| 1 | ! |
|---|
| 2 | MODULE climb_wind_mod |
|---|
| 3 | ! |
|---|
| 4 | ! Module to solve the verctical diffusion of the wind components "u" and "v". |
|---|
| 5 | ! |
|---|
| 6 | USE dimphy |
|---|
| 7 | |
|---|
| 8 | IMPLICIT NONE |
|---|
| 9 | |
|---|
| 10 | SAVE |
|---|
| 11 | PRIVATE |
|---|
| 12 | |
|---|
| 13 | REAL, DIMENSION(:), ALLOCATABLE :: alf1, alf2 |
|---|
| 14 | !$OMP THREADPRIVATE(alf1,alf2) |
|---|
| 15 | REAL, DIMENSION(:,:), ALLOCATABLE :: Kcoefm |
|---|
| 16 | !$OMP THREADPRIVATE(Kcoefm) |
|---|
| 17 | REAL, DIMENSION(:,:), ALLOCATABLE :: Ccoef_U, Dcoef_U |
|---|
| 18 | !$OMP THREADPRIVATE(Ccoef_U, Dcoef_U) |
|---|
| 19 | REAL, DIMENSION(:,:), ALLOCATABLE :: Ccoef_V, Dcoef_V |
|---|
| 20 | !$OMP THREADPRIVATE(Ccoef_V, Dcoef_V) |
|---|
| 21 | REAL, DIMENSION(:), ALLOCATABLE :: Acoef_U, Bcoef_U |
|---|
| 22 | !$OMP THREADPRIVATE(Acoef_U, Bcoef_U) |
|---|
| 23 | REAL, DIMENSION(:), ALLOCATABLE :: Acoef_V, Bcoef_V |
|---|
| 24 | !$OMP THREADPRIVATE(Acoef_V, Bcoef_V) |
|---|
| 25 | LOGICAL :: firstcall=.TRUE. |
|---|
| 26 | !$OMP THREADPRIVATE(firstcall) |
|---|
| 27 | |
|---|
| 28 | |
|---|
| 29 | PUBLIC :: climb_wind_down, climb_wind_up, climb_wind_init |
|---|
| 30 | |
|---|
| 31 | CONTAINS |
|---|
| 32 | ! |
|---|
| 33 | !**************************************************************************************** |
|---|
| 34 | ! |
|---|
| 35 | SUBROUTINE climb_wind_init |
|---|
| 36 | |
|---|
| 37 | INTEGER :: ierr |
|---|
| 38 | CHARACTER(len = 20) :: modname = 'climb_wind_init' |
|---|
| 39 | |
|---|
| 40 | |
|---|
| 41 | !**************************************************************************************** |
|---|
| 42 | ! Initialize module |
|---|
| 43 | |
|---|
| 44 | IF (firstcall) THEN |
|---|
| 45 | |
|---|
| 46 | !**************************************************************************************** |
|---|
| 47 | ! Allocation of global module variables |
|---|
| 48 | ! |
|---|
| 49 | !**************************************************************************************** |
|---|
| 50 | |
|---|
| 51 | ALLOCATE(alf1(klon), stat=ierr) |
|---|
| 52 | IF (ierr /= 0) CALL abort_physic(modname,'Pb in allocate alf1',1) |
|---|
| 53 | alf1(:) = 0. |
|---|
| 54 | |
|---|
| 55 | ALLOCATE(alf2(klon), stat=ierr) |
|---|
| 56 | IF (ierr /= 0) CALL abort_physic(modname,'Pb in allocate alf2',1) |
|---|
| 57 | alf2(:) = 0. |
|---|
| 58 | |
|---|
| 59 | ALLOCATE(Kcoefm(klon,klev), stat=ierr) |
|---|
| 60 | IF (ierr /= 0) CALL abort_physic(modname,'Pb in allocate Kcoefm',1) |
|---|
| 61 | Kcoefm(:,:) = 0. |
|---|
| 62 | |
|---|
| 63 | ALLOCATE(Ccoef_U(klon,klev), stat=ierr) |
