenvonly(klon) |
|---|
| 1606 | REAL sigma1(klon,klev) |
|---|
| 1607 | REAL sigma2(klon,klev) |
|---|
| 1608 | REAL qcth(klon,klev) |
|---|
| 1609 | REAL qcenv(klon,klev) |
|---|
| 1610 | REAL qctot(klon,klev) |
|---|
| 1611 | REAL cth(klon,klev) |
|---|
| 1612 | REAL cenv(klon,klev) |
|---|
| 1613 | REAL cth_vol(klon,klev) |
|---|
| 1614 | REAL cenv_vol(klon,klev) |
|---|
| 1615 | REAL rneb(klon,klev) |
|---|
| 1616 | REAL zqenv(klon), zqth(klon), zqenvonly(klon) |
|---|
| 1617 | REAL qsatmmussig1,qsatmmussig2,sqrtpi,sqrt2,sqrt2pi,pi |
|---|
| 1618 | REAL rdd,cppd,Lv |
|---|
| 1619 | REAL alth,alenv,ath,aenv |
|---|
| 1620 | REAL sth,senv,sigma1s,sigma2s,sigma1s_fraca,sigma1s_ratqs |
|---|
| 1621 | REAL inverse_rho,beta,a_Brooks,b_Brooks,A_Maj_Brooks,Dx_Brooks,f_Brooks |
|---|
| 1622 | REAL xth,xenv,exp_xenv1,exp_xenv2,exp_xth1,exp_xth2 |
|---|
| 1623 | REAL xth1,xth2,xenv1,xenv2,deltasth, deltasenv |
|---|
| 1624 | REAL IntJ,IntI1,IntI2,IntI3,IntJ_CF,IntI1_CF,IntI3_CF,coeffqlenv,coeffqlth |
|---|
| 1625 | REAL zdelta,qsatbef,zcor |
|---|
| 1626 | REAL Tbefth(klon), Tbefenv(klon), Tbefenvonly(klon), rhoth(klon) |
|---|
| 1627 | REAL qlbef |
|---|
| 1628 | REAL dqsatenv(klon), dqsatth(klon), dqsatenvonly(klon) |
|---|
| 1629 | REAL erf |
|---|
| 1630 | REAL zpdf_sig(klon),zpdf_k(klon),zpdf_delta(klon) |
|---|
| 1631 | REAL zpdf_a(klon),zpdf_b(klon),zpdf_e1(klon),zpdf_e2(klon) |
|---|
| 1632 | REAL rhodz(klon,klev) |
|---|
| 1633 | REAL zrho(klon,klev) |
|---|
| 1634 | REAL dz(klon,klev) |
|---|
| 1635 | REAL qslenv(klon), qslth(klon) |
|---|
| 1636 | REAL alenvl, aenvl |
|---|
| 1637 | REAL sthi, sthl, sthil, althl, athl, althi, athi, sthlc, deltasthc, sigma2sc |
|---|
| 1638 | REAL senvi, senvl, qbase, sbase, qliqth, qiceth |
|---|
| 1639 | REAL qmax, ttarget, stmp, cout, coutref, fraci |
|---|
| 1640 | REAL maxi, mini, pas, temp_lim |
|---|
| 1641 | REAL deltazlev_mpc(klev), temp_mpc(klev), pres_mpc(klev), fraca_mpc(klev+1), snowf_mpc(klev+1) |
|---|
| 1642 | |
|---|
| 1643 | ! Modifty the saturation deficit PDF in thermals |
|---|
| 1644 | ! in the presence of ice crystals |
|---|
| 1645 | REAL,SAVE :: C_mpc |
|---|
| 1646 | !$OMP THREADPRIVATE(C_mpc) |
|---|
| 1647 | REAL, SAVE :: Ni,C_cap,Ei,d_top |
|---|
| 1648 | !$OMP THREADPRIVATE(Ni,C_cap,Ei,d_top) |
|---|
| 1649 | ! Change the width of the PDF used for vertical subgrid scale heterogeneity |
|---|
| 1650 | ! (J Jouhaud, JL Dufresne, JB Madeleine) |
|---|
| 1651 | REAL,SAVE :: vert_alpha, vert_alpha_th |
|---|
| 1652 | !$OMP THREADPRIVATE(vert_alpha, vert_alpha_th) |
|---|
| 1653 | REAL,SAVE :: sigma1s_factor=1.1 |
|---|
| 1654 | REAL,SAVE :: sigma1s_power=0.6 |
|---|
| 1655 | REAL,SAVE :: sigma2s_factor=0.09 |
|---|
| 1656 | REAL,SAVE :: sigma2s_power=0.5 |
|---|
| 1657 | REAL,SAVE :: cloudth_ratqsmin=-1. |
|---|
| 1658 | !$OMP THREADPRIVATE(sigma1s_factor,sigma1s_power,sigma2s_factor,sigma2s_power,cloudth_ratqsmin) |
|---|
| 1659 | INTEGER, SAVE :: iflag_cloudth_vert_noratqs=0 |
|---|
| 1660 | !$OMP THREADPRIVATE(iflag_cloudth_vert_noratqs) |
|---|
| 1661 | LOGICAL, SAVE :: firstcall = .TRUE. |
|---|
| 1662 | !$OMP THREADPRIVATE(firstcall) |
|---|
| 1663 | |
|---|
| 1664 | CHARACTER (len = 80) :: abort_message |
|---|
| 1665 | CHARACTER (len = 20) :: routname = 'cloudth_mpc' |
|---|
| 1666 | |
|---|
| 1667 | |
|---|
| 1668 | !------------------------------------------------------------------------------ |
|---|
| 1669 | ! Initialisation |
|---|
| 1670 | !------------------------------------------------------------------------------ |
|---|
| 1671 | |
|---|
| 1672 | |
|---|
| 1673 | ! Few initial checksS |
|---|
| 1674 | |
|---|
| 1675 | IF (iflag_cloudth_vert.NE.3) THEN |
|---|
| 1676 | abort_message = 'clouth_mpc cannot be used if iflag_cloudth_vert .NE. 3' |
|---|
| 1677 | CALL abort_physic(routname,abort_message,1) |
|---|
| 1678 | ENDIF |
|---|
| 1679 | |
|---|
| 1680 | DO k = 1,klev |
|---|
| 1681 | DO ind1 = 1, klon |
|---|
| 1682 | rhodz(ind1,k) = (paprs(ind1,k)-paprs(ind1,k+1))/rg !kg/m2 |
|---|
| 1683 | zrho(ind1,k) = pplay(ind1,k)/temp(ind1,k)/rd !kg/m3 |
|---|
| 1684 | dz(ind1,k) = rhodz(ind1,k)/zrho(ind1,k) !m : epaisseur de la couche en metre |
|---|
| 1685 | END DO |
|---|
| 1686 | END DO |
|---|
| 1687 | |
|---|
| 1688 | |
|---|
| 1689 | sigma1(:,:)=0. |
|---|
| 1690 | sigma2(:,:)=0. |
|---|
| 1691 | qcth(:,:)=0. |
|---|
| 1692 | qcenv(:,:)=0. |
|---|
| 1693 | qctot(:,:)=0. |
|---|
| 1694 | qlth(:,ind2)=0. |
|---|
| 1695 | qith(:,ind2)=0. |
|---|
| 1696 | wiceth(:,ind2)=0. |
|---|
| 1697 | rneb(:,:)=0. |
|---|
| 1698 | qcloud(:)=0. |
|---|
| 1699 | cth(:,:)=0. |
|---|
| 1700 | cenv(:,:)=0. |
|---|
| 1701 | ctot(:,:)=0. |
|---|
| 1702 | cth_vol(:,:)=0. |
|---|
| 1703 | cenv_vol(:,:)=0. |
|---|
| 1704 | ctot_vol(:,:)=0. |
|---|
| 1705 | falseklon(:)=.false. |
|---|
| 1706 | qsatmmussig1=0. |
|---|
| 1707 | qsatmmussig2=0. |
|---|
| 1708 | rdd=287.04 |
|---|
| 1709 | cppd=1005.7 |
|---|
| 1710 | pi=3.14159 |
|---|
| 1711 | sqrt2pi=sqrt(2.*pi) |
|---|
| 1712 | sqrt2=sqrt(2.) |
|---|
| 1713 | sqrtpi=sqrt(pi) |
