1 | !****************************************************************************** |
---|
2 | ! * |
---|
3 | ! Optical depths developed for the * |
---|
4 | ! * |
---|
5 | ! RAPID RADIATIVE TRANSFER MODEL (RRTM) * |
---|
6 | ! * |
---|
7 | ! ATMOSPHERIC AND ENVIRONMENTAL RESEARCH, INC. * |
---|
8 | ! 840 MEMORIAL DRIVE * |
---|
9 | ! CAMBRIDGE, MA 02139 * |
---|
10 | ! * |
---|
11 | ! ELI J. MLAWER * |
---|
12 | ! STEVEN J. TAUBMAN * |
---|
13 | ! SHEPARD A. CLOUGH * |
---|
14 | ! * |
---|
15 | ! email: mlawer@aer.com * |
---|
16 | ! * |
---|
17 | ! The authors wish to acknowledge the contributions of the * |
---|
18 | ! following people: Patrick D. Brown, Michael J. Iacono, * |
---|
19 | ! Ronald E. Farren, Luke Chen, Robert Bergstrom. * |
---|
20 | ! * |
---|
21 | !****************************************************************************** |
---|
22 | ! Modified by: * |
---|
23 | ! JJ Morcrette 980714 ECMWF for use on ECMWF's Fujitsu VPP770 * |
---|
24 | ! Reformatted for F90 by JJMorcrette, ECMWF * |
---|
25 | ! - replacing COMMONs by MODULEs * |
---|
26 | ! - changing labelled to unlabelled DO loops * |
---|
27 | ! - creating set-up routines for all block data statements * |
---|
28 | ! - reorganizing the parameter statements * |
---|
29 | ! - passing KLEV as argument * |
---|
30 | ! - suppressing some equivalencing * |
---|
31 | ! * |
---|
32 | ! D Salmond 9907 ECMWF Speed-up modifications * |
---|
33 | ! D Salmond 000515 ECMWF Speed-up modifications * |
---|
34 | !****************************************************************************** |
---|
35 | ! TAUMOL * |
---|
36 | ! * |
---|
37 | ! This file contains the subroutines TAUGBn (where n goes from * |
---|
38 | ! 1 to 16). TAUGBn calculates the optical depths and Planck fractions * |
---|
39 | ! per g-value and layer for band n. * |
---|
40 | ! * |
---|
41 | ! Output: optical depths (unitless) * |
---|
42 | ! fractions needed to compute Planck functions at every layer * |
---|
43 | ! and g-value * |
---|
44 | ! * |
---|
45 | ! COMMON /TAUGCOM/ TAUG(MXLAY,MG) * |
---|
46 | ! COMMON /PLANKG/ FRACS(MXLAY,MG) * |
---|
47 | ! * |
---|
48 | ! Input * |
---|
49 | ! * |
---|
50 | ! COMMON /FEATURES/ NG(NBANDS),NSPA(NBANDS),NSPB(NBANDS) * |
---|
51 | ! COMMON /PRECISE/ ONEMINUS * |
---|
52 | ! COMMON /PROFILE/ NLAYERS,PAVEL(MXLAY),TAVEL(MXLAY), * |
---|
53 | ! & PZ(0:MXLAY),TZ(0:MXLAY),TBOUND * |
---|
54 | ! COMMON /PROFDATA/ LAYTROP,LAYSWTCH,LAYLOW, * |
---|
55 | ! & COLH2O(MXLAY),COLCO2(MXLAY), * |
---|
56 | ! & COLO3(MXLAY),COLN2O(MXLAY),COLCH4(MXLAY), * |
---|
57 | ! & COLO2(MXLAY),CO2MULT(MXLAY) * |
---|
58 | ! COMMON /INTFAC/ FAC00(MXLAY),FAC01(MXLAY), * |
---|
59 | ! & FAC10(MXLAY),FAC11(MXLAY) * |