|---|
| 64 | IF (ierr /= 0) CALL abort_physic(modname,'Pb in allocate Ccoef_U',1) |
|---|
| 65 | Ccoef_U(:,:) = 0. |
|---|
| 66 | |
|---|
| 67 | ALLOCATE(Dcoef_U(klon,klev), stat=ierr) |
|---|
| 68 | IF (ierr /= 0) CALL abort_physic(modname,'Pb in allocation Dcoef_U',1) |
|---|
| 69 | Dcoef_U(:,:) = 0. |
|---|
| 70 | |
|---|
| 71 | ALLOCATE(Ccoef_V(klon,klev), stat=ierr) |
|---|
| 72 | IF (ierr /= 0) CALL abort_physic(modname,'Pb in allocation Ccoef_V',1) |
|---|
| 73 | Ccoef_V(:,:) = 0. |
|---|
| 74 | |
|---|
| 75 | ALLOCATE(Dcoef_V(klon,klev), stat=ierr) |
|---|
| 76 | IF (ierr /= 0) CALL abort_physic(modname,'Pb in allocation Dcoef_V',1) |
|---|
| 77 | Dcoef_V(:,:) = 0. |
|---|
| 78 | |
|---|
| 79 | ALLOCATE(Acoef_U(klon), Bcoef_U(klon), Acoef_V(klon), Bcoef_V(klon), STAT=ierr) |
|---|
| 80 | IF ( ierr /= 0 ) PRINT*,' pb in allloc Acoef_U and Bcoef_U, ierr=', ierr |
|---|
| 81 | Acoef_U(:) = 0. ; Bcoef_U(:) = 0. ; Acoef_V(:) = 0. ; Bcoef_V(:) = 0. ; |
|---|
| 82 | |
|---|
| 83 | firstcall=.FALSE. |
|---|
| 84 | |
|---|
| 85 | ENDIF |
|---|
| 86 | |
|---|
| 87 | END SUBROUTINE climb_wind_init |
|---|
| 88 | ! |
|---|
| 89 | !**************************************************************************************** |
|---|
| 90 | ! |
|---|
| 91 | SUBROUTINE climb_wind_down(knon, ni, dtime, coef_in, pplay, paprs, temp, delp, u_old, v_old, & |
|---|
| 92 | !!! nrlmd le 02/05/2011 |
|---|
| 93 | Ccoef_U_out, Ccoef_V_out, Dcoef_U_out, Dcoef_V_out, & |
|---|
| 94 | Kcoef_m_out, alf_1_out, alf_2_out, & |
|---|
| 95 | !!! |
|---|
| 96 | Acoef_U_out, Acoef_V_out, Bcoef_U_out, Bcoef_V_out) |
|---|
| 97 | !$gpum horizontal knon |
|---|
| 98 | |
|---|
| 99 | ! |
|---|
| 100 | ! This routine calculates for the wind components u and v, |
|---|
| 101 | ! recursivly the coefficients C and D in equation |
|---|
| 102 | ! X(k) = C(k) + D(k)*X(k-1), X=[u,v], k=[1,klev] is the vertical layer. |
|---|
| 103 | ! |
|---|
| 104 | ! |
|---|
| 105 | USE yomcst_mod_h |
|---|
| 106 | USE compbl_mod_h |
|---|
| 107 | ! Input arguments |
|---|
| 108 | !**************************************************************************************** |
|---|
| 109 | INTEGER, INTENT(IN) :: knon |
|---|
| 110 | INTEGER, INTENT(IN) :: ni(knon) |
|---|
| 111 | REAL, INTENT(IN) :: dtime |
|---|
| 112 | REAL, DIMENSION(knon,klev), INTENT(IN) :: coef_in |
|---|
| 113 | REAL, DIMENSION(knon,klev), INTENT(IN) :: pplay ! pres au milieu de couche (Pa) |
|---|
| 114 | REAL, DIMENSION(knon,klev+1), INTENT(IN) :: paprs ! pression a inter-couche (Pa) |
|---|
| 115 | REAL, DIMENSION(knon,klev), INTENT(IN) :: temp ! temperature |