|---|
| 1714 | icefrac(:,ind2)=0. |
|---|
| 1715 | althl=0. |
|---|
| 1716 | althi=0. |
|---|
| 1717 | athl=0. |
|---|
| 1718 | athi=0. |
|---|
| 1719 | senvl=0. |
|---|
| 1720 | senvi=0. |
|---|
| 1721 | sthi=0. |
|---|
| 1722 | sthl=0. |
|---|
| 1723 | sthil=0. |
|---|
| 1724 | |
|---|
| 1725 | |
|---|
| 1726 | |
|---|
| 1727 | IF (firstcall) THEN |
|---|
| 1728 | |
|---|
| 1729 | vert_alpha=0.5 |
|---|
| 1730 | CALL getin_p('cloudth_vert_alpha',vert_alpha) |
|---|
| 1731 | WRITE(*,*) 'cloudth_vert_alpha = ', vert_alpha |
|---|
| 1732 | ! The factor used for the thermal is equal to that of the environment |
|---|
| 1733 | ! if nothing is explicitly specified in the def file |
|---|
| 1734 | vert_alpha_th=vert_alpha |
|---|
| 1735 | CALL getin_p('cloudth_vert_alpha_th',vert_alpha_th) |
|---|
| 1736 | WRITE(*,*) 'cloudth_vert_alpha_th = ', vert_alpha_th |
|---|
| 1737 | ! Factor used in the calculation of sigma1s |
|---|
| 1738 | CALL getin_p('cloudth_sigma1s_factor',sigma1s_factor) |
|---|
| 1739 | WRITE(*,*) 'cloudth_sigma1s_factor = ', sigma1s_factor |
|---|
| 1740 | ! Power used in the calculation of sigma1s |
|---|
| 1741 | CALL getin_p('cloudth_sigma1s_power',sigma1s_power) |
|---|
| 1742 | WRITE(*,*) 'cloudth_sigma1s_power = ', sigma1s_power |
|---|
| 1743 | ! Factor used in the calculation of sigma2s |
|---|
| 1744 | CALL getin_p('cloudth_sigma2s_factor',sigma2s_factor) |
|---|
| 1745 | WRITE(*,*) 'cloudth_sigma2s_factor = ', sigma2s_factor |
|---|
| 1746 | ! Power used in the calculation of sigma2s |
|---|
| 1747 | CALL getin_p('cloudth_sigma2s_power',sigma2s_power) |
|---|
| 1748 | WRITE(*,*) 'cloudth_sigma2s_power = ', sigma2s_power |
|---|
| 1749 | ! Minimum value for the environmental air subgrid water distrib |
|---|
| 1750 | CALL getin_p('cloudth_ratqsmin',cloudth_ratqsmin) |
|---|
| 1751 | WRITE(*,*) 'cloudth_ratqsmin = ', cloudth_ratqsmin |
|---|
| 1752 | ! Remove the dependency to ratqs from the variance of the vertical PDF |
|---|
| 1753 | CALL getin_p('iflag_cloudth_vert_noratqs',iflag_cloudth_vert_noratqs) |
|---|
| 1754 | WRITE(*,*) 'iflag_cloudth_vert_noratqs = ', iflag_cloudth_vert_noratqs |
|---|
| 1755 | ! Modifies the PDF in thermals when ice crystals are present |
|---|
| 1756 | C_mpc=1.e4 |
|---|
| 1757 | CALL getin_p('C_mpc',C_mpc) |
|---|
| 1758 | WRITE(*,*) 'C_mpc = ', C_mpc |
|---|
| 1759 | Ni=2.0e3 |
|---|
| 1760 | CALL getin_p('Ni', Ni) |
|---|
| 1761 | WRITE(*,*) 'Ni = ', Ni |
|---|
| 1762 | Ei=0.5 |
|---|
| 1763 | CALL getin_p('Ei', Ei) |
|---|
| 1764 | WRITE(*,*) 'Ei = ', Ei |
|---|
| 1765 | C_cap=0.5 |
|---|
| 1766 | CALL getin_p('C_cap', C_cap) |
|---|
| 1767 | WRITE(*,*) 'C_cap = ', C_cap |
|---|
| 1768 | d_top=1.2 |
|---|
| 1769 | CALL getin_p('d_top', d_top) |
|---|
| 1770 | WRITE(*,*) 'd_top = ', d_top |
|---|
| 1771 | |
|---|
| 1772 | firstcall=.FALSE. |
|---|
| 1773 | |
|---|
| 1774 | ENDIF |
|---|
| 1775 | |
|---|
| 1776 | |
|---|
| 1777 | |
|---|
| 1778 | !------------------------------------------------------------------------------- |
|---|
| 1779 | ! Identify grid points with potential mixed-phase conditions |
|---|
| 1780 | !------------------------------------------------------------------------------- |
|---|
| 1781 | |
|---|
| 1782 | temp_lim=RTT-40.0 |
|---|
| 1783 | |
|---|
| 1784 | DO ind1=1,klon |
|---|
| 1785 | IF ((temp(ind1,ind2) .LT. RTT) .AND. (temp(ind1,ind2) .GT. temp_lim) & |
|---|
| 1786 | .AND. (iflag_mpc_bl .GE. 1) .AND. (ind2<=klev-2) & |
|---|
| 1787 | .AND. (ztv(ind1,1).GT.ztv(ind1,2)) .AND.(fraca(ind1,ind2).GT.1.e-10)) THEN |
|---|
| 1788 | mpc_bl_points(ind1,ind2)=1 |
|---|
| 1789 | ELSE |
|---|
| 1790 | mpc_bl_points(ind1,ind2)=0 |
|---|
| 1791 | ENDIF |
|---|
| 1792 | ENDDO |
|---|
| 1793 | |
|---|
| 1794 | |
|---|
| 1795 | !------------------------------------------------------------------------------- |
|---|
| 1796 | ! Thermal fraction calculation and standard deviation of the distribution |
|---|
| 1797 | !------------------------------------------------------------------------------- |
|---|
| 1798 | |
|---|
| 1799 | ! calculation of temperature, humidity and saturation specific humidity |
|---|
| 1800 | |
|---|
| 1801 | Tbefenv(:)=zthl(:,ind2)*zpspsk(:,ind2) |
|---|
| 1802 | Tbefth(:)=ztla(:,ind2)*zpspsk(:,ind2) |
|---|
| 1803 | Tbefenvonly(:)=temp(:,ind2) |
|---|
| 1804 | rhoth(:)=paprs(:,ind2)/Tbefth(:)/RD |
|---|
| 1805 | |
|---|
| 1806 | zqenv(:)=(po(:)-fraca(:,ind2)*zqta(:,ind2))/(1.-fraca(:,ind2)) !qt = a*qtth + (1-a)*qtenv |
|---|
| 1807 | zqth(:)=zqta(:,ind2) |
|---|
| 1808 | zqenvonly(:)=po(:) |
|---|
| 1809 | |
|---|
| 1810 | |
|---|
| 1811 | CALL CALC_QSAT_ECMWF(klon,Tbefenvonly,zqenvonly,paprs(:,ind2),RTT,0,.false.,zqsatenvonly,dqsatenv) |
|---|
| 1812 | |
|---|
| 1813 | CALL CALC_QSAT_ECMWF(klon,Tbefenv,zqenv,paprs(:,ind2),RTT,0,.false.,zqsatenv,dqsatenv) |
|---|
| 1814 | CALL CALC_QSAT_ECMWF(klon,Tbefenv,zqenv,paprs(:,ind2),RTT,1,.false.,qslenv,dqsatenv) |
|---|
| 1815 | |
|---|
| 1816 | CALL CALC_QSAT_ECMWF(klon,Tbefth,zqth,paprs(:,ind2),RTT,1,.false.,qslth,dqsatth) |
|---|