---|
60 | ! COMMON /INTIND/ JP(MXLAY),JT(MXLAY),JT1(MXLAY) * |
---|
61 | ! COMMON /SELF/ SELFFAC(MXLAY), SELFFRAC(MXLAY), INDSELF(MXLAY) * |
---|
62 | ! * |
---|
63 | ! Description: * |
---|
64 | ! NG(IBAND) - number of g-values in band IBAND * |
---|
65 | ! NSPA(IBAND) - for the lower atmosphere, the number of reference * |
---|
66 | ! atmospheres that are stored for band IBAND per * |
---|
67 | ! pressure level and temperature. Each of these * |
---|
68 | ! atmospheres has different relative amounts of the * |
---|
69 | ! key species for the band (i.e. different binary * |
---|
70 | ! species parameters). * |
---|
71 | ! NSPB(IBAND) - same for upper atmosphere * |
---|
72 | ! ONEMINUS - since problems are caused in some cases by interpolation * |
---|
73 | ! parameters equal to or greater than 1, for these cases * |
---|
74 | ! these parameters are set to this value, slightly < 1. * |
---|
75 | ! PAVEL - layer pressures (mb) * |
---|
76 | ! TAVEL - layer temperatures (degrees K) * |
---|
77 | ! PZ - level pressures (mb) * |
---|
78 | ! TZ - level temperatures (degrees K) * |
---|
79 | ! LAYTROP - layer at which switch is made from one combination of * |
---|
80 | ! key species to another * |
---|
81 | ! COLH2O, COLCO2, COLO3, COLN2O, COLCH4 - column amounts of water * |
---|
82 | ! vapor,carbon dioxide, ozone, nitrous ozide, methane, * |
---|
83 | ! respectively (molecules/cm**2) * |
---|
84 | ! CO2MULT - for bands in which carbon dioxide is implemented as a * |
---|
85 | ! trace species, this is the factor used to multiply the * |
---|
86 | ! band's average CO2 absorption coefficient to get the added * |
---|
87 | ! contribution to the optical depth relative to 355 ppm. * |
---|
88 | ! FACij(LAY) - for layer LAY, these are factors that are needed to * |
---|
89 | ! compute the interpolation factors that multiply the * |
---|
90 | ! appropriate reference k-values. A value of 0 (1) for * |
---|
91 | ! i,j indicates that the corresponding factor multiplies * |
---|
92 | ! reference k-value for the lower (higher) of the two * |
---|
93 | ! appropriate temperatures, and altitudes, respectively. * |
---|
94 | ! JP - the index of the lower (in altitude) of the two appropriate * |
---|
95 | ! reference pressure levels needed for interpolation * |
---|
96 | ! JT, JT1 - the indices of the lower of the two appropriate reference * |
---|
97 | ! temperatures needed for interpolation (for pressure * |
---|
98 | ! levels JP and JP+1, respectively) * |
---|
99 | ! SELFFAC - scale factor needed to water vapor self-continuum, equals * |
---|
100 | ! (water vapor density)/(atmospheric density at 296K and * |
---|
101 | ! 1013 mb) * |
---|