|---|
| 116 | REAL, DIMENSION(knon,klev), INTENT(IN) :: delp |
|---|
| 117 | REAL, DIMENSION(knon,klev), INTENT(IN) :: u_old |
|---|
| 118 | REAL, DIMENSION(knon,klev), INTENT(IN) :: v_old |
|---|
| 119 | |
|---|
| 120 | ! Output arguments |
|---|
| 121 | !**************************************************************************************** |
|---|
| 122 | REAL, DIMENSION(knon), INTENT(OUT) :: Acoef_U_out |
|---|
| 123 | REAL, DIMENSION(knon), INTENT(OUT) :: Acoef_V_out |
|---|
| 124 | REAL, DIMENSION(knon), INTENT(OUT) :: Bcoef_U_out |
|---|
| 125 | REAL, DIMENSION(knon), INTENT(OUT) :: Bcoef_V_out |
|---|
| 126 | |
|---|
| 127 | !!! nrlmd le 02/05/2011 |
|---|
| 128 | REAL, DIMENSION(knon,klev), INTENT(OUT) :: Ccoef_U_out |
|---|
| 129 | REAL, DIMENSION(knon,klev), INTENT(OUT) :: Ccoef_V_out |
|---|
| 130 | REAL, DIMENSION(knon,klev), INTENT(OUT) :: Dcoef_U_out |
|---|
| 131 | REAL, DIMENSION(knon,klev), INTENT(OUT) :: Dcoef_V_out |
|---|
| 132 | REAL, DIMENSION(knon,klev), INTENT(OUT) :: Kcoef_m_out |
|---|
| 133 | REAL, DIMENSION(knon), INTENT(OUT) :: alf_1_out |
|---|
| 134 | REAL, DIMENSION(knon), INTENT(OUT) :: alf_2_out |
|---|
| 135 | !!! |
|---|
| 136 | |
|---|
| 137 | ! Local variables |
|---|
| 138 | !**************************************************************************************** |
|---|
| 139 | REAL :: yalf1(knon) |
|---|
| 140 | REAL :: yalf2(knon) |
|---|
| 141 | REAL :: yKcoefm(knon,klev) |
|---|
| 142 | REAL :: yCcoef_U(knon,klev) |
|---|
| 143 | REAL :: yDcoef_U(knon,klev) |
|---|
| 144 | REAL :: yCcoef_V(knon,klev) |
|---|
| 145 | REAL :: yDcoef_V(knon,klev) |
|---|
| 146 | REAL :: yAcoef_U(knon), yBcoef_U(knon), yAcoef_V(knon), yBcoef_V(knon) |
|---|
| 147 | |
|---|
| 148 | REAL, DIMENSION(knon) :: u1lay, v1lay |
|---|
| 149 | INTEGER :: k, i, j |
|---|
| 150 | |
|---|
| 151 | |
|---|
| 152 | !**************************************************************************************** |
|---|
| 153 | ! Calculate the coefficients C and D in : u(k) = C(k) + D(k)*u(k-1) |
|---|
| 154 | ! |
|---|
| 155 | !**************************************************************************************** |
|---|
| 156 | ! - Define alpha (alf1 and alf2) |
|---|
| 157 | yalf1(:) = 1.0 |
|---|
| 158 | yalf2(:) = 1.0 - yalf1(:) |
|---|
| 159 | |
|---|
| 160 | ! - Calculate the coefficients K |
|---|
| 161 | yKcoefm(:,:) = 0.0 |
|---|
| 162 | DO k = 2, klev |
|---|
| 163 | DO i=1,knon |
|---|
| 164 | yKcoefm(i,k) = coef_in(i,k)*RG*RG*dtime/(pplay(i,k-1)-pplay(i,k)) & |
|---|
| 165 | *(paprs(i,k)*2/(temp(i,k)+temp(i,k-1))/RD)**2 |
|---|