| 1817 | CALL CALC_QSAT_ECMWF(klon,Tbefth,zqth,paprs(:,ind2),RTT,2,.false.,qsith(:,ind2),dqsatth) |
|---|
| 1818 | CALL CALC_QSAT_ECMWF(klon,Tbefth,zqth,paprs(:,ind2),RTT,0,.false.,zqsatth,dqsatth) |
|---|
| 1819 | |
|---|
| 1820 | |
|---|
| 1821 | DO ind1=1,klon |
|---|
| 1822 | |
|---|
| 1823 | |
|---|
| 1824 | IF ((ztv(ind1,1).GT.ztv(ind1,2)).AND.(fraca(ind1,ind2).GT.1.e-10)) THEN !Thermal and environnement |
|---|
| 1825 | |
|---|
| 1826 | |
|---|
| 1827 | ! Environment: |
|---|
| 1828 | |
|---|
| 1829 | |
|---|
| 1830 | IF (Tbefenv(ind1) .GE. RTT) THEN |
|---|
| 1831 | Lv=RLVTT |
|---|
| 1832 | ELSE |
|---|
| 1833 | Lv=RLSTT |
|---|
| 1834 | ENDIF |
|---|
| 1835 | |
|---|
| 1836 | |
|---|
| 1837 | alenv=(0.622*Lv*zqsatenv(ind1))/(rdd*zthl(ind1,ind2)**2) !qsl, p84 |
|---|
| 1838 | aenv=1./(1.+(alenv*Lv/cppd)) !al, p84 |
|---|
| 1839 | senv=aenv*(po(ind1)-zqsatenv(ind1)) !s, p84 |
|---|
| 1840 | |
|---|
| 1841 | ! For MPCs: |
|---|
| 1842 | IF (mpc_bl_points(ind1,ind2) .EQ. 1) THEN |
|---|
| 1843 | alenvl=(0.622*RLVTT*qslenv(ind1))/(rdd*zthl(ind1,ind2)**2) |
|---|
| 1844 | aenvl=1./(1.+(alenv*Lv/cppd)) |
|---|
| 1845 | senvl=aenvl*(po(ind1)-qslenv(ind1)) |
|---|
| 1846 | senvi=senv |
|---|
| 1847 | ENDIF |
|---|
| 1848 | |
|---|
| 1849 | |
|---|
| 1850 | ! Thermals: |
|---|
| 1851 | |
|---|
| 1852 | |
|---|
| 1853 | IF (Tbefth(ind1) .GE. RTT) THEN |
|---|
| 1854 | Lv=RLVTT |
|---|
| 1855 | ELSE |
|---|
| 1856 | Lv=RLSTT |
|---|
| 1857 | ENDIF |
|---|
| 1858 | |
|---|
| 1859 | |
|---|
| 1860 | alth=(0.622*Lv*zqsatth(ind1))/(rdd*ztla(ind1,ind2)**2) |
|---|
| 1861 | ath=1./(1.+(alth*Lv/cppd)) |
|---|
| 1862 | sth=ath*(zqta(ind1,ind2)-zqsatth(ind1)) |
|---|
| 1863 | |
|---|
| 1864 | ! For MPCs: |
|---|
| 1865 | IF (mpc_bl_points(ind1,ind2) .GT. 0) THEN |
|---|
| 1866 | althi=alth |
|---|
| 1867 | althl=(0.622*RLVTT*qslth(ind1))/(rdd*ztla(ind1,ind2)**2) |
|---|
| 1868 | athl=1./(1.+(alth*RLVTT/cppd)) |
|---|
| 1869 | athi=alth |
|---|
| 1870 | sthl=athl*(zqta(ind1,ind2)-qslth(ind1)) |
|---|
| 1871 | sthi=athi*(zqta(ind1,ind2)-qsith(ind1,ind2)) |
|---|
| 1872 | sthil=athi*(zqta(ind1,ind2)-qslth(ind1)) |
|---|
| 1873 | ENDIF |
|---|
| 1874 | |
|---|
| 1875 | |
|---|
| 1876 | |
|---|
| 1877 | !------------------------------------------------------------------------------- |
|---|
| 1878 | ! Version 3: Changes by J. Jouhaud; condensation for q > -delta s |
|---|
| 1879 | ! Rq: in this subroutine, we assume iflag_clouth_vert .EQ. 3 |
|---|
| 1880 | !------------------------------------------------------------------------------- |
|---|
| 1881 | |
|---|
| 1882 | IF (mpc_bl_points(ind1,ind2) .EQ. 0) THEN ! No BL MPC |
|---|
| 1883 | |
|---|
| 1884 | ! Standard deviation of the distributions |
|---|
| 1885 | |
|---|
| 1886 | sigma1s_fraca = (sigma1s_factor**0.5)*(fraca(ind1,ind2)**sigma1s_power) / & |
|---|
| 1887 | & (1-fraca(ind1,ind2))*((sth-senv)**2)**0.5 |
|---|
| 1888 | |
|---|
| 1889 | IF (cloudth_ratqsmin>0.) THEN |
|---|
| 1890 | sigma1s_ratqs = cloudth_ratqsmin*po(ind1) |
|---|
| 1891 | ELSE |
|---|
| 1892 | sigma1s_ratqs = ratqs(ind1,ind2)*po(ind1) |
|---|
| 1893 | ENDIF |
|---|
| 1894 | |
|---|
| 1895 | sigma1s = sigma1s_fraca + sigma1s_ratqs |
|---|
| 1896 | sigma2s=(sigma2s_factor*(((sth-senv)**2)**0.5)/((fraca(ind1,ind2)+0.02)**sigma2s_power))+0.002*zqta(ind1,ind2) |
|---|
| 1897 | |
|---|
| 1898 | |
|---|
| 1899 | deltasenv=aenv*vert_alpha*sigma1s |
|---|
| 1900 | deltasth=ath*vert_alpha_th*sigma2s |
|---|
| 1901 | |
|---|
| 1902 | xenv1=-(senv+deltasenv)/(sqrt(2.)*sigma1s) |
|---|
| 1903 | xenv2=-(senv-deltasenv)/(sqrt(2.)*sigma1s) |
|---|
| 1904 | exp_xenv1 = exp(-1.*xenv1**2) |
|---|
| 1905 | exp_xenv2 = exp(-1.*xenv2**2) |
|---|
| 1906 | xth1=-(sth+deltasth)/(sqrt(2.)*sigma2s) |
|---|
| 1907 | xth2=-(sth-deltasth)/(sqrt(2.)*sigma2s) |
|---|
| 1908 | exp_xth1 = exp(-1.*xth1**2) |
|---|
| 1909 | exp_xth2 = exp(-1.*xth2**2) |
|---|
| 1910 | |
|---|
| 1911 | !surface CF |
|---|
| 1912 | |
|---|
| 1913 | cth(ind1,ind2)=0.5*(1.-1.*erf(xth1)) |
|---|
| 1914 | cenv(ind1,ind2)=0.5*(1.-1.*erf(xenv1)) |
|---|
| 1915 | ctot(ind1,ind2)=fraca(ind1,ind2)*cth(ind1,ind2)+(1.-1.*fraca(ind1,ind2))*cenv(ind1,ind2) |
|---|
| 1916 | |
|---|
| 1917 | |
|---|
| 1918 | !volume CF and condensed water |
|---|
| 1919 | |
|---|
| 1920 | !environnement |
|---|
| 1921 | |
|---|
| 1922 | IntJ=0.5*senv*(1-erf(xenv2))+(sigma1s/sqrt2pi)*exp_xenv2 |
|---|
| 1923 | IntJ_CF=0.5*(1.-1.*erf(xenv2)) |
|---|
| 1924 | |
|---|
| 1925 | IF (deltasenv .LT. 1.e-10) THEN |
|---|
| 1926 | qcenv(ind1,ind2)=IntJ |
|---|
| 1927 | cenv_vol(ind1,ind2)=IntJ_CF |
|---|
| 1928 | ELSE |
|---|
| 1929 | IntI1=(((senv+deltasenv)**2+(sigma1s)**2)/(8*deltasenv))*(erf(xenv2)-erf(xenv1)) |
|---|
| 1930 | IntI2=(sigma1s**2/(4*deltasenv*sqrtpi))*(xenv1*exp_xenv1-xenv2*exp_xenv2) |
|---|
| 1931 | IntI3=((sqrt2*sigma1s*(senv+deltasenv))/(4*sqrtpi*deltasenv))*(exp_xenv1-exp_xenv2) |
|---|
| 1932 | IntI1_CF=((senv+deltasenv)*(erf(xenv2)-erf(xenv1)))/(4*deltasenv) |
|---|
| 1933 | IntI3_CF=(sqrt2*sigma1s*(exp_xenv1-exp_xenv2))/(4*sqrtpi*deltasenv) |