102 | ! SELFFRAC - factor needed for temperature interpolation of reference * |
---|
103 | ! water vapor self-continuum data * |
---|
104 | ! INDSELF - index of the lower of the two appropriate reference * |
---|
105 | ! temperatures needed for the self-continuum interpolation * |
---|
106 | ! * |
---|
107 | ! Data input * |
---|
108 | ! COMMON /Kn/ KA(NSPA(n),5,13,MG), KB(NSPB(n),5,13:59,MG), SELFREF(10,MG) * |
---|
109 | ! (note: n is the band number) * |
---|
110 | ! * |
---|
111 | ! Description: * |
---|
112 | ! KA - k-values for low reference atmospheres (no water vapor * |
---|
113 | ! self-continuum) (units: cm**2/molecule) * |
---|
114 | ! KB - k-values for high reference atmospheres (all sources) * |
---|
115 | ! (units: cm**2/molecule) * |
---|
116 | ! SELFREF - k-values for water vapor self-continuum for reference * |
---|
117 | ! atmospheres (used below LAYTROP) * |
---|
118 | ! (units: cm**2/molecule) * |
---|
119 | ! * |
---|
120 | ! DIMENSION ABSA(65*NSPA(n),MG), ABSB(235*NSPB(n),MG) * |
---|
121 | ! EQUIVALENCE (KA,ABSA),(KB,ABSB) * |
---|
122 | ! * |
---|
123 | !****************************************************************************** |
---|
124 | |
---|
125 | |
---|
126 | SUBROUTINE RRTM_TAUMOL1 (KLEV,TAU,& |
---|
127 | &TAUAERL,FAC00,FAC01,FAC10,FAC11,FORFAC,JP,JT,JT1,& |
---|
128 | &COLH2O,LAYTROP,SELFFAC,SELFFRAC,INDSELF,PFRAC) |
---|
129 | |
---|
130 | ! Written by Eli J. Mlawer, Atmospheric & Environmental Research. |
---|
131 | ! Revised by Michael J. Iacono, Atmospheric & Environmental Research. |
---|
132 | |
---|
133 | ! BAND 1: 10-250 cm-1 (low - H2O; high - H2O) |
---|
134 | |
---|
135 | ! Modifications |
---|
136 | ! |
---|
137 | ! D Salmond 2000-05-15 speed-up |
---|
138 | ! JJMorcrette 2000-05-17 speed-up |
---|
139 | |
---|
140 | |
---|
141 | #include "tsmbkind.h" |
---|
142 | |
---|
143 | USE PARRRTM , ONLY : JPLAY ,JPBAND ,JPGPT ,JPXSEC |
---|
144 | USE YOERRTWN , ONLY : NG ,NSPA ,NSPB |
---|
145 | USE YOERRTA1 , ONLY : NG1 ,ABSA ,ABSB ,FRACREFA, FRACREFB,& |
---|
146 | &FORREF ,KA ,KB ,SELFREF |
---|
147 | |
---|
148 | !#include "yoeratm.h" |
---|
149 | |
---|
150 | ! REAL TAUAER(JPLAY) |
---|
151 | |
---|
152 | IMPLICIT NONE |
---|
153 | |
---|
154 | ! Output |
---|
155 | REAL_B :: TAU (JPGPT,JPLAY) |
---|
156 | |
---|
157 | ! DUMMY INTEGER SCALARS |
---|
158 | INTEGER_M :: KLEV |
---|
159 | |
---|
160 | !- from AER |
---|
161 | REAL_B :: TAUAERL(JPLAY,JPBAND) |
---|
162 | |
---|
163 | !- from INTFAC |
---|
164 | REAL_B :: FAC00(JPLAY) |
---|
165 | REAL_B :: FAC01(JPLAY) |
---|
166 | REAL_B :: FAC10(JPLAY) |
---|
167 | REAL_B :: FAC11(JPLAY) |
---|
168 | REAL_B :: FORFAC(JPLAY) |
---|
169 | |
---|
170 | !- from INTIND |