| 166 | END DO |
|---|
| 167 | END DO |
|---|
| 168 | |
|---|
| 169 | ! - Calculate the coefficients C and D, component "u" |
|---|
| 170 | CALL calc_coef(knon, yKcoefm, delp, & |
|---|
| 171 | u_old, yalf1, yalf2, & |
|---|
| 172 | yCcoef_U, yDcoef_U, yAcoef_U, yBcoef_U) |
|---|
| 173 | |
|---|
| 174 | ! - Calculate the coefficients C and D, component "v" |
|---|
| 175 | CALL calc_coef(knon, yKcoefm, delp, & |
|---|
| 176 | v_old, yalf1, yalf2, & |
|---|
| 177 | yCcoef_V, yDcoef_V, yAcoef_V, yBcoef_V) |
|---|
| 178 | |
|---|
| 179 | !**************************************************************************************** |
|---|
| 180 | ! 6) |
|---|
| 181 | ! Return the first layer in output variables |
|---|
| 182 | ! |
|---|
| 183 | !**************************************************************************************** |
|---|
| 184 | Acoef_U_out = yAcoef_U |
|---|
| 185 | Bcoef_U_out = yBcoef_U |
|---|
| 186 | Acoef_V_out = yAcoef_V |
|---|
| 187 | Bcoef_V_out = yBcoef_V |
|---|
| 188 | |
|---|
| 189 | !**************************************************************************************** |
|---|
| 190 | ! 7) |
|---|
| 191 | ! If Pbl is split, return also the other layers in output variables |
|---|
| 192 | ! |
|---|
| 193 | !**************************************************************************************** |
|---|
| 194 | !!! jyg le 07/02/2012 |
|---|
| 195 | !!jyg IF (mod(iflag_pbl_split,2) .eq.1) THEN |
|---|
| 196 | IF (mod(iflag_pbl_split,10) .ge.1) THEN |
|---|
| 197 | !!! nrlmd le 02/05/2011 |
|---|
| 198 | DO k= 1, klev |
|---|
| 199 | DO i= 1, knon |
|---|
| 200 | Ccoef_U_out(i,k) = yCcoef_U(i,k) |
|---|
| 201 | Ccoef_V_out(i,k) = yCcoef_V(i,k) |
|---|
| 202 | Dcoef_U_out(i,k) = yDcoef_U(i,k) |
|---|
| 203 | Dcoef_V_out(i,k) = yDcoef_V(i,k) |
|---|
| 204 | Kcoef_m_out(i,k) = yKcoefm(i,k) |
|---|
| 205 | ENDDO |
|---|
| 206 | ENDDO |
|---|
| 207 | DO i= 1, knon |
|---|
| 208 | alf_1_out(i) = yalf1(i) |
|---|
| 209 | alf_2_out(i) = yalf2(i) |
|---|
| 210 | ENDDO |
|---|
| 211 | !!! |
|---|
| 212 | ENDIF ! (mod(iflag_pbl_split,2) .ge.1) |
|---|
| 213 | !!! |
|---|
| 214 | DO j= 1, knon |
|---|
| 215 | i=ni(j) |
|---|
| 216 | Acoef_U(i) = yAcoef_U(j) |
|---|
| 217 | Bcoef_U(i) = yBcoef_U(j) |
|---|
| 218 | Acoef_V(i) = yAcoef_V(j) |
|---|
| 219 | Bcoef_V(i) = yBcoef_V(j) |
|---|
| 220 | ENDDO |
|---|
| 221 | |
|---|
| 222 | DO k= 1, klev |
|---|
| 223 | DO j= 1, knon |
|---|
| 224 | i=ni(j) |
|---|
| 225 | Ccoef_U(i,k) = yCcoef_U(j,k) |
|---|
| 226 | Ccoef_V(i,k) = yCcoef_V(j,k) |
|---|
| 227 | Dcoef_U(i,k) = yDcoef_U(j,k) |
|---|
| 228 | Dcoef_V(i,k) = yDcoef_V(j,k) |