|---|
| 1934 | qcenv(ind1,ind2)=IntJ+IntI1+IntI2+IntI3 |
|---|
| 1935 | cenv_vol(ind1,ind2)=IntJ_CF+IntI1_CF+IntI3_CF |
|---|
| 1936 | ENDIF |
|---|
| 1937 | |
|---|
| 1938 | |
|---|
| 1939 | |
|---|
| 1940 | !thermals |
|---|
| 1941 | |
|---|
| 1942 | IntJ=0.5*sth*(1-erf(xth2))+(sigma2s/sqrt2pi)*exp_xth2 |
|---|
| 1943 | IntJ_CF=0.5*(1.-1.*erf(xth2)) |
|---|
| 1944 | |
|---|
| 1945 | IF (deltasth .LT. 1.e-10) THEN |
|---|
| 1946 | qcth(ind1,ind2)=IntJ |
|---|
| 1947 | cth_vol(ind1,ind2)=IntJ_CF |
|---|
| 1948 | ELSE |
|---|
| 1949 | IntI1=(((sth+deltasth)**2+(sigma2s)**2)/(8*deltasth))*(erf(xth2)-erf(xth1)) |
|---|
| 1950 | IntI2=(sigma2s**2/(4*deltasth*sqrtpi))*(xth1*exp_xth1-xth2*exp_xth2) |
|---|
| 1951 | IntI3=((sqrt2*sigma2s*(sth+deltasth))/(4*sqrtpi*deltasth))*(exp_xth1-exp_xth2) |
|---|
| 1952 | IntI1_CF=((sth+deltasth)*(erf(xth2)-erf(xth1)))/(4*deltasth) |
|---|
| 1953 | IntI3_CF=(sqrt2*sigma2s*(exp_xth1-exp_xth2))/(4*sqrtpi*deltasth) |
|---|
| 1954 | qlth(ind1,ind2)=IntJ+IntI1+IntI2+IntI3 |
|---|
| 1955 | cth_vol(ind1,ind2)=IntJ_CF+IntI1_CF+IntI3_CF |
|---|
| 1956 | ENDIF |
|---|
| 1957 | |
|---|
| 1958 | qctot(ind1,ind2)=fraca(ind1,ind2)*qcth(ind1,ind2)+(1.-1.*fraca(ind1,ind2))*qcenv(ind1,ind2) |
|---|
| 1959 | ctot_vol(ind1,ind2)=fraca(ind1,ind2)*cth_vol(ind1,ind2)+(1.-1.*fraca(ind1,ind2))*cenv_vol(ind1,ind2) |
|---|
| 1960 | |
|---|
| 1961 | |
|---|
| 1962 | IF (cenv(ind1,ind2).LT.1.e-10.or.cth(ind1,ind2).LT.1.e-10) THEN |
|---|
| 1963 | ctot(ind1,ind2)=0. |
|---|
| 1964 | ctot_vol(ind1,ind2)=0. |
|---|
| 1965 | qcloud(ind1)=zqsatenv(ind1) |
|---|
| 1966 | qincloud(ind1)=0. |
|---|
| 1967 | ELSE |
|---|
| 1968 | qcloud(ind1)=qctot(ind1,ind2)/ctot(ind1,ind2)+zqs(ind1) |
|---|
| 1969 | qincloud(ind1)=qctot(ind1,ind2)/ctot(ind1,ind2) |
|---|
| 1970 | ENDIF |
|---|
| 1971 | |
|---|
| 1972 | |
|---|
| 1973 | ELSE ! mpc_bl_points>0 |
|---|
| 1974 | |
|---|
| 1975 | ! Treat boundary layer mixed phase clouds |
|---|
| 1976 | |
|---|
| 1977 | ! thermals |
|---|
| 1978 | !========= |
|---|
| 1979 | |
|---|
| 1980 | ! ice phase |
|---|
| 1981 | !........... |
|---|
| 1982 | |
|---|
| 1983 | qiceth=0. |
|---|
| 1984 | deltazlev_mpc=dz(ind1,:) |
|---|
| 1985 | temp_mpc=ztla(ind1,:)*zpspsk(ind1,:) |
|---|
| 1986 | pres_mpc=pplay(ind1,:) |
|---|
| 1987 | fraca_mpc=fraca(ind1,:) |
|---|
| 1988 | snowf_mpc=snowflux(ind1,:) |
|---|
| 1989 | iflag_topthermals=0 |
|---|
| 1990 | IF ((mpc_bl_points(ind1,ind2) .EQ. 1) .AND. (mpc_bl_points(ind1,ind2+1) .EQ. 0)) THEN |
|---|
| 1991 | iflag_topthermals = 1 |
|---|
| 1992 | ELSE IF ((mpc_bl_points(ind1,ind2) .EQ. 1) .AND. (mpc_bl_points(ind1,ind2+1) .EQ. 1) & |
|---|
| 1993 | .AND. (mpc_bl_points(ind1,ind2+2) .EQ. 0) ) THEN |
|---|
| 1994 | iflag_topthermals = 2 |
|---|
| 1995 | ELSE |
|---|
| 1996 | iflag_topthermals = 0 |
|---|
| 1997 | ENDIF |
|---|
| 1998 | |
|---|
| 1999 | CALL ICE_MPC_BL_CLOUDS(ind1,ind2,klev,Ni,Ei,C_cap,d_top,iflag_topthermals,temp_mpc,pres_mpc,zqta(ind1,:), & |
|---|
| 2000 | qsith(ind1,:),qlth(ind1,:),deltazlev_mpc,wiceth(ind1,:),fraca_mpc,qith(ind1,:)) |
|---|
| 2001 | |
|---|
| 2002 | ! qmax calculation |
|---|
| 2003 | sigma2s=(sigma2s_factor*((MAX((sthl-senvl),0.)**2)**0.5)/((fraca(ind1,ind2)+0.02)**sigma2s_power))+0.002*zqta(ind1,ind2) |
|---|
| 2004 | deltasth=athl*vert_alpha_th*sigma2s |
|---|
| 2005 | xth1=-(sthl+deltasth)/(sqrt(2.)*sigma2s) |
|---|
| 2006 | xth2=-(sthl-deltasth)/(sqrt(2.)*sigma2s) |
|---|
| 2007 | exp_xth1 = exp(-1.*xth1**2) |
|---|
| 2008 | exp_xth2 = exp(-1.*xth2**2) |
|---|
| 2009 | IntJ=0.5*sthl*(1-erf(xth2))+(sigma2s/sqrt2pi)*exp_xth2 |
|---|
| 2010 | IntJ_CF=0.5*(1.-1.*erf(xth2)) |
|---|
| 2011 | IntI1=(((sthl+deltasth)**2+(sigma2s)**2)/(8*deltasth))*(erf(xth2)-erf(xth1)) |
|---|
| 2012 | IntI2=(sigma2s**2/(4*deltasth*sqrtpi))*(xth1*exp_xth1-xth2*exp_xth2) |
|---|
| 2013 | IntI3=((sqrt2*sigma2s*(sthl+deltasth))/(4*sqrtpi*deltasth))*(exp_xth1-exp_xth2) |
|---|
| 2014 | IntI1_CF=((sthl+deltasth)*(erf(xth2)-erf(xth1)))/(4*deltasth) |
|---|
| 2015 | IntI3_CF=(sqrt2*sigma2s*(exp_xth1-exp_xth2))/(4*sqrtpi*deltasth) |
|---|
| 2016 | qmax=MAX(IntJ+IntI1+IntI2+IntI3,0.) |
|---|
| 2017 | |
|---|
| 2018 | |
|---|
| 2019 | ! Liquid phase |
|---|
| 2020 | !................ |
|---|
| 2021 | ! We account for the effect of ice crystals in thermals on sthl |
|---|
| 2022 | ! and on the width of the distribution |
|---|
| 2023 | |
|---|
| 2024 | sthlc=sthl*1./(1.+C_mpc*qith(ind1,ind2)) & |
|---|
| 2025 | + (1.-1./(1.+C_mpc*qith(ind1,ind2))) * athl*(qsith(ind1,ind2)-qslth(ind1)) |
|---|
| 2026 | |
|---|
| 2027 | sigma2sc=(sigma2s_factor*((MAX((sthlc-senvl),0.)**2)**0.5) & |
|---|
| 2028 | /((fraca(ind1,ind2)+0.02)**sigma2s_power)) & |
|---|
| 2029 | +0.002*zqta(ind1,ind2) |
|---|
| 2030 | deltasthc=athl*vert_alpha_th*sigma2sc |
|---|
| 2031 | |
|---|
| 2032 | |
|---|
| 2033 | xth1=-(sthlc+deltasthc)/(sqrt(2.)*sigma2sc) |
|---|
| 2034 | xth2=-(sthlc-deltasthc)/(sqrt(2.)*sigma2sc) |
|---|
| 2035 | exp_xth1 = exp(-1.*xth1**2) |
|---|
| 2036 | exp_xth2 = exp(-1.*xth2**2) |
|---|