---|
171 | INTEGER_M :: JP(JPLAY) |
---|
172 | INTEGER_M :: JT(JPLAY) |
---|
173 | INTEGER_M :: JT1(JPLAY) |
---|
174 | |
---|
175 | !- from PRECISE |
---|
176 | REAL_B :: ONEMINUS |
---|
177 | |
---|
178 | !- from PROFDATA |
---|
179 | REAL_B :: COLH2O(JPLAY) |
---|
180 | INTEGER_M :: LAYTROP |
---|
181 | |
---|
182 | !- from SELF |
---|
183 | REAL_B :: SELFFAC(JPLAY) |
---|
184 | REAL_B :: SELFFRAC(JPLAY) |
---|
185 | INTEGER_M :: INDSELF(JPLAY) |
---|
186 | |
---|
187 | !- from SP |
---|
188 | REAL_B :: PFRAC(JPGPT,JPLAY) |
---|
189 | |
---|
190 | INTEGER_M :: IND0(JPLAY),IND1(JPLAY),INDS(JPLAY) |
---|
191 | |
---|
192 | ! LOCAL INTEGER SCALARS |
---|
193 | INTEGER_M :: IG, LAY |
---|
194 | |
---|
195 | ! EQUIVALENCE (TAUAERL(1,1),TAUAER) |
---|
196 | |
---|
197 | ! Compute the optical depth by interpolating in ln(pressure) and |
---|
198 | ! temperature. Below LAYTROP, the water vapor self-continuum |
---|
199 | ! is interpolated (in temperature) separately. |
---|
200 | |
---|
201 | DO LAY = 1, LAYTROP |
---|
202 | IND0(LAY) = ((JP(LAY)-1)*5+(JT(LAY)-1))*NSPA(1) + 1 |
---|
203 | IND1(LAY) = (JP(LAY)*5+(JT1(LAY)-1))*NSPA(1) + 1 |
---|
204 | INDS(LAY) = INDSELF(LAY) |
---|
205 | ENDDO |
---|
206 | |
---|
207 | DO IG = 1, NG1 |
---|
208 | DO LAY = 1, LAYTROP |
---|
209 | !-- DS_000515 |
---|
210 | TAU (IG,LAY) = COLH2O(LAY) *& |
---|
211 | &(FAC00(LAY) * ABSA(IND0(LAY) ,IG) +& |
---|
212 | & FAC10(LAY) * ABSA(IND0(LAY)+1,IG) +& |
---|
213 | & FAC01(LAY) * ABSA(IND1(LAY) ,IG) +& |
---|
214 | & FAC11(LAY) * ABSA(IND1(LAY)+1,IG) +& |
---|
215 | &SELFFAC(LAY) * (SELFREF(INDS(LAY),IG) + & |
---|
216 | &SELFFRAC(LAY) *& |
---|
217 | &(SELFREF(INDS(LAY)+1,IG) - SELFREF(INDS(LAY),IG)))& |
---|
218 | &+ FORFAC(LAY) * FORREF(IG) ) & |
---|
219 | &+ TAUAERL(LAY,1) |
---|
220 | PFRAC(IG,LAY) = FRACREFA(IG) |
---|
221 | ENDDO |
---|
222 | ENDDO |
---|
223 | |
---|
224 | DO LAY = LAYTROP+1, KLEV |
---|
225 | IND0(LAY) = ((JP(LAY)-13)*5+(JT(LAY)-1))*NSPB(1) + 1 |
---|
226 | IND1(LAY) = ((JP(LAY)-12)*5+(JT1(LAY)-1))*NSPB(1) + 1 |
---|
227 | ENDDO |
---|
228 | |
---|
229 | !-- JJM000517 |
---|
230 | DO IG = 1, NG1 |
---|
231 | DO LAY = LAYTROP+1, KLEV |
---|
232 | !-- JJM000517 |
---|
233 | TAU (IG,LAY) = COLH2O(LAY) *& |
---|
234 | &(FAC00(LAY) * ABSB(IND0(LAY) ,IG) +& |
---|
235 | & FAC10(LAY) * ABSB(IND0(LAY)+1,IG) +& |
---|
236 | & FAC01(LAY) * ABSB(IND1(LAY) ,IG) +& |
---|
237 | & FAC11(LAY) * ABSB(IND1(LAY)+1,IG)& |
---|
238 | &+ FORFAC(LAY) * FORREF(IG) ) & |
---|
239 | &+ TAUAERL(LAY,1) |
---|
240 | PFRAC(IG,LAY) = FRACREFB(IG) |
---|
241 | ENDDO |
---|
242 | ENDDO |
---|
243 | |
---|
244 | RETURN |
---|
245 | END SUBROUTINE RRTM_TAUMOL1 |
---|