|---|
| 229 | Kcoefm(i,k) = yKcoefm(j,k) |
|---|
| 230 | alf1(i) = yalf1(j) |
|---|
| 231 | alf2(i) = yalf2(j) |
|---|
| 232 | ENDDO |
|---|
| 233 | ENDDO |
|---|
| 234 | END SUBROUTINE climb_wind_down |
|---|
| 235 | ! |
|---|
| 236 | !**************************************************************************************** |
|---|
| 237 | ! |
|---|
| 238 | SUBROUTINE calc_coef(knon, Kcoef, delp, X, alfa1, alfa2, Ccoef, Dcoef, Acoef, Bcoef) |
|---|
| 239 | !$gpum horizontal knon |
|---|
| 240 | |
|---|
| 241 | ! |
|---|
| 242 | ! Find the coefficients C and D in fonction of alfa, K and delp |
|---|
| 243 | USE yomcst_mod_h |
|---|
| 244 | ! Input arguments |
|---|
| 245 | !**************************************************************************************** |
|---|
| 246 | INTEGER, INTENT(IN) :: knon |
|---|
| 247 | REAL, DIMENSION(knon,klev), INTENT(IN) :: Kcoef, delp |
|---|
| 248 | REAL, DIMENSION(knon,klev), INTENT(IN) :: X |
|---|
| 249 | REAL, DIMENSION(knon), INTENT(IN) :: alfa1, alfa2 |
|---|
| 250 | |
|---|
| 251 | ! Output arguments |
|---|
| 252 | !**************************************************************************************** |
|---|
| 253 | REAL, DIMENSION(knon), INTENT(OUT) :: Acoef, Bcoef |
|---|
| 254 | REAL, DIMENSION(knon,klev), INTENT(OUT) :: Ccoef, Dcoef |
|---|
| 255 | |
|---|
| 256 | ! local variables |
|---|
| 257 | !**************************************************************************************** |
|---|
| 258 | INTEGER :: k, i, j |
|---|
| 259 | REAL :: buf |
|---|
| 260 | !**************************************************************************************** |
|---|
| 261 | ! |
|---|
| 262 | |
|---|
| 263 | ! Calculate coefficients C and D at top level, k=klev |
|---|
| 264 | ! |
|---|
| 265 | Ccoef(:,:) = 0.0 |
|---|
| 266 | Dcoef(:,:) = 0.0 |
|---|
| 267 | |
|---|
| 268 | DO i = 1, knon |
|---|
| 269 | buf = delp(i,klev) + Kcoef(i,klev) |
|---|
| 270 | |
|---|
| 271 | Ccoef(i,klev) = X(i,klev)*delp(i,klev)/buf |
|---|
| 272 | Dcoef(i,klev) = Kcoef(i,klev)/buf |
|---|
| 273 | END DO |
|---|
| 274 | |
|---|
| 275 | ! |
|---|
| 276 | ! Calculate coefficients C and D at top level (klev-1) <= k <= 2 |
|---|
| 277 | ! |
|---|
| 278 | DO k=(klev-1),2,-1 |
|---|
| 279 | DO i = 1, knon |
|---|
| 280 | buf = delp(i,k) + Kcoef(i,k) + Kcoef(i,k+1)*(1.-Dcoef(i,k+1)) |
|---|
| 281 | |
|---|
| 282 | Ccoef(i,k) = (X(i,k)*delp(i,k) + Kcoef(i,k+1)*Ccoef(i,k+1))/buf |
|---|
| 283 | Dcoef(i,k) = Kcoef(i,k)/buf |
|---|
| 284 | END DO |
|---|
| 285 | END DO |
|---|
| 286 | |
|---|
| 287 | ! |
|---|