| 2037 | IntJ=0.5*sthlc*(1-erf(xth2))+(sigma2sc/sqrt2pi)*exp_xth2 |
|---|
| 2038 | IntJ_CF=0.5*(1.-1.*erf(xth2)) |
|---|
| 2039 | IntI1=(((sthlc+deltasthc)**2+(sigma2sc)**2)/(8*deltasthc))*(erf(xth2)-erf(xth1)) |
|---|
| 2040 | IntI2=(sigma2sc**2/(4*deltasthc*sqrtpi))*(xth1*exp_xth1-xth2*exp_xth2) |
|---|
| 2041 | IntI3=((sqrt2*sigma2sc*(sthlc+deltasthc))/(4*sqrtpi*deltasthc))*(exp_xth1-exp_xth2) |
|---|
| 2042 | IntI1_CF=((sthlc+deltasthc)*(erf(xth2)-erf(xth1)))/(4*deltasthc) |
|---|
| 2043 | IntI3_CF=(sqrt2*sigma2sc*(exp_xth1-exp_xth2))/(4*sqrtpi*deltasthc) |
|---|
| 2044 | qliqth=IntJ+IntI1+IntI2+IntI3 |
|---|
| 2045 | |
|---|
| 2046 | qlth(ind1,ind2)=MAX(0.,qliqth) |
|---|
| 2047 | |
|---|
| 2048 | ! Condensed water |
|---|
| 2049 | |
|---|
| 2050 | qcth(ind1,ind2)=qlth(ind1,ind2)+qith(ind1,ind2) |
|---|
| 2051 | |
|---|
| 2052 | |
|---|
| 2053 | ! consistency with subgrid distribution |
|---|
| 2054 | |
|---|
| 2055 | IF ((qcth(ind1,ind2) .GT. qmax) .AND. (qcth(ind1,ind2) .GT. 0)) THEN |
|---|
| 2056 | fraci=qith(ind1,ind2)/qcth(ind1,ind2) |
|---|
| 2057 | qcth(ind1,ind2)=qmax |
|---|
| 2058 | qith(ind1,ind2)=fraci*qmax |
|---|
| 2059 | qlth(ind1,ind2)=(1.-fraci)*qmax |
|---|
| 2060 | ENDIF |
|---|
| 2061 | |
|---|
| 2062 | ! Cloud Fraction |
|---|
| 2063 | !............... |
|---|
| 2064 | ! calculation of qbase which is the value of the water vapor within mixed phase clouds |
|---|
| 2065 | ! such that the total water in cloud = qbase+qliqth+qiceth |
|---|
| 2066 | ! sbase is the value of s such that int_sbase^\intfy s ds = cloud fraction |
|---|
| 2067 | ! sbase and qbase calculation (note that sbase is wrt liq so negative) |
|---|
| 2068 | ! look for an approximate solution with iteration |
|---|
| 2069 | |
|---|
| 2070 | ttarget=qcth(ind1,ind2) |
|---|
| 2071 | mini= athl*(qsith(ind1,ind2)-qslth(ind1)) |
|---|
| 2072 | maxi= 0. !athl*(3.*sqrt(sigma2s)) |
|---|
| 2073 | niter=20 |
|---|
| 2074 | pas=(maxi-mini)/niter |
|---|
| 2075 | stmp=mini |
|---|
| 2076 | sbase=stmp |
|---|
| 2077 | coutref=1.E6 |
|---|
| 2078 | DO iter=1,niter |
|---|
| 2079 | cout=ABS(sigma2s/SQRT(2.*RPI)*EXP(-((sthl-stmp)/sigma2s)**2)+(sthl-stmp)/SQRT(2.)*(1.-erf(-(sthl-stmp)/sigma2s)) & |
|---|
| 2080 | + stmp/2.*(1.-erf(-(sthl-stmp)/sigma2s)) -ttarget) |
|---|
| 2081 | IF (cout .LT. coutref) THEN |
|---|
| 2082 | sbase=stmp |
|---|
| 2083 | coutref=cout |
|---|
| 2084 | ELSE |
|---|
| 2085 | stmp=stmp+pas |
|---|
| 2086 | ENDIF |
|---|
| 2087 | ENDDO |
|---|
| 2088 | qbase=MAX(0., sbase/athl+qslth(ind1)) |
|---|
| 2089 | |
|---|
| 2090 | ! surface cloud fraction in thermals |
|---|
| 2091 | cth(ind1,ind2)=0.5*(1.-erf((sbase-sthl)/sqrt(2.)/sigma2s)) |
|---|
| 2092 | cth(ind1,ind2)=MIN(MAX(cth(ind1,ind2),0.),1.) |
|---|
| 2093 | |
|---|
| 2094 | |
|---|
| 2095 | !volume cloud fraction in thermals |
|---|
| 2096 | !to be checked |
|---|
| 2097 | xth1=-(sthl+deltasth-sbase)/(sqrt(2.)*sigma2s) |
|---|
| 2098 | xth2=-(sthl-deltasth-sbase)/(sqrt(2.)*sigma2s) |
|---|
| 2099 | exp_xth1 = exp(-1.*xth1**2) |
|---|
| 2100 | exp_xth2 = exp(-1.*xth2**2) |
|---|
| 2101 | |
|---|
| 2102 | IntJ=0.5*sthl*(1-erf(xth2))+(sigma2s/sqrt2pi)*exp_xth2 |
|---|
| 2103 | IntJ_CF=0.5*(1.-1.*erf(xth2)) |
|---|
| 2104 | |
|---|
| 2105 | IF (deltasth .LT. 1.e-10) THEN |
|---|
| 2106 | cth_vol(ind1,ind2)=IntJ_CF |
|---|
| 2107 | ELSE |
|---|
| 2108 | IntI1=(((sthl+deltasth-sbase)**2+(sigma2s)**2)/(8*deltasth))*(erf(xth2)-erf(xth1)) |
|---|
| 2109 | IntI2=(sigma2s**2/(4*deltasth*sqrtpi))*(xth1*exp_xth1-xth2*exp_xth2) |
|---|
| 2110 | IntI3=((sqrt2*sigma2s*(sthl+deltasth))/(4*sqrtpi*deltasth))*(exp_xth1-exp_xth2) |
|---|
| 2111 | IntI1_CF=((sthl-sbase+deltasth)*(erf(xth2)-erf(xth1)))/(4*deltasth) |
|---|
| 2112 | IntI3_CF=(sqrt2*sigma2s*(exp_xth1-exp_xth2))/(4*sqrtpi*deltasth) |
|---|
| 2113 | cth_vol(ind1,ind2)=IntJ_CF+IntI1_CF+IntI3_CF |
|---|
| 2114 | ENDIF |
|---|
| 2115 | cth_vol(ind1,ind2)=MIN(MAX(0.,cth_vol(ind1,ind2)),1.) |
|---|
| 2116 | |
|---|
| 2117 | |
|---|
| 2118 | |
|---|
| 2119 | ! Environment |
|---|
| 2120 | !============= |
|---|
| 2121 | ! In the environment/downdrafts, only liquid clouds |
|---|
| 2122 | ! See Shupe et al. 2008, JAS |
|---|
| 2123 | |
|---|
| 2124 | ! standard deviation of the distribution in the environment |
|---|
| 2125 | sth=sthl |
|---|
| 2126 | senv=senvl |
|---|
| 2127 | sigma1s_fraca = (sigma1s_factor**0.5)*(fraca(ind1,ind2)**sigma1s_power) / & |
|---|
| 2128 | & (1-fraca(ind1,ind2))*(MAX((sth-senv),0.)**2)**0.5 |
|---|
| 2129 | ! for mixed phase clouds, there is no contribution from large scale ratqs to the distribution |
|---|
| 2130 | ! in the environement |
|---|
| 2131 | |
|---|
| 2132 | sigma1s_ratqs=1E-10 |
|---|
| 2133 | IF (cloudth_ratqsmin>0.) THEN |
|---|
| 2134 | sigma1s_ratqs = cloudth_ratqsmin*po(ind1) |
|---|
| 2135 | ENDIF |
|---|
| 2136 | |
|---|
| 2137 | sigma1s = sigma1s_fraca + sigma1s_ratqs |
|---|
| 2138 | deltasenv=aenvl*vert_alpha*sigma1s |
|---|
| 2139 | xenv1=-(senvl+deltasenv)/(sqrt(2.)*sigma1s) |
|---|
| 2140 | xenv2=-(senvl-deltasenv)/(sqrt(2.)*sigma1s) |