| 288 | ! Calculate coeffiecent A and B at surface |
|---|
| 289 | ! |
|---|
| 290 | DO i = 1, knon |
|---|
| 291 | buf = delp(i,1) + Kcoef(i,2)*(1-Dcoef(i,2)) |
|---|
| 292 | Acoef(i) = (X(i,1)*delp(i,1) + Kcoef(i,2)*Ccoef(i,2))/buf |
|---|
| 293 | Bcoef(i) = -RG/buf |
|---|
| 294 | END DO |
|---|
| 295 | |
|---|
| 296 | END SUBROUTINE calc_coef |
|---|
| 297 | ! |
|---|
| 298 | !**************************************************************************************** |
|---|
| 299 | ! |
|---|
| 300 | |
|---|
| 301 | SUBROUTINE climb_wind_up(knon, ni, dtime, u_old, v_old, flx_u1, flx_v1, & |
|---|
| 302 | !!! nrlmd le 02/05/2011 |
|---|
| 303 | Acoef_U_in, Acoef_V_in, Bcoef_U_in, Bcoef_V_in, & |
|---|
| 304 | Ccoef_U_in, Ccoef_V_in, Dcoef_U_in, Dcoef_V_in, & |
|---|
| 305 | Kcoef_m_in, & |
|---|
| 306 | !!! |
|---|
| 307 | flx_u_new, flx_v_new, d_u_new, d_v_new) |
|---|
| 308 | !$gpum horizontal knon |
|---|
| 309 | |
|---|
| 310 | ! |
|---|
| 311 | ! Diffuse the wind components from the surface layer and up to the top layer. |
|---|
| 312 | ! Coefficents A, B, C and D are known from before. Start values for the diffusion are the |
|---|
| 313 | ! momentum fluxes at surface. |
|---|
| 314 | ! |
|---|
| 315 | ! u(k=1) = A + B*flx*dtime |
|---|
| 316 | ! u(k) = C(k) + D(k)*u(k-1) [2 <= k <= klev] |
|---|
| 317 | ! |
|---|
| 318 | !**************************************************************************************** |
|---|
| 319 | USE yomcst_mod_h |
|---|
| 320 | USE compbl_mod_h |
|---|
| 321 | ! Input arguments |
|---|
| 322 | !**************************************************************************************** |
|---|
| 323 | INTEGER, INTENT(IN) :: knon |
|---|
| 324 | INTEGER, INTENT(IN) :: ni(knon) |
|---|
| 325 | REAL, INTENT(IN) :: dtime |
|---|
| 326 | REAL, DIMENSION(knon,klev), INTENT(IN) :: u_old |
|---|
| 327 | REAL, DIMENSION(knon,klev), INTENT(IN) :: v_old |
|---|
| 328 | REAL, DIMENSION(knon), INTENT(IN) :: flx_u1, flx_v1 ! momentum flux |
|---|
| 329 | |
|---|
| 330 | !!! nrlmd le 02/05/2011 |
|---|
| 331 | REAL, DIMENSION(knon), INTENT(IN) :: Acoef_U_in,Acoef_V_in, Bcoef_U_in, Bcoef_V_in |
|---|
| 332 | REAL, DIMENSION(knon,klev), INTENT(IN) :: Ccoef_U_in, Ccoef_V_in, Dcoef_U_in, Dcoef_V_in |
|---|
| 333 | REAL, DIMENSION(knon,klev), INTENT(IN) :: Kcoef_m_in |
|---|
| 334 | !!! |
|---|
| 335 | |
|---|
| 336 | ! Output arguments |
|---|
| 337 | !**************************************************************************************** |
|---|
| 338 | REAL, DIMENSION(knon,klev), INTENT(OUT) :: flx_u_new, flx_v_new |
|---|
| 339 | REAL, DIMENSION(knon,klev), INTENT(OUT) :: d_u_new, d_v_new |