|---|
| 2141 | exp_xenv1 = exp(-1.*xenv1**2) |
|---|
| 2142 | exp_xenv2 = exp(-1.*xenv2**2) |
|---|
| 2143 | |
|---|
| 2144 | !surface CF |
|---|
| 2145 | cenv(ind1,ind2)=0.5*(1.-1.*erf(xenv1)) |
|---|
| 2146 | |
|---|
| 2147 | !volume CF and condensed water |
|---|
| 2148 | IntJ=0.5*senvl*(1-erf(xenv2))+(sigma1s/sqrt2pi)*exp_xenv2 |
|---|
| 2149 | IntJ_CF=0.5*(1.-1.*erf(xenv2)) |
|---|
| 2150 | |
|---|
| 2151 | IF (deltasenv .LT. 1.e-10) THEN |
|---|
| 2152 | qcenv(ind1,ind2)=IntJ |
|---|
| 2153 | cenv_vol(ind1,ind2)=IntJ_CF |
|---|
| 2154 | ELSE |
|---|
| 2155 | IntI1=(((senvl+deltasenv)**2+(sigma1s)**2)/(8*deltasenv))*(erf(xenv2)-erf(xenv1)) |
|---|
| 2156 | IntI2=(sigma1s**2/(4*deltasenv*sqrtpi))*(xenv1*exp_xenv1-xenv2*exp_xenv2) |
|---|
| 2157 | IntI3=((sqrt2*sigma1s*(senv+deltasenv))/(4*sqrtpi*deltasenv))*(exp_xenv1-exp_xenv2) |
|---|
| 2158 | IntI1_CF=((senvl+deltasenv)*(erf(xenv2)-erf(xenv1)))/(4*deltasenv) |
|---|
| 2159 | IntI3_CF=(sqrt2*sigma1s*(exp_xenv1-exp_xenv2))/(4*sqrtpi*deltasenv) |
|---|
| 2160 | qcenv(ind1,ind2)=IntJ+IntI1+IntI2+IntI3 ! only liquid water in environment |
|---|
| 2161 | cenv_vol(ind1,ind2)=IntJ_CF+IntI1_CF+IntI3_CF |
|---|
| 2162 | ENDIF |
|---|
| 2163 | |
|---|
| 2164 | qcenv(ind1,ind2)=MAX(qcenv(ind1,ind2),0.) |
|---|
| 2165 | cenv_vol(ind1,ind2)=MIN(MAX(cenv_vol(ind1,ind2),0.),1.) |
|---|
| 2166 | |
|---|
| 2167 | |
|---|
| 2168 | |
|---|
| 2169 | ! Thermals + environment |
|---|
| 2170 | ! ======================= |
|---|
| 2171 | ctot(ind1,ind2)=fraca(ind1,ind2)*cth(ind1,ind2)+(1.-1.*fraca(ind1,ind2))*cenv(ind1,ind2) |
|---|
| 2172 | qctot(ind1,ind2)=fraca(ind1,ind2)*qcth(ind1,ind2)+(1.-1.*fraca(ind1,ind2))*qcenv(ind1,ind2) |
|---|
| 2173 | ctot_vol(ind1,ind2)=fraca(ind1,ind2)*cth_vol(ind1,ind2)+(1.-1.*fraca(ind1,ind2))*cenv_vol(ind1,ind2) |
|---|
| 2174 | IF (qcth(ind1,ind2) .GT. 0) THEN |
|---|
| 2175 | icefrac(ind1,ind2)=fraca(ind1,ind2)*qith(ind1,ind2) & |
|---|
| 2176 | /(fraca(ind1,ind2)*qcth(ind1,ind2) & |
|---|
| 2177 | +(1.-1.*fraca(ind1,ind2))*qcenv(ind1,ind2)) |
|---|
| 2178 | icefrac(ind1,ind2)=MAX(MIN(1.,icefrac(ind1,ind2)),0.) |
|---|
| 2179 | ELSE |
|---|
| 2180 | icefrac(ind1,ind2)=0. |
|---|
| 2181 | ENDIF |
|---|
| 2182 | |
|---|
| 2183 | IF (cenv(ind1,ind2).LT.1.e-10.or.cth(ind1,ind2).LT.1.e-10) THEN |
|---|
| 2184 | ctot(ind1,ind2)=0. |
|---|
| 2185 | ctot_vol(ind1,ind2)=0. |
|---|
| 2186 | qincloud(ind1)=0. |
|---|
| 2187 | qcloud(ind1)=zqsatenv(ind1) |
|---|
| 2188 | ELSE |
|---|
| 2189 | qcloud(ind1)=fraca(ind1,ind2)*(qcth(ind1,ind2)/cth(ind1,ind2)+qbase) & |
|---|
| 2190 | +(1.-1.*fraca(ind1,ind2))*(qcenv(ind1,ind2)/cenv(ind1,ind2)+qslenv(ind1)) |
|---|
| 2191 | qincloud(ind1)=MAX(fraca(ind1,ind2)*(qcth(ind1,ind2)/cth(ind1,ind2)) & |
|---|
| 2192 | +(1.-1.*fraca(ind1,ind2))*(qcenv(ind1,ind2)/cenv(ind1,ind2)),0.) |
|---|
| 2193 | ENDIF |
|---|
| 2194 | |
|---|
| 2195 | ENDIF ! mpc_bl_points |
|---|
| 2196 | |
|---|
| 2197 | |
|---|
| 2198 | ELSE ! gaussian for environment only |
|---|
| 2199 | |
|---|
| 2200 | |
|---|
| 2201 | |
|---|
| 2202 | |
|---|
| 2203 | IF (Tbefenvonly(ind1) .GE. RTT) THEN |
|---|
| 2204 | Lv=RLVTT |
|---|
| 2205 | ELSE |
|---|
| 2206 | Lv=RLSTT |
|---|
| 2207 | ENDIF |
|---|
| 2208 | |
|---|
| 2209 | |
|---|
| 2210 | zthl(ind1,ind2)=temp(ind1,ind2)*(101325./paprs(ind1,ind2))**(rdd/cppd) |
|---|
| 2211 | alenv=(0.622*Lv*zqsatenvonly(ind1))/(rdd*zthl(ind1,ind2)**2) |
|---|
| 2212 | aenv=1./(1.+(alenv*Lv/cppd)) |
|---|
| 2213 | senv=aenv*(po(ind1)-zqsatenvonly(ind1)) |
|---|
| 2214 | sth=0. |
|---|
| 2215 | |
|---|
| 2216 | sigma1s=ratqs(ind1,ind2)*zqenvonly(ind1) |
|---|
| 2217 | sigma2s=0. |
|---|
| 2218 | |
|---|
| 2219 | sqrt2pi=sqrt(2.*pi) |
|---|
| 2220 | xenv=senv/(sqrt(2.)*sigma1s) |
|---|
| 2221 | ctot(ind1,ind2)=0.5*(1.+1.*erf(xenv)) |
|---|
| 2222 | ctot_vol(ind1,ind2)=ctot(ind1,ind2) |
|---|
| 2223 | qctot(ind1,ind2)=sigma1s*((exp(-1.*xenv**2)/sqrt2pi)+xenv*sqrt(2.)*cenv(ind1,ind2)) |
|---|
| 2224 | |
|---|
| 2225 | IF (ctot(ind1,ind2).LT.1.e-3) THEN |
|---|
| 2226 | ctot(ind1,ind2)=0. |
|---|
| 2227 | qcloud(ind1)=zqsatenvonly(ind1) |
|---|
| 2228 | qincloud(ind1)=0. |
|---|
| 2229 | ELSE |
|---|
| 2230 | qcloud(ind1)=qctot(ind1,ind2)/ctot(ind1,ind2)+zqsatenvonly(ind1) |
|---|
| 2231 | qincloud(ind1)=MAX(qctot(ind1,ind2)/ctot(ind1,ind2),0.) |
|---|
| 2232 | ENDIF |
|---|
| 2233 | |
|---|
| 2234 | |
|---|
| 2235 | ENDIF ! From the separation (thermal/envrionnement) and (environnement only,) l.335 et l.492 |
|---|
| 2236 | |
|---|
| 2237 | ! Outputs used to check the PDFs |
|---|
| 2238 | cloudth_senv(ind1,ind2) = senv |
|---|
| 2239 | cloudth_sth(ind1,ind2) = sth |
|---|
| 2240 | cloudth_sigmaenv(ind1,ind2) = sigma1s |
|---|
| 2241 | cloudth_sigmath(ind1,ind2) = sigma2s |
|---|
| 2242 | |
|---|
| 2243 | |
|---|
| 2244 | ENDDO !loop on klon |
|---|
| 2245 | |
|---|
| 2246 | ! Calcule ice fall velocity in thermals |
|---|
| 2247 | |
|---|
| 2248 | CALL FALLICE_VELOCITY(klon,qith(:,ind2),Tbefth(:),rhoth(:),paprs(:,ind2),falseklon(:),wiceth(:,ind2)) |
|---|
| 2249 | |
|---|
| 2250 | RETURN |