|---|
| 340 | |
|---|
| 341 | ! Local variables |
|---|
| 342 | !**************************************************************************************** |
|---|
| 343 | REAL :: yalf1(knon) |
|---|
| 344 | REAL :: yalf2(knon) |
|---|
| 345 | REAL :: yKcoefm(knon,klev) |
|---|
| 346 | REAL :: yCcoef_U(knon,klev) |
|---|
| 347 | REAL :: yDcoef_U(knon,klev) |
|---|
| 348 | REAL :: yCcoef_V(knon,klev) |
|---|
| 349 | REAL :: yDcoef_V(knon,klev) |
|---|
| 350 | REAL :: yAcoef_U(knon), yBcoef_U(knon), yAcoef_V(knon), yBcoef_V(knon) |
|---|
| 351 | |
|---|
| 352 | REAL, DIMENSION(knon,klev) :: u_new, v_new |
|---|
| 353 | INTEGER :: k, i, j |
|---|
| 354 | !**************************************************************************************** |
|---|
| 355 | |
|---|
| 356 | !!! jyg le 07/02/2012 |
|---|
| 357 | !!jyg IF (mod(iflag_pbl_split,2) .eq.1) THEN |
|---|
| 358 | IF (mod(iflag_pbl_split,10) .ge.1) THEN |
|---|
| 359 | !!! nrlmd le 02/05/2011 |
|---|
| 360 | DO i = 1, knon |
|---|
| 361 | yAcoef_U(i)=Acoef_U_in(i) |
|---|
| 362 | yAcoef_V(i)=Acoef_V_in(i) |
|---|
| 363 | yBcoef_U(i)=Bcoef_U_in(i) |
|---|
| 364 | yBcoef_V(i)=Bcoef_V_in(i) |
|---|
| 365 | ENDDO |
|---|
| 366 | DO k = 1, klev |
|---|
| 367 | DO i = 1, knon |
|---|
| 368 | yCcoef_U(i,k)=Ccoef_U_in(i,k) |
|---|
| 369 | yCcoef_V(i,k)=Ccoef_V_in(i,k) |
|---|
| 370 | yDcoef_U(i,k)=Dcoef_U_in(i,k) |
|---|
| 371 | yDcoef_V(i,k)=Dcoef_V_in(i,k) |
|---|
| 372 | yKcoefm(i,k)=Kcoef_m_in(i,k) |
|---|
| 373 | ENDDO |
|---|
| 374 | ENDDO |
|---|
| 375 | ELSE |
|---|
| 376 | DO j = 1, knon |
|---|
| 377 | i=ni(j) |
|---|
| 378 | yAcoef_U(j)=Acoef_U(i) |
|---|
| 379 | yAcoef_V(j)=Acoef_V(i) |
|---|
| 380 | yBcoef_U(j)=Bcoef_U(i) |
|---|
| 381 | yBcoef_V(j)=Bcoef_V(i) |
|---|
| 382 | ENDDO |
|---|
| 383 | DO k = 1, klev |
|---|
| 384 | DO j = 1, knon |
|---|
| 385 | i=ni(j) |
|---|
| 386 | yCcoef_U(j,k)=Ccoef_U(i,k) |
|---|
| 387 | yCcoef_V(j,k)=Ccoef_V(i,k) |
|---|
| 388 | yDcoef_U(j,k)=Dcoef_U(i,k) |
|---|
| 389 | yDcoef_V(j,k)=Dcoef_V(i,k) |
|---|
| 390 | yKcoefm(j,k)=Kcoefm(i,k) |
|---|
| 391 | ENDDO |
|---|
| 392 | ENDDO |
|---|
| 393 | !!! |
|---|
| 394 | ENDIF ! (mod(iflag_pbl_split,2) .ge.1) |
|---|
| 395 | !!! |
|---|
| 396 | |
|---|
| 397 | ! Niveau 1 |
|---|
| 398 | DO i = 1, knon |
|---|
| 399 | u_new(i,1) = yAcoef_U(i) + yBcoef_U(i)*flx_u1(i)*dtime |
|---|
| 400 | v_new(i,1) = yAcoef_V(i) + yBcoef_V(i)*flx_v1(i)*dtime |
|---|
| 401 | END DO |
|---|
| 402 | |
|---|
| 403 | ! Niveau 2 jusqu'au sommet klev |
|---|
| 404 | DO k = 2, klev |
|---|
| 405 | DO i=1, knon |
|---|