|---|
| 2251 | |
|---|
| 2252 | |
|---|
| 2253 | END SUBROUTINE cloudth_mpc |
|---|
| 2254 | |
|---|
| 2255 | !++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ |
|---|
| 2256 | SUBROUTINE ICE_MPC_BL_CLOUDS(ind1,ind2,klev,Ni,Ei,C_cap,d_top,iflag_topthermals,temp,pres,qth,qsith,qlth,deltazlev,vith,fraca,qith) |
|---|
| 2257 | |
|---|
| 2258 | ! parameterization of ice for boundary |
|---|
| 2259 | ! layer mixed-phase clouds assuming a stationary system |
|---|
| 2260 | ! |
|---|
| 2261 | ! Note that vapor deposition on ice crystals and riming of liquid droplets |
|---|
| 2262 | ! depend on the ice number concentration Ni |
|---|
| 2263 | ! One could assume that Ni depends on qi, e.g., Ni=beta*(qi*rho)**xi |
|---|
| 2264 | ! and use values from Hong et al. 2004, MWR for instance |
|---|
| 2265 | ! One may also estimate Ni as a function of T, as in Meyers 1922 or Fletcher 1962 |
|---|
| 2266 | ! One could also think of a more complex expression of Ni; |
|---|
| 2267 | ! function of qi, T, the concentration in aerosols or INP .. |
|---|
| 2268 | ! Here we prefer fixing Ni to a tuning parameter |
|---|
| 2269 | ! By default we take 2.0L-1=2.0e3m-3, median value from measured vertical profiles near Svalbard |
|---|
| 2270 | ! in Mioche et al. 2017 |
|---|
| 2271 | ! |
|---|
| 2272 | ! |
|---|
| 2273 | ! References: |
|---|
| 2274 | !------------ |
|---|
| 2275 | ! This parameterization is thoroughly described in Vignon et al. |
|---|
| 2276 | ! |
|---|
| 2277 | ! More specifically |
|---|
| 2278 | ! for the Water vapor deposition process: |
|---|
| 2279 | ! |
|---|
| 2280 | ! Rotstayn, L. D., 1997: A physically based scheme for the treat- |
|---|
| 2281 | ! ment of stratiform cloudfs and precipitation in large-scale |
|---|
| 2282 | ! models. I: Description and evaluation of the microphysical |
|---|
| 2283 | ! processes. Quart. J. Roy. Meteor. Soc., 123, 1227–1282. |
|---|
| 2284 | ! |
|---|
| 2285 | ! Morrison, H., and A. Gettelman, 2008: A new two-moment bulk |
|---|
| 2286 | ! stratiform cloud microphysics scheme in the NCAR Com- |
|---|
| 2287 | ! munity Atmosphere Model (CAM3). Part I: Description and |
|---|
| 2288 | ! numerical tests. J. Climate, 21, 3642–3659 |
|---|
| 2289 | ! |
|---|
| 2290 | ! for the Riming process: |
|---|
| 2291 | ! |
|---|
| 2292 | ! Rutledge, S. A., and P. V. Hobbs, 1983: The mesoscale and micro- |
|---|
| 2293 | ! scale structure and organization of clouds and precipitation in |
|---|
| 2294 | ! midlatitude cyclones. VII: A model for the ‘‘seeder-feeder’’ |
|---|
| 2295 | ! process in warm-frontal rainbands. J. Atmos. Sci., 40, 1185–1206 |
|---|
| 2296 | ! |
|---|
| 2297 | ! Thompson, G., R. M. Rasmussen, and K. Manning, 004: Explicit |
|---|
| 2298 | ! forecasts of winter precipitation using an improved bulk |
|---|
| 2299 | ! microphysics scheme. Part I: Description and sensitivityThompson, G., R. M. Rasmussen, and K. Manning, 2004: Explicit |
|---|
| 2300 | ! forecasts of winter precipitation using an improved bulk |
|---|
| 2301 | ! microphysics scheme. Part I: Description and sensitivity analysis. Mon. Wea. Rev., 132, 519–542 |
|---|
| 2302 | ! |
|---|
| 2303 | ! For the formation of clouds by thermals: |
|---|
| 2304 | ! |
|---|
| 2305 | ! Rio, C., & Hourdin, F. (2008). A thermal plume model for the convective boundary layer : Representation of cumulus clouds. Journal of |
|---|
| 2306 | ! the Atmospheric Sciences, 65, 407–425. |
|---|
| 2307 | ! |
|---|
| 2308 | ! Jam, A., Hourdin, F., Rio, C., & Couvreux, F. (2013). Resolved versus parametrized boundary-layer plumes. Part III: Derivation of a |
|---|
| 2309 | ! statistical scheme for cumulus clouds. Boundary-layer Meteorology, 147, 421–441. https://doi.org/10.1007/s10546-012-9789-3 |
|---|
| 2310 | ! |
|---|
| 2311 | ! |
|---|
| 2312 | ! |
|---|
| 2313 | ! Contact: Etienne Vignon, etienne.vignon@lmd.ipsl.fr |
|---|
| 2314 | !============================================================================= |
|---|
| 2315 | |
|---|
| 2316 | USE ioipsl_getin_p_mod, ONLY : getin_p |
|---|
| 2317 | USE phys_state_var_mod, ONLY : fm_therm, detr_therm, entr_therm |
|---|
| 2318 | |
|---|
| 2319 | IMPLICIT none |
|---|
| 2320 | |
|---|
| 2321 | INCLUDE "YOMCST.h" |
|---|
| 2322 | |
|---|
| 2323 | INTEGER, INTENT(IN) :: ind1,ind2, klev ! horizontal and vertical indices and dimensions |
|---|
| 2324 | INTEGER, INTENT(IN) :: iflag_topthermals ! uppermost layer of thermals ? |
|---|
| 2325 | REAL, INTENT(IN) :: Ni ! ice number concentration [m-3] |
|---|
| 2326 | REAL, INTENT(IN) :: Ei ! ice-droplet collision efficiency |
|---|
| 2327 | REAL, INTENT(IN) :: C_cap ! ice crystal capacitance |
|---|
| 2328 | REAL, INTENT(IN) :: d_top ! cloud-top ice crystal mixing parameter |
|---|
| 2329 | REAL, DIMENSION(klev), INTENT(IN) :: temp ! temperature [K] within thermals |
|---|
| 2330 | REAL, DIMENSION(klev), INTENT(IN) :: pres ! pressure [Pa] |
|---|
| 2331 | REAL, DIMENSION(klev), INTENT(IN) :: qth ! mean specific water content in thermals [kg/kg] |
|---|