| 406 | u_new(i,k) = yCcoef_U(i,k) + yDcoef_U(i,k) * u_new(i,k-1) |
|---|
| 407 | v_new(i,k) = yCcoef_V(i,k) + yDcoef_V(i,k) * v_new(i,k-1) |
|---|
| 408 | END DO |
|---|
| 409 | END DO |
|---|
| 410 | |
|---|
| 411 | !**************************************************************************************** |
|---|
| 412 | ! Calcul flux |
|---|
| 413 | ! |
|---|
| 414 | !== flux_u/v est le flux de moment angulaire (positif vers bas) |
|---|
| 415 | !== dont l'unite est: (kg m/s)/(m**2 s) |
|---|
| 416 | ! |
|---|
| 417 | !**************************************************************************************** |
|---|
| 418 | ! |
|---|
| 419 | flx_u_new(:,:) = 0.0 |
|---|
| 420 | flx_v_new(:,:) = 0.0 |
|---|
| 421 | |
|---|
| 422 | flx_u_new(1:knon,1)=flx_u1(1:knon) |
|---|
| 423 | flx_v_new(1:knon,1)=flx_v1(1:knon) |
|---|
| 424 | |
|---|
| 425 | ! Niveau 2->klev |
|---|
| 426 | DO k = 2, klev |
|---|
| 427 | DO i = 1, knon |
|---|
| 428 | flx_u_new(i,k) = yKcoefm(i,k)/RG/dtime * & |
|---|
| 429 | (u_new(i,k)-u_new(i,k-1)) |
|---|
| 430 | |
|---|
| 431 | flx_v_new(i,k) = yKcoefm(i,k)/RG/dtime * & |
|---|
| 432 | (v_new(i,k)-v_new(i,k-1)) |
|---|
| 433 | END DO |
|---|
| 434 | END DO |
|---|
| 435 | |
|---|
| 436 | !**************************************************************************************** |
|---|
| 437 | ! Calcul tendances |
|---|
| 438 | ! |
|---|
| 439 | !**************************************************************************************** |
|---|
| 440 | d_u_new(:,:) = 0.0 |
|---|
| 441 | d_v_new(:,:) = 0.0 |
|---|
| 442 | DO k = 1, klev |
|---|
| 443 | DO i = 1, knon |
|---|
| 444 | d_u_new(i,k) = u_new(i,k) - u_old(i,k) |
|---|
| 445 | d_v_new(i,k) = v_new(i,k) - v_old(i,k) |
|---|
| 446 | END DO |
|---|
| 447 | END DO |
|---|
| 448 | |
|---|
| 449 | DO j = 1, knon |
|---|
| 450 | i=ni(j) |
|---|
| 451 | Acoef_U(i)=yAcoef_U(j) |
|---|
| 452 | Acoef_V(i)=yAcoef_V(j) |
|---|
| 453 | Bcoef_U(i)=yBcoef_U(j) |
|---|
| 454 | Bcoef_V(i)=yBcoef_V(j) |
|---|
| 455 | ENDDO |
|---|
| 456 | |
|---|
| 457 | DO k = 1, klev |
|---|
| 458 | DO j = 1, knon |
|---|
| 459 | i=ni(j) |
|---|
| 460 | Ccoef_U(i,k) = yCcoef_U(j,k) |
|---|
| 461 | Ccoef_V(i,k) = yCcoef_V(j,k) |
|---|
| 462 | Dcoef_U(i,k) = yDcoef_U(j,k) |
|---|
| 463 | Dcoef_V(i,k) = yDcoef_V(j,k) |
|---|
| 464 | Kcoefm(i,k) = yKcoefm(j,k) |
|---|
| 465 | ENDDO |
|---|
| 466 | ENDDO |
|---|
| 467 | |
|---|
| 468 | END SUBROUTINE climb_wind_up |
|---|
| 469 | ! |
|---|
| 470 | !**************************************************************************************** |
|---|
| 471 | ! |
|---|
| 472 | END MODULE climb_wind_mod |
|---|