| 2332 | REAL, DIMENSION(klev), INTENT(IN) :: qsith ! saturation specific humidity wrt ice in thermals [kg/kg] |
|---|
| 2333 | REAL, DIMENSION(klev), INTENT(IN) :: qlth ! condensed liquid water in thermals, approximated value [kg/kg] |
|---|
| 2334 | REAL, DIMENSION(klev), INTENT(IN) :: deltazlev ! layer thickness [m] |
|---|
| 2335 | REAL, DIMENSION(klev), INTENT(IN) :: vith ! ice crystal fall velocity [m/s] |
|---|
| 2336 | REAL, DIMENSION(klev+1), INTENT(IN) :: fraca ! fraction of the mesh covered by thermals |
|---|
| 2337 | REAL, DIMENSION(klev), INTENT(INOUT) :: qith ! condensed ice water , thermals [kg/kg] |
|---|
| 2338 | |
|---|
| 2339 | |
|---|
| 2340 | INTEGER ind2p1,ind2p2 |
|---|
| 2341 | REAL rho(klev) |
|---|
| 2342 | REAL unsurtaudet, unsurtaustardep, unsurtaurim |
|---|
| 2343 | REAL qi, AA, BB, Ka, Dv, rhoi |
|---|
| 2344 | REAL p0, t0, fp1, fp2 |
|---|
| 2345 | REAL alpha, flux_term |
|---|
| 2346 | REAL det_term, precip_term, rim_term, dep_term |
|---|
| 2347 | |
|---|
| 2348 | |
|---|
| 2349 | ind2p1=ind2+1 |
|---|
| 2350 | ind2p2=ind2+2 |
|---|
| 2351 | |
|---|
| 2352 | rho=pres/temp/RD ! air density kg/m3 |
|---|
| 2353 | |
|---|
| 2354 | Ka=2.4e-2 ! thermal conductivity of the air, SI |
|---|
| 2355 | p0=101325.0 ! ref pressure |
|---|
| 2356 | T0=273.15 ! ref temp |
|---|
| 2357 | rhoi=500.0 ! cloud ice density following Reisner et al. 1998 |
|---|
| 2358 | alpha=700. ! fallvelocity param |
|---|
| 2359 | |
|---|
| 2360 | |
|---|
| 2361 | IF (iflag_topthermals .GT. 0) THEN ! uppermost thermals levels |
|---|
| 2362 | |
|---|
| 2363 | Dv=0.0001*0.211*(p0/pres(ind2))*((temp(ind2)/T0)**1.94) ! water vapor diffusivity in air, SI |
|---|
| 2364 | |
|---|
| 2365 | ! Detrainment term: |
|---|
| 2366 | |
|---|
| 2367 | unsurtaudet=detr_therm(ind1,ind2)/rho(ind2)/deltazlev(ind2) |
|---|
| 2368 | |
|---|
| 2369 | |
|---|
| 2370 | ! Deposition term |
|---|
| 2371 | AA=RLSTT/Ka/temp(ind2)*(RLSTT/RV/temp(ind2)-1.) |
|---|
| 2372 | BB=1./(rho(ind2)*Dv*qsith(ind2)) |
|---|
| 2373 | unsurtaustardep=C_cap*(Ni**0.66)*(qth(ind2)-qsith(ind2))/qsith(ind2) & |
|---|
| 2374 | *4.*RPI/(AA+BB)*(6.*rho(ind2)/rhoi/RPI/Gamma(4.))**(0.33) |
|---|
| 2375 | |
|---|
| 2376 | ! Riming term neglected at this level |
|---|
| 2377 | !unsurtaurim=rho(ind2)*alpha*3./rhoi/2.*Ei*qlth(ind2)*((p0/pres(ind2))**0.4) |
|---|
| 2378 | |
|---|
| 2379 | qi=fraca(ind2)*unsurtaustardep/MAX((d_top*unsurtaudet),1E-12) |
|---|
| 2380 | qi=MAX(qi,0.)**(3./2.) |
|---|
| 2381 | |
|---|
| 2382 | ELSE ! other levels, estimate qi(k) from variables at k+1 and k+2 |
|---|
| 2383 | |
|---|
| 2384 | Dv=0.0001*0.211*(p0/pres(ind2p1))*((temp(ind2p1)/T0)**1.94) ! water vapor diffusivity in air, SI |
|---|
| 2385 | |
|---|
| 2386 | ! Detrainment term: |
|---|
| 2387 | |
|---|
| 2388 | unsurtaudet=detr_therm(ind1,ind2p1)/rho(ind2p1)/deltazlev(ind2p1) |
|---|
| 2389 | det_term=-unsurtaudet*qith(ind2p1)*rho(ind2p1) |
|---|
| 2390 | |
|---|
| 2391 | |
|---|
| 2392 | ! Deposition term |
|---|
| 2393 | |
|---|
| 2394 | AA=RLSTT/Ka/temp(ind2p1)*(RLSTT/RV/temp(ind2p1)-1.) |
|---|
| 2395 | BB=1./(rho(ind2p1)*Dv*qsith(ind2p1)) |
|---|
| 2396 | unsurtaustardep=C_cap*(Ni**0.66)*(qth(ind2p1)-qsith(ind2p1)) & |
|---|
| 2397 | /qsith(ind2p1)*4.*RPI/(AA+BB) & |
|---|
| 2398 | *(6.*rho(ind2p1)/rhoi/RPI/Gamma(4.))**(0.33) |
|---|
| 2399 | dep_term=rho(ind2p1)*fraca(ind2p1)*(qith(ind2p1)**0.33)*unsurtaustardep |
|---|
| 2400 | |
|---|
| 2401 | ! Riming term |
|---|
| 2402 | |
|---|
| 2403 | unsurtaurim=rho(ind2p1)*alpha*3./rhoi/2.*Ei*qlth(ind2p1)*((p0/pres(ind2p1))**0.4) |
|---|
| 2404 | rim_term=rho(ind2p1)*fraca(ind2p1)*qith(ind2p1)*unsurtaurim |
|---|
| 2405 | |
|---|
| 2406 | ! Precip term |
|---|
| 2407 | |
|---|
| 2408 | ! We assume that there is no solid precipitation outside thermals |
|---|
| 2409 | ! so the precipitation flux within thermals is equal to the precipitation flux |
|---|
| 2410 | ! at mesh-scale divided by thermals fraction |
|---|
| 2411 | |
|---|
| 2412 | fp2=0. |
|---|
| 2413 | fp1=0. |
|---|
| 2414 | IF (fraca(ind2p1) .GT. 0.) THEN |
|---|
| 2415 | fp2=-qith(ind2p2)*rho(ind2p2)*vith(ind2p2)*fraca(ind2p2)! flux defined positive upward |
|---|
| 2416 | fp1=-qith(ind2p1)*rho(ind2p1)*vith(ind2p1)*fraca(ind2p1) |
|---|
| 2417 | ENDIF |
|---|
| 2418 | |
|---|
| 2419 | precip_term=-1./deltazlev(ind2p1)*(fp2-fp1) |
|---|
| 2420 | |
|---|
| 2421 | ! Calculation in a top-to-bottom loop |
|---|
| 2422 | |
|---|
| 2423 | IF (fm_therm(ind1,ind2p1) .GT. 0.) THEN |
|---|
| 2424 | qi= 1./fm_therm(ind1,ind2p1)* & |
|---|
| 2425 | (deltazlev(ind2p1)*(-rim_term-dep_term-det_term-precip_term) + & |
|---|
| 2426 | fm_therm(ind1,ind2p2)*(qith(ind2p1))) |
|---|
| 2427 | END IF |
|---|
| 2428 | |
|---|
| 2429 | ENDIF ! top thermals |
|---|
| 2430 | |
|---|
| 2431 | qith(ind2)=MAX(0.,qi) |
|---|
| 2432 | |
|---|
| 2433 | RETURN |
|---|
| 2434 | |
|---|
| 2435 | END SUBROUTINE ICE_MPC_BL_CLOUDS |
|---|
| 2436 | |
|---|
| 2437 | |
|---|
| 2438 | |
|---|
| 2439 | |
|---|
| 2440 | END MODULE cloudth_mod |
|---|
| 2441 | |
|---|
| 2442 | |
|---|
| 2443 | |
|---|
| 2444 | |
|---|